1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/ds/PriorityQueue.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,135 @@ 1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- 1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99: 1.6 + * This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 + 1.10 +#ifndef ds_PriorityQueue_h 1.11 +#define ds_PriorityQueue_h 1.12 + 1.13 +#include "js/Vector.h" 1.14 + 1.15 +namespace js { 1.16 + 1.17 +/* 1.18 + * Class which represents a heap based priority queue using a vector. 1.19 + * Inserting elements and removing the highest priority one are both O(log n). 1.20 + * 1.21 + * Template parameters are the same as for Vector, with the addition that P 1.22 + * must have a static priority(const T&) method which returns higher numbers 1.23 + * for higher priority elements. 1.24 + */ 1.25 +template <class T, class P, 1.26 + size_t MinInlineCapacity = 0, 1.27 + class AllocPolicy = TempAllocPolicy> 1.28 +class PriorityQueue 1.29 +{ 1.30 + Vector<T, MinInlineCapacity, AllocPolicy> heap; 1.31 + 1.32 + PriorityQueue(const PriorityQueue &) MOZ_DELETE; 1.33 + PriorityQueue &operator=(const PriorityQueue &) MOZ_DELETE; 1.34 + 1.35 + public: 1.36 + 1.37 + PriorityQueue(AllocPolicy ap = AllocPolicy()) 1.38 + : heap(ap) 1.39 + {} 1.40 + 1.41 + bool reserve(size_t capacity) { 1.42 + return heap.reserve(capacity); 1.43 + } 1.44 + 1.45 + size_t length() const { 1.46 + return heap.length(); 1.47 + } 1.48 + 1.49 + bool empty() const { 1.50 + return heap.empty(); 1.51 + } 1.52 + 1.53 + T removeHighest() { 1.54 + T highest = heap[0]; 1.55 + T last = heap.popCopy(); 1.56 + if (!heap.empty()) { 1.57 + heap[0] = last; 1.58 + siftDown(0); 1.59 + } 1.60 + return highest; 1.61 + } 1.62 + 1.63 + bool insert(const T &v) { 1.64 + if (!heap.append(v)) 1.65 + return false; 1.66 + siftUp(heap.length() - 1); 1.67 + return true; 1.68 + } 1.69 + 1.70 + void infallibleInsert(const T &v) { 1.71 + heap.infallibleAppend(v); 1.72 + siftUp(heap.length() - 1); 1.73 + } 1.74 + 1.75 + private: 1.76 + 1.77 + /* 1.78 + * Elements of the vector encode a binary tree: 1.79 + * 1.80 + * 0 1.81 + * 1 2 1.82 + * 3 4 5 6 1.83 + * 1.84 + * The children of element N are (2N + 1) and (2N + 2). 1.85 + * The parent of element N is (N - 1) / 2. 1.86 + * 1.87 + * Each element has higher priority than its children. 1.88 + */ 1.89 + 1.90 + void siftDown(size_t n) { 1.91 + while (true) { 1.92 + size_t left = n * 2 + 1; 1.93 + size_t right = n * 2 + 2; 1.94 + 1.95 + if (left < heap.length()) { 1.96 + if (right < heap.length()) { 1.97 + if (P::priority(heap[n]) < P::priority(heap[right]) && 1.98 + P::priority(heap[left]) < P::priority(heap[right])) 1.99 + { 1.100 + swap(n, right); 1.101 + n = right; 1.102 + continue; 1.103 + } 1.104 + } 1.105 + 1.106 + if (P::priority(heap[n]) < P::priority(heap[left])) { 1.107 + swap(n, left); 1.108 + n = left; 1.109 + continue; 1.110 + } 1.111 + } 1.112 + 1.113 + break; 1.114 + } 1.115 + } 1.116 + 1.117 + void siftUp(size_t n) { 1.118 + while (n > 0) { 1.119 + size_t parent = (n - 1) / 2; 1.120 + 1.121 + if (P::priority(heap[parent]) > P::priority(heap[n])) 1.122 + break; 1.123 + 1.124 + swap(n, parent); 1.125 + n = parent; 1.126 + } 1.127 + } 1.128 + 1.129 + void swap(size_t a, size_t b) { 1.130 + T tmp = heap[a]; 1.131 + heap[a] = heap[b]; 1.132 + heap[b] = tmp; 1.133 + } 1.134 +}; 1.135 + 1.136 +} /* namespace js */ 1.137 + 1.138 +#endif /* ds_PriorityQueue_h */