1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/dtoa.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,3248 @@ 1.4 +/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */ 1.5 +/**************************************************************** 1.6 + * 1.7 + * The author of this software is David M. Gay. 1.8 + * 1.9 + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. 1.10 + * 1.11 + * Permission to use, copy, modify, and distribute this software for any 1.12 + * purpose without fee is hereby granted, provided that this entire notice 1.13 + * is included in all copies of any software which is or includes a copy 1.14 + * or modification of this software and in all copies of the supporting 1.15 + * documentation for such software. 1.16 + * 1.17 + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED 1.18 + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY 1.19 + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY 1.20 + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. 1.21 + * 1.22 + ***************************************************************/ 1.23 + 1.24 +/* Please send bug reports to David M. Gay (dmg at acm dot org, 1.25 + * with " at " changed at "@" and " dot " changed to "."). */ 1.26 + 1.27 +/* On a machine with IEEE extended-precision registers, it is 1.28 + * necessary to specify double-precision (53-bit) rounding precision 1.29 + * before invoking strtod or dtoa. If the machine uses (the equivalent 1.30 + * of) Intel 80x87 arithmetic, the call 1.31 + * _control87(PC_53, MCW_PC); 1.32 + * does this with many compilers. Whether this or another call is 1.33 + * appropriate depends on the compiler; for this to work, it may be 1.34 + * necessary to #include "float.h" or another system-dependent header 1.35 + * file. 1.36 + */ 1.37 + 1.38 +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 1.39 + * 1.40 + * This strtod returns a nearest machine number to the input decimal 1.41 + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 1.42 + * broken by the IEEE round-even rule. Otherwise ties are broken by 1.43 + * biased rounding (add half and chop). 1.44 + * 1.45 + * Inspired loosely by William D. Clinger's paper "How to Read Floating 1.46 + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. 1.47 + * 1.48 + * Modifications: 1.49 + * 1.50 + * 1. We only require IEEE, IBM, or VAX double-precision 1.51 + * arithmetic (not IEEE double-extended). 1.52 + * 2. We get by with floating-point arithmetic in a case that 1.53 + * Clinger missed -- when we're computing d * 10^n 1.54 + * for a small integer d and the integer n is not too 1.55 + * much larger than 22 (the maximum integer k for which 1.56 + * we can represent 10^k exactly), we may be able to 1.57 + * compute (d*10^k) * 10^(e-k) with just one roundoff. 1.58 + * 3. Rather than a bit-at-a-time adjustment of the binary 1.59 + * result in the hard case, we use floating-point 1.60 + * arithmetic to determine the adjustment to within 1.61 + * one bit; only in really hard cases do we need to 1.62 + * compute a second residual. 1.63 + * 4. Because of 3., we don't need a large table of powers of 10 1.64 + * for ten-to-e (just some small tables, e.g. of 10^k 1.65 + * for 0 <= k <= 22). 1.66 + */ 1.67 + 1.68 +/* 1.69 + * #define IEEE_8087 for IEEE-arithmetic machines where the least 1.70 + * significant byte has the lowest address. 1.71 + * #define IEEE_MC68k for IEEE-arithmetic machines where the most 1.72 + * significant byte has the lowest address. 1.73 + * #define Long int on machines with 32-bit ints and 64-bit longs. 1.74 + * #define IBM for IBM mainframe-style floating-point arithmetic. 1.75 + * #define VAX for VAX-style floating-point arithmetic (D_floating). 1.76 + * #define No_leftright to omit left-right logic in fast floating-point 1.77 + * computation of dtoa. 1.78 + * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 1.79 + * and strtod and dtoa should round accordingly. 1.80 + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 1.81 + * and Honor_FLT_ROUNDS is not #defined. 1.82 + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 1.83 + * that use extended-precision instructions to compute rounded 1.84 + * products and quotients) with IBM. 1.85 + * #define ROUND_BIASED for IEEE-format with biased rounding. 1.86 + * #define Inaccurate_Divide for IEEE-format with correctly rounded 1.87 + * products but inaccurate quotients, e.g., for Intel i860. 1.88 + * #define NO_LONG_LONG on machines that do not have a "long long" 1.89 + * integer type (of >= 64 bits). On such machines, you can 1.90 + * #define Just_16 to store 16 bits per 32-bit Long when doing 1.91 + * high-precision integer arithmetic. Whether this speeds things 1.92 + * up or slows things down depends on the machine and the number 1.93 + * being converted. If long long is available and the name is 1.94 + * something other than "long long", #define Llong to be the name, 1.95 + * and if "unsigned Llong" does not work as an unsigned version of 1.96 + * Llong, #define #ULLong to be the corresponding unsigned type. 1.97 + * #define KR_headers for old-style C function headers. 1.98 + * #define Bad_float_h if your system lacks a float.h or if it does not 1.99 + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 1.100 + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 1.101 + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 1.102 + * if memory is available and otherwise does something you deem 1.103 + * appropriate. If MALLOC is undefined, malloc will be invoked 1.104 + * directly -- and assumed always to succeed. Similarly, if you 1.105 + * want something other than the system's free() to be called to 1.106 + * recycle memory acquired from MALLOC, #define FREE to be the 1.107 + * name of the alternate routine. (Unless you #define 1.108 + * NO_GLOBAL_STATE and call destroydtoa, FREE or free is only 1.109 + * called in pathological cases, e.g., in a dtoa call after a dtoa 1.110 + * return in mode 3 with thousands of digits requested.) 1.111 + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 1.112 + * memory allocations from a private pool of memory when possible. 1.113 + * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 1.114 + * unless #defined to be a different length. This default length 1.115 + * suffices to get rid of MALLOC calls except for unusual cases, 1.116 + * such as decimal-to-binary conversion of a very long string of 1.117 + * digits. The longest string dtoa can return is about 751 bytes 1.118 + * long. For conversions by strtod of strings of 800 digits and 1.119 + * all dtoa conversions in single-threaded executions with 8-byte 1.120 + * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte 1.121 + * pointers, PRIVATE_MEM >= 7112 appears adequate. 1.122 + * #define MULTIPLE_THREADS if the system offers preemptively scheduled 1.123 + * multiple threads. In this case, you must provide (or suitably 1.124 + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 1.125 + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 1.126 + * in pow5mult, ensures lazy evaluation of only one copy of high 1.127 + * powers of 5; omitting this lock would introduce a small 1.128 + * probability of wasting memory, but would otherwise be harmless.) 1.129 + * You must also invoke freedtoa(s) to free the value s returned by 1.130 + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 1.131 + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that 1.132 + * avoids underflows on inputs whose result does not underflow. 1.133 + * If you #define NO_IEEE_Scale on a machine that uses IEEE-format 1.134 + * floating-point numbers and flushes underflows to zero rather 1.135 + * than implementing gradual underflow, then you must also #define 1.136 + * Sudden_Underflow. 1.137 + * #define USE_LOCALE to use the current locale's decimal_point value. 1.138 + * #define SET_INEXACT if IEEE arithmetic is being used and extra 1.139 + * computation should be done to set the inexact flag when the 1.140 + * result is inexact and avoid setting inexact when the result 1.141 + * is exact. In this case, dtoa.c must be compiled in 1.142 + * an environment, perhaps provided by #include "dtoa.c" in a 1.143 + * suitable wrapper, that defines two functions, 1.144 + * int get_inexact(void); 1.145 + * void clear_inexact(void); 1.146 + * such that get_inexact() returns a nonzero value if the 1.147 + * inexact bit is already set, and clear_inexact() sets the 1.148 + * inexact bit to 0. When SET_INEXACT is #defined, strtod 1.149 + * also does extra computations to set the underflow and overflow 1.150 + * flags when appropriate (i.e., when the result is tiny and 1.151 + * inexact or when it is a numeric value rounded to +-infinity). 1.152 + * #define NO_ERRNO if strtod should not assign errno = ERANGE when 1.153 + * the result overflows to +-Infinity or underflows to 0. 1.154 + * #define NO_GLOBAL_STATE to avoid defining any non-const global or 1.155 + * static variables. Instead the necessary state is stored in an 1.156 + * opaque struct, DtoaState, a pointer to which must be passed to 1.157 + * every entry point. Two new functions are added to the API: 1.158 + * DtoaState *newdtoa(void); 1.159 + * void destroydtoa(DtoaState *); 1.160 + */ 1.161 + 1.162 +#ifndef Long 1.163 +#define Long long 1.164 +#endif 1.165 +#ifndef ULong 1.166 +typedef unsigned Long ULong; 1.167 +#endif 1.168 + 1.169 +#ifdef DEBUG 1.170 +#include <stdio.h> 1.171 +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 1.172 +#endif 1.173 + 1.174 +#include <stdlib.h> 1.175 +#include <string.h> 1.176 + 1.177 +#ifdef USE_LOCALE 1.178 +#include <locale.h> 1.179 +#endif 1.180 + 1.181 +#ifdef MALLOC 1.182 +#ifdef KR_headers 1.183 +extern char *MALLOC(); 1.184 +#else 1.185 +extern void *MALLOC(size_t); 1.186 +#endif 1.187 +#else 1.188 +#define MALLOC malloc 1.189 +#endif 1.190 + 1.191 +#ifndef FREE 1.192 +#define FREE free 1.193 +#endif 1.194 + 1.195 +#ifndef Omit_Private_Memory 1.196 +#ifndef PRIVATE_MEM 1.197 +#define PRIVATE_MEM 2304 1.198 +#endif 1.199 +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) 1.200 +#endif 1.201 + 1.202 +#undef IEEE_Arith 1.203 +#undef Avoid_Underflow 1.204 +#ifdef IEEE_MC68k 1.205 +#define IEEE_Arith 1.206 +#endif 1.207 +#ifdef IEEE_8087 1.208 +#define IEEE_Arith 1.209 +#endif 1.210 + 1.211 +#include <errno.h> 1.212 + 1.213 +#ifdef Bad_float_h 1.214 + 1.215 +#ifdef IEEE_Arith 1.216 +#define DBL_DIG 15 1.217 +#define DBL_MAX_10_EXP 308 1.218 +#define DBL_MAX_EXP 1024 1.219 +#define FLT_RADIX 2 1.220 +#endif /*IEEE_Arith*/ 1.221 + 1.222 +#ifdef IBM 1.223 +#define DBL_DIG 16 1.224 +#define DBL_MAX_10_EXP 75 1.225 +#define DBL_MAX_EXP 63 1.226 +#define FLT_RADIX 16 1.227 +#define DBL_MAX 7.2370055773322621e+75 1.228 +#endif 1.229 + 1.230 +#ifdef VAX 1.231 +#define DBL_DIG 16 1.232 +#define DBL_MAX_10_EXP 38 1.233 +#define DBL_MAX_EXP 127 1.234 +#define FLT_RADIX 2 1.235 +#define DBL_MAX 1.7014118346046923e+38 1.236 +#endif 1.237 + 1.238 +#ifndef LONG_MAX 1.239 +#define LONG_MAX 2147483647 1.240 +#endif 1.241 + 1.242 +#else /* ifndef Bad_float_h */ 1.243 +#include <float.h> 1.244 +#endif /* Bad_float_h */ 1.245 + 1.246 +#ifndef __MATH_H__ 1.247 +#include <math.h> 1.248 +#endif 1.249 + 1.250 +#ifndef CONST 1.251 +#ifdef KR_headers 1.252 +#define CONST /* blank */ 1.253 +#else 1.254 +#define CONST const 1.255 +#endif 1.256 +#endif 1.257 + 1.258 +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 1.259 +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 1.260 +#endif 1.261 + 1.262 +typedef union { double d; ULong L[2]; } U; 1.263 + 1.264 +#define dval(x) ((x).d) 1.265 +#ifdef IEEE_8087 1.266 +#define word0(x) ((x).L[1]) 1.267 +#define word1(x) ((x).L[0]) 1.268 +#else 1.269 +#define word0(x) ((x).L[0]) 1.270 +#define word1(x) ((x).L[1]) 1.271 +#endif 1.272 + 1.273 +/* The following definition of Storeinc is appropriate for MIPS processors. 1.274 + * An alternative that might be better on some machines is 1.275 + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 1.276 + */ 1.277 +#if defined(IEEE_8087) + defined(VAX) 1.278 +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 1.279 +((unsigned short *)a)[0] = (unsigned short)c, a++) 1.280 +#else 1.281 +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 1.282 +((unsigned short *)a)[1] = (unsigned short)c, a++) 1.283 +#endif 1.284 + 1.285 +/* #define P DBL_MANT_DIG */ 1.286 +/* Ten_pmax = floor(P*log(2)/log(5)) */ 1.287 +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 1.288 +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 1.289 +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 1.290 + 1.291 +#ifdef IEEE_Arith 1.292 +#define Exp_shift 20 1.293 +#define Exp_shift1 20 1.294 +#define Exp_msk1 0x100000 1.295 +#define Exp_msk11 0x100000 1.296 +#define Exp_mask 0x7ff00000 1.297 +#define P 53 1.298 +#define Bias 1023 1.299 +#define Emin (-1022) 1.300 +#define Exp_1 0x3ff00000 1.301 +#define Exp_11 0x3ff00000 1.302 +#define Ebits 11 1.303 +#define Frac_mask 0xfffff 1.304 +#define Frac_mask1 0xfffff 1.305 +#define Ten_pmax 22 1.306 +#define Bletch 0x10 1.307 +#define Bndry_mask 0xfffff 1.308 +#define Bndry_mask1 0xfffff 1.309 +#define LSB 1 1.310 +#define Sign_bit 0x80000000 1.311 +#define Log2P 1 1.312 +#define Tiny0 0 1.313 +#define Tiny1 1 1.314 +#define Quick_max 14 1.315 +#define Int_max 14 1.316 +#ifndef NO_IEEE_Scale 1.317 +#define Avoid_Underflow 1.318 +#ifdef Flush_Denorm /* debugging option */ 1.319 +#undef Sudden_Underflow 1.320 +#endif 1.321 +#endif 1.322 + 1.323 +#ifndef Flt_Rounds 1.324 +#ifdef FLT_ROUNDS 1.325 +#define Flt_Rounds FLT_ROUNDS 1.326 +#else 1.327 +#define Flt_Rounds 1 1.328 +#endif 1.329 +#endif /*Flt_Rounds*/ 1.330 + 1.331 +#ifdef Honor_FLT_ROUNDS 1.332 +#define Rounding rounding 1.333 +#undef Check_FLT_ROUNDS 1.334 +#define Check_FLT_ROUNDS 1.335 +#else 1.336 +#define Rounding Flt_Rounds 1.337 +#endif 1.338 + 1.339 +#else /* ifndef IEEE_Arith */ 1.340 +#undef Check_FLT_ROUNDS 1.341 +#undef Honor_FLT_ROUNDS 1.342 +#undef SET_INEXACT 1.343 +#undef Sudden_Underflow 1.344 +#define Sudden_Underflow 1.345 +#ifdef IBM 1.346 +#undef Flt_Rounds 1.347 +#define Flt_Rounds 0 1.348 +#define Exp_shift 24 1.349 +#define Exp_shift1 24 1.350 +#define Exp_msk1 0x1000000 1.351 +#define Exp_msk11 0x1000000 1.352 +#define Exp_mask 0x7f000000 1.353 +#define P 14 1.354 +#define Bias 65 1.355 +#define Exp_1 0x41000000 1.356 +#define Exp_11 0x41000000 1.357 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 1.358 +#define Frac_mask 0xffffff 1.359 +#define Frac_mask1 0xffffff 1.360 +#define Bletch 4 1.361 +#define Ten_pmax 22 1.362 +#define Bndry_mask 0xefffff 1.363 +#define Bndry_mask1 0xffffff 1.364 +#define LSB 1 1.365 +#define Sign_bit 0x80000000 1.366 +#define Log2P 4 1.367 +#define Tiny0 0x100000 1.368 +#define Tiny1 0 1.369 +#define Quick_max 14 1.370 +#define Int_max 15 1.371 +#else /* VAX */ 1.372 +#undef Flt_Rounds 1.373 +#define Flt_Rounds 1 1.374 +#define Exp_shift 23 1.375 +#define Exp_shift1 7 1.376 +#define Exp_msk1 0x80 1.377 +#define Exp_msk11 0x800000 1.378 +#define Exp_mask 0x7f80 1.379 +#define P 56 1.380 +#define Bias 129 1.381 +#define Exp_1 0x40800000 1.382 +#define Exp_11 0x4080 1.383 +#define Ebits 8 1.384 +#define Frac_mask 0x7fffff 1.385 +#define Frac_mask1 0xffff007f 1.386 +#define Ten_pmax 24 1.387 +#define Bletch 2 1.388 +#define Bndry_mask 0xffff007f 1.389 +#define Bndry_mask1 0xffff007f 1.390 +#define LSB 0x10000 1.391 +#define Sign_bit 0x8000 1.392 +#define Log2P 1 1.393 +#define Tiny0 0x80 1.394 +#define Tiny1 0 1.395 +#define Quick_max 15 1.396 +#define Int_max 15 1.397 +#endif /* IBM, VAX */ 1.398 +#endif /* IEEE_Arith */ 1.399 + 1.400 +#ifndef IEEE_Arith 1.401 +#define ROUND_BIASED 1.402 +#endif 1.403 + 1.404 +#ifdef RND_PRODQUOT 1.405 +#define rounded_product(a,b) a = rnd_prod(a, b) 1.406 +#define rounded_quotient(a,b) a = rnd_quot(a, b) 1.407 +#ifdef KR_headers 1.408 +extern double rnd_prod(), rnd_quot(); 1.409 +#else 1.410 +extern double rnd_prod(double, double), rnd_quot(double, double); 1.411 +#endif 1.412 +#else 1.413 +#define rounded_product(a,b) a *= b 1.414 +#define rounded_quotient(a,b) a /= b 1.415 +#endif 1.416 + 1.417 +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 1.418 +#define Big1 0xffffffff 1.419 + 1.420 +#ifndef Pack_32 1.421 +#define Pack_32 1.422 +#endif 1.423 + 1.424 +#ifdef KR_headers 1.425 +#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) 1.426 +#else 1.427 +#define FFFFFFFF 0xffffffffUL 1.428 +#endif 1.429 + 1.430 +#ifdef NO_LONG_LONG 1.431 +#undef ULLong 1.432 +#ifdef Just_16 1.433 +#undef Pack_32 1.434 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 1.435 + * This makes some inner loops simpler and sometimes saves work 1.436 + * during multiplications, but it often seems to make things slightly 1.437 + * slower. Hence the default is now to store 32 bits per Long. 1.438 + */ 1.439 +#endif 1.440 +#else /* long long available */ 1.441 +#ifndef Llong 1.442 +#define Llong long long 1.443 +#endif 1.444 +#ifndef ULLong 1.445 +#define ULLong unsigned Llong 1.446 +#endif 1.447 +#endif /* NO_LONG_LONG */ 1.448 + 1.449 +#ifndef MULTIPLE_THREADS 1.450 +#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 1.451 +#define FREE_DTOA_LOCK(n) /*nothing*/ 1.452 +#endif 1.453 + 1.454 +#define Kmax 7 1.455 + 1.456 + struct 1.457 +Bigint { 1.458 + struct Bigint *next; 1.459 + int k, maxwds, sign, wds; 1.460 + ULong x[1]; 1.461 + }; 1.462 + 1.463 + typedef struct Bigint Bigint; 1.464 + 1.465 +#ifdef NO_GLOBAL_STATE 1.466 +#ifdef MULTIPLE_THREADS 1.467 +#error "cannot have both NO_GLOBAL_STATE and MULTIPLE_THREADS" 1.468 +#endif 1.469 + struct 1.470 +DtoaState { 1.471 +#define DECLARE_GLOBAL_STATE /* nothing */ 1.472 +#else 1.473 +#define DECLARE_GLOBAL_STATE static 1.474 +#endif 1.475 + 1.476 + DECLARE_GLOBAL_STATE Bigint *freelist[Kmax+1]; 1.477 + DECLARE_GLOBAL_STATE Bigint *p5s; 1.478 +#ifndef Omit_Private_Memory 1.479 + DECLARE_GLOBAL_STATE double private_mem[PRIVATE_mem]; 1.480 + DECLARE_GLOBAL_STATE double *pmem_next 1.481 +#ifndef NO_GLOBAL_STATE 1.482 + = private_mem 1.483 +#endif 1.484 + ; 1.485 +#endif 1.486 +#ifdef NO_GLOBAL_STATE 1.487 + }; 1.488 + typedef struct DtoaState DtoaState; 1.489 +#ifdef KR_headers 1.490 +#define STATE_PARAM state, 1.491 +#define STATE_PARAM_DECL DtoaState *state; 1.492 +#else 1.493 +#define STATE_PARAM DtoaState *state, 1.494 +#endif 1.495 +#define PASS_STATE state, 1.496 +#define GET_STATE(field) (state->field) 1.497 + 1.498 + static DtoaState * 1.499 +newdtoa(void) 1.500 +{ 1.501 + DtoaState *state = (DtoaState *) MALLOC(sizeof(DtoaState)); 1.502 + if (state) { 1.503 + memset(state, 0, sizeof(DtoaState)); 1.504 +#ifndef Omit_Private_Memory 1.505 + state->pmem_next = state->private_mem; 1.506 +#endif 1.507 + } 1.508 + return state; 1.509 +} 1.510 + 1.511 + static void 1.512 +destroydtoa 1.513 +#ifdef KR_headers 1.514 + (state) STATE_PARAM_DECL 1.515 +#else 1.516 + (DtoaState *state) 1.517 +#endif 1.518 +{ 1.519 + int i; 1.520 + Bigint *v, *next; 1.521 + 1.522 + for (i = 0; i <= Kmax; i++) { 1.523 + for (v = GET_STATE(freelist)[i]; v; v = next) { 1.524 + next = v->next; 1.525 +#ifndef Omit_Private_Memory 1.526 + if ((double*)v < GET_STATE(private_mem) || 1.527 + (double*)v >= GET_STATE(private_mem) + PRIVATE_mem) 1.528 +#endif 1.529 + FREE((void*)v); 1.530 + } 1.531 + } 1.532 + FREE((void *)state); 1.533 +} 1.534 + 1.535 +#else 1.536 +#define STATE_PARAM /* nothing */ 1.537 +#define STATE_PARAM_DECL /* nothing */ 1.538 +#define PASS_STATE /* nothing */ 1.539 +#define GET_STATE(name) name 1.540 +#endif 1.541 + 1.542 + static Bigint * 1.543 +Balloc 1.544 +#ifdef KR_headers 1.545 + (STATE_PARAM k) STATE_PARAM_DECL int k; 1.546 +#else 1.547 + (STATE_PARAM int k) 1.548 +#endif 1.549 +{ 1.550 + int x; 1.551 + Bigint *rv; 1.552 +#ifndef Omit_Private_Memory 1.553 + size_t len; 1.554 +#endif 1.555 + 1.556 + ACQUIRE_DTOA_LOCK(0); 1.557 + /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ 1.558 + /* but this case seems very unlikely. */ 1.559 + if (k <= Kmax && (rv = GET_STATE(freelist)[k])) 1.560 + GET_STATE(freelist)[k] = rv->next; 1.561 + else { 1.562 + x = 1 << k; 1.563 +#ifdef Omit_Private_Memory 1.564 + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); 1.565 +#else 1.566 + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) 1.567 + /sizeof(double); 1.568 + if (k <= Kmax && GET_STATE(pmem_next) - GET_STATE(private_mem) + len <= PRIVATE_mem) { 1.569 + rv = (Bigint*)GET_STATE(pmem_next); 1.570 + GET_STATE(pmem_next) += len; 1.571 + } 1.572 + else 1.573 + rv = (Bigint*)MALLOC(len*sizeof(double)); 1.574 +#endif 1.575 + rv->k = k; 1.576 + rv->maxwds = x; 1.577 + } 1.578 + FREE_DTOA_LOCK(0); 1.579 + rv->sign = rv->wds = 0; 1.580 + return rv; 1.581 + } 1.582 + 1.583 + static void 1.584 +Bfree 1.585 +#ifdef KR_headers 1.586 + (STATE_PARAM v) STATE_PARAM_DECL Bigint *v; 1.587 +#else 1.588 + (STATE_PARAM Bigint *v) 1.589 +#endif 1.590 +{ 1.591 + if (v) { 1.592 + if (v->k > Kmax) 1.593 + FREE((void*)v); 1.594 + else { 1.595 + ACQUIRE_DTOA_LOCK(0); 1.596 + v->next = GET_STATE(freelist)[v->k]; 1.597 + GET_STATE(freelist)[v->k] = v; 1.598 + FREE_DTOA_LOCK(0); 1.599 + } 1.600 + } 1.601 + } 1.602 + 1.603 +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ 1.604 +y->wds*sizeof(Long) + 2*sizeof(int)) 1.605 + 1.606 + static Bigint * 1.607 +multadd 1.608 +#ifdef KR_headers 1.609 + (STATE_PARAM b, m, a) STATE_PARAM_DECL Bigint *b; int m, a; 1.610 +#else 1.611 + (STATE_PARAM Bigint *b, int m, int a) /* multiply by m and add a */ 1.612 +#endif 1.613 +{ 1.614 + int i, wds; 1.615 +#ifdef ULLong 1.616 + ULong *x; 1.617 + ULLong carry, y; 1.618 +#else 1.619 + ULong carry, *x, y; 1.620 +#ifdef Pack_32 1.621 + ULong xi, z; 1.622 +#endif 1.623 +#endif 1.624 + Bigint *b1; 1.625 + 1.626 + wds = b->wds; 1.627 + x = b->x; 1.628 + i = 0; 1.629 + carry = a; 1.630 + do { 1.631 +#ifdef ULLong 1.632 + y = *x * (ULLong)m + carry; 1.633 + carry = y >> 32; 1.634 + *x++ = (ULong) y & FFFFFFFF; 1.635 +#else 1.636 +#ifdef Pack_32 1.637 + xi = *x; 1.638 + y = (xi & 0xffff) * m + carry; 1.639 + z = (xi >> 16) * m + (y >> 16); 1.640 + carry = z >> 16; 1.641 + *x++ = (z << 16) + (y & 0xffff); 1.642 +#else 1.643 + y = *x * m + carry; 1.644 + carry = y >> 16; 1.645 + *x++ = y & 0xffff; 1.646 +#endif 1.647 +#endif 1.648 + } 1.649 + while(++i < wds); 1.650 + if (carry) { 1.651 + if (wds >= b->maxwds) { 1.652 + b1 = Balloc(PASS_STATE b->k+1); 1.653 + Bcopy(b1, b); 1.654 + Bfree(PASS_STATE b); 1.655 + b = b1; 1.656 + } 1.657 + b->x[wds++] = (ULong) carry; 1.658 + b->wds = wds; 1.659 + } 1.660 + return b; 1.661 + } 1.662 + 1.663 + static Bigint * 1.664 +s2b 1.665 +#ifdef KR_headers 1.666 + (STATE_PARAM s, nd0, nd, y9) STATE_PARAM_DECL CONST char *s; int nd0, nd; ULong y9; 1.667 +#else 1.668 + (STATE_PARAM CONST char *s, int nd0, int nd, ULong y9) 1.669 +#endif 1.670 +{ 1.671 + Bigint *b; 1.672 + int i, k; 1.673 + Long x, y; 1.674 + 1.675 + x = (nd + 8) / 9; 1.676 + for(k = 0, y = 1; x > y; y <<= 1, k++) ; 1.677 +#ifdef Pack_32 1.678 + b = Balloc(PASS_STATE k); 1.679 + b->x[0] = y9; 1.680 + b->wds = 1; 1.681 +#else 1.682 + b = Balloc(PASS_STATE k+1); 1.683 + b->x[0] = y9 & 0xffff; 1.684 + b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; 1.685 +#endif 1.686 + 1.687 + i = 9; 1.688 + if (9 < nd0) { 1.689 + s += 9; 1.690 + do b = multadd(PASS_STATE b, 10, *s++ - '0'); 1.691 + while(++i < nd0); 1.692 + s++; 1.693 + } 1.694 + else 1.695 + s += 10; 1.696 + for(; i < nd; i++) 1.697 + b = multadd(PASS_STATE b, 10, *s++ - '0'); 1.698 + return b; 1.699 + } 1.700 + 1.701 + static int 1.702 +hi0bits 1.703 +#ifdef KR_headers 1.704 + (x) ULong x; 1.705 +#else 1.706 + (ULong x) 1.707 +#endif 1.708 +{ 1.709 + int k = 0; 1.710 + 1.711 + if (!(x & 0xffff0000)) { 1.712 + k = 16; 1.713 + x <<= 16; 1.714 + } 1.715 + if (!(x & 0xff000000)) { 1.716 + k += 8; 1.717 + x <<= 8; 1.718 + } 1.719 + if (!(x & 0xf0000000)) { 1.720 + k += 4; 1.721 + x <<= 4; 1.722 + } 1.723 + if (!(x & 0xc0000000)) { 1.724 + k += 2; 1.725 + x <<= 2; 1.726 + } 1.727 + if (!(x & 0x80000000)) { 1.728 + k++; 1.729 + if (!(x & 0x40000000)) 1.730 + return 32; 1.731 + } 1.732 + return k; 1.733 + } 1.734 + 1.735 + static int 1.736 +lo0bits 1.737 +#ifdef KR_headers 1.738 + (y) ULong *y; 1.739 +#else 1.740 + (ULong *y) 1.741 +#endif 1.742 +{ 1.743 + int k; 1.744 + ULong x = *y; 1.745 + 1.746 + if (x & 7) { 1.747 + if (x & 1) 1.748 + return 0; 1.749 + if (x & 2) { 1.750 + *y = x >> 1; 1.751 + return 1; 1.752 + } 1.753 + *y = x >> 2; 1.754 + return 2; 1.755 + } 1.756 + k = 0; 1.757 + if (!(x & 0xffff)) { 1.758 + k = 16; 1.759 + x >>= 16; 1.760 + } 1.761 + if (!(x & 0xff)) { 1.762 + k += 8; 1.763 + x >>= 8; 1.764 + } 1.765 + if (!(x & 0xf)) { 1.766 + k += 4; 1.767 + x >>= 4; 1.768 + } 1.769 + if (!(x & 0x3)) { 1.770 + k += 2; 1.771 + x >>= 2; 1.772 + } 1.773 + if (!(x & 1)) { 1.774 + k++; 1.775 + x >>= 1; 1.776 + if (!x) 1.777 + return 32; 1.778 + } 1.779 + *y = x; 1.780 + return k; 1.781 + } 1.782 + 1.783 + static Bigint * 1.784 +i2b 1.785 +#ifdef KR_headers 1.786 + (STATE_PARAM i) STATE_PARAM_DECL int i; 1.787 +#else 1.788 + (STATE_PARAM int i) 1.789 +#endif 1.790 +{ 1.791 + Bigint *b; 1.792 + 1.793 + b = Balloc(PASS_STATE 1); 1.794 + b->x[0] = i; 1.795 + b->wds = 1; 1.796 + return b; 1.797 + } 1.798 + 1.799 + static Bigint * 1.800 +mult 1.801 +#ifdef KR_headers 1.802 + (STATE_PARAM a, b) STATE_PARAM_DECL Bigint *a, *b; 1.803 +#else 1.804 + (STATE_PARAM Bigint *a, Bigint *b) 1.805 +#endif 1.806 +{ 1.807 + Bigint *c; 1.808 + int k, wa, wb, wc; 1.809 + ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; 1.810 + ULong y; 1.811 +#ifdef ULLong 1.812 + ULLong carry, z; 1.813 +#else 1.814 + ULong carry, z; 1.815 +#ifdef Pack_32 1.816 + ULong z2; 1.817 +#endif 1.818 +#endif 1.819 + 1.820 + if (a->wds < b->wds) { 1.821 + c = a; 1.822 + a = b; 1.823 + b = c; 1.824 + } 1.825 + k = a->k; 1.826 + wa = a->wds; 1.827 + wb = b->wds; 1.828 + wc = wa + wb; 1.829 + if (wc > a->maxwds) 1.830 + k++; 1.831 + c = Balloc(PASS_STATE k); 1.832 + for(x = c->x, xa = x + wc; x < xa; x++) 1.833 + *x = 0; 1.834 + xa = a->x; 1.835 + xae = xa + wa; 1.836 + xb = b->x; 1.837 + xbe = xb + wb; 1.838 + xc0 = c->x; 1.839 +#ifdef ULLong 1.840 + for(; xb < xbe; xc0++) { 1.841 + if ((y = *xb++)) { 1.842 + x = xa; 1.843 + xc = xc0; 1.844 + carry = 0; 1.845 + do { 1.846 + z = *x++ * (ULLong)y + *xc + carry; 1.847 + carry = z >> 32; 1.848 + *xc++ = (ULong) z & FFFFFFFF; 1.849 + } 1.850 + while(x < xae); 1.851 + *xc = (ULong) carry; 1.852 + } 1.853 + } 1.854 +#else 1.855 +#ifdef Pack_32 1.856 + for(; xb < xbe; xb++, xc0++) { 1.857 + if (y = *xb & 0xffff) { 1.858 + x = xa; 1.859 + xc = xc0; 1.860 + carry = 0; 1.861 + do { 1.862 + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; 1.863 + carry = z >> 16; 1.864 + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; 1.865 + carry = z2 >> 16; 1.866 + Storeinc(xc, z2, z); 1.867 + } 1.868 + while(x < xae); 1.869 + *xc = carry; 1.870 + } 1.871 + if (y = *xb >> 16) { 1.872 + x = xa; 1.873 + xc = xc0; 1.874 + carry = 0; 1.875 + z2 = *xc; 1.876 + do { 1.877 + z = (*x & 0xffff) * y + (*xc >> 16) + carry; 1.878 + carry = z >> 16; 1.879 + Storeinc(xc, z, z2); 1.880 + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; 1.881 + carry = z2 >> 16; 1.882 + } 1.883 + while(x < xae); 1.884 + *xc = z2; 1.885 + } 1.886 + } 1.887 +#else 1.888 + for(; xb < xbe; xc0++) { 1.889 + if (y = *xb++) { 1.890 + x = xa; 1.891 + xc = xc0; 1.892 + carry = 0; 1.893 + do { 1.894 + z = *x++ * y + *xc + carry; 1.895 + carry = z >> 16; 1.896 + *xc++ = z & 0xffff; 1.897 + } 1.898 + while(x < xae); 1.899 + *xc = carry; 1.900 + } 1.901 + } 1.902 +#endif 1.903 +#endif 1.904 + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; 1.905 + c->wds = wc; 1.906 + return c; 1.907 + } 1.908 + 1.909 + static Bigint * 1.910 +pow5mult 1.911 +#ifdef KR_headers 1.912 + (STATE_PARAM b, k) STATE_PARAM_DECL Bigint *b; int k; 1.913 +#else 1.914 + (STATE_PARAM Bigint *b, int k) 1.915 +#endif 1.916 +{ 1.917 + Bigint *b1, *p5, *p51; 1.918 + int i; 1.919 + static CONST int p05[3] = { 5, 25, 125 }; 1.920 + 1.921 + if ((i = k & 3)) 1.922 + b = multadd(PASS_STATE b, p05[i-1], 0); 1.923 + 1.924 + if (!(k >>= 2)) 1.925 + return b; 1.926 + if (!(p5 = GET_STATE(p5s))) { 1.927 + /* first time */ 1.928 +#ifdef MULTIPLE_THREADS 1.929 + ACQUIRE_DTOA_LOCK(1); 1.930 + if (!(p5 = p5s)) { 1.931 + p5 = p5s = i2b(625); 1.932 + p5->next = 0; 1.933 + } 1.934 + FREE_DTOA_LOCK(1); 1.935 +#else 1.936 + p5 = GET_STATE(p5s) = i2b(PASS_STATE 625); 1.937 + p5->next = 0; 1.938 +#endif 1.939 + } 1.940 + for(;;) { 1.941 + if (k & 1) { 1.942 + b1 = mult(PASS_STATE b, p5); 1.943 + Bfree(PASS_STATE b); 1.944 + b = b1; 1.945 + } 1.946 + if (!(k >>= 1)) 1.947 + break; 1.948 + if (!(p51 = p5->next)) { 1.949 +#ifdef MULTIPLE_THREADS 1.950 + ACQUIRE_DTOA_LOCK(1); 1.951 + if (!(p51 = p5->next)) { 1.952 + p51 = p5->next = mult(p5,p5); 1.953 + p51->next = 0; 1.954 + } 1.955 + FREE_DTOA_LOCK(1); 1.956 +#else 1.957 + p51 = p5->next = mult(PASS_STATE p5,p5); 1.958 + p51->next = 0; 1.959 +#endif 1.960 + } 1.961 + p5 = p51; 1.962 + } 1.963 + return b; 1.964 + } 1.965 + 1.966 + static Bigint * 1.967 +lshift 1.968 +#ifdef KR_headers 1.969 + (STATE_PARAM b, k) STATE_PARAM_DECL Bigint *b; int k; 1.970 +#else 1.971 + (STATE_PARAM Bigint *b, int k) 1.972 +#endif 1.973 +{ 1.974 + int i, k1, n, n1; 1.975 + Bigint *b1; 1.976 + ULong *x, *x1, *xe, z; 1.977 + 1.978 +#ifdef Pack_32 1.979 + n = k >> 5; 1.980 +#else 1.981 + n = k >> 4; 1.982 +#endif 1.983 + k1 = b->k; 1.984 + n1 = n + b->wds + 1; 1.985 + for(i = b->maxwds; n1 > i; i <<= 1) 1.986 + k1++; 1.987 + b1 = Balloc(PASS_STATE k1); 1.988 + x1 = b1->x; 1.989 + for(i = 0; i < n; i++) 1.990 + *x1++ = 0; 1.991 + x = b->x; 1.992 + xe = x + b->wds; 1.993 +#ifdef Pack_32 1.994 + if (k &= 0x1f) { 1.995 + k1 = 32 - k; 1.996 + z = 0; 1.997 + do { 1.998 + *x1++ = *x << k | z; 1.999 + z = *x++ >> k1; 1.1000 + } 1.1001 + while(x < xe); 1.1002 + if ((*x1 = z)) 1.1003 + ++n1; 1.1004 + } 1.1005 +#else 1.1006 + if (k &= 0xf) { 1.1007 + k1 = 16 - k; 1.1008 + z = 0; 1.1009 + do { 1.1010 + *x1++ = *x << k & 0xffff | z; 1.1011 + z = *x++ >> k1; 1.1012 + } 1.1013 + while(x < xe); 1.1014 + if (*x1 = z) 1.1015 + ++n1; 1.1016 + } 1.1017 +#endif 1.1018 + else do 1.1019 + *x1++ = *x++; 1.1020 + while(x < xe); 1.1021 + b1->wds = n1 - 1; 1.1022 + Bfree(PASS_STATE b); 1.1023 + return b1; 1.1024 + } 1.1025 + 1.1026 + static int 1.1027 +cmp 1.1028 +#ifdef KR_headers 1.1029 + (a, b) Bigint *a, *b; 1.1030 +#else 1.1031 + (Bigint *a, Bigint *b) 1.1032 +#endif 1.1033 +{ 1.1034 + ULong *xa, *xa0, *xb, *xb0; 1.1035 + int i, j; 1.1036 + 1.1037 + i = a->wds; 1.1038 + j = b->wds; 1.1039 +#ifdef DEBUG 1.1040 + if (i > 1 && !a->x[i-1]) 1.1041 + Bug("cmp called with a->x[a->wds-1] == 0"); 1.1042 + if (j > 1 && !b->x[j-1]) 1.1043 + Bug("cmp called with b->x[b->wds-1] == 0"); 1.1044 +#endif 1.1045 + if (i -= j) 1.1046 + return i; 1.1047 + xa0 = a->x; 1.1048 + xa = xa0 + j; 1.1049 + xb0 = b->x; 1.1050 + xb = xb0 + j; 1.1051 + for(;;) { 1.1052 + if (*--xa != *--xb) 1.1053 + return *xa < *xb ? -1 : 1; 1.1054 + if (xa <= xa0) 1.1055 + break; 1.1056 + } 1.1057 + return 0; 1.1058 + } 1.1059 + 1.1060 + static Bigint * 1.1061 +diff 1.1062 +#ifdef KR_headers 1.1063 + (STATE_PARAM a, b) STATE_PARAM_DECL Bigint *a, *b; 1.1064 +#else 1.1065 + (STATE_PARAM Bigint *a, Bigint *b) 1.1066 +#endif 1.1067 +{ 1.1068 + Bigint *c; 1.1069 + int i, wa, wb; 1.1070 + ULong *xa, *xae, *xb, *xbe, *xc; 1.1071 +#ifdef ULLong 1.1072 + ULLong borrow, y; 1.1073 +#else 1.1074 + ULong borrow, y; 1.1075 +#ifdef Pack_32 1.1076 + ULong z; 1.1077 +#endif 1.1078 +#endif 1.1079 + 1.1080 + i = cmp(a,b); 1.1081 + if (!i) { 1.1082 + c = Balloc(PASS_STATE 0); 1.1083 + c->wds = 1; 1.1084 + c->x[0] = 0; 1.1085 + return c; 1.1086 + } 1.1087 + if (i < 0) { 1.1088 + c = a; 1.1089 + a = b; 1.1090 + b = c; 1.1091 + i = 1; 1.1092 + } 1.1093 + else 1.1094 + i = 0; 1.1095 + c = Balloc(PASS_STATE a->k); 1.1096 + c->sign = i; 1.1097 + wa = a->wds; 1.1098 + xa = a->x; 1.1099 + xae = xa + wa; 1.1100 + wb = b->wds; 1.1101 + xb = b->x; 1.1102 + xbe = xb + wb; 1.1103 + xc = c->x; 1.1104 + borrow = 0; 1.1105 +#ifdef ULLong 1.1106 + do { 1.1107 + y = (ULLong)*xa++ - *xb++ - borrow; 1.1108 + borrow = y >> 32 & (ULong)1; 1.1109 + *xc++ = (ULong) y & FFFFFFFF; 1.1110 + } 1.1111 + while(xb < xbe); 1.1112 + while(xa < xae) { 1.1113 + y = *xa++ - borrow; 1.1114 + borrow = y >> 32 & (ULong)1; 1.1115 + *xc++ = (ULong) y & FFFFFFFF; 1.1116 + } 1.1117 +#else 1.1118 +#ifdef Pack_32 1.1119 + do { 1.1120 + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; 1.1121 + borrow = (y & 0x10000) >> 16; 1.1122 + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; 1.1123 + borrow = (z & 0x10000) >> 16; 1.1124 + Storeinc(xc, z, y); 1.1125 + } 1.1126 + while(xb < xbe); 1.1127 + while(xa < xae) { 1.1128 + y = (*xa & 0xffff) - borrow; 1.1129 + borrow = (y & 0x10000) >> 16; 1.1130 + z = (*xa++ >> 16) - borrow; 1.1131 + borrow = (z & 0x10000) >> 16; 1.1132 + Storeinc(xc, z, y); 1.1133 + } 1.1134 +#else 1.1135 + do { 1.1136 + y = *xa++ - *xb++ - borrow; 1.1137 + borrow = (y & 0x10000) >> 16; 1.1138 + *xc++ = y & 0xffff; 1.1139 + } 1.1140 + while(xb < xbe); 1.1141 + while(xa < xae) { 1.1142 + y = *xa++ - borrow; 1.1143 + borrow = (y & 0x10000) >> 16; 1.1144 + *xc++ = y & 0xffff; 1.1145 + } 1.1146 +#endif 1.1147 +#endif 1.1148 + while(!*--xc) 1.1149 + wa--; 1.1150 + c->wds = wa; 1.1151 + return c; 1.1152 + } 1.1153 + 1.1154 + static double 1.1155 +ulp 1.1156 +#ifdef KR_headers 1.1157 + (x) U x; 1.1158 +#else 1.1159 + (U x) 1.1160 +#endif 1.1161 +{ 1.1162 + Long L; 1.1163 + U a; 1.1164 + 1.1165 + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; 1.1166 +#ifndef Avoid_Underflow 1.1167 +#ifndef Sudden_Underflow 1.1168 + if (L > 0) { 1.1169 +#endif 1.1170 +#endif 1.1171 +#ifdef IBM 1.1172 + L |= Exp_msk1 >> 4; 1.1173 +#endif 1.1174 + word0(a) = L; 1.1175 + word1(a) = 0; 1.1176 +#ifndef Avoid_Underflow 1.1177 +#ifndef Sudden_Underflow 1.1178 + } 1.1179 + else { 1.1180 + L = -L >> Exp_shift; 1.1181 + if (L < Exp_shift) { 1.1182 + word0(a) = 0x80000 >> L; 1.1183 + word1(a) = 0; 1.1184 + } 1.1185 + else { 1.1186 + word0(a) = 0; 1.1187 + L -= Exp_shift; 1.1188 + word1(a) = L >= 31 ? 1 : 1 << 31 - L; 1.1189 + } 1.1190 + } 1.1191 +#endif 1.1192 +#endif 1.1193 + return dval(a); 1.1194 + } 1.1195 + 1.1196 + static double 1.1197 +b2d 1.1198 +#ifdef KR_headers 1.1199 + (a, e) Bigint *a; int *e; 1.1200 +#else 1.1201 + (Bigint *a, int *e) 1.1202 +#endif 1.1203 +{ 1.1204 + ULong *xa, *xa0, w, y, z; 1.1205 + int k; 1.1206 + U d; 1.1207 +#ifdef VAX 1.1208 + ULong d0, d1; 1.1209 +#else 1.1210 +#define d0 word0(d) 1.1211 +#define d1 word1(d) 1.1212 +#endif 1.1213 + 1.1214 + xa0 = a->x; 1.1215 + xa = xa0 + a->wds; 1.1216 + y = *--xa; 1.1217 +#ifdef DEBUG 1.1218 + if (!y) Bug("zero y in b2d"); 1.1219 +#endif 1.1220 + k = hi0bits(y); 1.1221 + *e = 32 - k; 1.1222 +#ifdef Pack_32 1.1223 + if (k < Ebits) { 1.1224 + d0 = Exp_1 | y >> (Ebits - k); 1.1225 + w = xa > xa0 ? *--xa : 0; 1.1226 + d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); 1.1227 + goto ret_d; 1.1228 + } 1.1229 + z = xa > xa0 ? *--xa : 0; 1.1230 + if (k -= Ebits) { 1.1231 + d0 = Exp_1 | y << k | z >> (32 - k); 1.1232 + y = xa > xa0 ? *--xa : 0; 1.1233 + d1 = z << k | y >> (32 - k); 1.1234 + } 1.1235 + else { 1.1236 + d0 = Exp_1 | y; 1.1237 + d1 = z; 1.1238 + } 1.1239 +#else 1.1240 + if (k < Ebits + 16) { 1.1241 + z = xa > xa0 ? *--xa : 0; 1.1242 + d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; 1.1243 + w = xa > xa0 ? *--xa : 0; 1.1244 + y = xa > xa0 ? *--xa : 0; 1.1245 + d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; 1.1246 + goto ret_d; 1.1247 + } 1.1248 + z = xa > xa0 ? *--xa : 0; 1.1249 + w = xa > xa0 ? *--xa : 0; 1.1250 + k -= Ebits + 16; 1.1251 + d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; 1.1252 + y = xa > xa0 ? *--xa : 0; 1.1253 + d1 = w << k + 16 | y << k; 1.1254 +#endif 1.1255 + ret_d: 1.1256 +#ifdef VAX 1.1257 + word0(d) = d0 >> 16 | d0 << 16; 1.1258 + word1(d) = d1 >> 16 | d1 << 16; 1.1259 +#else 1.1260 +#undef d0 1.1261 +#undef d1 1.1262 +#endif 1.1263 + return dval(d); 1.1264 + } 1.1265 + 1.1266 + static Bigint * 1.1267 +d2b 1.1268 +#ifdef KR_headers 1.1269 + (STATE_PARAM d, e, bits) STATE_PARAM_DECL U d; int *e, *bits; 1.1270 +#else 1.1271 + (STATE_PARAM U d, int *e, int *bits) 1.1272 +#endif 1.1273 +{ 1.1274 + Bigint *b; 1.1275 + int de, k; 1.1276 + ULong *x, y, z; 1.1277 +#ifndef Sudden_Underflow 1.1278 + int i; 1.1279 +#endif 1.1280 +#ifdef VAX 1.1281 + ULong d0, d1; 1.1282 + d0 = word0(d) >> 16 | word0(d) << 16; 1.1283 + d1 = word1(d) >> 16 | word1(d) << 16; 1.1284 +#else 1.1285 +#define d0 word0(d) 1.1286 +#define d1 word1(d) 1.1287 +#endif 1.1288 + 1.1289 +#ifdef Pack_32 1.1290 + b = Balloc(PASS_STATE 1); 1.1291 +#else 1.1292 + b = Balloc(PASS_STATE 2); 1.1293 +#endif 1.1294 + x = b->x; 1.1295 + 1.1296 + z = d0 & Frac_mask; 1.1297 + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ 1.1298 +#ifdef Sudden_Underflow 1.1299 + de = (int)(d0 >> Exp_shift); 1.1300 +#ifndef IBM 1.1301 + z |= Exp_msk11; 1.1302 +#endif 1.1303 +#else 1.1304 + if ((de = (int)(d0 >> Exp_shift))) 1.1305 + z |= Exp_msk1; 1.1306 +#endif 1.1307 +#ifdef Pack_32 1.1308 + if ((y = d1)) { 1.1309 + if ((k = lo0bits(&y))) { 1.1310 + x[0] = y | z << (32 - k); 1.1311 + z >>= k; 1.1312 + } 1.1313 + else 1.1314 + x[0] = y; 1.1315 +#ifndef Sudden_Underflow 1.1316 + i = 1.1317 +#endif 1.1318 + b->wds = (x[1] = z) ? 2 : 1; 1.1319 + } 1.1320 + else { 1.1321 + k = lo0bits(&z); 1.1322 + x[0] = z; 1.1323 +#ifndef Sudden_Underflow 1.1324 + i = 1.1325 +#endif 1.1326 + b->wds = 1; 1.1327 + k += 32; 1.1328 + } 1.1329 +#else 1.1330 + if (y = d1) { 1.1331 + if (k = lo0bits(&y)) 1.1332 + if (k >= 16) { 1.1333 + x[0] = y | z << 32 - k & 0xffff; 1.1334 + x[1] = z >> k - 16 & 0xffff; 1.1335 + x[2] = z >> k; 1.1336 + i = 2; 1.1337 + } 1.1338 + else { 1.1339 + x[0] = y & 0xffff; 1.1340 + x[1] = y >> 16 | z << 16 - k & 0xffff; 1.1341 + x[2] = z >> k & 0xffff; 1.1342 + x[3] = z >> k+16; 1.1343 + i = 3; 1.1344 + } 1.1345 + else { 1.1346 + x[0] = y & 0xffff; 1.1347 + x[1] = y >> 16; 1.1348 + x[2] = z & 0xffff; 1.1349 + x[3] = z >> 16; 1.1350 + i = 3; 1.1351 + } 1.1352 + } 1.1353 + else { 1.1354 +#ifdef DEBUG 1.1355 + if (!z) 1.1356 + Bug("Zero passed to d2b"); 1.1357 +#endif 1.1358 + k = lo0bits(&z); 1.1359 + if (k >= 16) { 1.1360 + x[0] = z; 1.1361 + i = 0; 1.1362 + } 1.1363 + else { 1.1364 + x[0] = z & 0xffff; 1.1365 + x[1] = z >> 16; 1.1366 + i = 1; 1.1367 + } 1.1368 + k += 32; 1.1369 + } 1.1370 + while(!x[i]) 1.1371 + --i; 1.1372 + b->wds = i + 1; 1.1373 +#endif 1.1374 +#ifndef Sudden_Underflow 1.1375 + if (de) { 1.1376 +#endif 1.1377 +#ifdef IBM 1.1378 + *e = (de - Bias - (P-1) << 2) + k; 1.1379 + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); 1.1380 +#else 1.1381 + *e = de - Bias - (P-1) + k; 1.1382 + *bits = P - k; 1.1383 +#endif 1.1384 +#ifndef Sudden_Underflow 1.1385 + } 1.1386 + else { 1.1387 + *e = de - Bias - (P-1) + 1 + k; 1.1388 +#ifdef Pack_32 1.1389 + *bits = 32*i - hi0bits(x[i-1]); 1.1390 +#else 1.1391 + *bits = (i+2)*16 - hi0bits(x[i]); 1.1392 +#endif 1.1393 + } 1.1394 +#endif 1.1395 + return b; 1.1396 + } 1.1397 +#undef d0 1.1398 +#undef d1 1.1399 + 1.1400 + static double 1.1401 +ratio 1.1402 +#ifdef KR_headers 1.1403 + (a, b) Bigint *a, *b; 1.1404 +#else 1.1405 + (Bigint *a, Bigint *b) 1.1406 +#endif 1.1407 +{ 1.1408 + U da, db; 1.1409 + int k, ka, kb; 1.1410 + 1.1411 + dval(da) = b2d(a, &ka); 1.1412 + dval(db) = b2d(b, &kb); 1.1413 +#ifdef Pack_32 1.1414 + k = ka - kb + 32*(a->wds - b->wds); 1.1415 +#else 1.1416 + k = ka - kb + 16*(a->wds - b->wds); 1.1417 +#endif 1.1418 +#ifdef IBM 1.1419 + if (k > 0) { 1.1420 + word0(da) += (k >> 2)*Exp_msk1; 1.1421 + if (k &= 3) 1.1422 + dval(da) *= 1 << k; 1.1423 + } 1.1424 + else { 1.1425 + k = -k; 1.1426 + word0(db) += (k >> 2)*Exp_msk1; 1.1427 + if (k &= 3) 1.1428 + dval(db) *= 1 << k; 1.1429 + } 1.1430 +#else 1.1431 + if (k > 0) 1.1432 + word0(da) += k*Exp_msk1; 1.1433 + else { 1.1434 + k = -k; 1.1435 + word0(db) += k*Exp_msk1; 1.1436 + } 1.1437 +#endif 1.1438 + return dval(da) / dval(db); 1.1439 + } 1.1440 + 1.1441 + static CONST double 1.1442 +tens[] = { 1.1443 + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1.1444 + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1.1445 + 1e20, 1e21, 1e22 1.1446 +#ifdef VAX 1.1447 + , 1e23, 1e24 1.1448 +#endif 1.1449 + }; 1.1450 + 1.1451 + static CONST double 1.1452 +#ifdef IEEE_Arith 1.1453 +bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; 1.1454 +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1.1455 +#ifdef Avoid_Underflow 1.1456 + 9007199254740992.*9007199254740992.e-256 1.1457 + /* = 2^106 * 1e-53 */ 1.1458 +#else 1.1459 + 1e-256 1.1460 +#endif 1.1461 + }; 1.1462 +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ 1.1463 +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ 1.1464 +#define Scale_Bit 0x10 1.1465 +#define n_bigtens 5 1.1466 +#else 1.1467 +#ifdef IBM 1.1468 +bigtens[] = { 1e16, 1e32, 1e64 }; 1.1469 +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; 1.1470 +#define n_bigtens 3 1.1471 +#else 1.1472 +bigtens[] = { 1e16, 1e32 }; 1.1473 +static CONST double tinytens[] = { 1e-16, 1e-32 }; 1.1474 +#define n_bigtens 2 1.1475 +#endif 1.1476 +#endif 1.1477 + 1.1478 + static double 1.1479 +_strtod 1.1480 +#ifdef KR_headers 1.1481 + (STATE_PARAM s00, se) STATE_PARAM_DECL CONST char *s00; char **se; 1.1482 +#else 1.1483 + (STATE_PARAM CONST char *s00, char **se) 1.1484 +#endif 1.1485 +{ 1.1486 +#ifdef Avoid_Underflow 1.1487 + int scale; 1.1488 +#endif 1.1489 + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, 1.1490 + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; 1.1491 + CONST char *s, *s0, *s1; 1.1492 + double aadj, adj; 1.1493 + U aadj1, rv, rv0; 1.1494 + Long L; 1.1495 + ULong y, z; 1.1496 + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; 1.1497 +#ifdef SET_INEXACT 1.1498 + int inexact, oldinexact; 1.1499 +#endif 1.1500 +#ifdef Honor_FLT_ROUNDS 1.1501 + int rounding; 1.1502 +#endif 1.1503 +#ifdef USE_LOCALE 1.1504 + CONST char *s2; 1.1505 +#endif 1.1506 + 1.1507 +#ifdef __GNUC__ 1.1508 + delta = bb = bd = bs = 0; 1.1509 +#endif 1.1510 + 1.1511 + sign = nz0 = nz = 0; 1.1512 + dval(rv) = 0.; 1.1513 + for(s = s00;;s++) switch(*s) { 1.1514 + case '-': 1.1515 + sign = 1; 1.1516 + /* no break */ 1.1517 + case '+': 1.1518 + if (*++s) 1.1519 + goto break2; 1.1520 + /* no break */ 1.1521 + case 0: 1.1522 + goto ret0; 1.1523 + case '\t': 1.1524 + case '\n': 1.1525 + case '\v': 1.1526 + case '\f': 1.1527 + case '\r': 1.1528 + case ' ': 1.1529 + continue; 1.1530 + default: 1.1531 + goto break2; 1.1532 + } 1.1533 + break2: 1.1534 + if (*s == '0') { 1.1535 + nz0 = 1; 1.1536 + while(*++s == '0') ; 1.1537 + if (!*s) 1.1538 + goto ret; 1.1539 + } 1.1540 + s0 = s; 1.1541 + y = z = 0; 1.1542 + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) 1.1543 + if (nd < 9) 1.1544 + y = 10*y + c - '0'; 1.1545 + else if (nd < 16) 1.1546 + z = 10*z + c - '0'; 1.1547 + nd0 = nd; 1.1548 +#ifdef USE_LOCALE 1.1549 + s1 = localeconv()->decimal_point; 1.1550 + if (c == *s1) { 1.1551 + c = '.'; 1.1552 + if (*++s1) { 1.1553 + s2 = s; 1.1554 + for(;;) { 1.1555 + if (*++s2 != *s1) { 1.1556 + c = 0; 1.1557 + break; 1.1558 + } 1.1559 + if (!*++s1) { 1.1560 + s = s2; 1.1561 + break; 1.1562 + } 1.1563 + } 1.1564 + } 1.1565 + } 1.1566 +#endif 1.1567 + if (c == '.') { 1.1568 + c = *++s; 1.1569 + if (!nd) { 1.1570 + for(; c == '0'; c = *++s) 1.1571 + nz++; 1.1572 + if (c > '0' && c <= '9') { 1.1573 + s0 = s; 1.1574 + nf += nz; 1.1575 + nz = 0; 1.1576 + goto have_dig; 1.1577 + } 1.1578 + goto dig_done; 1.1579 + } 1.1580 + for(; c >= '0' && c <= '9'; c = *++s) { 1.1581 + have_dig: 1.1582 + nz++; 1.1583 + if (c -= '0') { 1.1584 + nf += nz; 1.1585 + for(i = 1; i < nz; i++) 1.1586 + if (nd++ < 9) 1.1587 + y *= 10; 1.1588 + else if (nd <= DBL_DIG + 1) 1.1589 + z *= 10; 1.1590 + if (nd++ < 9) 1.1591 + y = 10*y + c; 1.1592 + else if (nd <= DBL_DIG + 1) 1.1593 + z = 10*z + c; 1.1594 + nz = 0; 1.1595 + } 1.1596 + } 1.1597 + } 1.1598 + dig_done: 1.1599 + e = 0; 1.1600 + if (c == 'e' || c == 'E') { 1.1601 + if (!nd && !nz && !nz0) { 1.1602 + goto ret0; 1.1603 + } 1.1604 + s00 = s; 1.1605 + esign = 0; 1.1606 + switch(c = *++s) { 1.1607 + case '-': 1.1608 + esign = 1; 1.1609 + case '+': 1.1610 + c = *++s; 1.1611 + } 1.1612 + if (c >= '0' && c <= '9') { 1.1613 + while(c == '0') 1.1614 + c = *++s; 1.1615 + if (c > '0' && c <= '9') { 1.1616 + L = c - '0'; 1.1617 + s1 = s; 1.1618 + while((c = *++s) >= '0' && c <= '9') 1.1619 + L = 10*L + c - '0'; 1.1620 + if (s - s1 > 8 || L > 19999) 1.1621 + /* Avoid confusion from exponents 1.1622 + * so large that e might overflow. 1.1623 + */ 1.1624 + e = 19999; /* safe for 16 bit ints */ 1.1625 + else 1.1626 + e = (int)L; 1.1627 + if (esign) 1.1628 + e = -e; 1.1629 + } 1.1630 + else 1.1631 + e = 0; 1.1632 + } 1.1633 + else 1.1634 + s = s00; 1.1635 + } 1.1636 + if (!nd) { 1.1637 + if (!nz && !nz0) { 1.1638 + ret0: 1.1639 + s = s00; 1.1640 + sign = 0; 1.1641 + } 1.1642 + goto ret; 1.1643 + } 1.1644 + e1 = e -= nf; 1.1645 + 1.1646 + /* Now we have nd0 digits, starting at s0, followed by a 1.1647 + * decimal point, followed by nd-nd0 digits. The number we're 1.1648 + * after is the integer represented by those digits times 1.1649 + * 10**e */ 1.1650 + 1.1651 + if (!nd0) 1.1652 + nd0 = nd; 1.1653 + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; 1.1654 + dval(rv) = y; 1.1655 + if (k > 9) { 1.1656 +#ifdef SET_INEXACT 1.1657 + if (k > DBL_DIG) 1.1658 + oldinexact = get_inexact(); 1.1659 +#endif 1.1660 + dval(rv) = tens[k - 9] * dval(rv) + z; 1.1661 + } 1.1662 + bd0 = 0; 1.1663 + if (nd <= DBL_DIG 1.1664 +#ifndef RND_PRODQUOT 1.1665 +#ifndef Honor_FLT_ROUNDS 1.1666 + && Flt_Rounds == 1 1.1667 +#endif 1.1668 +#endif 1.1669 + ) { 1.1670 + if (!e) 1.1671 + goto ret; 1.1672 + if (e > 0) { 1.1673 + if (e <= Ten_pmax) { 1.1674 +#ifdef VAX 1.1675 + goto vax_ovfl_check; 1.1676 +#else 1.1677 +#ifdef Honor_FLT_ROUNDS 1.1678 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1679 + if (sign) { 1.1680 + rv = -rv; 1.1681 + sign = 0; 1.1682 + } 1.1683 +#endif 1.1684 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1685 + goto ret; 1.1686 +#endif 1.1687 + } 1.1688 + i = DBL_DIG - nd; 1.1689 + if (e <= Ten_pmax + i) { 1.1690 + /* A fancier test would sometimes let us do 1.1691 + * this for larger i values. 1.1692 + */ 1.1693 +#ifdef Honor_FLT_ROUNDS 1.1694 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1695 + if (sign) { 1.1696 + rv = -rv; 1.1697 + sign = 0; 1.1698 + } 1.1699 +#endif 1.1700 + e -= i; 1.1701 + dval(rv) *= tens[i]; 1.1702 +#ifdef VAX 1.1703 + /* VAX exponent range is so narrow we must 1.1704 + * worry about overflow here... 1.1705 + */ 1.1706 + vax_ovfl_check: 1.1707 + word0(rv) -= P*Exp_msk1; 1.1708 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1709 + if ((word0(rv) & Exp_mask) 1.1710 + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) 1.1711 + goto ovfl; 1.1712 + word0(rv) += P*Exp_msk1; 1.1713 +#else 1.1714 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1715 +#endif 1.1716 + goto ret; 1.1717 + } 1.1718 + } 1.1719 +#ifndef Inaccurate_Divide 1.1720 + else if (e >= -Ten_pmax) { 1.1721 +#ifdef Honor_FLT_ROUNDS 1.1722 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1723 + if (sign) { 1.1724 + rv = -rv; 1.1725 + sign = 0; 1.1726 + } 1.1727 +#endif 1.1728 + /* rv = */ rounded_quotient(dval(rv), tens[-e]); 1.1729 + goto ret; 1.1730 + } 1.1731 +#endif 1.1732 + } 1.1733 + e1 += nd - k; 1.1734 + 1.1735 +#ifdef IEEE_Arith 1.1736 +#ifdef SET_INEXACT 1.1737 + inexact = 1; 1.1738 + if (k <= DBL_DIG) 1.1739 + oldinexact = get_inexact(); 1.1740 +#endif 1.1741 +#ifdef Avoid_Underflow 1.1742 + scale = 0; 1.1743 +#endif 1.1744 +#ifdef Honor_FLT_ROUNDS 1.1745 + if ((rounding = Flt_Rounds) >= 2) { 1.1746 + if (sign) 1.1747 + rounding = rounding == 2 ? 0 : 2; 1.1748 + else 1.1749 + if (rounding != 2) 1.1750 + rounding = 0; 1.1751 + } 1.1752 +#endif 1.1753 +#endif /*IEEE_Arith*/ 1.1754 + 1.1755 + /* Get starting approximation = rv * 10**e1 */ 1.1756 + 1.1757 + if (e1 > 0) { 1.1758 + if ((i = e1 & 15)) 1.1759 + dval(rv) *= tens[i]; 1.1760 + if (e1 &= ~15) { 1.1761 + if (e1 > DBL_MAX_10_EXP) { 1.1762 + ovfl: 1.1763 +#ifndef NO_ERRNO 1.1764 + errno = ERANGE; 1.1765 +#endif 1.1766 + /* Can't trust HUGE_VAL */ 1.1767 +#ifdef IEEE_Arith 1.1768 +#ifdef Honor_FLT_ROUNDS 1.1769 + switch(rounding) { 1.1770 + case 0: /* toward 0 */ 1.1771 + case 3: /* toward -infinity */ 1.1772 + word0(rv) = Big0; 1.1773 + word1(rv) = Big1; 1.1774 + break; 1.1775 + default: 1.1776 + word0(rv) = Exp_mask; 1.1777 + word1(rv) = 0; 1.1778 + } 1.1779 +#else /*Honor_FLT_ROUNDS*/ 1.1780 + word0(rv) = Exp_mask; 1.1781 + word1(rv) = 0; 1.1782 +#endif /*Honor_FLT_ROUNDS*/ 1.1783 +#ifdef SET_INEXACT 1.1784 + /* set overflow bit */ 1.1785 + dval(rv0) = 1e300; 1.1786 + dval(rv0) *= dval(rv0); 1.1787 +#endif 1.1788 +#else /*IEEE_Arith*/ 1.1789 + word0(rv) = Big0; 1.1790 + word1(rv) = Big1; 1.1791 +#endif /*IEEE_Arith*/ 1.1792 + if (bd0) 1.1793 + goto retfree; 1.1794 + goto ret; 1.1795 + } 1.1796 + e1 >>= 4; 1.1797 + for(j = 0; e1 > 1; j++, e1 >>= 1) 1.1798 + if (e1 & 1) 1.1799 + dval(rv) *= bigtens[j]; 1.1800 + /* The last multiplication could overflow. */ 1.1801 + word0(rv) -= P*Exp_msk1; 1.1802 + dval(rv) *= bigtens[j]; 1.1803 + if ((z = word0(rv) & Exp_mask) 1.1804 + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) 1.1805 + goto ovfl; 1.1806 + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { 1.1807 + /* set to largest number */ 1.1808 + /* (Can't trust DBL_MAX) */ 1.1809 + word0(rv) = Big0; 1.1810 + word1(rv) = Big1; 1.1811 + } 1.1812 + else 1.1813 + word0(rv) += P*Exp_msk1; 1.1814 + } 1.1815 + } 1.1816 + else if (e1 < 0) { 1.1817 + e1 = -e1; 1.1818 + if ((i = e1 & 15)) 1.1819 + dval(rv) /= tens[i]; 1.1820 + if (e1 >>= 4) { 1.1821 + if (e1 >= 1 << n_bigtens) 1.1822 + goto undfl; 1.1823 +#ifdef Avoid_Underflow 1.1824 + if (e1 & Scale_Bit) 1.1825 + scale = 2*P; 1.1826 + for(j = 0; e1 > 0; j++, e1 >>= 1) 1.1827 + if (e1 & 1) 1.1828 + dval(rv) *= tinytens[j]; 1.1829 + if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) 1.1830 + >> Exp_shift)) > 0) { 1.1831 + /* scaled rv is denormal; zap j low bits */ 1.1832 + if (j >= 32) { 1.1833 + word1(rv) = 0; 1.1834 + if (j >= 53) 1.1835 + word0(rv) = (P+2)*Exp_msk1; 1.1836 + else 1.1837 + word0(rv) &= 0xffffffff << (j-32); 1.1838 + } 1.1839 + else 1.1840 + word1(rv) &= 0xffffffff << j; 1.1841 + } 1.1842 +#else 1.1843 + for(j = 0; e1 > 1; j++, e1 >>= 1) 1.1844 + if (e1 & 1) 1.1845 + dval(rv) *= tinytens[j]; 1.1846 + /* The last multiplication could underflow. */ 1.1847 + dval(rv0) = dval(rv); 1.1848 + dval(rv) *= tinytens[j]; 1.1849 + if (!dval(rv)) { 1.1850 + dval(rv) = 2.*dval(rv0); 1.1851 + dval(rv) *= tinytens[j]; 1.1852 +#endif 1.1853 + if (!dval(rv)) { 1.1854 + undfl: 1.1855 + dval(rv) = 0.; 1.1856 +#ifndef NO_ERRNO 1.1857 + errno = ERANGE; 1.1858 +#endif 1.1859 + if (bd0) 1.1860 + goto retfree; 1.1861 + goto ret; 1.1862 + } 1.1863 +#ifndef Avoid_Underflow 1.1864 + word0(rv) = Tiny0; 1.1865 + word1(rv) = Tiny1; 1.1866 + /* The refinement below will clean 1.1867 + * this approximation up. 1.1868 + */ 1.1869 + } 1.1870 +#endif 1.1871 + } 1.1872 + } 1.1873 + 1.1874 + /* Now the hard part -- adjusting rv to the correct value.*/ 1.1875 + 1.1876 + /* Put digits into bd: true value = bd * 10^e */ 1.1877 + 1.1878 + bd0 = s2b(PASS_STATE s0, nd0, nd, y); 1.1879 + 1.1880 + for(;;) { 1.1881 + bd = Balloc(PASS_STATE bd0->k); 1.1882 + Bcopy(bd, bd0); 1.1883 + bb = d2b(PASS_STATE rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ 1.1884 + bs = i2b(PASS_STATE 1); 1.1885 + 1.1886 + if (e >= 0) { 1.1887 + bb2 = bb5 = 0; 1.1888 + bd2 = bd5 = e; 1.1889 + } 1.1890 + else { 1.1891 + bb2 = bb5 = -e; 1.1892 + bd2 = bd5 = 0; 1.1893 + } 1.1894 + if (bbe >= 0) 1.1895 + bb2 += bbe; 1.1896 + else 1.1897 + bd2 -= bbe; 1.1898 + bs2 = bb2; 1.1899 +#ifdef Honor_FLT_ROUNDS 1.1900 + if (rounding != 1) 1.1901 + bs2++; 1.1902 +#endif 1.1903 +#ifdef Avoid_Underflow 1.1904 + j = bbe - scale; 1.1905 + i = j + bbbits - 1; /* logb(rv) */ 1.1906 + if (i < Emin) /* denormal */ 1.1907 + j += P - Emin; 1.1908 + else 1.1909 + j = P + 1 - bbbits; 1.1910 +#else /*Avoid_Underflow*/ 1.1911 +#ifdef Sudden_Underflow 1.1912 +#ifdef IBM 1.1913 + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); 1.1914 +#else 1.1915 + j = P + 1 - bbbits; 1.1916 +#endif 1.1917 +#else /*Sudden_Underflow*/ 1.1918 + j = bbe; 1.1919 + i = j + bbbits - 1; /* logb(rv) */ 1.1920 + if (i < Emin) /* denormal */ 1.1921 + j += P - Emin; 1.1922 + else 1.1923 + j = P + 1 - bbbits; 1.1924 +#endif /*Sudden_Underflow*/ 1.1925 +#endif /*Avoid_Underflow*/ 1.1926 + bb2 += j; 1.1927 + bd2 += j; 1.1928 +#ifdef Avoid_Underflow 1.1929 + bd2 += scale; 1.1930 +#endif 1.1931 + i = bb2 < bd2 ? bb2 : bd2; 1.1932 + if (i > bs2) 1.1933 + i = bs2; 1.1934 + if (i > 0) { 1.1935 + bb2 -= i; 1.1936 + bd2 -= i; 1.1937 + bs2 -= i; 1.1938 + } 1.1939 + if (bb5 > 0) { 1.1940 + bs = pow5mult(PASS_STATE bs, bb5); 1.1941 + bb1 = mult(PASS_STATE bs, bb); 1.1942 + Bfree(PASS_STATE bb); 1.1943 + bb = bb1; 1.1944 + } 1.1945 + if (bb2 > 0) 1.1946 + bb = lshift(PASS_STATE bb, bb2); 1.1947 + if (bd5 > 0) 1.1948 + bd = pow5mult(PASS_STATE bd, bd5); 1.1949 + if (bd2 > 0) 1.1950 + bd = lshift(PASS_STATE bd, bd2); 1.1951 + if (bs2 > 0) 1.1952 + bs = lshift(PASS_STATE bs, bs2); 1.1953 + delta = diff(PASS_STATE bb, bd); 1.1954 + dsign = delta->sign; 1.1955 + delta->sign = 0; 1.1956 + i = cmp(delta, bs); 1.1957 +#ifdef Honor_FLT_ROUNDS 1.1958 + if (rounding != 1) { 1.1959 + if (i < 0) { 1.1960 + /* Error is less than an ulp */ 1.1961 + if (!delta->x[0] && delta->wds <= 1) { 1.1962 + /* exact */ 1.1963 +#ifdef SET_INEXACT 1.1964 + inexact = 0; 1.1965 +#endif 1.1966 + break; 1.1967 + } 1.1968 + if (rounding) { 1.1969 + if (dsign) { 1.1970 + adj = 1.; 1.1971 + goto apply_adj; 1.1972 + } 1.1973 + } 1.1974 + else if (!dsign) { 1.1975 + adj = -1.; 1.1976 + if (!word1(rv) 1.1977 + && !(word0(rv) & Frac_mask)) { 1.1978 + y = word0(rv) & Exp_mask; 1.1979 +#ifdef Avoid_Underflow 1.1980 + if (!scale || y > 2*P*Exp_msk1) 1.1981 +#else 1.1982 + if (y) 1.1983 +#endif 1.1984 + { 1.1985 + delta = lshift(PASS_STATE delta,Log2P); 1.1986 + if (cmp(delta, bs) <= 0) 1.1987 + adj = -0.5; 1.1988 + } 1.1989 + } 1.1990 + apply_adj: 1.1991 +#ifdef Avoid_Underflow 1.1992 + if (scale && (y = word0(rv) & Exp_mask) 1.1993 + <= 2*P*Exp_msk1) 1.1994 + word0(adj) += (2*P+1)*Exp_msk1 - y; 1.1995 +#else 1.1996 +#ifdef Sudden_Underflow 1.1997 + if ((word0(rv) & Exp_mask) <= 1.1998 + P*Exp_msk1) { 1.1999 + word0(rv) += P*Exp_msk1; 1.2000 + dval(rv) += adj*ulp(rv); 1.2001 + word0(rv) -= P*Exp_msk1; 1.2002 + } 1.2003 + else 1.2004 +#endif /*Sudden_Underflow*/ 1.2005 +#endif /*Avoid_Underflow*/ 1.2006 + dval(rv) += adj*ulp(rv); 1.2007 + } 1.2008 + break; 1.2009 + } 1.2010 + adj = ratio(delta, bs); 1.2011 + if (adj < 1.) 1.2012 + adj = 1.; 1.2013 + if (adj <= 0x7ffffffe) { 1.2014 + /* adj = rounding ? ceil(adj) : floor(adj); */ 1.2015 + y = adj; 1.2016 + if (y != adj) { 1.2017 + if (!((rounding>>1) ^ dsign)) 1.2018 + y++; 1.2019 + adj = y; 1.2020 + } 1.2021 + } 1.2022 +#ifdef Avoid_Underflow 1.2023 + if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) 1.2024 + word0(adj) += (2*P+1)*Exp_msk1 - y; 1.2025 +#else 1.2026 +#ifdef Sudden_Underflow 1.2027 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { 1.2028 + word0(rv) += P*Exp_msk1; 1.2029 + adj *= ulp(rv); 1.2030 + if (dsign) 1.2031 + dval(rv) += adj; 1.2032 + else 1.2033 + dval(rv) -= adj; 1.2034 + word0(rv) -= P*Exp_msk1; 1.2035 + goto cont; 1.2036 + } 1.2037 +#endif /*Sudden_Underflow*/ 1.2038 +#endif /*Avoid_Underflow*/ 1.2039 + adj *= ulp(rv); 1.2040 + if (dsign) 1.2041 + dval(rv) += adj; 1.2042 + else 1.2043 + dval(rv) -= adj; 1.2044 + goto cont; 1.2045 + } 1.2046 +#endif /*Honor_FLT_ROUNDS*/ 1.2047 + 1.2048 + if (i < 0) { 1.2049 + /* Error is less than half an ulp -- check for 1.2050 + * special case of mantissa a power of two. 1.2051 + */ 1.2052 + if (dsign || word1(rv) || word0(rv) & Bndry_mask 1.2053 +#ifdef IEEE_Arith 1.2054 +#ifdef Avoid_Underflow 1.2055 + || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 1.2056 +#else 1.2057 + || (word0(rv) & Exp_mask) <= Exp_msk1 1.2058 +#endif 1.2059 +#endif 1.2060 + ) { 1.2061 +#ifdef SET_INEXACT 1.2062 + if (!delta->x[0] && delta->wds <= 1) 1.2063 + inexact = 0; 1.2064 +#endif 1.2065 + break; 1.2066 + } 1.2067 + if (!delta->x[0] && delta->wds <= 1) { 1.2068 + /* exact result */ 1.2069 +#ifdef SET_INEXACT 1.2070 + inexact = 0; 1.2071 +#endif 1.2072 + break; 1.2073 + } 1.2074 + delta = lshift(PASS_STATE delta,Log2P); 1.2075 + if (cmp(delta, bs) > 0) 1.2076 + goto drop_down; 1.2077 + break; 1.2078 + } 1.2079 + if (i == 0) { 1.2080 + /* exactly half-way between */ 1.2081 + if (dsign) { 1.2082 + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 1.2083 + && word1(rv) == ( 1.2084 +#ifdef Avoid_Underflow 1.2085 + (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) 1.2086 + ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : 1.2087 +#endif 1.2088 + 0xffffffff)) { 1.2089 + /*boundary case -- increment exponent*/ 1.2090 + word0(rv) = (word0(rv) & Exp_mask) 1.2091 + + Exp_msk1 1.2092 +#ifdef IBM 1.2093 + | Exp_msk1 >> 4 1.2094 +#endif 1.2095 + ; 1.2096 + word1(rv) = 0; 1.2097 +#ifdef Avoid_Underflow 1.2098 + dsign = 0; 1.2099 +#endif 1.2100 + break; 1.2101 + } 1.2102 + } 1.2103 + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { 1.2104 + drop_down: 1.2105 + /* boundary case -- decrement exponent */ 1.2106 +#ifdef Sudden_Underflow /*{{*/ 1.2107 + L = word0(rv) & Exp_mask; 1.2108 +#ifdef IBM 1.2109 + if (L < Exp_msk1) 1.2110 +#else 1.2111 +#ifdef Avoid_Underflow 1.2112 + if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) 1.2113 +#else 1.2114 + if (L <= Exp_msk1) 1.2115 +#endif /*Avoid_Underflow*/ 1.2116 +#endif /*IBM*/ 1.2117 + goto undfl; 1.2118 + L -= Exp_msk1; 1.2119 +#else /*Sudden_Underflow}{*/ 1.2120 +#ifdef Avoid_Underflow 1.2121 + if (scale) { 1.2122 + L = word0(rv) & Exp_mask; 1.2123 + if (L <= (2*P+1)*Exp_msk1) { 1.2124 + if (L > (P+2)*Exp_msk1) 1.2125 + /* round even ==> */ 1.2126 + /* accept rv */ 1.2127 + break; 1.2128 + /* rv = smallest denormal */ 1.2129 + goto undfl; 1.2130 + } 1.2131 + } 1.2132 +#endif /*Avoid_Underflow*/ 1.2133 + L = (word0(rv) & Exp_mask) - Exp_msk1; 1.2134 +#endif /*Sudden_Underflow}}*/ 1.2135 + word0(rv) = L | Bndry_mask1; 1.2136 + word1(rv) = 0xffffffff; 1.2137 +#ifdef IBM 1.2138 + goto cont; 1.2139 +#else 1.2140 + break; 1.2141 +#endif 1.2142 + } 1.2143 +#ifndef ROUND_BIASED 1.2144 + if (!(word1(rv) & LSB)) 1.2145 + break; 1.2146 +#endif 1.2147 + if (dsign) 1.2148 + dval(rv) += ulp(rv); 1.2149 +#ifndef ROUND_BIASED 1.2150 + else { 1.2151 + dval(rv) -= ulp(rv); 1.2152 +#ifndef Sudden_Underflow 1.2153 + if (!dval(rv)) 1.2154 + goto undfl; 1.2155 +#endif 1.2156 + } 1.2157 +#ifdef Avoid_Underflow 1.2158 + dsign = 1 - dsign; 1.2159 +#endif 1.2160 +#endif 1.2161 + break; 1.2162 + } 1.2163 + if ((aadj = ratio(delta, bs)) <= 2.) { 1.2164 + if (dsign) 1.2165 + aadj = dval(aadj1) = 1.; 1.2166 + else if (word1(rv) || word0(rv) & Bndry_mask) { 1.2167 +#ifndef Sudden_Underflow 1.2168 + if (word1(rv) == Tiny1 && !word0(rv)) 1.2169 + goto undfl; 1.2170 +#endif 1.2171 + aadj = 1.; 1.2172 + dval(aadj1) = -1.; 1.2173 + } 1.2174 + else { 1.2175 + /* special case -- power of FLT_RADIX to be */ 1.2176 + /* rounded down... */ 1.2177 + 1.2178 + if (aadj < 2./FLT_RADIX) 1.2179 + aadj = 1./FLT_RADIX; 1.2180 + else 1.2181 + aadj *= 0.5; 1.2182 + dval(aadj1) = -aadj; 1.2183 + } 1.2184 + } 1.2185 + else { 1.2186 + aadj *= 0.5; 1.2187 + dval(aadj1) = dsign ? aadj : -aadj; 1.2188 +#ifdef Check_FLT_ROUNDS 1.2189 + switch(Rounding) { 1.2190 + case 2: /* towards +infinity */ 1.2191 + dval(aadj1) -= 0.5; 1.2192 + break; 1.2193 + case 0: /* towards 0 */ 1.2194 + case 3: /* towards -infinity */ 1.2195 + dval(aadj1) += 0.5; 1.2196 + } 1.2197 +#else 1.2198 + if (Flt_Rounds == 0) 1.2199 + dval(aadj1) += 0.5; 1.2200 +#endif /*Check_FLT_ROUNDS*/ 1.2201 + } 1.2202 + y = word0(rv) & Exp_mask; 1.2203 + 1.2204 + /* Check for overflow */ 1.2205 + 1.2206 + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { 1.2207 + dval(rv0) = dval(rv); 1.2208 + word0(rv) -= P*Exp_msk1; 1.2209 + adj = dval(aadj1) * ulp(rv); 1.2210 + dval(rv) += adj; 1.2211 + if ((word0(rv) & Exp_mask) >= 1.2212 + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { 1.2213 + if (word0(rv0) == Big0 && word1(rv0) == Big1) 1.2214 + goto ovfl; 1.2215 + word0(rv) = Big0; 1.2216 + word1(rv) = Big1; 1.2217 + goto cont; 1.2218 + } 1.2219 + else 1.2220 + word0(rv) += P*Exp_msk1; 1.2221 + } 1.2222 + else { 1.2223 +#ifdef Avoid_Underflow 1.2224 + if (scale && y <= 2*P*Exp_msk1) { 1.2225 + if (aadj <= 0x7fffffff) { 1.2226 + if ((z = (ULong) aadj) <= 0) 1.2227 + z = 1; 1.2228 + aadj = z; 1.2229 + dval(aadj1) = dsign ? aadj : -aadj; 1.2230 + } 1.2231 + word0(aadj1) += (2*P+1)*Exp_msk1 - y; 1.2232 + } 1.2233 + adj = dval(aadj1) * ulp(rv); 1.2234 + dval(rv) += adj; 1.2235 +#else 1.2236 +#ifdef Sudden_Underflow 1.2237 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { 1.2238 + dval(rv0) = dval(rv); 1.2239 + word0(rv) += P*Exp_msk1; 1.2240 + adj = dval(aadj1) * ulp(rv); 1.2241 + dval(rv) += adj; 1.2242 +#ifdef IBM 1.2243 + if ((word0(rv) & Exp_mask) < P*Exp_msk1) 1.2244 +#else 1.2245 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) 1.2246 +#endif 1.2247 + { 1.2248 + if (word0(rv0) == Tiny0 1.2249 + && word1(rv0) == Tiny1) 1.2250 + goto undfl; 1.2251 + word0(rv) = Tiny0; 1.2252 + word1(rv) = Tiny1; 1.2253 + goto cont; 1.2254 + } 1.2255 + else 1.2256 + word0(rv) -= P*Exp_msk1; 1.2257 + } 1.2258 + else { 1.2259 + adj = dval(aadj1) * ulp(rv); 1.2260 + dval(rv) += adj; 1.2261 + } 1.2262 +#else /*Sudden_Underflow*/ 1.2263 + /* Compute adj so that the IEEE rounding rules will 1.2264 + * correctly round rv + adj in some half-way cases. 1.2265 + * If rv * ulp(rv) is denormalized (i.e., 1.2266 + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid 1.2267 + * trouble from bits lost to denormalization; 1.2268 + * example: 1.2e-307 . 1.2269 + */ 1.2270 + if (y <= (P-1)*Exp_msk1 && aadj > 1.) { 1.2271 + dval(aadj1) = (double)(int)(aadj + 0.5); 1.2272 + if (!dsign) 1.2273 + dval(aadj1) = -dval(aadj1); 1.2274 + } 1.2275 + adj = dval(aadj1) * ulp(rv); 1.2276 + dval(rv) += adj; 1.2277 +#endif /*Sudden_Underflow*/ 1.2278 +#endif /*Avoid_Underflow*/ 1.2279 + } 1.2280 + z = word0(rv) & Exp_mask; 1.2281 +#ifndef SET_INEXACT 1.2282 +#ifdef Avoid_Underflow 1.2283 + if (!scale) 1.2284 +#endif 1.2285 + if (y == z) { 1.2286 + /* Can we stop now? */ 1.2287 + L = (Long)aadj; 1.2288 + aadj -= L; 1.2289 + /* The tolerances below are conservative. */ 1.2290 + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { 1.2291 + if (aadj < .4999999 || aadj > .5000001) 1.2292 + break; 1.2293 + } 1.2294 + else if (aadj < .4999999/FLT_RADIX) 1.2295 + break; 1.2296 + } 1.2297 +#endif 1.2298 + cont: 1.2299 + Bfree(PASS_STATE bb); 1.2300 + Bfree(PASS_STATE bd); 1.2301 + Bfree(PASS_STATE bs); 1.2302 + Bfree(PASS_STATE delta); 1.2303 + } 1.2304 +#ifdef SET_INEXACT 1.2305 + if (inexact) { 1.2306 + if (!oldinexact) { 1.2307 + word0(rv0) = Exp_1 + (70 << Exp_shift); 1.2308 + word1(rv0) = 0; 1.2309 + dval(rv0) += 1.; 1.2310 + } 1.2311 + } 1.2312 + else if (!oldinexact) 1.2313 + clear_inexact(); 1.2314 +#endif 1.2315 +#ifdef Avoid_Underflow 1.2316 + if (scale) { 1.2317 + word0(rv0) = Exp_1 - 2*P*Exp_msk1; 1.2318 + word1(rv0) = 0; 1.2319 + dval(rv) *= dval(rv0); 1.2320 +#ifndef NO_ERRNO 1.2321 + /* try to avoid the bug of testing an 8087 register value */ 1.2322 + if (word0(rv) == 0 && word1(rv) == 0) 1.2323 + errno = ERANGE; 1.2324 +#endif 1.2325 + } 1.2326 +#endif /* Avoid_Underflow */ 1.2327 +#ifdef SET_INEXACT 1.2328 + if (inexact && !(word0(rv) & Exp_mask)) { 1.2329 + /* set underflow bit */ 1.2330 + dval(rv0) = 1e-300; 1.2331 + dval(rv0) *= dval(rv0); 1.2332 + } 1.2333 +#endif 1.2334 + retfree: 1.2335 + Bfree(PASS_STATE bb); 1.2336 + Bfree(PASS_STATE bd); 1.2337 + Bfree(PASS_STATE bs); 1.2338 + Bfree(PASS_STATE bd0); 1.2339 + Bfree(PASS_STATE delta); 1.2340 + ret: 1.2341 + if (se) 1.2342 + *se = (char *)s; 1.2343 + return sign ? -dval(rv) : dval(rv); 1.2344 + } 1.2345 + 1.2346 + static int 1.2347 +quorem 1.2348 +#ifdef KR_headers 1.2349 + (b, S) Bigint *b, *S; 1.2350 +#else 1.2351 + (Bigint *b, Bigint *S) 1.2352 +#endif 1.2353 +{ 1.2354 + int n; 1.2355 + ULong *bx, *bxe, q, *sx, *sxe; 1.2356 +#ifdef ULLong 1.2357 + ULLong borrow, carry, y, ys; 1.2358 +#else 1.2359 + ULong borrow, carry, y, ys; 1.2360 +#ifdef Pack_32 1.2361 + ULong si, z, zs; 1.2362 +#endif 1.2363 +#endif 1.2364 + 1.2365 + n = S->wds; 1.2366 +#ifdef DEBUG 1.2367 + /*debug*/ if (b->wds > n) 1.2368 + /*debug*/ Bug("oversize b in quorem"); 1.2369 +#endif 1.2370 + if (b->wds < n) 1.2371 + return 0; 1.2372 + sx = S->x; 1.2373 + sxe = sx + --n; 1.2374 + bx = b->x; 1.2375 + bxe = bx + n; 1.2376 + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ 1.2377 +#ifdef DEBUG 1.2378 + /*debug*/ if (q > 9) 1.2379 + /*debug*/ Bug("oversized quotient in quorem"); 1.2380 +#endif 1.2381 + if (q) { 1.2382 + borrow = 0; 1.2383 + carry = 0; 1.2384 + do { 1.2385 +#ifdef ULLong 1.2386 + ys = *sx++ * (ULLong)q + carry; 1.2387 + carry = ys >> 32; 1.2388 + y = *bx - (ys & FFFFFFFF) - borrow; 1.2389 + borrow = y >> 32 & (ULong)1; 1.2390 + *bx++ = (ULong) y & FFFFFFFF; 1.2391 +#else 1.2392 +#ifdef Pack_32 1.2393 + si = *sx++; 1.2394 + ys = (si & 0xffff) * q + carry; 1.2395 + zs = (si >> 16) * q + (ys >> 16); 1.2396 + carry = zs >> 16; 1.2397 + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 1.2398 + borrow = (y & 0x10000) >> 16; 1.2399 + z = (*bx >> 16) - (zs & 0xffff) - borrow; 1.2400 + borrow = (z & 0x10000) >> 16; 1.2401 + Storeinc(bx, z, y); 1.2402 +#else 1.2403 + ys = *sx++ * q + carry; 1.2404 + carry = ys >> 16; 1.2405 + y = *bx - (ys & 0xffff) - borrow; 1.2406 + borrow = (y & 0x10000) >> 16; 1.2407 + *bx++ = y & 0xffff; 1.2408 +#endif 1.2409 +#endif 1.2410 + } 1.2411 + while(sx <= sxe); 1.2412 + if (!*bxe) { 1.2413 + bx = b->x; 1.2414 + while(--bxe > bx && !*bxe) 1.2415 + --n; 1.2416 + b->wds = n; 1.2417 + } 1.2418 + } 1.2419 + if (cmp(b, S) >= 0) { 1.2420 + q++; 1.2421 + borrow = 0; 1.2422 + carry = 0; 1.2423 + bx = b->x; 1.2424 + sx = S->x; 1.2425 + do { 1.2426 +#ifdef ULLong 1.2427 + ys = *sx++ + carry; 1.2428 + carry = ys >> 32; 1.2429 + y = *bx - (ys & FFFFFFFF) - borrow; 1.2430 + borrow = y >> 32 & (ULong)1; 1.2431 + *bx++ = (ULong) y & FFFFFFFF; 1.2432 +#else 1.2433 +#ifdef Pack_32 1.2434 + si = *sx++; 1.2435 + ys = (si & 0xffff) + carry; 1.2436 + zs = (si >> 16) + (ys >> 16); 1.2437 + carry = zs >> 16; 1.2438 + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 1.2439 + borrow = (y & 0x10000) >> 16; 1.2440 + z = (*bx >> 16) - (zs & 0xffff) - borrow; 1.2441 + borrow = (z & 0x10000) >> 16; 1.2442 + Storeinc(bx, z, y); 1.2443 +#else 1.2444 + ys = *sx++ + carry; 1.2445 + carry = ys >> 16; 1.2446 + y = *bx - (ys & 0xffff) - borrow; 1.2447 + borrow = (y & 0x10000) >> 16; 1.2448 + *bx++ = y & 0xffff; 1.2449 +#endif 1.2450 +#endif 1.2451 + } 1.2452 + while(sx <= sxe); 1.2453 + bx = b->x; 1.2454 + bxe = bx + n; 1.2455 + if (!*bxe) { 1.2456 + while(--bxe > bx && !*bxe) 1.2457 + --n; 1.2458 + b->wds = n; 1.2459 + } 1.2460 + } 1.2461 + return q; 1.2462 + } 1.2463 + 1.2464 +#if !defined(MULTIPLE_THREADS) && !defined(NO_GLOBAL_STATE) 1.2465 +#define USE_DTOA_RESULT 1 1.2466 + static char *dtoa_result; 1.2467 +#endif 1.2468 + 1.2469 + static char * 1.2470 +#ifdef KR_headers 1.2471 +rv_alloc(STATE_PARAM i) STATE_PARAM_DECL int i; 1.2472 +#else 1.2473 +rv_alloc(STATE_PARAM int i) 1.2474 +#endif 1.2475 +{ 1.2476 + int j, k, *r; 1.2477 + 1.2478 + j = sizeof(ULong); 1.2479 + for(k = 0; 1.2480 + sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned) i; 1.2481 + j <<= 1) 1.2482 + k++; 1.2483 + r = (int*)Balloc(PASS_STATE k); 1.2484 + *r = k; 1.2485 + return 1.2486 +#ifdef USE_DTOA_RESULT 1.2487 + dtoa_result = 1.2488 +#endif 1.2489 + (char *)(r+1); 1.2490 + } 1.2491 + 1.2492 + static char * 1.2493 +#ifdef KR_headers 1.2494 +nrv_alloc(STATE_PARAM s, rve, n) STATE_PARAM_DECL char *s, **rve; int n; 1.2495 +#else 1.2496 +nrv_alloc(STATE_PARAM CONST char *s, char **rve, int n) 1.2497 +#endif 1.2498 +{ 1.2499 + char *rv, *t; 1.2500 + 1.2501 + t = rv = rv_alloc(PASS_STATE n); 1.2502 + while((*t = *s++)) t++; 1.2503 + if (rve) 1.2504 + *rve = t; 1.2505 + return rv; 1.2506 + } 1.2507 + 1.2508 +/* freedtoa(s) must be used to free values s returned by dtoa 1.2509 + * when MULTIPLE_THREADS is #defined. It should be used in all cases, 1.2510 + * but for consistency with earlier versions of dtoa, it is optional 1.2511 + * when MULTIPLE_THREADS is not defined. 1.2512 + */ 1.2513 + 1.2514 + static void 1.2515 +#ifdef KR_headers 1.2516 +freedtoa(STATE_PARAM s) STATE_PARAM_DECL char *s; 1.2517 +#else 1.2518 +freedtoa(STATE_PARAM char *s) 1.2519 +#endif 1.2520 +{ 1.2521 + Bigint *b = (Bigint *)((int *)s - 1); 1.2522 + b->maxwds = 1 << (b->k = *(int*)b); 1.2523 + Bfree(PASS_STATE b); 1.2524 +#ifdef USE_DTOA_RESULT 1.2525 + if (s == dtoa_result) 1.2526 + dtoa_result = 0; 1.2527 +#endif 1.2528 + } 1.2529 + 1.2530 +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. 1.2531 + * 1.2532 + * Inspired by "How to Print Floating-Point Numbers Accurately" by 1.2533 + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. 1.2534 + * 1.2535 + * Modifications: 1.2536 + * 1. Rather than iterating, we use a simple numeric overestimate 1.2537 + * to determine k = floor(log10(d)). We scale relevant 1.2538 + * quantities using O(log2(k)) rather than O(k) multiplications. 1.2539 + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't 1.2540 + * try to generate digits strictly left to right. Instead, we 1.2541 + * compute with fewer bits and propagate the carry if necessary 1.2542 + * when rounding the final digit up. This is often faster. 1.2543 + * 3. Under the assumption that input will be rounded nearest, 1.2544 + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. 1.2545 + * That is, we allow equality in stopping tests when the 1.2546 + * round-nearest rule will give the same floating-point value 1.2547 + * as would satisfaction of the stopping test with strict 1.2548 + * inequality. 1.2549 + * 4. We remove common factors of powers of 2 from relevant 1.2550 + * quantities. 1.2551 + * 5. When converting floating-point integers less than 1e16, 1.2552 + * we use floating-point arithmetic rather than resorting 1.2553 + * to multiple-precision integers. 1.2554 + * 6. When asked to produce fewer than 15 digits, we first try 1.2555 + * to get by with floating-point arithmetic; we resort to 1.2556 + * multiple-precision integer arithmetic only if we cannot 1.2557 + * guarantee that the floating-point calculation has given 1.2558 + * the correctly rounded result. For k requested digits and 1.2559 + * "uniformly" distributed input, the probability is 1.2560 + * something like 10^(k-15) that we must resort to the Long 1.2561 + * calculation. 1.2562 + */ 1.2563 + 1.2564 + static char * 1.2565 +dtoa 1.2566 +#ifdef KR_headers 1.2567 + (STATE_PARAM d, mode, ndigits, decpt, sign, rve) 1.2568 + STATE_PARAM_DECL U d; int mode, ndigits, *decpt, *sign; char **rve; 1.2569 +#else 1.2570 + (STATE_PARAM U d, int mode, int ndigits, int *decpt, int *sign, char **rve) 1.2571 +#endif 1.2572 +{ 1.2573 + /* Arguments ndigits, decpt, sign are similar to those 1.2574 + of ecvt and fcvt; trailing zeros are suppressed from 1.2575 + the returned string. If not null, *rve is set to point 1.2576 + to the end of the return value. If d is +-Infinity or NaN, 1.2577 + then *decpt is set to 9999. 1.2578 + 1.2579 + mode: 1.2580 + 0 ==> shortest string that yields d when read in 1.2581 + and rounded to nearest. 1.2582 + 1 ==> like 0, but with Steele & White stopping rule; 1.2583 + e.g. with IEEE P754 arithmetic , mode 0 gives 1.2584 + 1e23 whereas mode 1 gives 9.999999999999999e22. 1.2585 + 2 ==> max(1,ndigits) significant digits. This gives a 1.2586 + return value similar to that of ecvt, except 1.2587 + that trailing zeros are suppressed. 1.2588 + 3 ==> through ndigits past the decimal point. This 1.2589 + gives a return value similar to that from fcvt, 1.2590 + except that trailing zeros are suppressed, and 1.2591 + ndigits can be negative. 1.2592 + 4,5 ==> similar to 2 and 3, respectively, but (in 1.2593 + round-nearest mode) with the tests of mode 0 to 1.2594 + possibly return a shorter string that rounds to d. 1.2595 + With IEEE arithmetic and compilation with 1.2596 + -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same 1.2597 + as modes 2 and 3 when FLT_ROUNDS != 1. 1.2598 + 6-9 ==> Debugging modes similar to mode - 4: don't try 1.2599 + fast floating-point estimate (if applicable). 1.2600 + 1.2601 + Values of mode other than 0-9 are treated as mode 0. 1.2602 + 1.2603 + Sufficient space is allocated to the return value 1.2604 + to hold the suppressed trailing zeros. 1.2605 + */ 1.2606 + 1.2607 + int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, 1.2608 + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, 1.2609 + spec_case, try_quick; 1.2610 + Long L; 1.2611 +#ifndef Sudden_Underflow 1.2612 + int denorm; 1.2613 + ULong x; 1.2614 +#endif 1.2615 + Bigint *b, *b1, *delta, *mlo, *mhi, *S; 1.2616 + U d2, eps; 1.2617 + double ds; 1.2618 + char *s, *s0; 1.2619 +#ifdef Honor_FLT_ROUNDS 1.2620 + int rounding; 1.2621 +#endif 1.2622 +#ifdef SET_INEXACT 1.2623 + int inexact, oldinexact; 1.2624 +#endif 1.2625 + 1.2626 +#ifdef __GNUC__ 1.2627 + ilim = ilim1 = 0; 1.2628 + mlo = NULL; 1.2629 +#endif 1.2630 + 1.2631 +#ifdef USE_DTOA_RESULT 1.2632 + if (dtoa_result) { 1.2633 + freedtoa(PASS_STATE dtoa_result); 1.2634 + dtoa_result = 0; 1.2635 + } 1.2636 +#endif 1.2637 + 1.2638 + if (word0(d) & Sign_bit) { 1.2639 + /* set sign for everything, including 0's and NaNs */ 1.2640 + *sign = 1; 1.2641 + word0(d) &= ~Sign_bit; /* clear sign bit */ 1.2642 + } 1.2643 + else 1.2644 + *sign = 0; 1.2645 + 1.2646 +#if defined(IEEE_Arith) + defined(VAX) 1.2647 +#ifdef IEEE_Arith 1.2648 + if ((word0(d) & Exp_mask) == Exp_mask) 1.2649 +#else 1.2650 + if (word0(d) == 0x8000) 1.2651 +#endif 1.2652 + { 1.2653 + /* Infinity or NaN */ 1.2654 + *decpt = 9999; 1.2655 +#ifdef IEEE_Arith 1.2656 + if (!word1(d) && !(word0(d) & 0xfffff)) 1.2657 + return nrv_alloc(PASS_STATE "Infinity", rve, 8); 1.2658 +#endif 1.2659 + return nrv_alloc(PASS_STATE "NaN", rve, 3); 1.2660 + } 1.2661 +#endif 1.2662 +#ifdef IBM 1.2663 + dval(d) += 0; /* normalize */ 1.2664 +#endif 1.2665 + if (!dval(d)) { 1.2666 + *decpt = 1; 1.2667 + return nrv_alloc(PASS_STATE "0", rve, 1); 1.2668 + } 1.2669 + 1.2670 +#ifdef SET_INEXACT 1.2671 + try_quick = oldinexact = get_inexact(); 1.2672 + inexact = 1; 1.2673 +#endif 1.2674 +#ifdef Honor_FLT_ROUNDS 1.2675 + if ((rounding = Flt_Rounds) >= 2) { 1.2676 + if (*sign) 1.2677 + rounding = rounding == 2 ? 0 : 2; 1.2678 + else 1.2679 + if (rounding != 2) 1.2680 + rounding = 0; 1.2681 + } 1.2682 +#endif 1.2683 + 1.2684 + b = d2b(PASS_STATE d, &be, &bbits); 1.2685 +#ifdef Sudden_Underflow 1.2686 + i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); 1.2687 +#else 1.2688 + if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { 1.2689 +#endif 1.2690 + dval(d2) = dval(d); 1.2691 + word0(d2) &= Frac_mask1; 1.2692 + word0(d2) |= Exp_11; 1.2693 +#ifdef IBM 1.2694 + if (j = 11 - hi0bits(word0(d2) & Frac_mask)) 1.2695 + dval(d2) /= 1 << j; 1.2696 +#endif 1.2697 + 1.2698 + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 1.2699 + * log10(x) = log(x) / log(10) 1.2700 + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) 1.2701 + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) 1.2702 + * 1.2703 + * This suggests computing an approximation k to log10(d) by 1.2704 + * 1.2705 + * k = (i - Bias)*0.301029995663981 1.2706 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); 1.2707 + * 1.2708 + * We want k to be too large rather than too small. 1.2709 + * The error in the first-order Taylor series approximation 1.2710 + * is in our favor, so we just round up the constant enough 1.2711 + * to compensate for any error in the multiplication of 1.2712 + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, 1.2713 + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, 1.2714 + * adding 1e-13 to the constant term more than suffices. 1.2715 + * Hence we adjust the constant term to 0.1760912590558. 1.2716 + * (We could get a more accurate k by invoking log10, 1.2717 + * but this is probably not worthwhile.) 1.2718 + */ 1.2719 + 1.2720 + i -= Bias; 1.2721 +#ifdef IBM 1.2722 + i <<= 2; 1.2723 + i += j; 1.2724 +#endif 1.2725 +#ifndef Sudden_Underflow 1.2726 + denorm = 0; 1.2727 + } 1.2728 + else { 1.2729 + /* d is denormalized */ 1.2730 + 1.2731 + i = bbits + be + (Bias + (P-1) - 1); 1.2732 + x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) 1.2733 + : word1(d) << (32 - i); 1.2734 + dval(d2) = x; 1.2735 + word0(d2) -= 31*Exp_msk1; /* adjust exponent */ 1.2736 + i -= (Bias + (P-1) - 1) + 1; 1.2737 + denorm = 1; 1.2738 + } 1.2739 +#endif 1.2740 + ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; 1.2741 + k = (int)ds; 1.2742 + if (ds < 0. && ds != k) 1.2743 + k--; /* want k = floor(ds) */ 1.2744 + k_check = 1; 1.2745 + if (k >= 0 && k <= Ten_pmax) { 1.2746 + if (dval(d) < tens[k]) 1.2747 + k--; 1.2748 + k_check = 0; 1.2749 + } 1.2750 + j = bbits - i - 1; 1.2751 + if (j >= 0) { 1.2752 + b2 = 0; 1.2753 + s2 = j; 1.2754 + } 1.2755 + else { 1.2756 + b2 = -j; 1.2757 + s2 = 0; 1.2758 + } 1.2759 + if (k >= 0) { 1.2760 + b5 = 0; 1.2761 + s5 = k; 1.2762 + s2 += k; 1.2763 + } 1.2764 + else { 1.2765 + b2 -= k; 1.2766 + b5 = -k; 1.2767 + s5 = 0; 1.2768 + } 1.2769 + if (mode < 0 || mode > 9) 1.2770 + mode = 0; 1.2771 + 1.2772 +#ifndef SET_INEXACT 1.2773 +#ifdef Check_FLT_ROUNDS 1.2774 + try_quick = Rounding == 1; 1.2775 +#else 1.2776 + try_quick = 1; 1.2777 +#endif 1.2778 +#endif /*SET_INEXACT*/ 1.2779 + 1.2780 + if (mode > 5) { 1.2781 + mode -= 4; 1.2782 + try_quick = 0; 1.2783 + } 1.2784 + leftright = 1; 1.2785 + switch(mode) { 1.2786 + case 0: 1.2787 + case 1: 1.2788 + ilim = ilim1 = -1; 1.2789 + i = 18; 1.2790 + ndigits = 0; 1.2791 + break; 1.2792 + case 2: 1.2793 + leftright = 0; 1.2794 + /* no break */ 1.2795 + case 4: 1.2796 + if (ndigits <= 0) 1.2797 + ndigits = 1; 1.2798 + ilim = ilim1 = i = ndigits; 1.2799 + break; 1.2800 + case 3: 1.2801 + leftright = 0; 1.2802 + /* no break */ 1.2803 + case 5: 1.2804 + i = ndigits + k + 1; 1.2805 + ilim = i; 1.2806 + ilim1 = i - 1; 1.2807 + if (i <= 0) 1.2808 + i = 1; 1.2809 + } 1.2810 + s = s0 = rv_alloc(PASS_STATE i); 1.2811 + 1.2812 +#ifdef Honor_FLT_ROUNDS 1.2813 + if (mode > 1 && rounding != 1) 1.2814 + leftright = 0; 1.2815 +#endif 1.2816 + 1.2817 + if (ilim >= 0 && ilim <= Quick_max && try_quick) { 1.2818 + 1.2819 + /* Try to get by with floating-point arithmetic. */ 1.2820 + 1.2821 + i = 0; 1.2822 + dval(d2) = dval(d); 1.2823 + k0 = k; 1.2824 + ilim0 = ilim; 1.2825 + ieps = 2; /* conservative */ 1.2826 + if (k > 0) { 1.2827 + ds = tens[k&0xf]; 1.2828 + j = k >> 4; 1.2829 + if (j & Bletch) { 1.2830 + /* prevent overflows */ 1.2831 + j &= Bletch - 1; 1.2832 + dval(d) /= bigtens[n_bigtens-1]; 1.2833 + ieps++; 1.2834 + } 1.2835 + for(; j; j >>= 1, i++) 1.2836 + if (j & 1) { 1.2837 + ieps++; 1.2838 + ds *= bigtens[i]; 1.2839 + } 1.2840 + dval(d) /= ds; 1.2841 + } 1.2842 + else if ((j1 = -k)) { 1.2843 + dval(d) *= tens[j1 & 0xf]; 1.2844 + for(j = j1 >> 4; j; j >>= 1, i++) 1.2845 + if (j & 1) { 1.2846 + ieps++; 1.2847 + dval(d) *= bigtens[i]; 1.2848 + } 1.2849 + } 1.2850 + if (k_check && dval(d) < 1. && ilim > 0) { 1.2851 + if (ilim1 <= 0) 1.2852 + goto fast_failed; 1.2853 + ilim = ilim1; 1.2854 + k--; 1.2855 + dval(d) *= 10.; 1.2856 + ieps++; 1.2857 + } 1.2858 + dval(eps) = ieps*dval(d) + 7.; 1.2859 + word0(eps) -= (P-1)*Exp_msk1; 1.2860 + if (ilim == 0) { 1.2861 + S = mhi = 0; 1.2862 + dval(d) -= 5.; 1.2863 + if (dval(d) > dval(eps)) 1.2864 + goto one_digit; 1.2865 + if (dval(d) < -dval(eps)) 1.2866 + goto no_digits; 1.2867 + goto fast_failed; 1.2868 + } 1.2869 +#ifndef No_leftright 1.2870 + if (leftright) { 1.2871 + /* Use Steele & White method of only 1.2872 + * generating digits needed. 1.2873 + */ 1.2874 + dval(eps) = 0.5/tens[ilim-1] - dval(eps); 1.2875 + for(i = 0;;) { 1.2876 + L = (ULong) dval(d); 1.2877 + dval(d) -= L; 1.2878 + *s++ = '0' + (int)L; 1.2879 + if (dval(d) < dval(eps)) 1.2880 + goto ret1; 1.2881 + if (1. - dval(d) < dval(eps)) 1.2882 + goto bump_up; 1.2883 + if (++i >= ilim) 1.2884 + break; 1.2885 + dval(eps) *= 10.; 1.2886 + dval(d) *= 10.; 1.2887 + } 1.2888 + } 1.2889 + else { 1.2890 +#endif 1.2891 + /* Generate ilim digits, then fix them up. */ 1.2892 + dval(eps) *= tens[ilim-1]; 1.2893 + for(i = 1;; i++, dval(d) *= 10.) { 1.2894 + L = (Long)(dval(d)); 1.2895 + if (!(dval(d) -= L)) 1.2896 + ilim = i; 1.2897 + *s++ = '0' + (int)L; 1.2898 + if (i == ilim) { 1.2899 + if (dval(d) > 0.5 + dval(eps)) 1.2900 + goto bump_up; 1.2901 + else if (dval(d) < 0.5 - dval(eps)) { 1.2902 + while(*--s == '0'); 1.2903 + s++; 1.2904 + goto ret1; 1.2905 + } 1.2906 + break; 1.2907 + } 1.2908 + } 1.2909 +#ifndef No_leftright 1.2910 + } 1.2911 +#endif 1.2912 + fast_failed: 1.2913 + s = s0; 1.2914 + dval(d) = dval(d2); 1.2915 + k = k0; 1.2916 + ilim = ilim0; 1.2917 + } 1.2918 + 1.2919 + /* Do we have a "small" integer? */ 1.2920 + 1.2921 + if (be >= 0 && k <= Int_max) { 1.2922 + /* Yes. */ 1.2923 + ds = tens[k]; 1.2924 + if (ndigits < 0 && ilim <= 0) { 1.2925 + S = mhi = 0; 1.2926 + if (ilim < 0 || dval(d) < 5*ds) 1.2927 + goto no_digits; 1.2928 + goto one_digit; 1.2929 + } 1.2930 + for(i = 1;; i++, dval(d) *= 10.) { 1.2931 + L = (Long)(dval(d) / ds); 1.2932 + dval(d) -= L*ds; 1.2933 +#ifdef Check_FLT_ROUNDS 1.2934 + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ 1.2935 + if (dval(d) < 0) { 1.2936 + L--; 1.2937 + dval(d) += ds; 1.2938 + } 1.2939 +#endif 1.2940 + *s++ = '0' + (int)L; 1.2941 + if (!dval(d)) { 1.2942 +#ifdef SET_INEXACT 1.2943 + inexact = 0; 1.2944 +#endif 1.2945 + break; 1.2946 + } 1.2947 + if (i == ilim) { 1.2948 +#ifdef Honor_FLT_ROUNDS 1.2949 + if (mode > 1) 1.2950 + switch(rounding) { 1.2951 + case 0: goto ret1; 1.2952 + case 2: goto bump_up; 1.2953 + } 1.2954 +#endif 1.2955 + dval(d) += dval(d); 1.2956 + if (dval(d) > ds || (dval(d) == ds && L & 1)) { 1.2957 + bump_up: 1.2958 + while(*--s == '9') 1.2959 + if (s == s0) { 1.2960 + k++; 1.2961 + *s = '0'; 1.2962 + break; 1.2963 + } 1.2964 + ++*s++; 1.2965 + } 1.2966 + break; 1.2967 + } 1.2968 + } 1.2969 + goto ret1; 1.2970 + } 1.2971 + 1.2972 + m2 = b2; 1.2973 + m5 = b5; 1.2974 + mhi = mlo = 0; 1.2975 + if (leftright) { 1.2976 + i = 1.2977 +#ifndef Sudden_Underflow 1.2978 + denorm ? be + (Bias + (P-1) - 1 + 1) : 1.2979 +#endif 1.2980 +#ifdef IBM 1.2981 + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); 1.2982 +#else 1.2983 + 1 + P - bbits; 1.2984 +#endif 1.2985 + b2 += i; 1.2986 + s2 += i; 1.2987 + mhi = i2b(PASS_STATE 1); 1.2988 + } 1.2989 + if (m2 > 0 && s2 > 0) { 1.2990 + i = m2 < s2 ? m2 : s2; 1.2991 + b2 -= i; 1.2992 + m2 -= i; 1.2993 + s2 -= i; 1.2994 + } 1.2995 + if (b5 > 0) { 1.2996 + if (leftright) { 1.2997 + if (m5 > 0) { 1.2998 + mhi = pow5mult(PASS_STATE mhi, m5); 1.2999 + b1 = mult(PASS_STATE mhi, b); 1.3000 + Bfree(PASS_STATE b); 1.3001 + b = b1; 1.3002 + } 1.3003 + if ((j = b5 - m5)) 1.3004 + b = pow5mult(PASS_STATE b, j); 1.3005 + } 1.3006 + else 1.3007 + b = pow5mult(PASS_STATE b, b5); 1.3008 + } 1.3009 + S = i2b(PASS_STATE 1); 1.3010 + if (s5 > 0) 1.3011 + S = pow5mult(PASS_STATE S, s5); 1.3012 + 1.3013 + /* Check for special case that d is a normalized power of 2. */ 1.3014 + 1.3015 + spec_case = 0; 1.3016 + if ((mode < 2 || leftright) 1.3017 +#ifdef Honor_FLT_ROUNDS 1.3018 + && rounding == 1 1.3019 +#endif 1.3020 + ) { 1.3021 + if (!word1(d) && !(word0(d) & Bndry_mask) 1.3022 +#ifndef Sudden_Underflow 1.3023 + && word0(d) & (Exp_mask & ~Exp_msk1) 1.3024 +#endif 1.3025 + ) { 1.3026 + /* The special case */ 1.3027 + b2 += Log2P; 1.3028 + s2 += Log2P; 1.3029 + spec_case = 1; 1.3030 + } 1.3031 + } 1.3032 + 1.3033 + /* Arrange for convenient computation of quotients: 1.3034 + * shift left if necessary so divisor has 4 leading 0 bits. 1.3035 + * 1.3036 + * Perhaps we should just compute leading 28 bits of S once 1.3037 + * and for all and pass them and a shift to quorem, so it 1.3038 + * can do shifts and ors to compute the numerator for q. 1.3039 + */ 1.3040 +#ifdef Pack_32 1.3041 + if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) 1.3042 + i = 32 - i; 1.3043 +#else 1.3044 + if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) 1.3045 + i = 16 - i; 1.3046 +#endif 1.3047 + if (i > 4) { 1.3048 + i -= 4; 1.3049 + b2 += i; 1.3050 + m2 += i; 1.3051 + s2 += i; 1.3052 + } 1.3053 + else if (i < 4) { 1.3054 + i += 28; 1.3055 + b2 += i; 1.3056 + m2 += i; 1.3057 + s2 += i; 1.3058 + } 1.3059 + if (b2 > 0) 1.3060 + b = lshift(PASS_STATE b, b2); 1.3061 + if (s2 > 0) 1.3062 + S = lshift(PASS_STATE S, s2); 1.3063 + if (k_check) { 1.3064 + if (cmp(b,S) < 0) { 1.3065 + k--; 1.3066 + b = multadd(PASS_STATE b, 10, 0); /* we botched the k estimate */ 1.3067 + if (leftright) 1.3068 + mhi = multadd(PASS_STATE mhi, 10, 0); 1.3069 + ilim = ilim1; 1.3070 + } 1.3071 + } 1.3072 + if (ilim <= 0 && (mode == 3 || mode == 5)) { 1.3073 + if (ilim < 0 || cmp(b,S = multadd(PASS_STATE S,5,0)) < 0) { 1.3074 + /* no digits, fcvt style */ 1.3075 + no_digits: 1.3076 + /* MOZILLA CHANGE: Always return a non-empty string. */ 1.3077 + *s++ = '0'; 1.3078 + k = 0; 1.3079 + goto ret; 1.3080 + } 1.3081 + one_digit: 1.3082 + *s++ = '1'; 1.3083 + k++; 1.3084 + goto ret; 1.3085 + } 1.3086 + if (leftright) { 1.3087 + if (m2 > 0) 1.3088 + mhi = lshift(PASS_STATE mhi, m2); 1.3089 + 1.3090 + /* Compute mlo -- check for special case 1.3091 + * that d is a normalized power of 2. 1.3092 + */ 1.3093 + 1.3094 + mlo = mhi; 1.3095 + if (spec_case) { 1.3096 + mhi = Balloc(PASS_STATE mhi->k); 1.3097 + Bcopy(mhi, mlo); 1.3098 + mhi = lshift(PASS_STATE mhi, Log2P); 1.3099 + } 1.3100 + 1.3101 + for(i = 1;;i++) { 1.3102 + dig = quorem(b,S) + '0'; 1.3103 + /* Do we yet have the shortest decimal string 1.3104 + * that will round to d? 1.3105 + */ 1.3106 + j = cmp(b, mlo); 1.3107 + delta = diff(PASS_STATE S, mhi); 1.3108 + j1 = delta->sign ? 1 : cmp(b, delta); 1.3109 + Bfree(PASS_STATE delta); 1.3110 +#ifndef ROUND_BIASED 1.3111 + if (j1 == 0 && mode != 1 && !(word1(d) & 1) 1.3112 +#ifdef Honor_FLT_ROUNDS 1.3113 + && rounding >= 1 1.3114 +#endif 1.3115 + ) { 1.3116 + if (dig == '9') 1.3117 + goto round_9_up; 1.3118 + if (j > 0) 1.3119 + dig++; 1.3120 +#ifdef SET_INEXACT 1.3121 + else if (!b->x[0] && b->wds <= 1) 1.3122 + inexact = 0; 1.3123 +#endif 1.3124 + *s++ = dig; 1.3125 + goto ret; 1.3126 + } 1.3127 +#endif 1.3128 + if (j < 0 || (j == 0 && mode != 1 1.3129 +#ifndef ROUND_BIASED 1.3130 + && !(word1(d) & 1) 1.3131 +#endif 1.3132 + )) { 1.3133 + if (!b->x[0] && b->wds <= 1) { 1.3134 +#ifdef SET_INEXACT 1.3135 + inexact = 0; 1.3136 +#endif 1.3137 + goto accept_dig; 1.3138 + } 1.3139 +#ifdef Honor_FLT_ROUNDS 1.3140 + if (mode > 1) 1.3141 + switch(rounding) { 1.3142 + case 0: goto accept_dig; 1.3143 + case 2: goto keep_dig; 1.3144 + } 1.3145 +#endif /*Honor_FLT_ROUNDS*/ 1.3146 + if (j1 > 0) { 1.3147 + b = lshift(PASS_STATE b, 1); 1.3148 + j1 = cmp(b, S); 1.3149 + if ((j1 > 0 || (j1 == 0 && dig & 1)) 1.3150 + && dig++ == '9') 1.3151 + goto round_9_up; 1.3152 + } 1.3153 + accept_dig: 1.3154 + *s++ = dig; 1.3155 + goto ret; 1.3156 + } 1.3157 + if (j1 > 0) { 1.3158 +#ifdef Honor_FLT_ROUNDS 1.3159 + if (!rounding) 1.3160 + goto accept_dig; 1.3161 +#endif 1.3162 + if (dig == '9') { /* possible if i == 1 */ 1.3163 + round_9_up: 1.3164 + *s++ = '9'; 1.3165 + goto roundoff; 1.3166 + } 1.3167 + *s++ = dig + 1; 1.3168 + goto ret; 1.3169 + } 1.3170 +#ifdef Honor_FLT_ROUNDS 1.3171 + keep_dig: 1.3172 +#endif 1.3173 + *s++ = dig; 1.3174 + if (i == ilim) 1.3175 + break; 1.3176 + b = multadd(PASS_STATE b, 10, 0); 1.3177 + if (mlo == mhi) 1.3178 + mlo = mhi = multadd(PASS_STATE mhi, 10, 0); 1.3179 + else { 1.3180 + mlo = multadd(PASS_STATE mlo, 10, 0); 1.3181 + mhi = multadd(PASS_STATE mhi, 10, 0); 1.3182 + } 1.3183 + } 1.3184 + } 1.3185 + else 1.3186 + for(i = 1;; i++) { 1.3187 + *s++ = dig = quorem(b,S) + '0'; 1.3188 + if (!b->x[0] && b->wds <= 1) { 1.3189 +#ifdef SET_INEXACT 1.3190 + inexact = 0; 1.3191 +#endif 1.3192 + goto ret; 1.3193 + } 1.3194 + if (i >= ilim) 1.3195 + break; 1.3196 + b = multadd(PASS_STATE b, 10, 0); 1.3197 + } 1.3198 + 1.3199 + /* Round off last digit */ 1.3200 + 1.3201 +#ifdef Honor_FLT_ROUNDS 1.3202 + switch(rounding) { 1.3203 + case 0: goto trimzeros; 1.3204 + case 2: goto roundoff; 1.3205 + } 1.3206 +#endif 1.3207 + b = lshift(PASS_STATE b, 1); 1.3208 + j = cmp(b, S); 1.3209 + if (j >= 0) { /* ECMA compatible rounding needed by Spidermonkey */ 1.3210 + roundoff: 1.3211 + while(*--s == '9') 1.3212 + if (s == s0) { 1.3213 + k++; 1.3214 + *s++ = '1'; 1.3215 + goto ret; 1.3216 + } 1.3217 + ++*s++; 1.3218 + } 1.3219 + else { 1.3220 +#ifdef Honor_FLT_ROUNDS 1.3221 + trimzeros: 1.3222 +#endif 1.3223 + while(*--s == '0'); 1.3224 + s++; 1.3225 + } 1.3226 + ret: 1.3227 + Bfree(PASS_STATE S); 1.3228 + if (mhi) { 1.3229 + if (mlo && mlo != mhi) 1.3230 + Bfree(PASS_STATE mlo); 1.3231 + Bfree(PASS_STATE mhi); 1.3232 + } 1.3233 + ret1: 1.3234 +#ifdef SET_INEXACT 1.3235 + if (inexact) { 1.3236 + if (!oldinexact) { 1.3237 + word0(d) = Exp_1 + (70 << Exp_shift); 1.3238 + word1(d) = 0; 1.3239 + dval(d) += 1.; 1.3240 + } 1.3241 + } 1.3242 + else if (!oldinexact) 1.3243 + clear_inexact(); 1.3244 +#endif 1.3245 + Bfree(PASS_STATE b); 1.3246 + *s = 0; 1.3247 + *decpt = k + 1; 1.3248 + if (rve) 1.3249 + *rve = s; 1.3250 + return s0; 1.3251 + }