js/src/jit/AsmJS.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jit/AsmJS.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,7128 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include "jit/AsmJS.h"
    1.11 +
    1.12 +#include "mozilla/Move.h"
    1.13 +
    1.14 +#ifdef MOZ_VTUNE
    1.15 +# include "vtune/VTuneWrapper.h"
    1.16 +#endif
    1.17 +
    1.18 +#include "jsmath.h"
    1.19 +#include "jsprf.h"
    1.20 +#include "jsworkers.h"
    1.21 +#include "prmjtime.h"
    1.22 +
    1.23 +#include "assembler/assembler/MacroAssembler.h"
    1.24 +#include "frontend/Parser.h"
    1.25 +#include "jit/AsmJSLink.h"
    1.26 +#include "jit/AsmJSModule.h"
    1.27 +#include "jit/AsmJSSignalHandlers.h"
    1.28 +#include "jit/CodeGenerator.h"
    1.29 +#include "jit/CompileWrappers.h"
    1.30 +#include "jit/MIR.h"
    1.31 +#include "jit/MIRGraph.h"
    1.32 +#ifdef JS_ION_PERF
    1.33 +# include "jit/PerfSpewer.h"
    1.34 +#endif
    1.35 +#include "vm/Interpreter.h"
    1.36 +
    1.37 +#include "jsinferinlines.h"
    1.38 +#include "jsobjinlines.h"
    1.39 +
    1.40 +#include "frontend/ParseNode-inl.h"
    1.41 +#include "frontend/Parser-inl.h"
    1.42 +
    1.43 +using namespace js;
    1.44 +using namespace js::frontend;
    1.45 +using namespace js::jit;
    1.46 +
    1.47 +using mozilla::AddToHash;
    1.48 +using mozilla::ArrayLength;
    1.49 +using mozilla::CountLeadingZeroes32;
    1.50 +using mozilla::DebugOnly;
    1.51 +using mozilla::HashGeneric;
    1.52 +using mozilla::IsNaN;
    1.53 +using mozilla::IsNegativeZero;
    1.54 +using mozilla::Maybe;
    1.55 +using mozilla::Move;
    1.56 +using mozilla::PositiveInfinity;
    1.57 +using JS::GenericNaN;
    1.58 +
    1.59 +static const size_t LIFO_ALLOC_PRIMARY_CHUNK_SIZE = 1 << 12;
    1.60 +
    1.61 +/*****************************************************************************/
    1.62 +// ParseNode utilities
    1.63 +
    1.64 +static inline ParseNode *
    1.65 +NextNode(ParseNode *pn)
    1.66 +{
    1.67 +    return pn->pn_next;
    1.68 +}
    1.69 +
    1.70 +static inline ParseNode *
    1.71 +UnaryKid(ParseNode *pn)
    1.72 +{
    1.73 +    JS_ASSERT(pn->isArity(PN_UNARY));
    1.74 +    return pn->pn_kid;
    1.75 +}
    1.76 +
    1.77 +static inline ParseNode *
    1.78 +ReturnExpr(ParseNode *pn)
    1.79 +{
    1.80 +    JS_ASSERT(pn->isKind(PNK_RETURN));
    1.81 +    return UnaryKid(pn);
    1.82 +}
    1.83 +
    1.84 +static inline ParseNode *
    1.85 +BinaryRight(ParseNode *pn)
    1.86 +{
    1.87 +    JS_ASSERT(pn->isArity(PN_BINARY));
    1.88 +    return pn->pn_right;
    1.89 +}
    1.90 +
    1.91 +static inline ParseNode *
    1.92 +BinaryLeft(ParseNode *pn)
    1.93 +{
    1.94 +    JS_ASSERT(pn->isArity(PN_BINARY));
    1.95 +    return pn->pn_left;
    1.96 +}
    1.97 +
    1.98 +static inline ParseNode *
    1.99 +TernaryKid1(ParseNode *pn)
   1.100 +{
   1.101 +    JS_ASSERT(pn->isArity(PN_TERNARY));
   1.102 +    return pn->pn_kid1;
   1.103 +}
   1.104 +
   1.105 +static inline ParseNode *
   1.106 +TernaryKid2(ParseNode *pn)
   1.107 +{
   1.108 +    JS_ASSERT(pn->isArity(PN_TERNARY));
   1.109 +    return pn->pn_kid2;
   1.110 +}
   1.111 +
   1.112 +static inline ParseNode *
   1.113 +TernaryKid3(ParseNode *pn)
   1.114 +{
   1.115 +    JS_ASSERT(pn->isArity(PN_TERNARY));
   1.116 +    return pn->pn_kid3;
   1.117 +}
   1.118 +
   1.119 +static inline ParseNode *
   1.120 +ListHead(ParseNode *pn)
   1.121 +{
   1.122 +    JS_ASSERT(pn->isArity(PN_LIST));
   1.123 +    return pn->pn_head;
   1.124 +}
   1.125 +
   1.126 +static inline unsigned
   1.127 +ListLength(ParseNode *pn)
   1.128 +{
   1.129 +    JS_ASSERT(pn->isArity(PN_LIST));
   1.130 +    return pn->pn_count;
   1.131 +}
   1.132 +
   1.133 +static inline ParseNode *
   1.134 +CallCallee(ParseNode *pn)
   1.135 +{
   1.136 +    JS_ASSERT(pn->isKind(PNK_CALL));
   1.137 +    return ListHead(pn);
   1.138 +}
   1.139 +
   1.140 +static inline unsigned
   1.141 +CallArgListLength(ParseNode *pn)
   1.142 +{
   1.143 +    JS_ASSERT(pn->isKind(PNK_CALL));
   1.144 +    JS_ASSERT(ListLength(pn) >= 1);
   1.145 +    return ListLength(pn) - 1;
   1.146 +}
   1.147 +
   1.148 +static inline ParseNode *
   1.149 +CallArgList(ParseNode *pn)
   1.150 +{
   1.151 +    JS_ASSERT(pn->isKind(PNK_CALL));
   1.152 +    return NextNode(ListHead(pn));
   1.153 +}
   1.154 +
   1.155 +static inline ParseNode *
   1.156 +VarListHead(ParseNode *pn)
   1.157 +{
   1.158 +    JS_ASSERT(pn->isKind(PNK_VAR) || pn->isKind(PNK_CONST));
   1.159 +    return ListHead(pn);
   1.160 +}
   1.161 +
   1.162 +static inline ParseNode *
   1.163 +CaseExpr(ParseNode *pn)
   1.164 +{
   1.165 +    JS_ASSERT(pn->isKind(PNK_CASE) || pn->isKind(PNK_DEFAULT));
   1.166 +    return BinaryLeft(pn);
   1.167 +}
   1.168 +
   1.169 +static inline ParseNode *
   1.170 +CaseBody(ParseNode *pn)
   1.171 +{
   1.172 +    JS_ASSERT(pn->isKind(PNK_CASE) || pn->isKind(PNK_DEFAULT));
   1.173 +    return BinaryRight(pn);
   1.174 +}
   1.175 +
   1.176 +static inline bool
   1.177 +IsExpressionStatement(ParseNode *pn)
   1.178 +{
   1.179 +    return pn->isKind(PNK_SEMI);
   1.180 +}
   1.181 +
   1.182 +static inline ParseNode *
   1.183 +ExpressionStatementExpr(ParseNode *pn)
   1.184 +{
   1.185 +    JS_ASSERT(pn->isKind(PNK_SEMI));
   1.186 +    return UnaryKid(pn);
   1.187 +}
   1.188 +
   1.189 +static inline PropertyName *
   1.190 +LoopControlMaybeLabel(ParseNode *pn)
   1.191 +{
   1.192 +    JS_ASSERT(pn->isKind(PNK_BREAK) || pn->isKind(PNK_CONTINUE));
   1.193 +    JS_ASSERT(pn->isArity(PN_NULLARY));
   1.194 +    return pn->as<LoopControlStatement>().label();
   1.195 +}
   1.196 +
   1.197 +static inline PropertyName *
   1.198 +LabeledStatementLabel(ParseNode *pn)
   1.199 +{
   1.200 +    return pn->as<LabeledStatement>().label();
   1.201 +}
   1.202 +
   1.203 +static inline ParseNode *
   1.204 +LabeledStatementStatement(ParseNode *pn)
   1.205 +{
   1.206 +    return pn->as<LabeledStatement>().statement();
   1.207 +}
   1.208 +
   1.209 +static double
   1.210 +NumberNodeValue(ParseNode *pn)
   1.211 +{
   1.212 +    JS_ASSERT(pn->isKind(PNK_NUMBER));
   1.213 +    return pn->pn_dval;
   1.214 +}
   1.215 +
   1.216 +static bool
   1.217 +NumberNodeHasFrac(ParseNode *pn)
   1.218 +{
   1.219 +    JS_ASSERT(pn->isKind(PNK_NUMBER));
   1.220 +    return pn->pn_u.number.decimalPoint == HasDecimal;
   1.221 +}
   1.222 +
   1.223 +static ParseNode *
   1.224 +DotBase(ParseNode *pn)
   1.225 +{
   1.226 +    JS_ASSERT(pn->isKind(PNK_DOT));
   1.227 +    JS_ASSERT(pn->isArity(PN_NAME));
   1.228 +    return pn->expr();
   1.229 +}
   1.230 +
   1.231 +static PropertyName *
   1.232 +DotMember(ParseNode *pn)
   1.233 +{
   1.234 +    JS_ASSERT(pn->isKind(PNK_DOT));
   1.235 +    JS_ASSERT(pn->isArity(PN_NAME));
   1.236 +    return pn->pn_atom->asPropertyName();
   1.237 +}
   1.238 +
   1.239 +static ParseNode *
   1.240 +ElemBase(ParseNode *pn)
   1.241 +{
   1.242 +    JS_ASSERT(pn->isKind(PNK_ELEM));
   1.243 +    return BinaryLeft(pn);
   1.244 +}
   1.245 +
   1.246 +static ParseNode *
   1.247 +ElemIndex(ParseNode *pn)
   1.248 +{
   1.249 +    JS_ASSERT(pn->isKind(PNK_ELEM));
   1.250 +    return BinaryRight(pn);
   1.251 +}
   1.252 +
   1.253 +static inline JSFunction *
   1.254 +FunctionObject(ParseNode *fn)
   1.255 +{
   1.256 +    JS_ASSERT(fn->isKind(PNK_FUNCTION));
   1.257 +    JS_ASSERT(fn->isArity(PN_CODE));
   1.258 +    return fn->pn_funbox->function();
   1.259 +}
   1.260 +
   1.261 +static inline PropertyName *
   1.262 +FunctionName(ParseNode *fn)
   1.263 +{
   1.264 +    if (JSAtom *atom = FunctionObject(fn)->atom())
   1.265 +        return atom->asPropertyName();
   1.266 +    return nullptr;
   1.267 +}
   1.268 +
   1.269 +static inline ParseNode *
   1.270 +FunctionStatementList(ParseNode *fn)
   1.271 +{
   1.272 +    JS_ASSERT(fn->pn_body->isKind(PNK_ARGSBODY));
   1.273 +    ParseNode *last = fn->pn_body->last();
   1.274 +    JS_ASSERT(last->isKind(PNK_STATEMENTLIST));
   1.275 +    return last;
   1.276 +}
   1.277 +
   1.278 +static inline bool
   1.279 +IsNormalObjectField(ExclusiveContext *cx, ParseNode *pn)
   1.280 +{
   1.281 +    JS_ASSERT(pn->isKind(PNK_COLON));
   1.282 +    return pn->getOp() == JSOP_INITPROP &&
   1.283 +           BinaryLeft(pn)->isKind(PNK_NAME) &&
   1.284 +           BinaryLeft(pn)->name() != cx->names().proto;
   1.285 +}
   1.286 +
   1.287 +static inline PropertyName *
   1.288 +ObjectNormalFieldName(ExclusiveContext *cx, ParseNode *pn)
   1.289 +{
   1.290 +    JS_ASSERT(IsNormalObjectField(cx, pn));
   1.291 +    return BinaryLeft(pn)->name();
   1.292 +}
   1.293 +
   1.294 +static inline ParseNode *
   1.295 +ObjectFieldInitializer(ParseNode *pn)
   1.296 +{
   1.297 +    JS_ASSERT(pn->isKind(PNK_COLON));
   1.298 +    return BinaryRight(pn);
   1.299 +}
   1.300 +
   1.301 +static inline bool
   1.302 +IsDefinition(ParseNode *pn)
   1.303 +{
   1.304 +    return pn->isKind(PNK_NAME) && pn->isDefn();
   1.305 +}
   1.306 +
   1.307 +static inline ParseNode *
   1.308 +MaybeDefinitionInitializer(ParseNode *pn)
   1.309 +{
   1.310 +    JS_ASSERT(IsDefinition(pn));
   1.311 +    return pn->expr();
   1.312 +}
   1.313 +
   1.314 +static inline bool
   1.315 +IsUseOfName(ParseNode *pn, PropertyName *name)
   1.316 +{
   1.317 +    return pn->isKind(PNK_NAME) && pn->name() == name;
   1.318 +}
   1.319 +
   1.320 +static inline bool
   1.321 +IsEmptyStatement(ParseNode *pn)
   1.322 +{
   1.323 +    return pn->isKind(PNK_SEMI) && !UnaryKid(pn);
   1.324 +}
   1.325 +
   1.326 +static inline ParseNode *
   1.327 +SkipEmptyStatements(ParseNode *pn)
   1.328 +{
   1.329 +    while (pn && IsEmptyStatement(pn))
   1.330 +        pn = pn->pn_next;
   1.331 +    return pn;
   1.332 +}
   1.333 +
   1.334 +static inline ParseNode *
   1.335 +NextNonEmptyStatement(ParseNode *pn)
   1.336 +{
   1.337 +    return SkipEmptyStatements(pn->pn_next);
   1.338 +}
   1.339 +
   1.340 +static TokenKind
   1.341 +PeekToken(AsmJSParser &parser)
   1.342 +{
   1.343 +    TokenStream &ts = parser.tokenStream;
   1.344 +    while (ts.peekToken(TokenStream::Operand) == TOK_SEMI)
   1.345 +        ts.consumeKnownToken(TOK_SEMI);
   1.346 +    return ts.peekToken(TokenStream::Operand);
   1.347 +}
   1.348 +
   1.349 +static bool
   1.350 +ParseVarOrConstStatement(AsmJSParser &parser, ParseNode **var)
   1.351 +{
   1.352 +    TokenKind tk = PeekToken(parser);
   1.353 +    if (tk != TOK_VAR && tk != TOK_CONST) {
   1.354 +        *var = nullptr;
   1.355 +        return true;
   1.356 +    }
   1.357 +
   1.358 +    *var = parser.statement();
   1.359 +    if (!*var)
   1.360 +        return false;
   1.361 +
   1.362 +    JS_ASSERT((*var)->isKind(PNK_VAR) || (*var)->isKind(PNK_CONST));
   1.363 +    return true;
   1.364 +}
   1.365 +
   1.366 +/*****************************************************************************/
   1.367 +
   1.368 +namespace {
   1.369 +
   1.370 +// Respresents the type of a general asm.js expression.
   1.371 +class Type
   1.372 +{
   1.373 +  public:
   1.374 +    enum Which {
   1.375 +        Double,
   1.376 +        MaybeDouble,
   1.377 +        Float,
   1.378 +        MaybeFloat,
   1.379 +        Floatish,
   1.380 +        Fixnum,
   1.381 +        Int,
   1.382 +        Signed,
   1.383 +        Unsigned,
   1.384 +        Intish,
   1.385 +        Void
   1.386 +    };
   1.387 +
   1.388 +  private:
   1.389 +    Which which_;
   1.390 +
   1.391 +  public:
   1.392 +    Type() : which_(Which(-1)) {}
   1.393 +    Type(Which w) : which_(w) {}
   1.394 +
   1.395 +    bool operator==(Type rhs) const { return which_ == rhs.which_; }
   1.396 +    bool operator!=(Type rhs) const { return which_ != rhs.which_; }
   1.397 +
   1.398 +    bool isSigned() const {
   1.399 +        return which_ == Signed || which_ == Fixnum;
   1.400 +    }
   1.401 +
   1.402 +    bool isUnsigned() const {
   1.403 +        return which_ == Unsigned || which_ == Fixnum;
   1.404 +    }
   1.405 +
   1.406 +    bool isInt() const {
   1.407 +        return isSigned() || isUnsigned() || which_ == Int;
   1.408 +    }
   1.409 +
   1.410 +    bool isIntish() const {
   1.411 +        return isInt() || which_ == Intish;
   1.412 +    }
   1.413 +
   1.414 +    bool isDouble() const {
   1.415 +        return which_ == Double;
   1.416 +    }
   1.417 +
   1.418 +    bool isMaybeDouble() const {
   1.419 +        return isDouble() || which_ == MaybeDouble;
   1.420 +    }
   1.421 +
   1.422 +    bool isFloat() const {
   1.423 +        return which_ == Float;
   1.424 +    }
   1.425 +
   1.426 +    bool isMaybeFloat() const {
   1.427 +        return isFloat() || which_ == MaybeFloat;
   1.428 +    }
   1.429 +
   1.430 +    bool isFloatish() const {
   1.431 +        return isMaybeFloat() || which_ == Floatish;
   1.432 +    }
   1.433 +
   1.434 +    bool isVoid() const {
   1.435 +        return which_ == Void;
   1.436 +    }
   1.437 +
   1.438 +    bool isExtern() const {
   1.439 +        return isDouble() || isSigned();
   1.440 +    }
   1.441 +
   1.442 +    bool isVarType() const {
   1.443 +        return isInt() || isDouble() || isFloat();
   1.444 +    }
   1.445 +
   1.446 +    MIRType toMIRType() const {
   1.447 +        switch (which_) {
   1.448 +          case Double:
   1.449 +          case MaybeDouble:
   1.450 +            return MIRType_Double;
   1.451 +          case Float:
   1.452 +          case Floatish:
   1.453 +          case MaybeFloat:
   1.454 +            return MIRType_Float32;
   1.455 +          case Fixnum:
   1.456 +          case Int:
   1.457 +          case Signed:
   1.458 +          case Unsigned:
   1.459 +          case Intish:
   1.460 +            return MIRType_Int32;
   1.461 +          case Void:
   1.462 +            return MIRType_None;
   1.463 +        }
   1.464 +        MOZ_ASSUME_UNREACHABLE("Invalid Type");
   1.465 +    }
   1.466 +
   1.467 +    const char *toChars() const {
   1.468 +        switch (which_) {
   1.469 +          case Double:      return "double";
   1.470 +          case MaybeDouble: return "double?";
   1.471 +          case Float:       return "float";
   1.472 +          case Floatish:    return "floatish";
   1.473 +          case MaybeFloat:  return "float?";
   1.474 +          case Fixnum:      return "fixnum";
   1.475 +          case Int:         return "int";
   1.476 +          case Signed:      return "signed";
   1.477 +          case Unsigned:    return "unsigned";
   1.478 +          case Intish:      return "intish";
   1.479 +          case Void:        return "void";
   1.480 +        }
   1.481 +        MOZ_ASSUME_UNREACHABLE("Invalid Type");
   1.482 +    }
   1.483 +};
   1.484 +
   1.485 +} /* anonymous namespace */
   1.486 +
   1.487 +// Represents the subset of Type that can be used as the return type of a
   1.488 +// function.
   1.489 +class RetType
   1.490 +{
   1.491 +  public:
   1.492 +    enum Which {
   1.493 +        Void = Type::Void,
   1.494 +        Signed = Type::Signed,
   1.495 +        Double = Type::Double,
   1.496 +        Float = Type::Float
   1.497 +    };
   1.498 +
   1.499 +  private:
   1.500 +    Which which_;
   1.501 +
   1.502 +  public:
   1.503 +    RetType() : which_(Which(-1)) {}
   1.504 +    RetType(Which w) : which_(w) {}
   1.505 +    RetType(AsmJSCoercion coercion) {
   1.506 +        switch (coercion) {
   1.507 +          case AsmJS_ToInt32: which_ = Signed; break;
   1.508 +          case AsmJS_ToNumber: which_ = Double; break;
   1.509 +          case AsmJS_FRound: which_ = Float; break;
   1.510 +        }
   1.511 +    }
   1.512 +    Which which() const {
   1.513 +        return which_;
   1.514 +    }
   1.515 +    Type toType() const {
   1.516 +        return Type::Which(which_);
   1.517 +    }
   1.518 +    AsmJSModule::ReturnType toModuleReturnType() const {
   1.519 +        switch (which_) {
   1.520 +          case Void: return AsmJSModule::Return_Void;
   1.521 +          case Signed: return AsmJSModule::Return_Int32;
   1.522 +          case Float: // will be converted to a Double
   1.523 +          case Double: return AsmJSModule::Return_Double;
   1.524 +        }
   1.525 +        MOZ_ASSUME_UNREACHABLE("Unexpected return type");
   1.526 +    }
   1.527 +    MIRType toMIRType() const {
   1.528 +        switch (which_) {
   1.529 +          case Void: return MIRType_None;
   1.530 +          case Signed: return MIRType_Int32;
   1.531 +          case Double: return MIRType_Double;
   1.532 +          case Float: return MIRType_Float32;
   1.533 +        }
   1.534 +        MOZ_ASSUME_UNREACHABLE("Unexpected return type");
   1.535 +    }
   1.536 +    bool operator==(RetType rhs) const { return which_ == rhs.which_; }
   1.537 +    bool operator!=(RetType rhs) const { return which_ != rhs.which_; }
   1.538 +};
   1.539 +
   1.540 +namespace {
   1.541 +
   1.542 +// Represents the subset of Type that can be used as a variable or
   1.543 +// argument's type. Note: AsmJSCoercion and VarType are kept separate to
   1.544 +// make very clear the signed/int distinction: a coercion may explicitly sign
   1.545 +// an *expression* but, when stored as a variable, this signedness information
   1.546 +// is explicitly thrown away by the asm.js type system. E.g., in
   1.547 +//
   1.548 +//   function f(i) {
   1.549 +//     i = i | 0;             (1)
   1.550 +//     if (...)
   1.551 +//         i = foo() >>> 0;
   1.552 +//     else
   1.553 +//         i = bar() | 0;
   1.554 +//     return i | 0;          (2)
   1.555 +//   }
   1.556 +//
   1.557 +// the AsmJSCoercion of (1) is Signed (since | performs ToInt32) but, when
   1.558 +// translated to an VarType, the result is a plain Int since, as shown, it
   1.559 +// is legal to assign both Signed and Unsigned (or some other Int) values to
   1.560 +// it. For (2), the AsmJSCoercion is also Signed but, when translated to an
   1.561 +// RetType, the result is Signed since callers (asm.js and non-asm.js) can
   1.562 +// rely on the return value being Signed.
   1.563 +class VarType
   1.564 +{
   1.565 +  public:
   1.566 +    enum Which {
   1.567 +        Int = Type::Int,
   1.568 +        Double = Type::Double,
   1.569 +        Float = Type::Float
   1.570 +    };
   1.571 +
   1.572 +  private:
   1.573 +    Which which_;
   1.574 +
   1.575 +  public:
   1.576 +    VarType()
   1.577 +      : which_(Which(-1)) {}
   1.578 +    VarType(Which w)
   1.579 +      : which_(w) {}
   1.580 +    VarType(AsmJSCoercion coercion) {
   1.581 +        switch (coercion) {
   1.582 +          case AsmJS_ToInt32: which_ = Int; break;
   1.583 +          case AsmJS_ToNumber: which_ = Double; break;
   1.584 +          case AsmJS_FRound: which_ = Float; break;
   1.585 +        }
   1.586 +    }
   1.587 +    Which which() const {
   1.588 +        return which_;
   1.589 +    }
   1.590 +    Type toType() const {
   1.591 +        return Type::Which(which_);
   1.592 +    }
   1.593 +    MIRType toMIRType() const {
   1.594 +        switch(which_) {
   1.595 +          case Int:     return MIRType_Int32;
   1.596 +          case Double:  return MIRType_Double;
   1.597 +          case Float:   return MIRType_Float32;
   1.598 +        }
   1.599 +        MOZ_ASSUME_UNREACHABLE("VarType can only be Int, Double or Float");
   1.600 +    }
   1.601 +    AsmJSCoercion toCoercion() const {
   1.602 +        switch(which_) {
   1.603 +          case Int:     return AsmJS_ToInt32;
   1.604 +          case Double:  return AsmJS_ToNumber;
   1.605 +          case Float:   return AsmJS_FRound;
   1.606 +        }
   1.607 +        MOZ_ASSUME_UNREACHABLE("VarType can only be Int, Double or Float");
   1.608 +    }
   1.609 +    static VarType FromCheckedType(Type type) {
   1.610 +        JS_ASSERT(type.isInt() || type.isMaybeDouble() || type.isFloatish());
   1.611 +        if (type.isMaybeDouble())
   1.612 +            return Double;
   1.613 +        else if (type.isFloatish())
   1.614 +            return Float;
   1.615 +        else
   1.616 +            return Int;
   1.617 +    }
   1.618 +    bool operator==(VarType rhs) const { return which_ == rhs.which_; }
   1.619 +    bool operator!=(VarType rhs) const { return which_ != rhs.which_; }
   1.620 +};
   1.621 +
   1.622 +} /* anonymous namespace */
   1.623 +
   1.624 +// Implements <: (subtype) operator when the rhs is an VarType
   1.625 +static inline bool
   1.626 +operator<=(Type lhs, VarType rhs)
   1.627 +{
   1.628 +    switch (rhs.which()) {
   1.629 +      case VarType::Int:    return lhs.isInt();
   1.630 +      case VarType::Double: return lhs.isDouble();
   1.631 +      case VarType::Float:  return lhs.isFloat();
   1.632 +    }
   1.633 +    MOZ_ASSUME_UNREACHABLE("Unexpected rhs type");
   1.634 +}
   1.635 +
   1.636 +/*****************************************************************************/
   1.637 +
   1.638 +static inline MIRType ToMIRType(MIRType t) { return t; }
   1.639 +static inline MIRType ToMIRType(VarType t) { return t.toMIRType(); }
   1.640 +
   1.641 +namespace {
   1.642 +
   1.643 +template <class VecT>
   1.644 +class ABIArgIter
   1.645 +{
   1.646 +    ABIArgGenerator gen_;
   1.647 +    const VecT &types_;
   1.648 +    unsigned i_;
   1.649 +
   1.650 +    void settle() { if (!done()) gen_.next(ToMIRType(types_[i_])); }
   1.651 +
   1.652 +  public:
   1.653 +    ABIArgIter(const VecT &types) : types_(types), i_(0) { settle(); }
   1.654 +    void operator++(int) { JS_ASSERT(!done()); i_++; settle(); }
   1.655 +    bool done() const { return i_ == types_.length(); }
   1.656 +
   1.657 +    ABIArg *operator->() { JS_ASSERT(!done()); return &gen_.current(); }
   1.658 +    ABIArg &operator*() { JS_ASSERT(!done()); return gen_.current(); }
   1.659 +
   1.660 +    unsigned index() const { JS_ASSERT(!done()); return i_; }
   1.661 +    MIRType mirType() const { JS_ASSERT(!done()); return ToMIRType(types_[i_]); }
   1.662 +    uint32_t stackBytesConsumedSoFar() const { return gen_.stackBytesConsumedSoFar(); }
   1.663 +};
   1.664 +
   1.665 +typedef js::Vector<MIRType, 8> MIRTypeVector;
   1.666 +typedef ABIArgIter<MIRTypeVector> ABIArgMIRTypeIter;
   1.667 +
   1.668 +typedef js::Vector<VarType, 8, LifoAllocPolicy> VarTypeVector;
   1.669 +typedef ABIArgIter<VarTypeVector> ABIArgTypeIter;
   1.670 +
   1.671 +class Signature
   1.672 +{
   1.673 +    VarTypeVector argTypes_;
   1.674 +    RetType retType_;
   1.675 +
   1.676 +  public:
   1.677 +    Signature(LifoAlloc &alloc)
   1.678 +      : argTypes_(alloc) {}
   1.679 +    Signature(LifoAlloc &alloc, RetType retType)
   1.680 +      : argTypes_(alloc), retType_(retType) {}
   1.681 +    Signature(VarTypeVector &&argTypes, RetType retType)
   1.682 +      : argTypes_(Move(argTypes)), retType_(Move(retType)) {}
   1.683 +    Signature(Signature &&rhs)
   1.684 +      : argTypes_(Move(rhs.argTypes_)), retType_(Move(rhs.retType_)) {}
   1.685 +
   1.686 +    bool copy(const Signature &rhs) {
   1.687 +        if (!argTypes_.resize(rhs.argTypes_.length()))
   1.688 +            return false;
   1.689 +        for (unsigned i = 0; i < argTypes_.length(); i++)
   1.690 +            argTypes_[i] = rhs.argTypes_[i];
   1.691 +        retType_ = rhs.retType_;
   1.692 +        return true;
   1.693 +    }
   1.694 +
   1.695 +    bool appendArg(VarType type) { return argTypes_.append(type); }
   1.696 +    VarType arg(unsigned i) const { return argTypes_[i]; }
   1.697 +    const VarTypeVector &args() const { return argTypes_; }
   1.698 +    VarTypeVector &&extractArgs() { return Move(argTypes_); }
   1.699 +
   1.700 +    RetType retType() const { return retType_; }
   1.701 +};
   1.702 +
   1.703 +} /* namespace anonymous */
   1.704 +
   1.705 +static
   1.706 +bool operator==(const Signature &lhs, const Signature &rhs)
   1.707 +{
   1.708 +    if (lhs.retType() != rhs.retType())
   1.709 +        return false;
   1.710 +    if (lhs.args().length() != rhs.args().length())
   1.711 +        return false;
   1.712 +    for (unsigned i = 0; i < lhs.args().length(); i++) {
   1.713 +        if (lhs.arg(i) != rhs.arg(i))
   1.714 +            return false;
   1.715 +    }
   1.716 +    return true;
   1.717 +}
   1.718 +
   1.719 +static inline
   1.720 +bool operator!=(const Signature &lhs, const Signature &rhs)
   1.721 +{
   1.722 +    return !(lhs == rhs);
   1.723 +}
   1.724 +
   1.725 +/*****************************************************************************/
   1.726 +// Typed array utilities
   1.727 +
   1.728 +static Type
   1.729 +TypedArrayLoadType(ArrayBufferView::ViewType viewType)
   1.730 +{
   1.731 +    switch (viewType) {
   1.732 +      case ArrayBufferView::TYPE_INT8:
   1.733 +      case ArrayBufferView::TYPE_INT16:
   1.734 +      case ArrayBufferView::TYPE_INT32:
   1.735 +      case ArrayBufferView::TYPE_UINT8:
   1.736 +      case ArrayBufferView::TYPE_UINT16:
   1.737 +      case ArrayBufferView::TYPE_UINT32:
   1.738 +        return Type::Intish;
   1.739 +      case ArrayBufferView::TYPE_FLOAT32:
   1.740 +        return Type::MaybeFloat;
   1.741 +      case ArrayBufferView::TYPE_FLOAT64:
   1.742 +        return Type::MaybeDouble;
   1.743 +      default:;
   1.744 +    }
   1.745 +    MOZ_ASSUME_UNREACHABLE("Unexpected array type");
   1.746 +}
   1.747 +
   1.748 +enum NeedsBoundsCheck {
   1.749 +    NO_BOUNDS_CHECK,
   1.750 +    NEEDS_BOUNDS_CHECK
   1.751 +};
   1.752 +
   1.753 +namespace {
   1.754 +
   1.755 +typedef js::Vector<PropertyName*,1> LabelVector;
   1.756 +typedef js::Vector<MBasicBlock*,8> BlockVector;
   1.757 +
   1.758 +// ModuleCompiler encapsulates the compilation of an entire asm.js module. Over
   1.759 +// the course of an ModuleCompiler object's lifetime, many FunctionCompiler
   1.760 +// objects will be created and destroyed in sequence, one for each function in
   1.761 +// the module.
   1.762 +//
   1.763 +// *** asm.js FFI calls ***
   1.764 +//
   1.765 +// asm.js allows calling out to non-asm.js via "FFI calls". The asm.js type
   1.766 +// system does not place any constraints on the FFI call. In particular:
   1.767 +//  - an FFI call's target is not known or speculated at module-compile time;
   1.768 +//  - a single external function can be called with different signatures.
   1.769 +//
   1.770 +// If performance didn't matter, all FFI calls could simply box their arguments
   1.771 +// and call js::Invoke. However, we'd like to be able to specialize FFI calls
   1.772 +// to be more efficient in several cases:
   1.773 +//
   1.774 +//  - for calls to JS functions which have been jitted, we'd like to call
   1.775 +//    directly into JIT code without going through C++.
   1.776 +//
   1.777 +//  - for calls to certain builtins, we'd like to be call directly into the C++
   1.778 +//    code for the builtin without going through the general call path.
   1.779 +//
   1.780 +// All of this requires dynamic specialization techniques which must happen
   1.781 +// after module compilation. To support this, at module-compilation time, each
   1.782 +// FFI call generates a call signature according to the system ABI, as if the
   1.783 +// callee was a C++ function taking/returning the same types as the caller was
   1.784 +// passing/expecting. The callee is loaded from a fixed offset in the global
   1.785 +// data array which allows the callee to change at runtime. Initially, the
   1.786 +// callee is stub which boxes its arguments and calls js::Invoke.
   1.787 +//
   1.788 +// To do this, we need to generate a callee stub for each pairing of FFI callee
   1.789 +// and signature. We call this pairing an "exit". For example, this code has
   1.790 +// two external functions and three exits:
   1.791 +//
   1.792 +//  function f(global, imports) {
   1.793 +//    "use asm";
   1.794 +//    var foo = imports.foo;
   1.795 +//    var bar = imports.bar;
   1.796 +//    function g() {
   1.797 +//      foo(1);      // Exit #1: (int) -> void
   1.798 +//      foo(1.5);    // Exit #2: (double) -> void
   1.799 +//      bar(1)|0;    // Exit #3: (int) -> int
   1.800 +//      bar(2)|0;    // Exit #3: (int) -> int
   1.801 +//    }
   1.802 +//  }
   1.803 +//
   1.804 +// The ModuleCompiler maintains a hash table (ExitMap) which allows a call site
   1.805 +// to add a new exit or reuse an existing one. The key is an ExitDescriptor
   1.806 +// (which holds the exit pairing) and the value is an index into the
   1.807 +// Vector<Exit> stored in the AsmJSModule.
   1.808 +//
   1.809 +// Rooting note: ModuleCompiler is a stack class that contains unrooted
   1.810 +// PropertyName (JSAtom) pointers.  This is safe because it cannot be
   1.811 +// constructed without a TokenStream reference.  TokenStream is itself a stack
   1.812 +// class that cannot be constructed without an AutoKeepAtoms being live on the
   1.813 +// stack, which prevents collection of atoms.
   1.814 +//
   1.815 +// ModuleCompiler is marked as rooted in the rooting analysis.  Don't add
   1.816 +// non-JSAtom pointers, or this will break!
   1.817 +class MOZ_STACK_CLASS ModuleCompiler
   1.818 +{
   1.819 +  public:
   1.820 +    class Func
   1.821 +    {
   1.822 +        PropertyName *name_;
   1.823 +        bool defined_;
   1.824 +        uint32_t srcOffset_;
   1.825 +        uint32_t endOffset_;
   1.826 +        Signature sig_;
   1.827 +        Label *code_;
   1.828 +        unsigned compileTime_;
   1.829 +
   1.830 +      public:
   1.831 +        Func(PropertyName *name, Signature &&sig, Label *code)
   1.832 +          : name_(name), defined_(false), srcOffset_(0), endOffset_(0), sig_(Move(sig)),
   1.833 +            code_(code), compileTime_(0)
   1.834 +        {}
   1.835 +
   1.836 +        PropertyName *name() const { return name_; }
   1.837 +
   1.838 +        bool defined() const { return defined_; }
   1.839 +        void finish(uint32_t start, uint32_t end) {
   1.840 +            JS_ASSERT(!defined_);
   1.841 +            defined_ = true;
   1.842 +            srcOffset_ = start;
   1.843 +            endOffset_ = end;
   1.844 +        }
   1.845 +
   1.846 +        uint32_t srcOffset() const { JS_ASSERT(defined_); return srcOffset_; }
   1.847 +        uint32_t endOffset() const { JS_ASSERT(defined_); return endOffset_; }
   1.848 +        Signature &sig() { return sig_; }
   1.849 +        const Signature &sig() const { return sig_; }
   1.850 +        Label *code() const { return code_; }
   1.851 +        unsigned compileTime() const { return compileTime_; }
   1.852 +        void accumulateCompileTime(unsigned ms) { compileTime_ += ms; }
   1.853 +    };
   1.854 +
   1.855 +    class Global
   1.856 +    {
   1.857 +      public:
   1.858 +        enum Which {
   1.859 +            Variable,
   1.860 +            ConstantLiteral,
   1.861 +            ConstantImport,
   1.862 +            Function,
   1.863 +            FuncPtrTable,
   1.864 +            FFI,
   1.865 +            ArrayView,
   1.866 +            MathBuiltinFunction
   1.867 +        };
   1.868 +
   1.869 +      private:
   1.870 +        Which which_;
   1.871 +        union {
   1.872 +            struct {
   1.873 +                VarType::Which type_;
   1.874 +                uint32_t index_;
   1.875 +                Value literalValue_;
   1.876 +            } varOrConst;
   1.877 +            uint32_t funcIndex_;
   1.878 +            uint32_t funcPtrTableIndex_;
   1.879 +            uint32_t ffiIndex_;
   1.880 +            ArrayBufferView::ViewType viewType_;
   1.881 +            AsmJSMathBuiltinFunction mathBuiltinFunc_;
   1.882 +        } u;
   1.883 +
   1.884 +        friend class ModuleCompiler;
   1.885 +        friend class js::LifoAlloc;
   1.886 +
   1.887 +        Global(Which which) : which_(which) {}
   1.888 +
   1.889 +      public:
   1.890 +        Which which() const {
   1.891 +            return which_;
   1.892 +        }
   1.893 +        VarType varOrConstType() const {
   1.894 +            JS_ASSERT(which_ == Variable || which_ == ConstantLiteral || which_ == ConstantImport);
   1.895 +            return VarType(u.varOrConst.type_);
   1.896 +        }
   1.897 +        uint32_t varOrConstIndex() const {
   1.898 +            JS_ASSERT(which_ == Variable || which_ == ConstantImport);
   1.899 +            return u.varOrConst.index_;
   1.900 +        }
   1.901 +        bool isConst() const {
   1.902 +            return which_ == ConstantLiteral || which_ == ConstantImport;
   1.903 +        }
   1.904 +        Value constLiteralValue() const {
   1.905 +            JS_ASSERT(which_ == ConstantLiteral);
   1.906 +            return u.varOrConst.literalValue_;
   1.907 +        }
   1.908 +        uint32_t funcIndex() const {
   1.909 +            JS_ASSERT(which_ == Function);
   1.910 +            return u.funcIndex_;
   1.911 +        }
   1.912 +        uint32_t funcPtrTableIndex() const {
   1.913 +            JS_ASSERT(which_ == FuncPtrTable);
   1.914 +            return u.funcPtrTableIndex_;
   1.915 +        }
   1.916 +        unsigned ffiIndex() const {
   1.917 +            JS_ASSERT(which_ == FFI);
   1.918 +            return u.ffiIndex_;
   1.919 +        }
   1.920 +        ArrayBufferView::ViewType viewType() const {
   1.921 +            JS_ASSERT(which_ == ArrayView);
   1.922 +            return u.viewType_;
   1.923 +        }
   1.924 +        AsmJSMathBuiltinFunction mathBuiltinFunction() const {
   1.925 +            JS_ASSERT(which_ == MathBuiltinFunction);
   1.926 +            return u.mathBuiltinFunc_;
   1.927 +        }
   1.928 +    };
   1.929 +
   1.930 +    typedef js::Vector<const Func*> FuncPtrVector;
   1.931 +
   1.932 +    class FuncPtrTable
   1.933 +    {
   1.934 +        Signature sig_;
   1.935 +        uint32_t mask_;
   1.936 +        uint32_t globalDataOffset_;
   1.937 +        FuncPtrVector elems_;
   1.938 +
   1.939 +      public:
   1.940 +        FuncPtrTable(ExclusiveContext *cx, Signature &&sig, uint32_t mask, uint32_t gdo)
   1.941 +          : sig_(Move(sig)), mask_(mask), globalDataOffset_(gdo), elems_(cx)
   1.942 +        {}
   1.943 +
   1.944 +        FuncPtrTable(FuncPtrTable &&rhs)
   1.945 +          : sig_(Move(rhs.sig_)), mask_(rhs.mask_), globalDataOffset_(rhs.globalDataOffset_),
   1.946 +            elems_(Move(rhs.elems_))
   1.947 +        {}
   1.948 +
   1.949 +        Signature &sig() { return sig_; }
   1.950 +        const Signature &sig() const { return sig_; }
   1.951 +        unsigned mask() const { return mask_; }
   1.952 +        unsigned globalDataOffset() const { return globalDataOffset_; }
   1.953 +
   1.954 +        bool initialized() const { return !elems_.empty(); }
   1.955 +        void initElems(FuncPtrVector &&elems) { elems_ = Move(elems); JS_ASSERT(initialized()); }
   1.956 +        unsigned numElems() const { JS_ASSERT(initialized()); return elems_.length(); }
   1.957 +        const Func &elem(unsigned i) const { return *elems_[i]; }
   1.958 +    };
   1.959 +
   1.960 +    typedef js::Vector<FuncPtrTable> FuncPtrTableVector;
   1.961 +
   1.962 +    class ExitDescriptor
   1.963 +    {
   1.964 +        PropertyName *name_;
   1.965 +        Signature sig_;
   1.966 +
   1.967 +      public:
   1.968 +        ExitDescriptor(PropertyName *name, Signature &&sig)
   1.969 +          : name_(name), sig_(Move(sig)) {}
   1.970 +        ExitDescriptor(ExitDescriptor &&rhs)
   1.971 +          : name_(rhs.name_), sig_(Move(rhs.sig_))
   1.972 +        {}
   1.973 +        const Signature &sig() const {
   1.974 +            return sig_;
   1.975 +        }
   1.976 +
   1.977 +        // ExitDescriptor is a HashPolicy:
   1.978 +        typedef ExitDescriptor Lookup;
   1.979 +        static HashNumber hash(const ExitDescriptor &d) {
   1.980 +            HashNumber hn = HashGeneric(d.name_, d.sig_.retType().which());
   1.981 +            const VarTypeVector &args = d.sig_.args();
   1.982 +            for (unsigned i = 0; i < args.length(); i++)
   1.983 +                hn = AddToHash(hn, args[i].which());
   1.984 +            return hn;
   1.985 +        }
   1.986 +        static bool match(const ExitDescriptor &lhs, const ExitDescriptor &rhs) {
   1.987 +            return lhs.name_ == rhs.name_ && lhs.sig_ == rhs.sig_;
   1.988 +        }
   1.989 +    };
   1.990 +
   1.991 +    typedef HashMap<ExitDescriptor, unsigned, ExitDescriptor> ExitMap;
   1.992 +
   1.993 +    struct MathBuiltin
   1.994 +    {
   1.995 +        enum Kind { Function, Constant };
   1.996 +        Kind kind;
   1.997 +
   1.998 +        union {
   1.999 +            double cst;
  1.1000 +            AsmJSMathBuiltinFunction func;
  1.1001 +        } u;
  1.1002 +
  1.1003 +        MathBuiltin() : kind(Kind(-1)) {}
  1.1004 +        MathBuiltin(double cst) : kind(Constant) {
  1.1005 +            u.cst = cst;
  1.1006 +        }
  1.1007 +        MathBuiltin(AsmJSMathBuiltinFunction func) : kind(Function) {
  1.1008 +            u.func = func;
  1.1009 +        }
  1.1010 +    };
  1.1011 +
  1.1012 +  private:
  1.1013 +    struct SlowFunction
  1.1014 +    {
  1.1015 +        PropertyName *name;
  1.1016 +        unsigned ms;
  1.1017 +        unsigned line;
  1.1018 +        unsigned column;
  1.1019 +    };
  1.1020 +
  1.1021 +    typedef HashMap<PropertyName*, MathBuiltin> MathNameMap;
  1.1022 +    typedef HashMap<PropertyName*, Global*> GlobalMap;
  1.1023 +    typedef js::Vector<Func*> FuncVector;
  1.1024 +    typedef js::Vector<AsmJSGlobalAccess> GlobalAccessVector;
  1.1025 +    typedef js::Vector<SlowFunction> SlowFunctionVector;
  1.1026 +
  1.1027 +    ExclusiveContext *             cx_;
  1.1028 +    AsmJSParser &                  parser_;
  1.1029 +
  1.1030 +    MacroAssembler                 masm_;
  1.1031 +
  1.1032 +    ScopedJSDeletePtr<AsmJSModule> module_;
  1.1033 +    LifoAlloc                      moduleLifo_;
  1.1034 +    ParseNode *                    moduleFunctionNode_;
  1.1035 +    PropertyName *                 moduleFunctionName_;
  1.1036 +
  1.1037 +    GlobalMap                      globals_;
  1.1038 +    FuncVector                     functions_;
  1.1039 +    FuncPtrTableVector             funcPtrTables_;
  1.1040 +    ExitMap                        exits_;
  1.1041 +    MathNameMap                    standardLibraryMathNames_;
  1.1042 +    Label                          stackOverflowLabel_;
  1.1043 +    Label                          interruptLabel_;
  1.1044 +
  1.1045 +    char *                         errorString_;
  1.1046 +    uint32_t                       errorOffset_;
  1.1047 +    bool                           errorOverRecursed_;
  1.1048 +
  1.1049 +    int64_t                        usecBefore_;
  1.1050 +    SlowFunctionVector             slowFunctions_;
  1.1051 +
  1.1052 +    DebugOnly<bool>                finishedFunctionBodies_;
  1.1053 +
  1.1054 +    bool addStandardLibraryMathName(const char *name, AsmJSMathBuiltinFunction func) {
  1.1055 +        JSAtom *atom = Atomize(cx_, name, strlen(name));
  1.1056 +        if (!atom)
  1.1057 +            return false;
  1.1058 +        MathBuiltin builtin(func);
  1.1059 +        return standardLibraryMathNames_.putNew(atom->asPropertyName(), builtin);
  1.1060 +    }
  1.1061 +    bool addStandardLibraryMathName(const char *name, double cst) {
  1.1062 +        JSAtom *atom = Atomize(cx_, name, strlen(name));
  1.1063 +        if (!atom)
  1.1064 +            return false;
  1.1065 +        MathBuiltin builtin(cst);
  1.1066 +        return standardLibraryMathNames_.putNew(atom->asPropertyName(), builtin);
  1.1067 +    }
  1.1068 +
  1.1069 +  public:
  1.1070 +    ModuleCompiler(ExclusiveContext *cx, AsmJSParser &parser)
  1.1071 +      : cx_(cx),
  1.1072 +        parser_(parser),
  1.1073 +        masm_(MacroAssembler::AsmJSToken()),
  1.1074 +        moduleLifo_(LIFO_ALLOC_PRIMARY_CHUNK_SIZE),
  1.1075 +        moduleFunctionNode_(parser.pc->maybeFunction),
  1.1076 +        moduleFunctionName_(nullptr),
  1.1077 +        globals_(cx),
  1.1078 +        functions_(cx),
  1.1079 +        funcPtrTables_(cx),
  1.1080 +        exits_(cx),
  1.1081 +        standardLibraryMathNames_(cx),
  1.1082 +        errorString_(nullptr),
  1.1083 +        errorOffset_(UINT32_MAX),
  1.1084 +        errorOverRecursed_(false),
  1.1085 +        usecBefore_(PRMJ_Now()),
  1.1086 +        slowFunctions_(cx),
  1.1087 +        finishedFunctionBodies_(false)
  1.1088 +    {
  1.1089 +        JS_ASSERT(moduleFunctionNode_->pn_funbox == parser.pc->sc->asFunctionBox());
  1.1090 +    }
  1.1091 +
  1.1092 +    ~ModuleCompiler() {
  1.1093 +        if (errorString_) {
  1.1094 +            JS_ASSERT(errorOffset_ != UINT32_MAX);
  1.1095 +            tokenStream().reportAsmJSError(errorOffset_,
  1.1096 +                                           JSMSG_USE_ASM_TYPE_FAIL,
  1.1097 +                                           errorString_);
  1.1098 +            js_free(errorString_);
  1.1099 +        }
  1.1100 +        if (errorOverRecursed_)
  1.1101 +            js_ReportOverRecursed(cx_);
  1.1102 +
  1.1103 +        // Avoid spurious Label assertions on compilation failure.
  1.1104 +        if (!stackOverflowLabel_.bound())
  1.1105 +            stackOverflowLabel_.bind(0);
  1.1106 +        if (!interruptLabel_.bound())
  1.1107 +            interruptLabel_.bind(0);
  1.1108 +    }
  1.1109 +
  1.1110 +    bool init() {
  1.1111 +        if (!globals_.init() || !exits_.init())
  1.1112 +            return false;
  1.1113 +
  1.1114 +        if (!standardLibraryMathNames_.init() ||
  1.1115 +            !addStandardLibraryMathName("sin", AsmJSMathBuiltin_sin) ||
  1.1116 +            !addStandardLibraryMathName("cos", AsmJSMathBuiltin_cos) ||
  1.1117 +            !addStandardLibraryMathName("tan", AsmJSMathBuiltin_tan) ||
  1.1118 +            !addStandardLibraryMathName("asin", AsmJSMathBuiltin_asin) ||
  1.1119 +            !addStandardLibraryMathName("acos", AsmJSMathBuiltin_acos) ||
  1.1120 +            !addStandardLibraryMathName("atan", AsmJSMathBuiltin_atan) ||
  1.1121 +            !addStandardLibraryMathName("ceil", AsmJSMathBuiltin_ceil) ||
  1.1122 +            !addStandardLibraryMathName("floor", AsmJSMathBuiltin_floor) ||
  1.1123 +            !addStandardLibraryMathName("exp", AsmJSMathBuiltin_exp) ||
  1.1124 +            !addStandardLibraryMathName("log", AsmJSMathBuiltin_log) ||
  1.1125 +            !addStandardLibraryMathName("pow", AsmJSMathBuiltin_pow) ||
  1.1126 +            !addStandardLibraryMathName("sqrt", AsmJSMathBuiltin_sqrt) ||
  1.1127 +            !addStandardLibraryMathName("abs", AsmJSMathBuiltin_abs) ||
  1.1128 +            !addStandardLibraryMathName("atan2", AsmJSMathBuiltin_atan2) ||
  1.1129 +            !addStandardLibraryMathName("imul", AsmJSMathBuiltin_imul) ||
  1.1130 +            !addStandardLibraryMathName("fround", AsmJSMathBuiltin_fround) ||
  1.1131 +            !addStandardLibraryMathName("min", AsmJSMathBuiltin_min) ||
  1.1132 +            !addStandardLibraryMathName("max", AsmJSMathBuiltin_max) ||
  1.1133 +            !addStandardLibraryMathName("E", M_E) ||
  1.1134 +            !addStandardLibraryMathName("LN10", M_LN10) ||
  1.1135 +            !addStandardLibraryMathName("LN2", M_LN2) ||
  1.1136 +            !addStandardLibraryMathName("LOG2E", M_LOG2E) ||
  1.1137 +            !addStandardLibraryMathName("LOG10E", M_LOG10E) ||
  1.1138 +            !addStandardLibraryMathName("PI", M_PI) ||
  1.1139 +            !addStandardLibraryMathName("SQRT1_2", M_SQRT1_2) ||
  1.1140 +            !addStandardLibraryMathName("SQRT2", M_SQRT2))
  1.1141 +        {
  1.1142 +            return false;
  1.1143 +        }
  1.1144 +
  1.1145 +        uint32_t funcStart = parser_.pc->maybeFunction->pn_body->pn_pos.begin;
  1.1146 +        uint32_t offsetToEndOfUseAsm = tokenStream().currentToken().pos.end;
  1.1147 +
  1.1148 +        // "use strict" should be added to the source if we are in an implicit
  1.1149 +        // strict context, see also comment above addUseStrict in
  1.1150 +        // js::FunctionToString.
  1.1151 +        bool strict = parser_.pc->sc->strict && !parser_.pc->sc->hasExplicitUseStrict();
  1.1152 +
  1.1153 +        module_ = cx_->new_<AsmJSModule>(parser_.ss, funcStart, offsetToEndOfUseAsm, strict);
  1.1154 +        if (!module_)
  1.1155 +            return false;
  1.1156 +
  1.1157 +        return true;
  1.1158 +    }
  1.1159 +
  1.1160 +    bool failOffset(uint32_t offset, const char *str) {
  1.1161 +        JS_ASSERT(!errorString_);
  1.1162 +        JS_ASSERT(errorOffset_ == UINT32_MAX);
  1.1163 +        JS_ASSERT(str);
  1.1164 +        errorOffset_ = offset;
  1.1165 +        errorString_ = js_strdup(cx_, str);
  1.1166 +        return false;
  1.1167 +    }
  1.1168 +
  1.1169 +    bool fail(ParseNode *pn, const char *str) {
  1.1170 +        if (pn)
  1.1171 +            return failOffset(pn->pn_pos.begin, str);
  1.1172 +
  1.1173 +        // The exact rooting static analysis does not perform dataflow analysis, so it believes
  1.1174 +        // that unrooted things on the stack during compilation may still be accessed after this.
  1.1175 +        // Since pn is typically only null under OOM, this suppression simply forces any GC to be
  1.1176 +        // delayed until the compilation is off the stack and more memory can be freed.
  1.1177 +        gc::AutoSuppressGC nogc(cx_);
  1.1178 +        return failOffset(tokenStream().peekTokenPos().begin, str);
  1.1179 +    }
  1.1180 +
  1.1181 +    bool failfVA(ParseNode *pn, const char *fmt, va_list ap) {
  1.1182 +        JS_ASSERT(!errorString_);
  1.1183 +        JS_ASSERT(errorOffset_ == UINT32_MAX);
  1.1184 +        JS_ASSERT(fmt);
  1.1185 +        errorOffset_ = pn ? pn->pn_pos.begin : tokenStream().currentToken().pos.end;
  1.1186 +        errorString_ = JS_vsmprintf(fmt, ap);
  1.1187 +        return false;
  1.1188 +    }
  1.1189 +
  1.1190 +    bool failf(ParseNode *pn, const char *fmt, ...) {
  1.1191 +        va_list ap;
  1.1192 +        va_start(ap, fmt);
  1.1193 +        failfVA(pn, fmt, ap);
  1.1194 +        va_end(ap);
  1.1195 +        return false;
  1.1196 +    }
  1.1197 +
  1.1198 +    bool failName(ParseNode *pn, const char *fmt, PropertyName *name) {
  1.1199 +        // This function is invoked without the caller properly rooting its locals.
  1.1200 +        gc::AutoSuppressGC suppress(cx_);
  1.1201 +        JSAutoByteString bytes;
  1.1202 +        if (AtomToPrintableString(cx_, name, &bytes))
  1.1203 +            failf(pn, fmt, bytes.ptr());
  1.1204 +        return false;
  1.1205 +    }
  1.1206 +
  1.1207 +    bool failOverRecursed() {
  1.1208 +        errorOverRecursed_ = true;
  1.1209 +        return false;
  1.1210 +    }
  1.1211 +
  1.1212 +    static const unsigned SLOW_FUNCTION_THRESHOLD_MS = 250;
  1.1213 +
  1.1214 +    bool maybeReportCompileTime(const Func &func) {
  1.1215 +        if (func.compileTime() < SLOW_FUNCTION_THRESHOLD_MS)
  1.1216 +            return true;
  1.1217 +        SlowFunction sf;
  1.1218 +        sf.name = func.name();
  1.1219 +        sf.ms = func.compileTime();
  1.1220 +        tokenStream().srcCoords.lineNumAndColumnIndex(func.srcOffset(), &sf.line, &sf.column);
  1.1221 +        return slowFunctions_.append(sf);
  1.1222 +    }
  1.1223 +
  1.1224 +    /*************************************************** Read-only interface */
  1.1225 +
  1.1226 +    ExclusiveContext *cx() const { return cx_; }
  1.1227 +    AsmJSParser &parser() const { return parser_; }
  1.1228 +    TokenStream &tokenStream() const { return parser_.tokenStream; }
  1.1229 +    MacroAssembler &masm() { return masm_; }
  1.1230 +    Label &stackOverflowLabel() { return stackOverflowLabel_; }
  1.1231 +    Label &interruptLabel() { return interruptLabel_; }
  1.1232 +    bool hasError() const { return errorString_ != nullptr; }
  1.1233 +    const AsmJSModule &module() const { return *module_.get(); }
  1.1234 +    uint32_t moduleStart() const { return module_->funcStart(); }
  1.1235 +
  1.1236 +    ParseNode *moduleFunctionNode() const { return moduleFunctionNode_; }
  1.1237 +    PropertyName *moduleFunctionName() const { return moduleFunctionName_; }
  1.1238 +
  1.1239 +    const Global *lookupGlobal(PropertyName *name) const {
  1.1240 +        if (GlobalMap::Ptr p = globals_.lookup(name))
  1.1241 +            return p->value();
  1.1242 +        return nullptr;
  1.1243 +    }
  1.1244 +    Func *lookupFunction(PropertyName *name) {
  1.1245 +        if (GlobalMap::Ptr p = globals_.lookup(name)) {
  1.1246 +            Global *value = p->value();
  1.1247 +            if (value->which() == Global::Function)
  1.1248 +                return functions_[value->funcIndex()];
  1.1249 +        }
  1.1250 +        return nullptr;
  1.1251 +    }
  1.1252 +    unsigned numFunctions() const {
  1.1253 +        return functions_.length();
  1.1254 +    }
  1.1255 +    Func &function(unsigned i) {
  1.1256 +        return *functions_[i];
  1.1257 +    }
  1.1258 +    unsigned numFuncPtrTables() const {
  1.1259 +        return funcPtrTables_.length();
  1.1260 +    }
  1.1261 +    FuncPtrTable &funcPtrTable(unsigned i) {
  1.1262 +        return funcPtrTables_[i];
  1.1263 +    }
  1.1264 +    bool lookupStandardLibraryMathName(PropertyName *name, MathBuiltin *mathBuiltin) const {
  1.1265 +        if (MathNameMap::Ptr p = standardLibraryMathNames_.lookup(name)) {
  1.1266 +            *mathBuiltin = p->value();
  1.1267 +            return true;
  1.1268 +        }
  1.1269 +        return false;
  1.1270 +    }
  1.1271 +    ExitMap::Range allExits() const {
  1.1272 +        return exits_.all();
  1.1273 +    }
  1.1274 +
  1.1275 +    /***************************************************** Mutable interface */
  1.1276 +
  1.1277 +    void initModuleFunctionName(PropertyName *name) { moduleFunctionName_ = name; }
  1.1278 +
  1.1279 +    void initGlobalArgumentName(PropertyName *n) { module_->initGlobalArgumentName(n); }
  1.1280 +    void initImportArgumentName(PropertyName *n) { module_->initImportArgumentName(n); }
  1.1281 +    void initBufferArgumentName(PropertyName *n) { module_->initBufferArgumentName(n); }
  1.1282 +
  1.1283 +    bool addGlobalVarInit(PropertyName *varName, VarType type, const Value &v, bool isConst) {
  1.1284 +        uint32_t index;
  1.1285 +        if (!module_->addGlobalVarInit(v, type.toCoercion(), &index))
  1.1286 +            return false;
  1.1287 +
  1.1288 +        Global::Which which = isConst ? Global::ConstantLiteral : Global::Variable;
  1.1289 +        Global *global = moduleLifo_.new_<Global>(which);
  1.1290 +        if (!global)
  1.1291 +            return false;
  1.1292 +        global->u.varOrConst.index_ = index;
  1.1293 +        global->u.varOrConst.type_ = type.which();
  1.1294 +        if (isConst)
  1.1295 +            global->u.varOrConst.literalValue_ = v;
  1.1296 +
  1.1297 +        return globals_.putNew(varName, global);
  1.1298 +    }
  1.1299 +    bool addGlobalVarImport(PropertyName *varName, PropertyName *fieldName, AsmJSCoercion coercion,
  1.1300 +                            bool isConst) {
  1.1301 +        uint32_t index;
  1.1302 +        if (!module_->addGlobalVarImport(fieldName, coercion, &index))
  1.1303 +            return false;
  1.1304 +
  1.1305 +        Global::Which which = isConst ? Global::ConstantImport : Global::Variable;
  1.1306 +        Global *global = moduleLifo_.new_<Global>(which);
  1.1307 +        if (!global)
  1.1308 +            return false;
  1.1309 +        global->u.varOrConst.index_ = index;
  1.1310 +        global->u.varOrConst.type_ = VarType(coercion).which();
  1.1311 +
  1.1312 +        return globals_.putNew(varName, global);
  1.1313 +    }
  1.1314 +    bool addFunction(PropertyName *name, Signature &&sig, Func **func) {
  1.1315 +        JS_ASSERT(!finishedFunctionBodies_);
  1.1316 +        Global *global = moduleLifo_.new_<Global>(Global::Function);
  1.1317 +        if (!global)
  1.1318 +            return false;
  1.1319 +        global->u.funcIndex_ = functions_.length();
  1.1320 +        if (!globals_.putNew(name, global))
  1.1321 +            return false;
  1.1322 +        Label *code = moduleLifo_.new_<Label>();
  1.1323 +        if (!code)
  1.1324 +            return false;
  1.1325 +        *func = moduleLifo_.new_<Func>(name, Move(sig), code);
  1.1326 +        if (!*func)
  1.1327 +            return false;
  1.1328 +        return functions_.append(*func);
  1.1329 +    }
  1.1330 +    bool addFuncPtrTable(PropertyName *name, Signature &&sig, uint32_t mask, FuncPtrTable **table) {
  1.1331 +        Global *global = moduleLifo_.new_<Global>(Global::FuncPtrTable);
  1.1332 +        if (!global)
  1.1333 +            return false;
  1.1334 +        global->u.funcPtrTableIndex_ = funcPtrTables_.length();
  1.1335 +        if (!globals_.putNew(name, global))
  1.1336 +            return false;
  1.1337 +        uint32_t globalDataOffset;
  1.1338 +        if (!module_->addFuncPtrTable(/* numElems = */ mask + 1, &globalDataOffset))
  1.1339 +            return false;
  1.1340 +        FuncPtrTable tmpTable(cx_, Move(sig), mask, globalDataOffset);
  1.1341 +        if (!funcPtrTables_.append(Move(tmpTable)))
  1.1342 +            return false;
  1.1343 +        *table = &funcPtrTables_.back();
  1.1344 +        return true;
  1.1345 +    }
  1.1346 +    bool addFFI(PropertyName *varName, PropertyName *field) {
  1.1347 +        Global *global = moduleLifo_.new_<Global>(Global::FFI);
  1.1348 +        if (!global)
  1.1349 +            return false;
  1.1350 +        uint32_t index;
  1.1351 +        if (!module_->addFFI(field, &index))
  1.1352 +            return false;
  1.1353 +        global->u.ffiIndex_ = index;
  1.1354 +        return globals_.putNew(varName, global);
  1.1355 +    }
  1.1356 +    bool addArrayView(PropertyName *varName, ArrayBufferView::ViewType vt, PropertyName *fieldName) {
  1.1357 +        Global *global = moduleLifo_.new_<Global>(Global::ArrayView);
  1.1358 +        if (!global)
  1.1359 +            return false;
  1.1360 +        if (!module_->addArrayView(vt, fieldName))
  1.1361 +            return false;
  1.1362 +        global->u.viewType_ = vt;
  1.1363 +        return globals_.putNew(varName, global);
  1.1364 +    }
  1.1365 +    bool addMathBuiltinFunction(PropertyName *varName, AsmJSMathBuiltinFunction func, PropertyName *fieldName) {
  1.1366 +        if (!module_->addMathBuiltinFunction(func, fieldName))
  1.1367 +            return false;
  1.1368 +        Global *global = moduleLifo_.new_<Global>(Global::MathBuiltinFunction);
  1.1369 +        if (!global)
  1.1370 +            return false;
  1.1371 +        global->u.mathBuiltinFunc_ = func;
  1.1372 +        return globals_.putNew(varName, global);
  1.1373 +    }
  1.1374 +  private:
  1.1375 +    bool addGlobalDoubleConstant(PropertyName *varName, double constant) {
  1.1376 +        Global *global = moduleLifo_.new_<Global>(Global::ConstantLiteral);
  1.1377 +        if (!global)
  1.1378 +            return false;
  1.1379 +        global->u.varOrConst.literalValue_ = DoubleValue(constant);
  1.1380 +        global->u.varOrConst.type_ = VarType::Double;
  1.1381 +        return globals_.putNew(varName, global);
  1.1382 +    }
  1.1383 +  public:
  1.1384 +    bool addMathBuiltinConstant(PropertyName *varName, double constant, PropertyName *fieldName) {
  1.1385 +        if (!module_->addMathBuiltinConstant(constant, fieldName))
  1.1386 +            return false;
  1.1387 +        return addGlobalDoubleConstant(varName, constant);
  1.1388 +    }
  1.1389 +    bool addGlobalConstant(PropertyName *varName, double constant, PropertyName *fieldName) {
  1.1390 +        if (!module_->addGlobalConstant(constant, fieldName))
  1.1391 +            return false;
  1.1392 +        return addGlobalDoubleConstant(varName, constant);
  1.1393 +    }
  1.1394 +    bool addExportedFunction(const Func *func, PropertyName *maybeFieldName) {
  1.1395 +        AsmJSModule::ArgCoercionVector argCoercions;
  1.1396 +        const VarTypeVector &args = func->sig().args();
  1.1397 +        if (!argCoercions.resize(args.length()))
  1.1398 +            return false;
  1.1399 +        for (unsigned i = 0; i < args.length(); i++)
  1.1400 +            argCoercions[i] = args[i].toCoercion();
  1.1401 +        AsmJSModule::ReturnType retType = func->sig().retType().toModuleReturnType();
  1.1402 +        return module_->addExportedFunction(func->name(), func->srcOffset(), func->endOffset(),
  1.1403 +                                            maybeFieldName, Move(argCoercions), retType);
  1.1404 +    }
  1.1405 +    bool addExit(unsigned ffiIndex, PropertyName *name, Signature &&sig, unsigned *exitIndex) {
  1.1406 +        ExitDescriptor exitDescriptor(name, Move(sig));
  1.1407 +        ExitMap::AddPtr p = exits_.lookupForAdd(exitDescriptor);
  1.1408 +        if (p) {
  1.1409 +            *exitIndex = p->value();
  1.1410 +            return true;
  1.1411 +        }
  1.1412 +        if (!module_->addExit(ffiIndex, exitIndex))
  1.1413 +            return false;
  1.1414 +        return exits_.add(p, Move(exitDescriptor), *exitIndex);
  1.1415 +    }
  1.1416 +    bool addFunctionName(PropertyName *name, uint32_t *index) {
  1.1417 +        return module_->addFunctionName(name, index);
  1.1418 +    }
  1.1419 +
  1.1420 +    // Note a constraint on the minimum size of the heap.  The heap size is
  1.1421 +    // constrained when linking to be at least the maximum of all such constraints.
  1.1422 +    void requireHeapLengthToBeAtLeast(uint32_t len) {
  1.1423 +        module_->requireHeapLengthToBeAtLeast(len);
  1.1424 +    }
  1.1425 +    uint32_t minHeapLength() const {
  1.1426 +        return module_->minHeapLength();
  1.1427 +    }
  1.1428 +    LifoAlloc &lifo() {
  1.1429 +        return moduleLifo_;
  1.1430 +    }
  1.1431 +
  1.1432 +#if defined(MOZ_VTUNE) || defined(JS_ION_PERF)
  1.1433 +    bool trackProfiledFunction(const Func &func, unsigned endCodeOffset) {
  1.1434 +        unsigned lineno = 0U, columnIndex = 0U;
  1.1435 +        tokenStream().srcCoords.lineNumAndColumnIndex(func.srcOffset(), &lineno, &columnIndex);
  1.1436 +        unsigned startCodeOffset = func.code()->offset();
  1.1437 +        return module_->trackProfiledFunction(func.name(), startCodeOffset, endCodeOffset,
  1.1438 +                                              lineno, columnIndex);
  1.1439 +    }
  1.1440 +#endif
  1.1441 +
  1.1442 +#ifdef JS_ION_PERF
  1.1443 +    bool trackPerfProfiledBlocks(AsmJSPerfSpewer &perfSpewer, const Func &func, unsigned endCodeOffset) {
  1.1444 +        unsigned startCodeOffset = func.code()->offset();
  1.1445 +        perfSpewer.noteBlocksOffsets();
  1.1446 +        unsigned endInlineCodeOffset = perfSpewer.endInlineCode.offset();
  1.1447 +        return module_->trackPerfProfiledBlocks(func.name(), startCodeOffset, endInlineCodeOffset,
  1.1448 +                                                endCodeOffset, perfSpewer.basicBlocks());
  1.1449 +    }
  1.1450 +#endif
  1.1451 +
  1.1452 +    void finishFunctionBodies() {
  1.1453 +        JS_ASSERT(!finishedFunctionBodies_);
  1.1454 +        masm_.align(AsmJSPageSize);
  1.1455 +        finishedFunctionBodies_ = true;
  1.1456 +        module_->initFunctionBytes(masm_.currentOffset());
  1.1457 +    }
  1.1458 +
  1.1459 +    void setInterpExitOffset(unsigned exitIndex) {
  1.1460 +        module_->exit(exitIndex).initInterpOffset(masm_.currentOffset());
  1.1461 +    }
  1.1462 +    void setIonExitOffset(unsigned exitIndex) {
  1.1463 +        module_->exit(exitIndex).initIonOffset(masm_.currentOffset());
  1.1464 +    }
  1.1465 +    void setEntryOffset(unsigned exportIndex) {
  1.1466 +        module_->exportedFunction(exportIndex).initCodeOffset(masm_.currentOffset());
  1.1467 +    }
  1.1468 +
  1.1469 +    void buildCompilationTimeReport(bool storedInCache, ScopedJSFreePtr<char> *out) {
  1.1470 +        ScopedJSFreePtr<char> slowFuns;
  1.1471 +#ifndef JS_MORE_DETERMINISTIC
  1.1472 +        int64_t usecAfter = PRMJ_Now();
  1.1473 +        int msTotal = (usecAfter - usecBefore_) / PRMJ_USEC_PER_MSEC;
  1.1474 +        if (!slowFunctions_.empty()) {
  1.1475 +            slowFuns.reset(JS_smprintf("; %d functions compiled slowly: ", slowFunctions_.length()));
  1.1476 +            if (!slowFuns)
  1.1477 +                return;
  1.1478 +            for (unsigned i = 0; i < slowFunctions_.length(); i++) {
  1.1479 +                SlowFunction &func = slowFunctions_[i];
  1.1480 +                JSAutoByteString name;
  1.1481 +                if (!AtomToPrintableString(cx_, func.name, &name))
  1.1482 +                    return;
  1.1483 +                slowFuns.reset(JS_smprintf("%s%s:%u:%u (%ums)%s", slowFuns.get(),
  1.1484 +                                           name.ptr(), func.line, func.column, func.ms,
  1.1485 +                                           i+1 < slowFunctions_.length() ? ", " : ""));
  1.1486 +                if (!slowFuns)
  1.1487 +                    return;
  1.1488 +            }
  1.1489 +        }
  1.1490 +        out->reset(JS_smprintf("total compilation time %dms; %s%s",
  1.1491 +                               msTotal,
  1.1492 +                               storedInCache ? "stored in cache" : "not stored in cache",
  1.1493 +                               slowFuns ? slowFuns.get() : ""));
  1.1494 +#endif
  1.1495 +    }
  1.1496 +
  1.1497 +    bool finish(ScopedJSDeletePtr<AsmJSModule> *module)
  1.1498 +    {
  1.1499 +        module_->initFuncEnd(tokenStream().currentToken().pos.end,
  1.1500 +                             tokenStream().peekTokenPos().end);
  1.1501 +        masm_.finish();
  1.1502 +        if (masm_.oom())
  1.1503 +            return false;
  1.1504 +
  1.1505 +        module_->assignCallSites(masm_.extractCallSites());
  1.1506 +        module_->assignHeapAccesses(masm_.extractAsmJSHeapAccesses());
  1.1507 +
  1.1508 +#if defined(JS_CODEGEN_ARM)
  1.1509 +        // Now that compilation has finished, we need to update offsets to
  1.1510 +        // reflect actual offsets (an ARM distinction).
  1.1511 +        for (unsigned i = 0; i < module_->numHeapAccesses(); i++) {
  1.1512 +            AsmJSHeapAccess &a = module_->heapAccess(i);
  1.1513 +            a.setOffset(masm_.actualOffset(a.offset()));
  1.1514 +        }
  1.1515 +        for (unsigned i = 0; i < module_->numExportedFunctions(); i++)
  1.1516 +            module_->exportedFunction(i).updateCodeOffset(masm_);
  1.1517 +        for (unsigned i = 0; i < module_->numExits(); i++)
  1.1518 +            module_->exit(i).updateOffsets(masm_);
  1.1519 +        for (unsigned i = 0; i < module_->numCallSites(); i++) {
  1.1520 +            CallSite &c = module_->callSite(i);
  1.1521 +            c.setReturnAddressOffset(masm_.actualOffset(c.returnAddressOffset()));
  1.1522 +        }
  1.1523 +#endif
  1.1524 +
  1.1525 +        // The returned memory is owned by module_.
  1.1526 +        if (!module_->allocateAndCopyCode(cx_, masm_))
  1.1527 +            return false;
  1.1528 +
  1.1529 +        module_->updateFunctionBytes(masm_);
  1.1530 +        // c.f. JitCode::copyFrom
  1.1531 +        JS_ASSERT(masm_.jumpRelocationTableBytes() == 0);
  1.1532 +        JS_ASSERT(masm_.dataRelocationTableBytes() == 0);
  1.1533 +        JS_ASSERT(masm_.preBarrierTableBytes() == 0);
  1.1534 +        JS_ASSERT(!masm_.hasEnteredExitFrame());
  1.1535 +
  1.1536 +#if defined(MOZ_VTUNE) || defined(JS_ION_PERF)
  1.1537 +        // Fix up the code offsets.
  1.1538 +        for (unsigned i = 0; i < module_->numProfiledFunctions(); i++) {
  1.1539 +            AsmJSModule::ProfiledFunction &func = module_->profiledFunction(i);
  1.1540 +            func.pod.startCodeOffset = masm_.actualOffset(func.pod.startCodeOffset);
  1.1541 +            func.pod.endCodeOffset = masm_.actualOffset(func.pod.endCodeOffset);
  1.1542 +        }
  1.1543 +#endif
  1.1544 +
  1.1545 +#ifdef JS_ION_PERF
  1.1546 +        for (unsigned i = 0; i < module_->numPerfBlocksFunctions(); i++) {
  1.1547 +            AsmJSModule::ProfiledBlocksFunction &func = module_->perfProfiledBlocksFunction(i);
  1.1548 +            func.pod.startCodeOffset = masm_.actualOffset(func.pod.startCodeOffset);
  1.1549 +            func.endInlineCodeOffset = masm_.actualOffset(func.endInlineCodeOffset);
  1.1550 +            func.pod.endCodeOffset = masm_.actualOffset(func.pod.endCodeOffset);
  1.1551 +            BasicBlocksVector &basicBlocks = func.blocks;
  1.1552 +            for (uint32_t i = 0; i < basicBlocks.length(); i++) {
  1.1553 +                Record &r = basicBlocks[i];
  1.1554 +                r.startOffset = masm_.actualOffset(r.startOffset);
  1.1555 +                r.endOffset = masm_.actualOffset(r.endOffset);
  1.1556 +            }
  1.1557 +        }
  1.1558 +#endif
  1.1559 +
  1.1560 +        module_->setInterruptOffset(masm_.actualOffset(interruptLabel_.offset()));
  1.1561 +
  1.1562 +        // CodeLabels produced during codegen
  1.1563 +        for (size_t i = 0; i < masm_.numCodeLabels(); i++) {
  1.1564 +            CodeLabel src = masm_.codeLabel(i);
  1.1565 +            int32_t labelOffset = src.dest()->offset();
  1.1566 +            int32_t targetOffset = masm_.actualOffset(src.src()->offset());
  1.1567 +            // The patched uses of a label embed a linked list where the
  1.1568 +            // to-be-patched immediate is the offset of the next to-be-patched
  1.1569 +            // instruction.
  1.1570 +            while (labelOffset != LabelBase::INVALID_OFFSET) {
  1.1571 +                size_t patchAtOffset = masm_.labelOffsetToPatchOffset(labelOffset);
  1.1572 +                AsmJSModule::RelativeLink link;
  1.1573 +                link.patchAtOffset = patchAtOffset;
  1.1574 +                link.targetOffset = targetOffset;
  1.1575 +                if (!module_->addRelativeLink(link))
  1.1576 +                    return false;
  1.1577 +                labelOffset = *(uintptr_t *)(module_->codeBase() + patchAtOffset);
  1.1578 +            }
  1.1579 +        }
  1.1580 +
  1.1581 +        // Function-pointer-table entries
  1.1582 +        for (unsigned tableIndex = 0; tableIndex < funcPtrTables_.length(); tableIndex++) {
  1.1583 +            FuncPtrTable &table = funcPtrTables_[tableIndex];
  1.1584 +            unsigned tableBaseOffset = module_->offsetOfGlobalData() + table.globalDataOffset();
  1.1585 +            for (unsigned elemIndex = 0; elemIndex < table.numElems(); elemIndex++) {
  1.1586 +                AsmJSModule::RelativeLink link;
  1.1587 +                link.patchAtOffset = tableBaseOffset + elemIndex * sizeof(uint8_t*);
  1.1588 +                link.targetOffset = masm_.actualOffset(table.elem(elemIndex).code()->offset());
  1.1589 +                if (!module_->addRelativeLink(link))
  1.1590 +                    return false;
  1.1591 +            }
  1.1592 +        }
  1.1593 +
  1.1594 +#if defined(JS_CODEGEN_X86)
  1.1595 +        // Global data accesses in x86 need to be patched with the absolute
  1.1596 +        // address of the global. Globals are allocated sequentially after the
  1.1597 +        // code section so we can just use an RelativeLink.
  1.1598 +        for (unsigned i = 0; i < masm_.numAsmJSGlobalAccesses(); i++) {
  1.1599 +            AsmJSGlobalAccess a = masm_.asmJSGlobalAccess(i);
  1.1600 +            AsmJSModule::RelativeLink link;
  1.1601 +            link.patchAtOffset = masm_.labelOffsetToPatchOffset(a.patchAt.offset());
  1.1602 +            link.targetOffset = module_->offsetOfGlobalData() + a.globalDataOffset;
  1.1603 +            if (!module_->addRelativeLink(link))
  1.1604 +                return false;
  1.1605 +        }
  1.1606 +#endif
  1.1607 +
  1.1608 +#if defined(JS_CODEGEN_X64)
  1.1609 +        // Global data accesses on x64 use rip-relative addressing and thus do
  1.1610 +        // not need patching after deserialization.
  1.1611 +        uint8_t *code = module_->codeBase();
  1.1612 +        for (unsigned i = 0; i < masm_.numAsmJSGlobalAccesses(); i++) {
  1.1613 +            AsmJSGlobalAccess a = masm_.asmJSGlobalAccess(i);
  1.1614 +            masm_.patchAsmJSGlobalAccess(a.patchAt, code, module_->globalData(), a.globalDataOffset);
  1.1615 +        }
  1.1616 +#endif
  1.1617 +
  1.1618 +        // Absolute links
  1.1619 +        for (size_t i = 0; i < masm_.numAsmJSAbsoluteLinks(); i++) {
  1.1620 +            AsmJSAbsoluteLink src = masm_.asmJSAbsoluteLink(i);
  1.1621 +            AsmJSModule::AbsoluteLink link;
  1.1622 +            link.patchAt = masm_.actualOffset(src.patchAt.offset());
  1.1623 +            link.target = src.target;
  1.1624 +            if (!module_->addAbsoluteLink(link))
  1.1625 +                return false;
  1.1626 +        }
  1.1627 +
  1.1628 +        *module = module_.forget();
  1.1629 +        return true;
  1.1630 +    }
  1.1631 +};
  1.1632 +
  1.1633 +} /* anonymous namespace */
  1.1634 +
  1.1635 +/*****************************************************************************/
  1.1636 +// Numeric literal utilities
  1.1637 +
  1.1638 +namespace {
  1.1639 +
  1.1640 +// Represents the type and value of an asm.js numeric literal.
  1.1641 +//
  1.1642 +// A literal is a double iff the literal contains an exponent or decimal point
  1.1643 +// (even if the fractional part is 0). Otherwise, integers may be classified:
  1.1644 +//  fixnum: [0, 2^31)
  1.1645 +//  negative int: [-2^31, 0)
  1.1646 +//  big unsigned: [2^31, 2^32)
  1.1647 +//  out of range: otherwise
  1.1648 +// Lastly, a literal may be a float literal which is any double or integer
  1.1649 +// literal coerced with Math.fround.
  1.1650 +class NumLit
  1.1651 +{
  1.1652 +  public:
  1.1653 +    enum Which {
  1.1654 +        Fixnum = Type::Fixnum,
  1.1655 +        NegativeInt = Type::Signed,
  1.1656 +        BigUnsigned = Type::Unsigned,
  1.1657 +        Double = Type::Double,
  1.1658 +        Float = Type::Float,
  1.1659 +        OutOfRangeInt = -1
  1.1660 +    };
  1.1661 +
  1.1662 +  private:
  1.1663 +    Which which_;
  1.1664 +    Value v_;
  1.1665 +
  1.1666 +  public:
  1.1667 +    NumLit() {}
  1.1668 +
  1.1669 +    NumLit(Which w, Value v)
  1.1670 +      : which_(w), v_(v)
  1.1671 +    {}
  1.1672 +
  1.1673 +    Which which() const {
  1.1674 +        return which_;
  1.1675 +    }
  1.1676 +
  1.1677 +    int32_t toInt32() const {
  1.1678 +        JS_ASSERT(which_ == Fixnum || which_ == NegativeInt || which_ == BigUnsigned);
  1.1679 +        return v_.toInt32();
  1.1680 +    }
  1.1681 +
  1.1682 +    double toDouble() const {
  1.1683 +        JS_ASSERT(which_ == Double);
  1.1684 +        return v_.toDouble();
  1.1685 +    }
  1.1686 +
  1.1687 +    float toFloat() const {
  1.1688 +        JS_ASSERT(which_ == Float);
  1.1689 +        return float(v_.toDouble());
  1.1690 +    }
  1.1691 +
  1.1692 +    Value value() const {
  1.1693 +        JS_ASSERT(which_ != OutOfRangeInt);
  1.1694 +        return v_;
  1.1695 +    }
  1.1696 +
  1.1697 +    bool hasType() const {
  1.1698 +        return which_ != OutOfRangeInt;
  1.1699 +    }
  1.1700 +
  1.1701 +    Type type() const {
  1.1702 +        JS_ASSERT(hasType());
  1.1703 +        return Type::Which(which_);
  1.1704 +    }
  1.1705 +
  1.1706 +    VarType varType() const {
  1.1707 +        JS_ASSERT(hasType());
  1.1708 +        switch (which_) {
  1.1709 +          case NumLit::Fixnum:
  1.1710 +          case NumLit::NegativeInt:
  1.1711 +          case NumLit::BigUnsigned:
  1.1712 +            return VarType::Int;
  1.1713 +          case NumLit::Double:
  1.1714 +            return VarType::Double;
  1.1715 +          case NumLit::Float:
  1.1716 +            return VarType::Float;
  1.1717 +          case NumLit::OutOfRangeInt:;
  1.1718 +        }
  1.1719 +        MOZ_ASSUME_UNREACHABLE("Unexpected NumLit type");
  1.1720 +    }
  1.1721 +};
  1.1722 +
  1.1723 +} /* anonymous namespace */
  1.1724 +
  1.1725 +static bool
  1.1726 +IsNumericNonFloatLiteral(ParseNode *pn)
  1.1727 +{
  1.1728 +    // Note: '-' is never rolled into the number; numbers are always positive
  1.1729 +    // and negations must be applied manually.
  1.1730 +    return pn->isKind(PNK_NUMBER) ||
  1.1731 +           (pn->isKind(PNK_NEG) && UnaryKid(pn)->isKind(PNK_NUMBER));
  1.1732 +}
  1.1733 +
  1.1734 +static bool
  1.1735 +IsFloatCoercion(ModuleCompiler &m, ParseNode *pn, ParseNode **coercedExpr)
  1.1736 +{
  1.1737 +    if (!pn->isKind(PNK_CALL))
  1.1738 +        return false;
  1.1739 +
  1.1740 +    ParseNode *callee = CallCallee(pn);
  1.1741 +    if (!callee->isKind(PNK_NAME))
  1.1742 +        return false;
  1.1743 +
  1.1744 +    const ModuleCompiler::Global *global = m.lookupGlobal(callee->name());
  1.1745 +    if (!global ||
  1.1746 +        global->which() != ModuleCompiler::Global::MathBuiltinFunction ||
  1.1747 +        global->mathBuiltinFunction() != AsmJSMathBuiltin_fround)
  1.1748 +    {
  1.1749 +        return false;
  1.1750 +    }
  1.1751 +
  1.1752 +    if (CallArgListLength(pn) != 1)
  1.1753 +        return false;
  1.1754 +
  1.1755 +    if (coercedExpr)
  1.1756 +        *coercedExpr = CallArgList(pn);
  1.1757 +
  1.1758 +    return true;
  1.1759 +}
  1.1760 +
  1.1761 +static bool
  1.1762 +IsNumericFloatLiteral(ModuleCompiler &m, ParseNode *pn)
  1.1763 +{
  1.1764 +    ParseNode *coercedExpr;
  1.1765 +    if (!IsFloatCoercion(m, pn, &coercedExpr))
  1.1766 +        return false;
  1.1767 +
  1.1768 +    return IsNumericNonFloatLiteral(coercedExpr);
  1.1769 +}
  1.1770 +
  1.1771 +static bool
  1.1772 +IsNumericLiteral(ModuleCompiler &m, ParseNode *pn)
  1.1773 +{
  1.1774 +    return IsNumericNonFloatLiteral(pn) ||
  1.1775 +           IsNumericFloatLiteral(m, pn);
  1.1776 +}
  1.1777 +
  1.1778 +// The JS grammar treats -42 as -(42) (i.e., with separate grammar
  1.1779 +// productions) for the unary - and literal 42). However, the asm.js spec
  1.1780 +// recognizes -42 (modulo parens, so -(42) and -((42))) as a single literal
  1.1781 +// so fold the two potential parse nodes into a single double value.
  1.1782 +static double
  1.1783 +ExtractNumericNonFloatValue(ParseNode **pn)
  1.1784 +{
  1.1785 +    JS_ASSERT(IsNumericNonFloatLiteral(*pn));
  1.1786 +
  1.1787 +    if ((*pn)->isKind(PNK_NEG)) {
  1.1788 +        *pn = UnaryKid(*pn);
  1.1789 +        return -NumberNodeValue(*pn);
  1.1790 +    }
  1.1791 +
  1.1792 +    return NumberNodeValue(*pn);
  1.1793 +}
  1.1794 +
  1.1795 +static NumLit
  1.1796 +ExtractNumericLiteral(ModuleCompiler &m, ParseNode *pn)
  1.1797 +{
  1.1798 +    JS_ASSERT(IsNumericLiteral(m, pn));
  1.1799 +
  1.1800 +    // Float literals are explicitly coerced and thus the coerced literal may be
  1.1801 +    // any valid (non-float) numeric literal.
  1.1802 +    if (pn->isKind(PNK_CALL)) {
  1.1803 +        pn = CallArgList(pn);
  1.1804 +        double d = ExtractNumericNonFloatValue(&pn);
  1.1805 +        return NumLit(NumLit::Float, DoubleValue(d));
  1.1806 +    }
  1.1807 +
  1.1808 +    double d = ExtractNumericNonFloatValue(&pn);
  1.1809 +
  1.1810 +    // The asm.js spec syntactically distinguishes any literal containing a
  1.1811 +    // decimal point or the literal -0 as having double type.
  1.1812 +    if (NumberNodeHasFrac(pn) || IsNegativeZero(d))
  1.1813 +        return NumLit(NumLit::Double, DoubleValue(d));
  1.1814 +
  1.1815 +    // The syntactic checks above rule out these double values.
  1.1816 +    JS_ASSERT(!IsNegativeZero(d));
  1.1817 +    JS_ASSERT(!IsNaN(d));
  1.1818 +
  1.1819 +    // Although doubles can only *precisely* represent 53-bit integers, they
  1.1820 +    // can *imprecisely* represent integers much bigger than an int64_t.
  1.1821 +    // Furthermore, d may be inf or -inf. In both cases, casting to an int64_t
  1.1822 +    // is undefined, so test against the integer bounds using doubles.
  1.1823 +    if (d < double(INT32_MIN) || d > double(UINT32_MAX))
  1.1824 +        return NumLit(NumLit::OutOfRangeInt, UndefinedValue());
  1.1825 +
  1.1826 +    // With the above syntactic and range limitations, d is definitely an
  1.1827 +    // integer in the range [INT32_MIN, UINT32_MAX] range.
  1.1828 +    int64_t i64 = int64_t(d);
  1.1829 +    if (i64 >= 0) {
  1.1830 +        if (i64 <= INT32_MAX)
  1.1831 +            return NumLit(NumLit::Fixnum, Int32Value(i64));
  1.1832 +        JS_ASSERT(i64 <= UINT32_MAX);
  1.1833 +        return NumLit(NumLit::BigUnsigned, Int32Value(uint32_t(i64)));
  1.1834 +    }
  1.1835 +    JS_ASSERT(i64 >= INT32_MIN);
  1.1836 +    return NumLit(NumLit::NegativeInt, Int32Value(i64));
  1.1837 +}
  1.1838 +
  1.1839 +static inline bool
  1.1840 +IsLiteralInt(ModuleCompiler &m, ParseNode *pn, uint32_t *u32)
  1.1841 +{
  1.1842 +    if (!IsNumericLiteral(m, pn))
  1.1843 +        return false;
  1.1844 +
  1.1845 +    NumLit literal = ExtractNumericLiteral(m, pn);
  1.1846 +    switch (literal.which()) {
  1.1847 +      case NumLit::Fixnum:
  1.1848 +      case NumLit::BigUnsigned:
  1.1849 +      case NumLit::NegativeInt:
  1.1850 +        *u32 = uint32_t(literal.toInt32());
  1.1851 +        return true;
  1.1852 +      case NumLit::Double:
  1.1853 +      case NumLit::Float:
  1.1854 +      case NumLit::OutOfRangeInt:
  1.1855 +        return false;
  1.1856 +    }
  1.1857 +
  1.1858 +    MOZ_ASSUME_UNREACHABLE("Bad literal type");
  1.1859 +}
  1.1860 +
  1.1861 +/*****************************************************************************/
  1.1862 +
  1.1863 +namespace {
  1.1864 +
  1.1865 +// Encapsulates the compilation of a single function in an asm.js module. The
  1.1866 +// function compiler handles the creation and final backend compilation of the
  1.1867 +// MIR graph. Also see ModuleCompiler comment.
  1.1868 +class FunctionCompiler
  1.1869 +{
  1.1870 +  public:
  1.1871 +    struct Local
  1.1872 +    {
  1.1873 +        VarType type;
  1.1874 +        unsigned slot;
  1.1875 +        Local(VarType t, unsigned slot) : type(t), slot(slot) {}
  1.1876 +    };
  1.1877 +
  1.1878 +    struct TypedValue
  1.1879 +    {
  1.1880 +        VarType type;
  1.1881 +        Value value;
  1.1882 +        TypedValue(VarType t, const Value &v) : type(t), value(v) {}
  1.1883 +    };
  1.1884 +
  1.1885 +  private:
  1.1886 +    typedef HashMap<PropertyName*, Local> LocalMap;
  1.1887 +    typedef js::Vector<TypedValue> VarInitializerVector;
  1.1888 +    typedef HashMap<PropertyName*, BlockVector> LabeledBlockMap;
  1.1889 +    typedef HashMap<ParseNode*, BlockVector> UnlabeledBlockMap;
  1.1890 +    typedef js::Vector<ParseNode*, 4> NodeStack;
  1.1891 +
  1.1892 +    ModuleCompiler &       m_;
  1.1893 +    LifoAlloc &            lifo_;
  1.1894 +    ParseNode *            fn_;
  1.1895 +    uint32_t               functionNameIndex_;
  1.1896 +
  1.1897 +    LocalMap               locals_;
  1.1898 +    VarInitializerVector   varInitializers_;
  1.1899 +    Maybe<RetType>         alreadyReturned_;
  1.1900 +
  1.1901 +    TempAllocator *        alloc_;
  1.1902 +    MIRGraph *             graph_;
  1.1903 +    CompileInfo *          info_;
  1.1904 +    MIRGenerator *         mirGen_;
  1.1905 +    Maybe<IonContext>      ionContext_;
  1.1906 +
  1.1907 +    MBasicBlock *          curBlock_;
  1.1908 +
  1.1909 +    NodeStack              loopStack_;
  1.1910 +    NodeStack              breakableStack_;
  1.1911 +    UnlabeledBlockMap      unlabeledBreaks_;
  1.1912 +    UnlabeledBlockMap      unlabeledContinues_;
  1.1913 +    LabeledBlockMap        labeledBreaks_;
  1.1914 +    LabeledBlockMap        labeledContinues_;
  1.1915 +
  1.1916 +    static const uint32_t NO_FUNCTION_NAME_INDEX = UINT32_MAX;
  1.1917 +    JS_STATIC_ASSERT(NO_FUNCTION_NAME_INDEX > CallSiteDesc::FUNCTION_NAME_INDEX_MAX);
  1.1918 +
  1.1919 +  public:
  1.1920 +    FunctionCompiler(ModuleCompiler &m, ParseNode *fn, LifoAlloc &lifo)
  1.1921 +      : m_(m),
  1.1922 +        lifo_(lifo),
  1.1923 +        fn_(fn),
  1.1924 +        functionNameIndex_(NO_FUNCTION_NAME_INDEX),
  1.1925 +        locals_(m.cx()),
  1.1926 +        varInitializers_(m.cx()),
  1.1927 +        alloc_(nullptr),
  1.1928 +        graph_(nullptr),
  1.1929 +        info_(nullptr),
  1.1930 +        mirGen_(nullptr),
  1.1931 +        curBlock_(nullptr),
  1.1932 +        loopStack_(m.cx()),
  1.1933 +        breakableStack_(m.cx()),
  1.1934 +        unlabeledBreaks_(m.cx()),
  1.1935 +        unlabeledContinues_(m.cx()),
  1.1936 +        labeledBreaks_(m.cx()),
  1.1937 +        labeledContinues_(m.cx())
  1.1938 +    {}
  1.1939 +
  1.1940 +    ModuleCompiler &    m() const      { return m_; }
  1.1941 +    TempAllocator &     alloc() const  { return *alloc_; }
  1.1942 +    LifoAlloc &         lifo() const   { return lifo_; }
  1.1943 +    ParseNode *         fn() const     { return fn_; }
  1.1944 +    ExclusiveContext *  cx() const     { return m_.cx(); }
  1.1945 +    const AsmJSModule & module() const { return m_.module(); }
  1.1946 +
  1.1947 +    bool init()
  1.1948 +    {
  1.1949 +        return locals_.init() &&
  1.1950 +               unlabeledBreaks_.init() &&
  1.1951 +               unlabeledContinues_.init() &&
  1.1952 +               labeledBreaks_.init() &&
  1.1953 +               labeledContinues_.init();
  1.1954 +    }
  1.1955 +
  1.1956 +    bool fail(ParseNode *pn, const char *str)
  1.1957 +    {
  1.1958 +        return m_.fail(pn, str);
  1.1959 +    }
  1.1960 +
  1.1961 +    bool failf(ParseNode *pn, const char *fmt, ...)
  1.1962 +    {
  1.1963 +        va_list ap;
  1.1964 +        va_start(ap, fmt);
  1.1965 +        m_.failfVA(pn, fmt, ap);
  1.1966 +        va_end(ap);
  1.1967 +        return false;
  1.1968 +    }
  1.1969 +
  1.1970 +    bool failName(ParseNode *pn, const char *fmt, PropertyName *name)
  1.1971 +    {
  1.1972 +        return m_.failName(pn, fmt, name);
  1.1973 +    }
  1.1974 +
  1.1975 +    ~FunctionCompiler()
  1.1976 +    {
  1.1977 +#ifdef DEBUG
  1.1978 +        if (!m().hasError() && cx()->isJSContext() && !cx()->asJSContext()->isExceptionPending()) {
  1.1979 +            JS_ASSERT(loopStack_.empty());
  1.1980 +            JS_ASSERT(unlabeledBreaks_.empty());
  1.1981 +            JS_ASSERT(unlabeledContinues_.empty());
  1.1982 +            JS_ASSERT(labeledBreaks_.empty());
  1.1983 +            JS_ASSERT(labeledContinues_.empty());
  1.1984 +            JS_ASSERT(inDeadCode());
  1.1985 +        }
  1.1986 +#endif
  1.1987 +    }
  1.1988 +
  1.1989 +    /***************************************************** Local scope setup */
  1.1990 +
  1.1991 +    bool addFormal(ParseNode *pn, PropertyName *name, VarType type)
  1.1992 +    {
  1.1993 +        LocalMap::AddPtr p = locals_.lookupForAdd(name);
  1.1994 +        if (p)
  1.1995 +            return failName(pn, "duplicate local name '%s' not allowed", name);
  1.1996 +        return locals_.add(p, name, Local(type, locals_.count()));
  1.1997 +    }
  1.1998 +
  1.1999 +    bool addVariable(ParseNode *pn, PropertyName *name, VarType type, const Value &init)
  1.2000 +    {
  1.2001 +        LocalMap::AddPtr p = locals_.lookupForAdd(name);
  1.2002 +        if (p)
  1.2003 +            return failName(pn, "duplicate local name '%s' not allowed", name);
  1.2004 +        if (!locals_.add(p, name, Local(type, locals_.count())))
  1.2005 +            return false;
  1.2006 +        return varInitializers_.append(TypedValue(type, init));
  1.2007 +    }
  1.2008 +
  1.2009 +    bool prepareToEmitMIR(const VarTypeVector &argTypes)
  1.2010 +    {
  1.2011 +        JS_ASSERT(locals_.count() == argTypes.length() + varInitializers_.length());
  1.2012 +
  1.2013 +        alloc_  = lifo_.new_<TempAllocator>(&lifo_);
  1.2014 +        ionContext_.construct(m_.cx(), alloc_);
  1.2015 +
  1.2016 +        graph_  = lifo_.new_<MIRGraph>(alloc_);
  1.2017 +        info_   = lifo_.new_<CompileInfo>(locals_.count(), SequentialExecution);
  1.2018 +        const OptimizationInfo *optimizationInfo = js_IonOptimizations.get(Optimization_AsmJS);
  1.2019 +        const JitCompileOptions options;
  1.2020 +        mirGen_ = lifo_.new_<MIRGenerator>(CompileCompartment::get(cx()->compartment()),
  1.2021 +                                           options, alloc_,
  1.2022 +                                           graph_, info_, optimizationInfo);
  1.2023 +
  1.2024 +        if (!newBlock(/* pred = */ nullptr, &curBlock_, fn_))
  1.2025 +            return false;
  1.2026 +
  1.2027 +        for (ABIArgTypeIter i = argTypes; !i.done(); i++) {
  1.2028 +            MAsmJSParameter *ins = MAsmJSParameter::New(alloc(), *i, i.mirType());
  1.2029 +            curBlock_->add(ins);
  1.2030 +            curBlock_->initSlot(info().localSlot(i.index()), ins);
  1.2031 +            if (!mirGen_->ensureBallast())
  1.2032 +                return false;
  1.2033 +        }
  1.2034 +        unsigned firstLocalSlot = argTypes.length();
  1.2035 +        for (unsigned i = 0; i < varInitializers_.length(); i++) {
  1.2036 +            MConstant *ins = MConstant::NewAsmJS(alloc(), varInitializers_[i].value,
  1.2037 +                                                 varInitializers_[i].type.toMIRType());
  1.2038 +            curBlock_->add(ins);
  1.2039 +            curBlock_->initSlot(info().localSlot(firstLocalSlot + i), ins);
  1.2040 +            if (!mirGen_->ensureBallast())
  1.2041 +                return false;
  1.2042 +        }
  1.2043 +        return true;
  1.2044 +    }
  1.2045 +
  1.2046 +    /******************************* For consistency of returns in a function */
  1.2047 +
  1.2048 +    bool hasAlreadyReturned() const {
  1.2049 +        return !alreadyReturned_.empty();
  1.2050 +    }
  1.2051 +
  1.2052 +    RetType returnedType() const {
  1.2053 +        return alreadyReturned_.ref();
  1.2054 +    }
  1.2055 +
  1.2056 +    void setReturnedType(RetType retType) {
  1.2057 +        alreadyReturned_.construct(retType);
  1.2058 +    }
  1.2059 +
  1.2060 +    /************************* Read-only interface (after local scope setup) */
  1.2061 +
  1.2062 +    MIRGenerator & mirGen() const     { JS_ASSERT(mirGen_); return *mirGen_; }
  1.2063 +    MIRGraph &     mirGraph() const   { JS_ASSERT(graph_); return *graph_; }
  1.2064 +    CompileInfo &  info() const       { JS_ASSERT(info_); return *info_; }
  1.2065 +
  1.2066 +    const Local *lookupLocal(PropertyName *name) const
  1.2067 +    {
  1.2068 +        if (LocalMap::Ptr p = locals_.lookup(name))
  1.2069 +            return &p->value();
  1.2070 +        return nullptr;
  1.2071 +    }
  1.2072 +
  1.2073 +    MDefinition *getLocalDef(const Local &local)
  1.2074 +    {
  1.2075 +        if (inDeadCode())
  1.2076 +            return nullptr;
  1.2077 +        return curBlock_->getSlot(info().localSlot(local.slot));
  1.2078 +    }
  1.2079 +
  1.2080 +    const ModuleCompiler::Global *lookupGlobal(PropertyName *name) const
  1.2081 +    {
  1.2082 +        if (locals_.has(name))
  1.2083 +            return nullptr;
  1.2084 +        return m_.lookupGlobal(name);
  1.2085 +    }
  1.2086 +
  1.2087 +    /***************************** Code generation (after local scope setup) */
  1.2088 +
  1.2089 +    MDefinition *constant(Value v, Type t)
  1.2090 +    {
  1.2091 +        if (inDeadCode())
  1.2092 +            return nullptr;
  1.2093 +        MConstant *constant = MConstant::NewAsmJS(alloc(), v, t.toMIRType());
  1.2094 +        curBlock_->add(constant);
  1.2095 +        return constant;
  1.2096 +    }
  1.2097 +
  1.2098 +    template <class T>
  1.2099 +    MDefinition *unary(MDefinition *op)
  1.2100 +    {
  1.2101 +        if (inDeadCode())
  1.2102 +            return nullptr;
  1.2103 +        T *ins = T::NewAsmJS(alloc(), op);
  1.2104 +        curBlock_->add(ins);
  1.2105 +        return ins;
  1.2106 +    }
  1.2107 +
  1.2108 +    template <class T>
  1.2109 +    MDefinition *unary(MDefinition *op, MIRType type)
  1.2110 +    {
  1.2111 +        if (inDeadCode())
  1.2112 +            return nullptr;
  1.2113 +        T *ins = T::NewAsmJS(alloc(), op, type);
  1.2114 +        curBlock_->add(ins);
  1.2115 +        return ins;
  1.2116 +    }
  1.2117 +
  1.2118 +    template <class T>
  1.2119 +    MDefinition *binary(MDefinition *lhs, MDefinition *rhs)
  1.2120 +    {
  1.2121 +        if (inDeadCode())
  1.2122 +            return nullptr;
  1.2123 +        T *ins = T::New(alloc(), lhs, rhs);
  1.2124 +        curBlock_->add(ins);
  1.2125 +        return ins;
  1.2126 +    }
  1.2127 +
  1.2128 +    template <class T>
  1.2129 +    MDefinition *binary(MDefinition *lhs, MDefinition *rhs, MIRType type)
  1.2130 +    {
  1.2131 +        if (inDeadCode())
  1.2132 +            return nullptr;
  1.2133 +        T *ins = T::NewAsmJS(alloc(), lhs, rhs, type);
  1.2134 +        curBlock_->add(ins);
  1.2135 +        return ins;
  1.2136 +    }
  1.2137 +
  1.2138 +    MDefinition *minMax(MDefinition *lhs, MDefinition *rhs, MIRType type, bool isMax) {
  1.2139 +        if (inDeadCode())
  1.2140 +            return nullptr;
  1.2141 +        MMinMax *ins = MMinMax::New(alloc(), lhs, rhs, type, isMax);
  1.2142 +        curBlock_->add(ins);
  1.2143 +        return ins;
  1.2144 +    }
  1.2145 +
  1.2146 +    MDefinition *mul(MDefinition *lhs, MDefinition *rhs, MIRType type, MMul::Mode mode)
  1.2147 +    {
  1.2148 +        if (inDeadCode())
  1.2149 +            return nullptr;
  1.2150 +        MMul *ins = MMul::New(alloc(), lhs, rhs, type, mode);
  1.2151 +        curBlock_->add(ins);
  1.2152 +        return ins;
  1.2153 +    }
  1.2154 +
  1.2155 +    MDefinition *div(MDefinition *lhs, MDefinition *rhs, MIRType type, bool unsignd)
  1.2156 +    {
  1.2157 +        if (inDeadCode())
  1.2158 +            return nullptr;
  1.2159 +        MDiv *ins = MDiv::NewAsmJS(alloc(), lhs, rhs, type, unsignd);
  1.2160 +        curBlock_->add(ins);
  1.2161 +        return ins;
  1.2162 +    }
  1.2163 +
  1.2164 +    MDefinition *mod(MDefinition *lhs, MDefinition *rhs, MIRType type, bool unsignd)
  1.2165 +    {
  1.2166 +        if (inDeadCode())
  1.2167 +            return nullptr;
  1.2168 +        MMod *ins = MMod::NewAsmJS(alloc(), lhs, rhs, type, unsignd);
  1.2169 +        curBlock_->add(ins);
  1.2170 +        return ins;
  1.2171 +    }
  1.2172 +
  1.2173 +    template <class T>
  1.2174 +    MDefinition *bitwise(MDefinition *lhs, MDefinition *rhs)
  1.2175 +    {
  1.2176 +        if (inDeadCode())
  1.2177 +            return nullptr;
  1.2178 +        T *ins = T::NewAsmJS(alloc(), lhs, rhs);
  1.2179 +        curBlock_->add(ins);
  1.2180 +        return ins;
  1.2181 +    }
  1.2182 +
  1.2183 +    template <class T>
  1.2184 +    MDefinition *bitwise(MDefinition *op)
  1.2185 +    {
  1.2186 +        if (inDeadCode())
  1.2187 +            return nullptr;
  1.2188 +        T *ins = T::NewAsmJS(alloc(), op);
  1.2189 +        curBlock_->add(ins);
  1.2190 +        return ins;
  1.2191 +    }
  1.2192 +
  1.2193 +    MDefinition *compare(MDefinition *lhs, MDefinition *rhs, JSOp op, MCompare::CompareType type)
  1.2194 +    {
  1.2195 +        if (inDeadCode())
  1.2196 +            return nullptr;
  1.2197 +        MCompare *ins = MCompare::NewAsmJS(alloc(), lhs, rhs, op, type);
  1.2198 +        curBlock_->add(ins);
  1.2199 +        return ins;
  1.2200 +    }
  1.2201 +
  1.2202 +    void assign(const Local &local, MDefinition *def)
  1.2203 +    {
  1.2204 +        if (inDeadCode())
  1.2205 +            return;
  1.2206 +        curBlock_->setSlot(info().localSlot(local.slot), def);
  1.2207 +    }
  1.2208 +
  1.2209 +    MDefinition *loadHeap(ArrayBufferView::ViewType vt, MDefinition *ptr, NeedsBoundsCheck chk)
  1.2210 +    {
  1.2211 +        if (inDeadCode())
  1.2212 +            return nullptr;
  1.2213 +        MAsmJSLoadHeap *load = MAsmJSLoadHeap::New(alloc(), vt, ptr);
  1.2214 +        curBlock_->add(load);
  1.2215 +        if (chk == NO_BOUNDS_CHECK)
  1.2216 +            load->setSkipBoundsCheck(true);
  1.2217 +        return load;
  1.2218 +    }
  1.2219 +
  1.2220 +    void storeHeap(ArrayBufferView::ViewType vt, MDefinition *ptr, MDefinition *v, NeedsBoundsCheck chk)
  1.2221 +    {
  1.2222 +        if (inDeadCode())
  1.2223 +            return;
  1.2224 +        MAsmJSStoreHeap *store = MAsmJSStoreHeap::New(alloc(), vt, ptr, v);
  1.2225 +        curBlock_->add(store);
  1.2226 +        if (chk == NO_BOUNDS_CHECK)
  1.2227 +            store->setSkipBoundsCheck(true);
  1.2228 +    }
  1.2229 +
  1.2230 +    MDefinition *loadGlobalVar(const ModuleCompiler::Global &global)
  1.2231 +    {
  1.2232 +        if (inDeadCode())
  1.2233 +            return nullptr;
  1.2234 +
  1.2235 +        uint32_t index = global.varOrConstIndex();
  1.2236 +        unsigned globalDataOffset = module().globalVarIndexToGlobalDataOffset(index);
  1.2237 +        MIRType type = global.varOrConstType().toMIRType();
  1.2238 +        MAsmJSLoadGlobalVar *load = MAsmJSLoadGlobalVar::New(alloc(), type, globalDataOffset,
  1.2239 +                                                             global.isConst());
  1.2240 +        curBlock_->add(load);
  1.2241 +        return load;
  1.2242 +    }
  1.2243 +
  1.2244 +    void storeGlobalVar(const ModuleCompiler::Global &global, MDefinition *v)
  1.2245 +    {
  1.2246 +        if (inDeadCode())
  1.2247 +            return;
  1.2248 +        JS_ASSERT(!global.isConst());
  1.2249 +        unsigned globalDataOffset = module().globalVarIndexToGlobalDataOffset(global.varOrConstIndex());
  1.2250 +        curBlock_->add(MAsmJSStoreGlobalVar::New(alloc(), globalDataOffset, v));
  1.2251 +    }
  1.2252 +
  1.2253 +    /***************************************************************** Calls */
  1.2254 +
  1.2255 +    // The IonMonkey backend maintains a single stack offset (from the stack
  1.2256 +    // pointer to the base of the frame) by adding the total amount of spill
  1.2257 +    // space required plus the maximum stack required for argument passing.
  1.2258 +    // Since we do not use IonMonkey's MPrepareCall/MPassArg/MCall, we must
  1.2259 +    // manually accumulate, for the entire function, the maximum required stack
  1.2260 +    // space for argument passing. (This is passed to the CodeGenerator via
  1.2261 +    // MIRGenerator::maxAsmJSStackArgBytes.) Naively, this would just be the
  1.2262 +    // maximum of the stack space required for each individual call (as
  1.2263 +    // determined by the call ABI). However, as an optimization, arguments are
  1.2264 +    // stored to the stack immediately after evaluation (to decrease live
  1.2265 +    // ranges and reduce spilling). This introduces the complexity that,
  1.2266 +    // between evaluating an argument and making the call, another argument
  1.2267 +    // evaluation could perform a call that also needs to store to the stack.
  1.2268 +    // When this occurs childClobbers_ = true and the parent expression's
  1.2269 +    // arguments are stored above the maximum depth clobbered by a child
  1.2270 +    // expression.
  1.2271 +
  1.2272 +    class Call
  1.2273 +    {
  1.2274 +        ParseNode *node_;
  1.2275 +        ABIArgGenerator abi_;
  1.2276 +        uint32_t prevMaxStackBytes_;
  1.2277 +        uint32_t maxChildStackBytes_;
  1.2278 +        uint32_t spIncrement_;
  1.2279 +        Signature sig_;
  1.2280 +        MAsmJSCall::Args regArgs_;
  1.2281 +        js::Vector<MAsmJSPassStackArg*> stackArgs_;
  1.2282 +        bool childClobbers_;
  1.2283 +
  1.2284 +        friend class FunctionCompiler;
  1.2285 +
  1.2286 +      public:
  1.2287 +        Call(FunctionCompiler &f, ParseNode *callNode, RetType retType)
  1.2288 +          : node_(callNode),
  1.2289 +            prevMaxStackBytes_(0),
  1.2290 +            maxChildStackBytes_(0),
  1.2291 +            spIncrement_(0),
  1.2292 +            sig_(f.m().lifo(), retType),
  1.2293 +            regArgs_(f.cx()),
  1.2294 +            stackArgs_(f.cx()),
  1.2295 +            childClobbers_(false)
  1.2296 +        { }
  1.2297 +        Signature &sig() { return sig_; }
  1.2298 +        const Signature &sig() const { return sig_; }
  1.2299 +    };
  1.2300 +
  1.2301 +    void startCallArgs(Call *call)
  1.2302 +    {
  1.2303 +        if (inDeadCode())
  1.2304 +            return;
  1.2305 +        call->prevMaxStackBytes_ = mirGen().resetAsmJSMaxStackArgBytes();
  1.2306 +    }
  1.2307 +
  1.2308 +    bool passArg(MDefinition *argDef, VarType type, Call *call)
  1.2309 +    {
  1.2310 +        if (!call->sig().appendArg(type))
  1.2311 +            return false;
  1.2312 +
  1.2313 +        if (inDeadCode())
  1.2314 +            return true;
  1.2315 +
  1.2316 +        uint32_t childStackBytes = mirGen().resetAsmJSMaxStackArgBytes();
  1.2317 +        call->maxChildStackBytes_ = Max(call->maxChildStackBytes_, childStackBytes);
  1.2318 +        if (childStackBytes > 0 && !call->stackArgs_.empty())
  1.2319 +            call->childClobbers_ = true;
  1.2320 +
  1.2321 +        ABIArg arg = call->abi_.next(type.toMIRType());
  1.2322 +        if (arg.kind() == ABIArg::Stack) {
  1.2323 +            MAsmJSPassStackArg *mir = MAsmJSPassStackArg::New(alloc(), arg.offsetFromArgBase(),
  1.2324 +                                                              argDef);
  1.2325 +            curBlock_->add(mir);
  1.2326 +            if (!call->stackArgs_.append(mir))
  1.2327 +                return false;
  1.2328 +        } else {
  1.2329 +            if (!call->regArgs_.append(MAsmJSCall::Arg(arg.reg(), argDef)))
  1.2330 +                return false;
  1.2331 +        }
  1.2332 +        return true;
  1.2333 +    }
  1.2334 +
  1.2335 +    void finishCallArgs(Call *call)
  1.2336 +    {
  1.2337 +        if (inDeadCode())
  1.2338 +            return;
  1.2339 +        uint32_t parentStackBytes = call->abi_.stackBytesConsumedSoFar();
  1.2340 +        uint32_t newStackBytes;
  1.2341 +        if (call->childClobbers_) {
  1.2342 +            call->spIncrement_ = AlignBytes(call->maxChildStackBytes_, StackAlignment);
  1.2343 +            for (unsigned i = 0; i < call->stackArgs_.length(); i++)
  1.2344 +                call->stackArgs_[i]->incrementOffset(call->spIncrement_);
  1.2345 +            newStackBytes = Max(call->prevMaxStackBytes_,
  1.2346 +                                call->spIncrement_ + parentStackBytes);
  1.2347 +        } else {
  1.2348 +            call->spIncrement_ = 0;
  1.2349 +            newStackBytes = Max(call->prevMaxStackBytes_,
  1.2350 +                                Max(call->maxChildStackBytes_, parentStackBytes));
  1.2351 +        }
  1.2352 +        mirGen_->setAsmJSMaxStackArgBytes(newStackBytes);
  1.2353 +    }
  1.2354 +
  1.2355 +  private:
  1.2356 +    bool callPrivate(MAsmJSCall::Callee callee, const Call &call, MIRType returnType, MDefinition **def)
  1.2357 +    {
  1.2358 +        if (inDeadCode()) {
  1.2359 +            *def = nullptr;
  1.2360 +            return true;
  1.2361 +        }
  1.2362 +
  1.2363 +        uint32_t line, column;
  1.2364 +        m_.tokenStream().srcCoords.lineNumAndColumnIndex(call.node_->pn_pos.begin, &line, &column);
  1.2365 +
  1.2366 +        if (functionNameIndex_ == NO_FUNCTION_NAME_INDEX) {
  1.2367 +            if (!m_.addFunctionName(FunctionName(fn_), &functionNameIndex_))
  1.2368 +                return false;
  1.2369 +        }
  1.2370 +
  1.2371 +        CallSiteDesc desc(line, column, functionNameIndex_);
  1.2372 +        MAsmJSCall *ins = MAsmJSCall::New(alloc(), desc, callee, call.regArgs_, returnType,
  1.2373 +                                          call.spIncrement_);
  1.2374 +        if (!ins)
  1.2375 +            return false;
  1.2376 +
  1.2377 +        curBlock_->add(ins);
  1.2378 +        *def = ins;
  1.2379 +        return true;
  1.2380 +    }
  1.2381 +
  1.2382 +  public:
  1.2383 +    bool internalCall(const ModuleCompiler::Func &func, const Call &call, MDefinition **def)
  1.2384 +    {
  1.2385 +        MIRType returnType = func.sig().retType().toMIRType();
  1.2386 +        return callPrivate(MAsmJSCall::Callee(func.code()), call, returnType, def);
  1.2387 +    }
  1.2388 +
  1.2389 +    bool funcPtrCall(const ModuleCompiler::FuncPtrTable &table, MDefinition *index,
  1.2390 +                     const Call &call, MDefinition **def)
  1.2391 +    {
  1.2392 +        if (inDeadCode()) {
  1.2393 +            *def = nullptr;
  1.2394 +            return true;
  1.2395 +        }
  1.2396 +
  1.2397 +        MConstant *mask = MConstant::New(alloc(), Int32Value(table.mask()));
  1.2398 +        curBlock_->add(mask);
  1.2399 +        MBitAnd *maskedIndex = MBitAnd::NewAsmJS(alloc(), index, mask);
  1.2400 +        curBlock_->add(maskedIndex);
  1.2401 +        MAsmJSLoadFuncPtr *ptrFun = MAsmJSLoadFuncPtr::New(alloc(), table.globalDataOffset(), maskedIndex);
  1.2402 +        curBlock_->add(ptrFun);
  1.2403 +
  1.2404 +        MIRType returnType = table.sig().retType().toMIRType();
  1.2405 +        return callPrivate(MAsmJSCall::Callee(ptrFun), call, returnType, def);
  1.2406 +    }
  1.2407 +
  1.2408 +    bool ffiCall(unsigned exitIndex, const Call &call, MIRType returnType, MDefinition **def)
  1.2409 +    {
  1.2410 +        if (inDeadCode()) {
  1.2411 +            *def = nullptr;
  1.2412 +            return true;
  1.2413 +        }
  1.2414 +
  1.2415 +        JS_STATIC_ASSERT(offsetof(AsmJSModule::ExitDatum, exit) == 0);
  1.2416 +        unsigned globalDataOffset = module().exitIndexToGlobalDataOffset(exitIndex);
  1.2417 +
  1.2418 +        MAsmJSLoadFFIFunc *ptrFun = MAsmJSLoadFFIFunc::New(alloc(), globalDataOffset);
  1.2419 +        curBlock_->add(ptrFun);
  1.2420 +
  1.2421 +        return callPrivate(MAsmJSCall::Callee(ptrFun), call, returnType, def);
  1.2422 +    }
  1.2423 +
  1.2424 +    bool builtinCall(AsmJSImmKind builtin, const Call &call, MIRType returnType, MDefinition **def)
  1.2425 +    {
  1.2426 +        return callPrivate(MAsmJSCall::Callee(builtin), call, returnType, def);
  1.2427 +    }
  1.2428 +
  1.2429 +    /*********************************************** Control flow generation */
  1.2430 +
  1.2431 +    inline bool inDeadCode() const {
  1.2432 +        return curBlock_ == nullptr;
  1.2433 +    }
  1.2434 +
  1.2435 +    void returnExpr(MDefinition *expr)
  1.2436 +    {
  1.2437 +        if (inDeadCode())
  1.2438 +            return;
  1.2439 +        MAsmJSReturn *ins = MAsmJSReturn::New(alloc(), expr);
  1.2440 +        curBlock_->end(ins);
  1.2441 +        curBlock_ = nullptr;
  1.2442 +    }
  1.2443 +
  1.2444 +    void returnVoid()
  1.2445 +    {
  1.2446 +        if (inDeadCode())
  1.2447 +            return;
  1.2448 +        MAsmJSVoidReturn *ins = MAsmJSVoidReturn::New(alloc());
  1.2449 +        curBlock_->end(ins);
  1.2450 +        curBlock_ = nullptr;
  1.2451 +    }
  1.2452 +
  1.2453 +    bool branchAndStartThen(MDefinition *cond, MBasicBlock **thenBlock, MBasicBlock **elseBlock,
  1.2454 +                            ParseNode *thenPn, ParseNode* elsePn)
  1.2455 +    {
  1.2456 +        if (inDeadCode())
  1.2457 +            return true;
  1.2458 +
  1.2459 +        bool hasThenBlock = *thenBlock != nullptr;
  1.2460 +        bool hasElseBlock = *elseBlock != nullptr;
  1.2461 +
  1.2462 +        if (!hasThenBlock && !newBlock(curBlock_, thenBlock, thenPn))
  1.2463 +            return false;
  1.2464 +        if (!hasElseBlock && !newBlock(curBlock_, elseBlock, thenPn))
  1.2465 +            return false;
  1.2466 +
  1.2467 +        curBlock_->end(MTest::New(alloc(), cond, *thenBlock, *elseBlock));
  1.2468 +
  1.2469 +        // Only add as a predecessor if newBlock hasn't been called (as it does it for us)
  1.2470 +        if (hasThenBlock && !(*thenBlock)->addPredecessor(alloc(), curBlock_))
  1.2471 +            return false;
  1.2472 +        if (hasElseBlock && !(*elseBlock)->addPredecessor(alloc(), curBlock_))
  1.2473 +            return false;
  1.2474 +
  1.2475 +        curBlock_ = *thenBlock;
  1.2476 +        mirGraph().moveBlockToEnd(curBlock_);
  1.2477 +        return true;
  1.2478 +    }
  1.2479 +
  1.2480 +    void assertCurrentBlockIs(MBasicBlock *block) {
  1.2481 +        if (inDeadCode())
  1.2482 +            return;
  1.2483 +        JS_ASSERT(curBlock_ == block);
  1.2484 +    }
  1.2485 +
  1.2486 +    bool appendThenBlock(BlockVector *thenBlocks)
  1.2487 +    {
  1.2488 +        if (inDeadCode())
  1.2489 +            return true;
  1.2490 +        return thenBlocks->append(curBlock_);
  1.2491 +    }
  1.2492 +
  1.2493 +    bool joinIf(const BlockVector &thenBlocks, MBasicBlock *joinBlock)
  1.2494 +    {
  1.2495 +        if (!joinBlock)
  1.2496 +            return true;
  1.2497 +        JS_ASSERT_IF(curBlock_, thenBlocks.back() == curBlock_);
  1.2498 +        for (size_t i = 0; i < thenBlocks.length(); i++) {
  1.2499 +            thenBlocks[i]->end(MGoto::New(alloc(), joinBlock));
  1.2500 +            if (!joinBlock->addPredecessor(alloc(), thenBlocks[i]))
  1.2501 +                return false;
  1.2502 +        }
  1.2503 +        curBlock_ = joinBlock;
  1.2504 +        mirGraph().moveBlockToEnd(curBlock_);
  1.2505 +        return true;
  1.2506 +    }
  1.2507 +
  1.2508 +    void switchToElse(MBasicBlock *elseBlock)
  1.2509 +    {
  1.2510 +        if (!elseBlock)
  1.2511 +            return;
  1.2512 +        curBlock_ = elseBlock;
  1.2513 +        mirGraph().moveBlockToEnd(curBlock_);
  1.2514 +    }
  1.2515 +
  1.2516 +    bool joinIfElse(const BlockVector &thenBlocks, ParseNode *pn)
  1.2517 +    {
  1.2518 +        if (inDeadCode() && thenBlocks.empty())
  1.2519 +            return true;
  1.2520 +        MBasicBlock *pred = curBlock_ ? curBlock_ : thenBlocks[0];
  1.2521 +        MBasicBlock *join;
  1.2522 +        if (!newBlock(pred, &join, pn))
  1.2523 +            return false;
  1.2524 +        if (curBlock_)
  1.2525 +            curBlock_->end(MGoto::New(alloc(), join));
  1.2526 +        for (size_t i = 0; i < thenBlocks.length(); i++) {
  1.2527 +            thenBlocks[i]->end(MGoto::New(alloc(), join));
  1.2528 +            if (pred == curBlock_ || i > 0) {
  1.2529 +                if (!join->addPredecessor(alloc(), thenBlocks[i]))
  1.2530 +                    return false;
  1.2531 +            }
  1.2532 +        }
  1.2533 +        curBlock_ = join;
  1.2534 +        return true;
  1.2535 +    }
  1.2536 +
  1.2537 +    void pushPhiInput(MDefinition *def)
  1.2538 +    {
  1.2539 +        if (inDeadCode())
  1.2540 +            return;
  1.2541 +        JS_ASSERT(curBlock_->stackDepth() == info().firstStackSlot());
  1.2542 +        curBlock_->push(def);
  1.2543 +    }
  1.2544 +
  1.2545 +    MDefinition *popPhiOutput()
  1.2546 +    {
  1.2547 +        if (inDeadCode())
  1.2548 +            return nullptr;
  1.2549 +        JS_ASSERT(curBlock_->stackDepth() == info().firstStackSlot() + 1);
  1.2550 +        return curBlock_->pop();
  1.2551 +    }
  1.2552 +
  1.2553 +    bool startPendingLoop(ParseNode *pn, MBasicBlock **loopEntry, ParseNode *bodyStmt)
  1.2554 +    {
  1.2555 +        if (!loopStack_.append(pn) || !breakableStack_.append(pn))
  1.2556 +            return false;
  1.2557 +        JS_ASSERT_IF(curBlock_, curBlock_->loopDepth() == loopStack_.length() - 1);
  1.2558 +        if (inDeadCode()) {
  1.2559 +            *loopEntry = nullptr;
  1.2560 +            return true;
  1.2561 +        }
  1.2562 +        *loopEntry = MBasicBlock::NewAsmJS(mirGraph(), info(), curBlock_,
  1.2563 +                                           MBasicBlock::PENDING_LOOP_HEADER);
  1.2564 +        if (!*loopEntry)
  1.2565 +            return false;
  1.2566 +        mirGraph().addBlock(*loopEntry);
  1.2567 +        noteBasicBlockPosition(*loopEntry, bodyStmt);
  1.2568 +        (*loopEntry)->setLoopDepth(loopStack_.length());
  1.2569 +        curBlock_->end(MGoto::New(alloc(), *loopEntry));
  1.2570 +        curBlock_ = *loopEntry;
  1.2571 +        return true;
  1.2572 +    }
  1.2573 +
  1.2574 +    bool branchAndStartLoopBody(MDefinition *cond, MBasicBlock **afterLoop, ParseNode *bodyPn, ParseNode *afterPn)
  1.2575 +    {
  1.2576 +        if (inDeadCode()) {
  1.2577 +            *afterLoop = nullptr;
  1.2578 +            return true;
  1.2579 +        }
  1.2580 +        JS_ASSERT(curBlock_->loopDepth() > 0);
  1.2581 +        MBasicBlock *body;
  1.2582 +        if (!newBlock(curBlock_, &body, bodyPn))
  1.2583 +            return false;
  1.2584 +        if (cond->isConstant() && cond->toConstant()->valueToBoolean()) {
  1.2585 +            *afterLoop = nullptr;
  1.2586 +            curBlock_->end(MGoto::New(alloc(), body));
  1.2587 +        } else {
  1.2588 +            if (!newBlockWithDepth(curBlock_, curBlock_->loopDepth() - 1, afterLoop, afterPn))
  1.2589 +                return false;
  1.2590 +            curBlock_->end(MTest::New(alloc(), cond, body, *afterLoop));
  1.2591 +        }
  1.2592 +        curBlock_ = body;
  1.2593 +        return true;
  1.2594 +    }
  1.2595 +
  1.2596 +  private:
  1.2597 +    ParseNode *popLoop()
  1.2598 +    {
  1.2599 +        ParseNode *pn = loopStack_.popCopy();
  1.2600 +        JS_ASSERT(!unlabeledContinues_.has(pn));
  1.2601 +        breakableStack_.popBack();
  1.2602 +        return pn;
  1.2603 +    }
  1.2604 +
  1.2605 +  public:
  1.2606 +    bool closeLoop(MBasicBlock *loopEntry, MBasicBlock *afterLoop)
  1.2607 +    {
  1.2608 +        ParseNode *pn = popLoop();
  1.2609 +        if (!loopEntry) {
  1.2610 +            JS_ASSERT(!afterLoop);
  1.2611 +            JS_ASSERT(inDeadCode());
  1.2612 +            JS_ASSERT(!unlabeledBreaks_.has(pn));
  1.2613 +            return true;
  1.2614 +        }
  1.2615 +        JS_ASSERT(loopEntry->loopDepth() == loopStack_.length() + 1);
  1.2616 +        JS_ASSERT_IF(afterLoop, afterLoop->loopDepth() == loopStack_.length());
  1.2617 +        if (curBlock_) {
  1.2618 +            JS_ASSERT(curBlock_->loopDepth() == loopStack_.length() + 1);
  1.2619 +            curBlock_->end(MGoto::New(alloc(), loopEntry));
  1.2620 +            if (!loopEntry->setBackedgeAsmJS(curBlock_))
  1.2621 +                return false;
  1.2622 +        }
  1.2623 +        curBlock_ = afterLoop;
  1.2624 +        if (curBlock_)
  1.2625 +            mirGraph().moveBlockToEnd(curBlock_);
  1.2626 +        return bindUnlabeledBreaks(pn);
  1.2627 +    }
  1.2628 +
  1.2629 +    bool branchAndCloseDoWhileLoop(MDefinition *cond, MBasicBlock *loopEntry, ParseNode *afterLoopStmt)
  1.2630 +    {
  1.2631 +        ParseNode *pn = popLoop();
  1.2632 +        if (!loopEntry) {
  1.2633 +            JS_ASSERT(inDeadCode());
  1.2634 +            JS_ASSERT(!unlabeledBreaks_.has(pn));
  1.2635 +            return true;
  1.2636 +        }
  1.2637 +        JS_ASSERT(loopEntry->loopDepth() == loopStack_.length() + 1);
  1.2638 +        if (curBlock_) {
  1.2639 +            JS_ASSERT(curBlock_->loopDepth() == loopStack_.length() + 1);
  1.2640 +            if (cond->isConstant()) {
  1.2641 +                if (cond->toConstant()->valueToBoolean()) {
  1.2642 +                    curBlock_->end(MGoto::New(alloc(), loopEntry));
  1.2643 +                    if (!loopEntry->setBackedgeAsmJS(curBlock_))
  1.2644 +                        return false;
  1.2645 +                    curBlock_ = nullptr;
  1.2646 +                } else {
  1.2647 +                    MBasicBlock *afterLoop;
  1.2648 +                    if (!newBlock(curBlock_, &afterLoop, afterLoopStmt))
  1.2649 +                        return false;
  1.2650 +                    curBlock_->end(MGoto::New(alloc(), afterLoop));
  1.2651 +                    curBlock_ = afterLoop;
  1.2652 +                }
  1.2653 +            } else {
  1.2654 +                MBasicBlock *afterLoop;
  1.2655 +                if (!newBlock(curBlock_, &afterLoop, afterLoopStmt))
  1.2656 +                    return false;
  1.2657 +                curBlock_->end(MTest::New(alloc(), cond, loopEntry, afterLoop));
  1.2658 +                if (!loopEntry->setBackedgeAsmJS(curBlock_))
  1.2659 +                    return false;
  1.2660 +                curBlock_ = afterLoop;
  1.2661 +            }
  1.2662 +        }
  1.2663 +        return bindUnlabeledBreaks(pn);
  1.2664 +    }
  1.2665 +
  1.2666 +    bool bindContinues(ParseNode *pn, const LabelVector *maybeLabels)
  1.2667 +    {
  1.2668 +        bool createdJoinBlock = false;
  1.2669 +        if (UnlabeledBlockMap::Ptr p = unlabeledContinues_.lookup(pn)) {
  1.2670 +            if (!bindBreaksOrContinues(&p->value(), &createdJoinBlock, pn))
  1.2671 +                return false;
  1.2672 +            unlabeledContinues_.remove(p);
  1.2673 +        }
  1.2674 +        return bindLabeledBreaksOrContinues(maybeLabels, &labeledContinues_, &createdJoinBlock, pn);
  1.2675 +    }
  1.2676 +
  1.2677 +    bool bindLabeledBreaks(const LabelVector *maybeLabels, ParseNode *pn)
  1.2678 +    {
  1.2679 +        bool createdJoinBlock = false;
  1.2680 +        return bindLabeledBreaksOrContinues(maybeLabels, &labeledBreaks_, &createdJoinBlock, pn);
  1.2681 +    }
  1.2682 +
  1.2683 +    bool addBreak(PropertyName *maybeLabel) {
  1.2684 +        if (maybeLabel)
  1.2685 +            return addBreakOrContinue(maybeLabel, &labeledBreaks_);
  1.2686 +        return addBreakOrContinue(breakableStack_.back(), &unlabeledBreaks_);
  1.2687 +    }
  1.2688 +
  1.2689 +    bool addContinue(PropertyName *maybeLabel) {
  1.2690 +        if (maybeLabel)
  1.2691 +            return addBreakOrContinue(maybeLabel, &labeledContinues_);
  1.2692 +        return addBreakOrContinue(loopStack_.back(), &unlabeledContinues_);
  1.2693 +    }
  1.2694 +
  1.2695 +    bool startSwitch(ParseNode *pn, MDefinition *expr, int32_t low, int32_t high,
  1.2696 +                     MBasicBlock **switchBlock)
  1.2697 +    {
  1.2698 +        if (!breakableStack_.append(pn))
  1.2699 +            return false;
  1.2700 +        if (inDeadCode()) {
  1.2701 +            *switchBlock = nullptr;
  1.2702 +            return true;
  1.2703 +        }
  1.2704 +        curBlock_->end(MTableSwitch::New(alloc(), expr, low, high));
  1.2705 +        *switchBlock = curBlock_;
  1.2706 +        curBlock_ = nullptr;
  1.2707 +        return true;
  1.2708 +    }
  1.2709 +
  1.2710 +    bool startSwitchCase(MBasicBlock *switchBlock, MBasicBlock **next, ParseNode *pn)
  1.2711 +    {
  1.2712 +        if (!switchBlock) {
  1.2713 +            *next = nullptr;
  1.2714 +            return true;
  1.2715 +        }
  1.2716 +        if (!newBlock(switchBlock, next, pn))
  1.2717 +            return false;
  1.2718 +        if (curBlock_) {
  1.2719 +            curBlock_->end(MGoto::New(alloc(), *next));
  1.2720 +            if (!(*next)->addPredecessor(alloc(), curBlock_))
  1.2721 +                return false;
  1.2722 +        }
  1.2723 +        curBlock_ = *next;
  1.2724 +        return true;
  1.2725 +    }
  1.2726 +
  1.2727 +    bool startSwitchDefault(MBasicBlock *switchBlock, BlockVector *cases, MBasicBlock **defaultBlock, ParseNode *pn)
  1.2728 +    {
  1.2729 +        if (!startSwitchCase(switchBlock, defaultBlock, pn))
  1.2730 +            return false;
  1.2731 +        if (!*defaultBlock)
  1.2732 +            return true;
  1.2733 +        mirGraph().moveBlockToEnd(*defaultBlock);
  1.2734 +        return true;
  1.2735 +    }
  1.2736 +
  1.2737 +    bool joinSwitch(MBasicBlock *switchBlock, const BlockVector &cases, MBasicBlock *defaultBlock)
  1.2738 +    {
  1.2739 +        ParseNode *pn = breakableStack_.popCopy();
  1.2740 +        if (!switchBlock)
  1.2741 +            return true;
  1.2742 +        MTableSwitch *mir = switchBlock->lastIns()->toTableSwitch();
  1.2743 +        size_t defaultIndex = mir->addDefault(defaultBlock);
  1.2744 +        for (unsigned i = 0; i < cases.length(); i++) {
  1.2745 +            if (!cases[i])
  1.2746 +                mir->addCase(defaultIndex);
  1.2747 +            else
  1.2748 +                mir->addCase(mir->addSuccessor(cases[i]));
  1.2749 +        }
  1.2750 +        if (curBlock_) {
  1.2751 +            MBasicBlock *next;
  1.2752 +            if (!newBlock(curBlock_, &next, pn))
  1.2753 +                return false;
  1.2754 +            curBlock_->end(MGoto::New(alloc(), next));
  1.2755 +            curBlock_ = next;
  1.2756 +        }
  1.2757 +        return bindUnlabeledBreaks(pn);
  1.2758 +    }
  1.2759 +
  1.2760 +    /*************************************************************************/
  1.2761 +
  1.2762 +    MIRGenerator *extractMIR()
  1.2763 +    {
  1.2764 +        JS_ASSERT(mirGen_ != nullptr);
  1.2765 +        MIRGenerator *mirGen = mirGen_;
  1.2766 +        mirGen_ = nullptr;
  1.2767 +        return mirGen;
  1.2768 +    }
  1.2769 +
  1.2770 +    /*************************************************************************/
  1.2771 +  private:
  1.2772 +    void noteBasicBlockPosition(MBasicBlock *blk, ParseNode *pn)
  1.2773 +    {
  1.2774 +#if defined(JS_ION_PERF)
  1.2775 +        if (pn) {
  1.2776 +            unsigned line = 0U, column = 0U;
  1.2777 +            m().tokenStream().srcCoords.lineNumAndColumnIndex(pn->pn_pos.begin, &line, &column);
  1.2778 +            blk->setLineno(line);
  1.2779 +            blk->setColumnIndex(column);
  1.2780 +        }
  1.2781 +#endif
  1.2782 +    }
  1.2783 +
  1.2784 +    bool newBlockWithDepth(MBasicBlock *pred, unsigned loopDepth, MBasicBlock **block, ParseNode *pn)
  1.2785 +    {
  1.2786 +        *block = MBasicBlock::NewAsmJS(mirGraph(), info(), pred, MBasicBlock::NORMAL);
  1.2787 +        if (!*block)
  1.2788 +            return false;
  1.2789 +        noteBasicBlockPosition(*block, pn);
  1.2790 +        mirGraph().addBlock(*block);
  1.2791 +        (*block)->setLoopDepth(loopDepth);
  1.2792 +        return true;
  1.2793 +    }
  1.2794 +
  1.2795 +    bool newBlock(MBasicBlock *pred, MBasicBlock **block, ParseNode *pn)
  1.2796 +    {
  1.2797 +        return newBlockWithDepth(pred, loopStack_.length(), block, pn);
  1.2798 +    }
  1.2799 +
  1.2800 +    bool bindBreaksOrContinues(BlockVector *preds, bool *createdJoinBlock, ParseNode *pn)
  1.2801 +    {
  1.2802 +        for (unsigned i = 0; i < preds->length(); i++) {
  1.2803 +            MBasicBlock *pred = (*preds)[i];
  1.2804 +            if (*createdJoinBlock) {
  1.2805 +                pred->end(MGoto::New(alloc(), curBlock_));
  1.2806 +                if (!curBlock_->addPredecessor(alloc(), pred))
  1.2807 +                    return false;
  1.2808 +            } else {
  1.2809 +                MBasicBlock *next;
  1.2810 +                if (!newBlock(pred, &next, pn))
  1.2811 +                    return false;
  1.2812 +                pred->end(MGoto::New(alloc(), next));
  1.2813 +                if (curBlock_) {
  1.2814 +                    curBlock_->end(MGoto::New(alloc(), next));
  1.2815 +                    if (!next->addPredecessor(alloc(), curBlock_))
  1.2816 +                        return false;
  1.2817 +                }
  1.2818 +                curBlock_ = next;
  1.2819 +                *createdJoinBlock = true;
  1.2820 +            }
  1.2821 +            JS_ASSERT(curBlock_->begin() == curBlock_->end());
  1.2822 +            if (!mirGen_->ensureBallast())
  1.2823 +                return false;
  1.2824 +        }
  1.2825 +        preds->clear();
  1.2826 +        return true;
  1.2827 +    }
  1.2828 +
  1.2829 +    bool bindLabeledBreaksOrContinues(const LabelVector *maybeLabels, LabeledBlockMap *map,
  1.2830 +                                      bool *createdJoinBlock, ParseNode *pn)
  1.2831 +    {
  1.2832 +        if (!maybeLabels)
  1.2833 +            return true;
  1.2834 +        const LabelVector &labels = *maybeLabels;
  1.2835 +        for (unsigned i = 0; i < labels.length(); i++) {
  1.2836 +            if (LabeledBlockMap::Ptr p = map->lookup(labels[i])) {
  1.2837 +                if (!bindBreaksOrContinues(&p->value(), createdJoinBlock, pn))
  1.2838 +                    return false;
  1.2839 +                map->remove(p);
  1.2840 +            }
  1.2841 +            if (!mirGen_->ensureBallast())
  1.2842 +                return false;
  1.2843 +        }
  1.2844 +        return true;
  1.2845 +    }
  1.2846 +
  1.2847 +    template <class Key, class Map>
  1.2848 +    bool addBreakOrContinue(Key key, Map *map)
  1.2849 +    {
  1.2850 +        if (inDeadCode())
  1.2851 +            return true;
  1.2852 +        typename Map::AddPtr p = map->lookupForAdd(key);
  1.2853 +        if (!p) {
  1.2854 +            BlockVector empty(m().cx());
  1.2855 +            if (!map->add(p, key, Move(empty)))
  1.2856 +                return false;
  1.2857 +        }
  1.2858 +        if (!p->value().append(curBlock_))
  1.2859 +            return false;
  1.2860 +        curBlock_ = nullptr;
  1.2861 +        return true;
  1.2862 +    }
  1.2863 +
  1.2864 +    bool bindUnlabeledBreaks(ParseNode *pn)
  1.2865 +    {
  1.2866 +        bool createdJoinBlock = false;
  1.2867 +        if (UnlabeledBlockMap::Ptr p = unlabeledBreaks_.lookup(pn)) {
  1.2868 +            if (!bindBreaksOrContinues(&p->value(), &createdJoinBlock, pn))
  1.2869 +                return false;
  1.2870 +            unlabeledBreaks_.remove(p);
  1.2871 +        }
  1.2872 +        return true;
  1.2873 +    }
  1.2874 +};
  1.2875 +
  1.2876 +} /* anonymous namespace */
  1.2877 +
  1.2878 +/*****************************************************************************/
  1.2879 +// asm.js type-checking and code-generation algorithm
  1.2880 +
  1.2881 +static bool
  1.2882 +CheckIdentifier(ModuleCompiler &m, ParseNode *usepn, PropertyName *name)
  1.2883 +{
  1.2884 +    if (name == m.cx()->names().arguments || name == m.cx()->names().eval)
  1.2885 +        return m.failName(usepn, "'%s' is not an allowed identifier", name);
  1.2886 +    return true;
  1.2887 +}
  1.2888 +
  1.2889 +static bool
  1.2890 +CheckModuleLevelName(ModuleCompiler &m, ParseNode *usepn, PropertyName *name)
  1.2891 +{
  1.2892 +    if (!CheckIdentifier(m, usepn, name))
  1.2893 +        return false;
  1.2894 +
  1.2895 +    if (name == m.moduleFunctionName() ||
  1.2896 +        name == m.module().globalArgumentName() ||
  1.2897 +        name == m.module().importArgumentName() ||
  1.2898 +        name == m.module().bufferArgumentName() ||
  1.2899 +        m.lookupGlobal(name))
  1.2900 +    {
  1.2901 +        return m.failName(usepn, "duplicate name '%s' not allowed", name);
  1.2902 +    }
  1.2903 +
  1.2904 +    return true;
  1.2905 +}
  1.2906 +
  1.2907 +static bool
  1.2908 +CheckFunctionHead(ModuleCompiler &m, ParseNode *fn)
  1.2909 +{
  1.2910 +    JSFunction *fun = FunctionObject(fn);
  1.2911 +    if (fun->hasRest())
  1.2912 +        return m.fail(fn, "rest args not allowed");
  1.2913 +    if (fun->isExprClosure())
  1.2914 +        return m.fail(fn, "expression closures not allowed");
  1.2915 +    if (fn->pn_funbox->hasDestructuringArgs)
  1.2916 +        return m.fail(fn, "destructuring args not allowed");
  1.2917 +    return true;
  1.2918 +}
  1.2919 +
  1.2920 +static bool
  1.2921 +CheckArgument(ModuleCompiler &m, ParseNode *arg, PropertyName **name)
  1.2922 +{
  1.2923 +    if (!IsDefinition(arg))
  1.2924 +        return m.fail(arg, "duplicate argument name not allowed");
  1.2925 +
  1.2926 +    if (arg->pn_dflags & PND_DEFAULT)
  1.2927 +        return m.fail(arg, "default arguments not allowed");
  1.2928 +
  1.2929 +    if (!CheckIdentifier(m, arg, arg->name()))
  1.2930 +        return false;
  1.2931 +
  1.2932 +    *name = arg->name();
  1.2933 +    return true;
  1.2934 +}
  1.2935 +
  1.2936 +static bool
  1.2937 +CheckModuleArgument(ModuleCompiler &m, ParseNode *arg, PropertyName **name)
  1.2938 +{
  1.2939 +    if (!CheckArgument(m, arg, name))
  1.2940 +        return false;
  1.2941 +
  1.2942 +    if (!CheckModuleLevelName(m, arg, *name))
  1.2943 +        return false;
  1.2944 +
  1.2945 +    return true;
  1.2946 +}
  1.2947 +
  1.2948 +static bool
  1.2949 +CheckModuleArguments(ModuleCompiler &m, ParseNode *fn)
  1.2950 +{
  1.2951 +    unsigned numFormals;
  1.2952 +    ParseNode *arg1 = FunctionArgsList(fn, &numFormals);
  1.2953 +    ParseNode *arg2 = arg1 ? NextNode(arg1) : nullptr;
  1.2954 +    ParseNode *arg3 = arg2 ? NextNode(arg2) : nullptr;
  1.2955 +
  1.2956 +    if (numFormals > 3)
  1.2957 +        return m.fail(fn, "asm.js modules takes at most 3 argument");
  1.2958 +
  1.2959 +    PropertyName *arg1Name = nullptr;
  1.2960 +    if (numFormals >= 1 && !CheckModuleArgument(m, arg1, &arg1Name))
  1.2961 +        return false;
  1.2962 +    m.initGlobalArgumentName(arg1Name);
  1.2963 +
  1.2964 +    PropertyName *arg2Name = nullptr;
  1.2965 +    if (numFormals >= 2 && !CheckModuleArgument(m, arg2, &arg2Name))
  1.2966 +        return false;
  1.2967 +    m.initImportArgumentName(arg2Name);
  1.2968 +
  1.2969 +    PropertyName *arg3Name = nullptr;
  1.2970 +    if (numFormals >= 3 && !CheckModuleArgument(m, arg3, &arg3Name))
  1.2971 +        return false;
  1.2972 +    m.initBufferArgumentName(arg3Name);
  1.2973 +
  1.2974 +    return true;
  1.2975 +}
  1.2976 +
  1.2977 +static bool
  1.2978 +CheckPrecedingStatements(ModuleCompiler &m, ParseNode *stmtList)
  1.2979 +{
  1.2980 +    JS_ASSERT(stmtList->isKind(PNK_STATEMENTLIST));
  1.2981 +
  1.2982 +    if (ListLength(stmtList) != 0)
  1.2983 +        return m.fail(ListHead(stmtList), "invalid asm.js statement");
  1.2984 +
  1.2985 +    return true;
  1.2986 +}
  1.2987 +
  1.2988 +static bool
  1.2989 +CheckGlobalVariableInitConstant(ModuleCompiler &m, PropertyName *varName, ParseNode *initNode,
  1.2990 +                                bool isConst)
  1.2991 +{
  1.2992 +    NumLit literal = ExtractNumericLiteral(m, initNode);
  1.2993 +    if (!literal.hasType())
  1.2994 +        return m.fail(initNode, "global initializer is out of representable integer range");
  1.2995 +
  1.2996 +    return m.addGlobalVarInit(varName, literal.varType(), literal.value(), isConst);
  1.2997 +}
  1.2998 +
  1.2999 +static bool
  1.3000 +CheckTypeAnnotation(ModuleCompiler &m, ParseNode *coercionNode, AsmJSCoercion *coercion,
  1.3001 +                    ParseNode **coercedExpr = nullptr)
  1.3002 +{
  1.3003 +    switch (coercionNode->getKind()) {
  1.3004 +      case PNK_BITOR: {
  1.3005 +        ParseNode *rhs = BinaryRight(coercionNode);
  1.3006 +        uint32_t i;
  1.3007 +        if (!IsLiteralInt(m, rhs, &i) || i != 0)
  1.3008 +            return m.fail(rhs, "must use |0 for argument/return coercion");
  1.3009 +        *coercion = AsmJS_ToInt32;
  1.3010 +        if (coercedExpr)
  1.3011 +            *coercedExpr = BinaryLeft(coercionNode);
  1.3012 +        return true;
  1.3013 +      }
  1.3014 +      case PNK_POS: {
  1.3015 +        *coercion = AsmJS_ToNumber;
  1.3016 +        if (coercedExpr)
  1.3017 +            *coercedExpr = UnaryKid(coercionNode);
  1.3018 +        return true;
  1.3019 +      }
  1.3020 +      case PNK_CALL: {
  1.3021 +        *coercion = AsmJS_FRound;
  1.3022 +        if (!IsFloatCoercion(m, coercionNode, coercedExpr))
  1.3023 +            return m.fail(coercionNode, "call must be to fround coercion");
  1.3024 +        return true;
  1.3025 +      }
  1.3026 +      default:;
  1.3027 +    }
  1.3028 +
  1.3029 +    return m.fail(coercionNode, "must be of the form +x, fround(x) or x|0");
  1.3030 +}
  1.3031 +
  1.3032 +static bool
  1.3033 +CheckGlobalVariableImportExpr(ModuleCompiler &m, PropertyName *varName, AsmJSCoercion coercion,
  1.3034 +                              ParseNode *coercedExpr, bool isConst)
  1.3035 +{
  1.3036 +    if (!coercedExpr->isKind(PNK_DOT))
  1.3037 +        return m.failName(coercedExpr, "invalid import expression for global '%s'", varName);
  1.3038 +
  1.3039 +    ParseNode *base = DotBase(coercedExpr);
  1.3040 +    PropertyName *field = DotMember(coercedExpr);
  1.3041 +
  1.3042 +    PropertyName *importName = m.module().importArgumentName();
  1.3043 +    if (!importName)
  1.3044 +        return m.fail(coercedExpr, "cannot import without an asm.js foreign parameter");
  1.3045 +    if (!IsUseOfName(base, importName))
  1.3046 +        return m.failName(coercedExpr, "base of import expression must be '%s'", importName);
  1.3047 +
  1.3048 +    return m.addGlobalVarImport(varName, field, coercion, isConst);
  1.3049 +}
  1.3050 +
  1.3051 +static bool
  1.3052 +CheckGlobalVariableInitImport(ModuleCompiler &m, PropertyName *varName, ParseNode *initNode,
  1.3053 +                              bool isConst)
  1.3054 +{
  1.3055 +    AsmJSCoercion coercion;
  1.3056 +    ParseNode *coercedExpr;
  1.3057 +    if (!CheckTypeAnnotation(m, initNode, &coercion, &coercedExpr))
  1.3058 +        return false;
  1.3059 +    return CheckGlobalVariableImportExpr(m, varName, coercion, coercedExpr, isConst);
  1.3060 +}
  1.3061 +
  1.3062 +static bool
  1.3063 +CheckNewArrayView(ModuleCompiler &m, PropertyName *varName, ParseNode *newExpr)
  1.3064 +{
  1.3065 +    ParseNode *ctorExpr = ListHead(newExpr);
  1.3066 +    if (!ctorExpr->isKind(PNK_DOT))
  1.3067 +        return m.fail(ctorExpr, "only valid 'new' import is 'new global.*Array(buf)'");
  1.3068 +
  1.3069 +    ParseNode *base = DotBase(ctorExpr);
  1.3070 +    PropertyName *field = DotMember(ctorExpr);
  1.3071 +
  1.3072 +    PropertyName *globalName = m.module().globalArgumentName();
  1.3073 +    if (!globalName)
  1.3074 +        return m.fail(base, "cannot create array view without an asm.js global parameter");
  1.3075 +    if (!IsUseOfName(base, globalName))
  1.3076 +        return m.failName(base, "expecting '%s.*Array", globalName);
  1.3077 +
  1.3078 +    ParseNode *bufArg = NextNode(ctorExpr);
  1.3079 +    if (!bufArg || NextNode(bufArg) != nullptr)
  1.3080 +        return m.fail(ctorExpr, "array view constructor takes exactly one argument");
  1.3081 +
  1.3082 +    PropertyName *bufferName = m.module().bufferArgumentName();
  1.3083 +    if (!bufferName)
  1.3084 +        return m.fail(bufArg, "cannot create array view without an asm.js heap parameter");
  1.3085 +    if (!IsUseOfName(bufArg, bufferName))
  1.3086 +        return m.failName(bufArg, "argument to array view constructor must be '%s'", bufferName);
  1.3087 +
  1.3088 +    JSAtomState &names = m.cx()->names();
  1.3089 +    ArrayBufferView::ViewType type;
  1.3090 +    if (field == names.Int8Array)
  1.3091 +        type = ArrayBufferView::TYPE_INT8;
  1.3092 +    else if (field == names.Uint8Array)
  1.3093 +        type = ArrayBufferView::TYPE_UINT8;
  1.3094 +    else if (field == names.Int16Array)
  1.3095 +        type = ArrayBufferView::TYPE_INT16;
  1.3096 +    else if (field == names.Uint16Array)
  1.3097 +        type = ArrayBufferView::TYPE_UINT16;
  1.3098 +    else if (field == names.Int32Array)
  1.3099 +        type = ArrayBufferView::TYPE_INT32;
  1.3100 +    else if (field == names.Uint32Array)
  1.3101 +        type = ArrayBufferView::TYPE_UINT32;
  1.3102 +    else if (field == names.Float32Array)
  1.3103 +        type = ArrayBufferView::TYPE_FLOAT32;
  1.3104 +    else if (field == names.Float64Array)
  1.3105 +        type = ArrayBufferView::TYPE_FLOAT64;
  1.3106 +    else
  1.3107 +        return m.fail(ctorExpr, "could not match typed array name");
  1.3108 +
  1.3109 +    return m.addArrayView(varName, type, field);
  1.3110 +}
  1.3111 +
  1.3112 +static bool
  1.3113 +CheckGlobalDotImport(ModuleCompiler &m, PropertyName *varName, ParseNode *initNode)
  1.3114 +{
  1.3115 +    ParseNode *base = DotBase(initNode);
  1.3116 +    PropertyName *field = DotMember(initNode);
  1.3117 +
  1.3118 +    if (base->isKind(PNK_DOT)) {
  1.3119 +        ParseNode *global = DotBase(base);
  1.3120 +        PropertyName *math = DotMember(base);
  1.3121 +        if (!IsUseOfName(global, m.module().globalArgumentName()) || math != m.cx()->names().Math)
  1.3122 +            return m.fail(base, "expecting global.Math");
  1.3123 +
  1.3124 +        ModuleCompiler::MathBuiltin mathBuiltin;
  1.3125 +        if (!m.lookupStandardLibraryMathName(field, &mathBuiltin))
  1.3126 +            return m.failName(initNode, "'%s' is not a standard Math builtin", field);
  1.3127 +
  1.3128 +        switch (mathBuiltin.kind) {
  1.3129 +          case ModuleCompiler::MathBuiltin::Function:
  1.3130 +            return m.addMathBuiltinFunction(varName, mathBuiltin.u.func, field);
  1.3131 +          case ModuleCompiler::MathBuiltin::Constant:
  1.3132 +            return m.addMathBuiltinConstant(varName, mathBuiltin.u.cst, field);
  1.3133 +          default:
  1.3134 +            break;
  1.3135 +        }
  1.3136 +        MOZ_ASSUME_UNREACHABLE("unexpected or uninitialized math builtin type");
  1.3137 +    }
  1.3138 +
  1.3139 +    if (IsUseOfName(base, m.module().globalArgumentName())) {
  1.3140 +        if (field == m.cx()->names().NaN)
  1.3141 +            return m.addGlobalConstant(varName, GenericNaN(), field);
  1.3142 +        if (field == m.cx()->names().Infinity)
  1.3143 +            return m.addGlobalConstant(varName, PositiveInfinity<double>(), field);
  1.3144 +        return m.failName(initNode, "'%s' is not a standard global constant", field);
  1.3145 +    }
  1.3146 +
  1.3147 +    if (IsUseOfName(base, m.module().importArgumentName()))
  1.3148 +        return m.addFFI(varName, field);
  1.3149 +
  1.3150 +    return m.fail(initNode, "expecting c.y where c is either the global or foreign parameter");
  1.3151 +}
  1.3152 +
  1.3153 +static bool
  1.3154 +CheckModuleGlobal(ModuleCompiler &m, ParseNode *var, bool isConst)
  1.3155 +{
  1.3156 +    if (!IsDefinition(var))
  1.3157 +        return m.fail(var, "import variable names must be unique");
  1.3158 +
  1.3159 +    if (!CheckModuleLevelName(m, var, var->name()))
  1.3160 +        return false;
  1.3161 +
  1.3162 +    ParseNode *initNode = MaybeDefinitionInitializer(var);
  1.3163 +    if (!initNode)
  1.3164 +        return m.fail(var, "module import needs initializer");
  1.3165 +
  1.3166 +    if (IsNumericLiteral(m, initNode))
  1.3167 +        return CheckGlobalVariableInitConstant(m, var->name(), initNode, isConst);
  1.3168 +
  1.3169 +    if (initNode->isKind(PNK_BITOR) || initNode->isKind(PNK_POS) || initNode->isKind(PNK_CALL))
  1.3170 +        return CheckGlobalVariableInitImport(m, var->name(), initNode, isConst);
  1.3171 +
  1.3172 +    if (initNode->isKind(PNK_NEW))
  1.3173 +        return CheckNewArrayView(m, var->name(), initNode);
  1.3174 +
  1.3175 +    if (initNode->isKind(PNK_DOT))
  1.3176 +        return CheckGlobalDotImport(m, var->name(), initNode);
  1.3177 +
  1.3178 +    return m.fail(initNode, "unsupported import expression");
  1.3179 +}
  1.3180 +
  1.3181 +static bool
  1.3182 +CheckModuleGlobals(ModuleCompiler &m)
  1.3183 +{
  1.3184 +    while (true) {
  1.3185 +        ParseNode *varStmt;
  1.3186 +        if (!ParseVarOrConstStatement(m.parser(), &varStmt))
  1.3187 +            return false;
  1.3188 +        if (!varStmt)
  1.3189 +            break;
  1.3190 +        for (ParseNode *var = VarListHead(varStmt); var; var = NextNode(var)) {
  1.3191 +            if (!CheckModuleGlobal(m, var, varStmt->isKind(PNK_CONST)))
  1.3192 +                return false;
  1.3193 +        }
  1.3194 +    }
  1.3195 +
  1.3196 +    return true;
  1.3197 +}
  1.3198 +
  1.3199 +static bool
  1.3200 +ArgFail(FunctionCompiler &f, PropertyName *argName, ParseNode *stmt)
  1.3201 +{
  1.3202 +    return f.failName(stmt, "expecting argument type declaration for '%s' of the "
  1.3203 +                      "form 'arg = arg|0' or 'arg = +arg' or 'arg = fround(arg)'", argName);
  1.3204 +}
  1.3205 +
  1.3206 +static bool
  1.3207 +CheckArgumentType(FunctionCompiler &f, ParseNode *stmt, PropertyName *name, VarType *type)
  1.3208 +{
  1.3209 +    if (!stmt || !IsExpressionStatement(stmt))
  1.3210 +        return ArgFail(f, name, stmt ? stmt : f.fn());
  1.3211 +
  1.3212 +    ParseNode *initNode = ExpressionStatementExpr(stmt);
  1.3213 +    if (!initNode || !initNode->isKind(PNK_ASSIGN))
  1.3214 +        return ArgFail(f, name, stmt);
  1.3215 +
  1.3216 +    ParseNode *argNode = BinaryLeft(initNode);
  1.3217 +    ParseNode *coercionNode = BinaryRight(initNode);
  1.3218 +
  1.3219 +    if (!IsUseOfName(argNode, name))
  1.3220 +        return ArgFail(f, name, stmt);
  1.3221 +
  1.3222 +    ParseNode *coercedExpr;
  1.3223 +    AsmJSCoercion coercion;
  1.3224 +    if (!CheckTypeAnnotation(f.m(), coercionNode, &coercion, &coercedExpr))
  1.3225 +        return false;
  1.3226 +
  1.3227 +    if (!IsUseOfName(coercedExpr, name))
  1.3228 +        return ArgFail(f, name, stmt);
  1.3229 +
  1.3230 +    *type = VarType(coercion);
  1.3231 +    return true;
  1.3232 +}
  1.3233 +
  1.3234 +static bool
  1.3235 +CheckArguments(FunctionCompiler &f, ParseNode **stmtIter, VarTypeVector *argTypes)
  1.3236 +{
  1.3237 +    ParseNode *stmt = *stmtIter;
  1.3238 +
  1.3239 +    unsigned numFormals;
  1.3240 +    ParseNode *argpn = FunctionArgsList(f.fn(), &numFormals);
  1.3241 +
  1.3242 +    for (unsigned i = 0; i < numFormals; i++, argpn = NextNode(argpn), stmt = NextNode(stmt)) {
  1.3243 +        PropertyName *name;
  1.3244 +        if (!CheckArgument(f.m(), argpn, &name))
  1.3245 +            return false;
  1.3246 +
  1.3247 +        VarType type;
  1.3248 +        if (!CheckArgumentType(f, stmt, name, &type))
  1.3249 +            return false;
  1.3250 +
  1.3251 +        if (!argTypes->append(type))
  1.3252 +            return false;
  1.3253 +
  1.3254 +        if (!f.addFormal(argpn, name, type))
  1.3255 +            return false;
  1.3256 +    }
  1.3257 +
  1.3258 +    *stmtIter = stmt;
  1.3259 +    return true;
  1.3260 +}
  1.3261 +
  1.3262 +static bool
  1.3263 +CheckFinalReturn(FunctionCompiler &f, ParseNode *stmt, RetType *retType)
  1.3264 +{
  1.3265 +    if (stmt && stmt->isKind(PNK_RETURN)) {
  1.3266 +        if (ParseNode *coercionNode = UnaryKid(stmt)) {
  1.3267 +            if (IsNumericLiteral(f.m(), coercionNode)) {
  1.3268 +                switch (ExtractNumericLiteral(f.m(), coercionNode).which()) {
  1.3269 +                  case NumLit::BigUnsigned:
  1.3270 +                  case NumLit::OutOfRangeInt:
  1.3271 +                    return f.fail(coercionNode, "returned literal is out of integer range");
  1.3272 +                  case NumLit::Fixnum:
  1.3273 +                  case NumLit::NegativeInt:
  1.3274 +                    *retType = RetType::Signed;
  1.3275 +                    break;
  1.3276 +                  case NumLit::Double:
  1.3277 +                    *retType = RetType::Double;
  1.3278 +                    break;
  1.3279 +                  case NumLit::Float:
  1.3280 +                    *retType = RetType::Float;
  1.3281 +                    break;
  1.3282 +                }
  1.3283 +                return true;
  1.3284 +            }
  1.3285 +
  1.3286 +            AsmJSCoercion coercion;
  1.3287 +            if (!CheckTypeAnnotation(f.m(), coercionNode, &coercion))
  1.3288 +                return false;
  1.3289 +
  1.3290 +            *retType = RetType(coercion);
  1.3291 +            return true;
  1.3292 +        }
  1.3293 +
  1.3294 +        *retType = RetType::Void;
  1.3295 +        return true;
  1.3296 +    }
  1.3297 +
  1.3298 +    *retType = RetType::Void;
  1.3299 +    f.returnVoid();
  1.3300 +    return true;
  1.3301 +}
  1.3302 +
  1.3303 +static bool
  1.3304 +CheckVariable(FunctionCompiler &f, ParseNode *var)
  1.3305 +{
  1.3306 +    if (!IsDefinition(var))
  1.3307 +        return f.fail(var, "local variable names must not restate argument names");
  1.3308 +
  1.3309 +    PropertyName *name = var->name();
  1.3310 +
  1.3311 +    if (!CheckIdentifier(f.m(), var, name))
  1.3312 +        return false;
  1.3313 +
  1.3314 +    ParseNode *initNode = MaybeDefinitionInitializer(var);
  1.3315 +    if (!initNode)
  1.3316 +        return f.failName(var, "var '%s' needs explicit type declaration via an initial value", name);
  1.3317 +
  1.3318 +    if (initNode->isKind(PNK_NAME)) {
  1.3319 +        PropertyName *initName = initNode->name();
  1.3320 +        if (const ModuleCompiler::Global *global = f.lookupGlobal(initName)) {
  1.3321 +            if (global->which() != ModuleCompiler::Global::ConstantLiteral)
  1.3322 +                return f.failName(initNode, "'%s' isn't a possible global variable initializer, "
  1.3323 +                                            "needs to be a const numeric literal", initName);
  1.3324 +            return f.addVariable(var, name, global->varOrConstType(), global->constLiteralValue());
  1.3325 +        }
  1.3326 +        return f.failName(initNode, "'%s' needs to be a global name", initName);
  1.3327 +    }
  1.3328 +
  1.3329 +    if (!IsNumericLiteral(f.m(), initNode))
  1.3330 +        return f.failName(initNode, "initializer for '%s' needs to be a numeric literal or a global const literal", name);
  1.3331 +
  1.3332 +    NumLit literal = ExtractNumericLiteral(f.m(), initNode);
  1.3333 +    if (!literal.hasType())
  1.3334 +        return f.failName(initNode, "initializer for '%s' is out of range", name);
  1.3335 +
  1.3336 +    return f.addVariable(var, name, literal.varType(), literal.value());
  1.3337 +}
  1.3338 +
  1.3339 +static bool
  1.3340 +CheckVariables(FunctionCompiler &f, ParseNode **stmtIter)
  1.3341 +{
  1.3342 +    ParseNode *stmt = *stmtIter;
  1.3343 +
  1.3344 +    for (; stmt && stmt->isKind(PNK_VAR); stmt = NextNonEmptyStatement(stmt)) {
  1.3345 +        for (ParseNode *var = VarListHead(stmt); var; var = NextNode(var)) {
  1.3346 +            if (!CheckVariable(f, var))
  1.3347 +                return false;
  1.3348 +        }
  1.3349 +    }
  1.3350 +
  1.3351 +    *stmtIter = stmt;
  1.3352 +    return true;
  1.3353 +}
  1.3354 +
  1.3355 +static bool
  1.3356 +CheckExpr(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type);
  1.3357 +
  1.3358 +static bool
  1.3359 +CheckNumericLiteral(FunctionCompiler &f, ParseNode *num, MDefinition **def, Type *type)
  1.3360 +{
  1.3361 +    NumLit literal = ExtractNumericLiteral(f.m(), num);
  1.3362 +    if (!literal.hasType())
  1.3363 +        return f.fail(num, "numeric literal out of representable integer range");
  1.3364 +
  1.3365 +    *type = literal.type();
  1.3366 +    *def = f.constant(literal.value(), literal.type());
  1.3367 +    return true;
  1.3368 +}
  1.3369 +
  1.3370 +static bool
  1.3371 +CheckVarRef(FunctionCompiler &f, ParseNode *varRef, MDefinition **def, Type *type)
  1.3372 +{
  1.3373 +    PropertyName *name = varRef->name();
  1.3374 +
  1.3375 +    if (const FunctionCompiler::Local *local = f.lookupLocal(name)) {
  1.3376 +        *def = f.getLocalDef(*local);
  1.3377 +        *type = local->type.toType();
  1.3378 +        return true;
  1.3379 +    }
  1.3380 +
  1.3381 +    if (const ModuleCompiler::Global *global = f.lookupGlobal(name)) {
  1.3382 +        switch (global->which()) {
  1.3383 +          case ModuleCompiler::Global::ConstantLiteral:
  1.3384 +            *def = f.constant(global->constLiteralValue(), global->varOrConstType().toType());
  1.3385 +            *type = global->varOrConstType().toType();
  1.3386 +            break;
  1.3387 +          case ModuleCompiler::Global::ConstantImport:
  1.3388 +          case ModuleCompiler::Global::Variable:
  1.3389 +            *def = f.loadGlobalVar(*global);
  1.3390 +            *type = global->varOrConstType().toType();
  1.3391 +            break;
  1.3392 +          case ModuleCompiler::Global::Function:
  1.3393 +          case ModuleCompiler::Global::FFI:
  1.3394 +          case ModuleCompiler::Global::MathBuiltinFunction:
  1.3395 +          case ModuleCompiler::Global::FuncPtrTable:
  1.3396 +          case ModuleCompiler::Global::ArrayView:
  1.3397 +            return f.failName(varRef, "'%s' may not be accessed by ordinary expressions", name);
  1.3398 +        }
  1.3399 +        return true;
  1.3400 +    }
  1.3401 +
  1.3402 +    return f.failName(varRef, "'%s' not found in local or asm.js module scope", name);
  1.3403 +}
  1.3404 +
  1.3405 +static inline bool
  1.3406 +IsLiteralOrConstInt(FunctionCompiler &f, ParseNode *pn, uint32_t *u32)
  1.3407 +{
  1.3408 +    if (IsLiteralInt(f.m(), pn, u32))
  1.3409 +        return true;
  1.3410 +
  1.3411 +    if (pn->getKind() != PNK_NAME)
  1.3412 +        return false;
  1.3413 +
  1.3414 +    PropertyName *name = pn->name();
  1.3415 +    const ModuleCompiler::Global *global = f.lookupGlobal(name);
  1.3416 +    if (!global || global->which() != ModuleCompiler::Global::ConstantLiteral)
  1.3417 +        return false;
  1.3418 +
  1.3419 +    const Value &v = global->constLiteralValue();
  1.3420 +    if (!v.isInt32())
  1.3421 +        return false;
  1.3422 +
  1.3423 +    *u32 = (uint32_t) v.toInt32();
  1.3424 +    return true;
  1.3425 +}
  1.3426 +
  1.3427 +static bool
  1.3428 +FoldMaskedArrayIndex(FunctionCompiler &f, ParseNode **indexExpr, int32_t *mask,
  1.3429 +                     NeedsBoundsCheck *needsBoundsCheck)
  1.3430 +{
  1.3431 +    ParseNode *indexNode = BinaryLeft(*indexExpr);
  1.3432 +    ParseNode *maskNode = BinaryRight(*indexExpr);
  1.3433 +
  1.3434 +    uint32_t mask2;
  1.3435 +    if (IsLiteralOrConstInt(f, maskNode, &mask2)) {
  1.3436 +        // Flag the access to skip the bounds check if the mask ensures that an 'out of
  1.3437 +        // bounds' access can not occur based on the current heap length constraint.
  1.3438 +        if (mask2 == 0 ||
  1.3439 +            CountLeadingZeroes32(f.m().minHeapLength() - 1) <= CountLeadingZeroes32(mask2)) {
  1.3440 +            *needsBoundsCheck = NO_BOUNDS_CHECK;
  1.3441 +        }
  1.3442 +        *mask &= mask2;
  1.3443 +        *indexExpr = indexNode;
  1.3444 +        return true;
  1.3445 +    }
  1.3446 +
  1.3447 +    return false;
  1.3448 +}
  1.3449 +
  1.3450 +static bool
  1.3451 +CheckArrayAccess(FunctionCompiler &f, ParseNode *elem, ArrayBufferView::ViewType *viewType,
  1.3452 +                 MDefinition **def, NeedsBoundsCheck *needsBoundsCheck)
  1.3453 +{
  1.3454 +    ParseNode *viewName = ElemBase(elem);
  1.3455 +    ParseNode *indexExpr = ElemIndex(elem);
  1.3456 +    *needsBoundsCheck = NEEDS_BOUNDS_CHECK;
  1.3457 +
  1.3458 +    if (!viewName->isKind(PNK_NAME))
  1.3459 +        return f.fail(viewName, "base of array access must be a typed array view name");
  1.3460 +
  1.3461 +    const ModuleCompiler::Global *global = f.lookupGlobal(viewName->name());
  1.3462 +    if (!global || global->which() != ModuleCompiler::Global::ArrayView)
  1.3463 +        return f.fail(viewName, "base of array access must be a typed array view name");
  1.3464 +
  1.3465 +    *viewType = global->viewType();
  1.3466 +
  1.3467 +    uint32_t pointer;
  1.3468 +    if (IsLiteralOrConstInt(f, indexExpr, &pointer)) {
  1.3469 +        if (pointer > (uint32_t(INT32_MAX) >> TypedArrayShift(*viewType)))
  1.3470 +            return f.fail(indexExpr, "constant index out of range");
  1.3471 +        pointer <<= TypedArrayShift(*viewType);
  1.3472 +        // It is adequate to note pointer+1 rather than rounding up to the next
  1.3473 +        // access-size boundary because access is always aligned and the constraint
  1.3474 +        // will be rounded up to a larger alignment later.
  1.3475 +        f.m().requireHeapLengthToBeAtLeast(uint32_t(pointer) + 1);
  1.3476 +        *needsBoundsCheck = NO_BOUNDS_CHECK;
  1.3477 +        *def = f.constant(Int32Value(pointer), Type::Int);
  1.3478 +        return true;
  1.3479 +    }
  1.3480 +
  1.3481 +    // Mask off the low bits to account for the clearing effect of a right shift
  1.3482 +    // followed by the left shift implicit in the array access. E.g., H32[i>>2]
  1.3483 +    // loses the low two bits.
  1.3484 +    int32_t mask = ~((uint32_t(1) << TypedArrayShift(*viewType)) - 1);
  1.3485 +
  1.3486 +    MDefinition *pointerDef;
  1.3487 +    if (indexExpr->isKind(PNK_RSH)) {
  1.3488 +        ParseNode *shiftNode = BinaryRight(indexExpr);
  1.3489 +        ParseNode *pointerNode = BinaryLeft(indexExpr);
  1.3490 +
  1.3491 +        uint32_t shift;
  1.3492 +        if (!IsLiteralInt(f.m(), shiftNode, &shift))
  1.3493 +            return f.failf(shiftNode, "shift amount must be constant");
  1.3494 +
  1.3495 +        unsigned requiredShift = TypedArrayShift(*viewType);
  1.3496 +        if (shift != requiredShift)
  1.3497 +            return f.failf(shiftNode, "shift amount must be %u", requiredShift);
  1.3498 +
  1.3499 +        if (pointerNode->isKind(PNK_BITAND))
  1.3500 +            FoldMaskedArrayIndex(f, &pointerNode, &mask, needsBoundsCheck);
  1.3501 +
  1.3502 +        // Fold a 'literal constant right shifted' now, and skip the bounds check if
  1.3503 +        // currently possible. This handles the optimization of many of these uses without
  1.3504 +        // the need for range analysis, and saves the generation of a MBitAnd op.
  1.3505 +        if (IsLiteralOrConstInt(f, pointerNode, &pointer) && pointer <= uint32_t(INT32_MAX)) {
  1.3506 +            // Cases: b[c>>n], and b[(c&m)>>n]
  1.3507 +            pointer &= mask;
  1.3508 +            if (pointer < f.m().minHeapLength())
  1.3509 +                *needsBoundsCheck = NO_BOUNDS_CHECK;
  1.3510 +            *def = f.constant(Int32Value(pointer), Type::Int);
  1.3511 +            return true;
  1.3512 +        }
  1.3513 +
  1.3514 +        Type pointerType;
  1.3515 +        if (!CheckExpr(f, pointerNode, &pointerDef, &pointerType))
  1.3516 +            return false;
  1.3517 +
  1.3518 +        if (!pointerType.isIntish())
  1.3519 +            return f.failf(indexExpr, "%s is not a subtype of int", pointerType.toChars());
  1.3520 +    } else {
  1.3521 +        if (TypedArrayShift(*viewType) != 0)
  1.3522 +            return f.fail(indexExpr, "index expression isn't shifted; must be an Int8/Uint8 access");
  1.3523 +
  1.3524 +        JS_ASSERT(mask == -1);
  1.3525 +        bool folded = false;
  1.3526 +
  1.3527 +        if (indexExpr->isKind(PNK_BITAND))
  1.3528 +            folded = FoldMaskedArrayIndex(f, &indexExpr, &mask, needsBoundsCheck);
  1.3529 +
  1.3530 +        Type pointerType;
  1.3531 +        if (!CheckExpr(f, indexExpr, &pointerDef, &pointerType))
  1.3532 +            return false;
  1.3533 +
  1.3534 +        if (folded) {
  1.3535 +            if (!pointerType.isIntish())
  1.3536 +                return f.failf(indexExpr, "%s is not a subtype of intish", pointerType.toChars());
  1.3537 +        } else {
  1.3538 +            if (!pointerType.isInt())
  1.3539 +                return f.failf(indexExpr, "%s is not a subtype of int", pointerType.toChars());
  1.3540 +        }
  1.3541 +    }
  1.3542 +
  1.3543 +    // Don't generate the mask op if there is no need for it which could happen for
  1.3544 +    // a shift of zero.
  1.3545 +    if (mask == -1)
  1.3546 +        *def = pointerDef;
  1.3547 +    else
  1.3548 +        *def = f.bitwise<MBitAnd>(pointerDef, f.constant(Int32Value(mask), Type::Int));
  1.3549 +
  1.3550 +    return true;
  1.3551 +}
  1.3552 +
  1.3553 +static bool
  1.3554 +CheckLoadArray(FunctionCompiler &f, ParseNode *elem, MDefinition **def, Type *type)
  1.3555 +{
  1.3556 +    ArrayBufferView::ViewType viewType;
  1.3557 +    MDefinition *pointerDef;
  1.3558 +    NeedsBoundsCheck needsBoundsCheck;
  1.3559 +    if (!CheckArrayAccess(f, elem, &viewType, &pointerDef, &needsBoundsCheck))
  1.3560 +        return false;
  1.3561 +
  1.3562 +    *def = f.loadHeap(viewType, pointerDef, needsBoundsCheck);
  1.3563 +    *type = TypedArrayLoadType(viewType);
  1.3564 +    return true;
  1.3565 +}
  1.3566 +
  1.3567 +static bool
  1.3568 +CheckStoreArray(FunctionCompiler &f, ParseNode *lhs, ParseNode *rhs, MDefinition **def, Type *type)
  1.3569 +{
  1.3570 +    ArrayBufferView::ViewType viewType;
  1.3571 +    MDefinition *pointerDef;
  1.3572 +    NeedsBoundsCheck needsBoundsCheck;
  1.3573 +    if (!CheckArrayAccess(f, lhs, &viewType, &pointerDef, &needsBoundsCheck))
  1.3574 +        return false;
  1.3575 +
  1.3576 +    MDefinition *rhsDef;
  1.3577 +    Type rhsType;
  1.3578 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.3579 +        return false;
  1.3580 +
  1.3581 +    switch (viewType) {
  1.3582 +      case ArrayBufferView::TYPE_INT8:
  1.3583 +      case ArrayBufferView::TYPE_INT16:
  1.3584 +      case ArrayBufferView::TYPE_INT32:
  1.3585 +      case ArrayBufferView::TYPE_UINT8:
  1.3586 +      case ArrayBufferView::TYPE_UINT16:
  1.3587 +      case ArrayBufferView::TYPE_UINT32:
  1.3588 +        if (!rhsType.isIntish())
  1.3589 +            return f.failf(lhs, "%s is not a subtype of intish", rhsType.toChars());
  1.3590 +        break;
  1.3591 +      case ArrayBufferView::TYPE_FLOAT32:
  1.3592 +        if (rhsType.isMaybeDouble())
  1.3593 +            rhsDef = f.unary<MToFloat32>(rhsDef);
  1.3594 +        else if (!rhsType.isFloatish())
  1.3595 +            return f.failf(lhs, "%s is not a subtype of double? or floatish", rhsType.toChars());
  1.3596 +        break;
  1.3597 +      case ArrayBufferView::TYPE_FLOAT64:
  1.3598 +        if (rhsType.isFloat())
  1.3599 +            rhsDef = f.unary<MToDouble>(rhsDef);
  1.3600 +        else if (!rhsType.isMaybeDouble())
  1.3601 +            return f.failf(lhs, "%s is not a subtype of float or double?", rhsType.toChars());
  1.3602 +        break;
  1.3603 +      default:
  1.3604 +        MOZ_ASSUME_UNREACHABLE("Unexpected view type");
  1.3605 +    }
  1.3606 +
  1.3607 +    f.storeHeap(viewType, pointerDef, rhsDef, needsBoundsCheck);
  1.3608 +
  1.3609 +    *def = rhsDef;
  1.3610 +    *type = rhsType;
  1.3611 +    return true;
  1.3612 +}
  1.3613 +
  1.3614 +static bool
  1.3615 +CheckAssignName(FunctionCompiler &f, ParseNode *lhs, ParseNode *rhs, MDefinition **def, Type *type)
  1.3616 +{
  1.3617 +    Rooted<PropertyName *> name(f.cx(), lhs->name());
  1.3618 +
  1.3619 +    MDefinition *rhsDef;
  1.3620 +    Type rhsType;
  1.3621 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.3622 +        return false;
  1.3623 +
  1.3624 +    if (const FunctionCompiler::Local *lhsVar = f.lookupLocal(name)) {
  1.3625 +        if (!(rhsType <= lhsVar->type)) {
  1.3626 +            return f.failf(lhs, "%s is not a subtype of %s",
  1.3627 +                           rhsType.toChars(), lhsVar->type.toType().toChars());
  1.3628 +        }
  1.3629 +        f.assign(*lhsVar, rhsDef);
  1.3630 +    } else if (const ModuleCompiler::Global *global = f.lookupGlobal(name)) {
  1.3631 +        if (global->which() != ModuleCompiler::Global::Variable)
  1.3632 +            return f.failName(lhs, "'%s' is not a mutable variable", name);
  1.3633 +        if (!(rhsType <= global->varOrConstType())) {
  1.3634 +            return f.failf(lhs, "%s is not a subtype of %s",
  1.3635 +                           rhsType.toChars(), global->varOrConstType().toType().toChars());
  1.3636 +        }
  1.3637 +        f.storeGlobalVar(*global, rhsDef);
  1.3638 +    } else {
  1.3639 +        return f.failName(lhs, "'%s' not found in local or asm.js module scope", name);
  1.3640 +    }
  1.3641 +
  1.3642 +    *def = rhsDef;
  1.3643 +    *type = rhsType;
  1.3644 +    return true;
  1.3645 +}
  1.3646 +
  1.3647 +static bool
  1.3648 +CheckAssign(FunctionCompiler &f, ParseNode *assign, MDefinition **def, Type *type)
  1.3649 +{
  1.3650 +    JS_ASSERT(assign->isKind(PNK_ASSIGN));
  1.3651 +    ParseNode *lhs = BinaryLeft(assign);
  1.3652 +    ParseNode *rhs = BinaryRight(assign);
  1.3653 +
  1.3654 +    if (lhs->getKind() == PNK_ELEM)
  1.3655 +        return CheckStoreArray(f, lhs, rhs, def, type);
  1.3656 +
  1.3657 +    if (lhs->getKind() == PNK_NAME)
  1.3658 +        return CheckAssignName(f, lhs, rhs, def, type);
  1.3659 +
  1.3660 +    return f.fail(assign, "left-hand side of assignment must be a variable or array access");
  1.3661 +}
  1.3662 +
  1.3663 +static bool
  1.3664 +CheckMathIMul(FunctionCompiler &f, ParseNode *call, RetType retType, MDefinition **def, Type *type)
  1.3665 +{
  1.3666 +    if (CallArgListLength(call) != 2)
  1.3667 +        return f.fail(call, "Math.imul must be passed 2 arguments");
  1.3668 +
  1.3669 +    ParseNode *lhs = CallArgList(call);
  1.3670 +    ParseNode *rhs = NextNode(lhs);
  1.3671 +
  1.3672 +    MDefinition *lhsDef;
  1.3673 +    Type lhsType;
  1.3674 +    if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.3675 +        return false;
  1.3676 +
  1.3677 +    MDefinition *rhsDef;
  1.3678 +    Type rhsType;
  1.3679 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.3680 +        return false;
  1.3681 +
  1.3682 +    if (!lhsType.isIntish())
  1.3683 +        return f.failf(lhs, "%s is not a subtype of intish", lhsType.toChars());
  1.3684 +    if (!rhsType.isIntish())
  1.3685 +        return f.failf(rhs, "%s is not a subtype of intish", rhsType.toChars());
  1.3686 +    if (retType != RetType::Signed)
  1.3687 +        return f.failf(call, "return type is signed, used as %s", retType.toType().toChars());
  1.3688 +
  1.3689 +    *def = f.mul(lhsDef, rhsDef, MIRType_Int32, MMul::Integer);
  1.3690 +    *type = Type::Signed;
  1.3691 +    return true;
  1.3692 +}
  1.3693 +
  1.3694 +static bool
  1.3695 +CheckMathAbs(FunctionCompiler &f, ParseNode *call, RetType retType, MDefinition **def, Type *type)
  1.3696 +{
  1.3697 +    if (CallArgListLength(call) != 1)
  1.3698 +        return f.fail(call, "Math.abs must be passed 1 argument");
  1.3699 +
  1.3700 +    ParseNode *arg = CallArgList(call);
  1.3701 +
  1.3702 +    MDefinition *argDef;
  1.3703 +    Type argType;
  1.3704 +    if (!CheckExpr(f, arg, &argDef, &argType))
  1.3705 +        return false;
  1.3706 +
  1.3707 +    if (argType.isSigned()) {
  1.3708 +        if (retType != RetType::Signed)
  1.3709 +            return f.failf(call, "return type is signed, used as %s", retType.toType().toChars());
  1.3710 +        *def = f.unary<MAbs>(argDef, MIRType_Int32);
  1.3711 +        *type = Type::Signed;
  1.3712 +        return true;
  1.3713 +    }
  1.3714 +
  1.3715 +    if (argType.isMaybeDouble()) {
  1.3716 +        if (retType != RetType::Double)
  1.3717 +            return f.failf(call, "return type is double, used as %s", retType.toType().toChars());
  1.3718 +        *def = f.unary<MAbs>(argDef, MIRType_Double);
  1.3719 +        *type = Type::Double;
  1.3720 +        return true;
  1.3721 +    }
  1.3722 +
  1.3723 +    if (argType.isMaybeFloat()) {
  1.3724 +        if (retType != RetType::Float)
  1.3725 +            return f.failf(call, "return type is float, used as %s", retType.toType().toChars());
  1.3726 +        *def = f.unary<MAbs>(argDef, MIRType_Float32);
  1.3727 +        *type = Type::Float;
  1.3728 +        return true;
  1.3729 +    }
  1.3730 +
  1.3731 +    return f.failf(call, "%s is not a subtype of signed, float? or double?", argType.toChars());
  1.3732 +}
  1.3733 +
  1.3734 +static bool
  1.3735 +CheckMathSqrt(FunctionCompiler &f, ParseNode *call, RetType retType, MDefinition **def, Type *type)
  1.3736 +{
  1.3737 +    if (CallArgListLength(call) != 1)
  1.3738 +        return f.fail(call, "Math.sqrt must be passed 1 argument");
  1.3739 +
  1.3740 +    ParseNode *arg = CallArgList(call);
  1.3741 +
  1.3742 +    MDefinition *argDef;
  1.3743 +    Type argType;
  1.3744 +    if (!CheckExpr(f, arg, &argDef, &argType))
  1.3745 +        return false;
  1.3746 +
  1.3747 +    if (argType.isMaybeDouble()) {
  1.3748 +        if (retType != RetType::Double)
  1.3749 +            return f.failf(call, "return type is double, used as %s", retType.toType().toChars());
  1.3750 +        *def = f.unary<MSqrt>(argDef, MIRType_Double);
  1.3751 +        *type = Type::Double;
  1.3752 +        return true;
  1.3753 +    }
  1.3754 +
  1.3755 +    if (argType.isMaybeFloat()) {
  1.3756 +        if (retType != RetType::Float)
  1.3757 +            return f.failf(call, "return type is float, used as %s", retType.toType().toChars());
  1.3758 +        *def = f.unary<MSqrt>(argDef, MIRType_Float32);
  1.3759 +        *type = Type::Float;
  1.3760 +        return true;
  1.3761 +    }
  1.3762 +
  1.3763 +    return f.failf(call, "%s is neither a subtype of double? nor float?", argType.toChars());
  1.3764 +}
  1.3765 +
  1.3766 +static bool
  1.3767 +CheckMathMinMax(FunctionCompiler &f, ParseNode *callNode, RetType retType, MDefinition **def, Type *type, bool isMax)
  1.3768 +{
  1.3769 +    if (CallArgListLength(callNode) < 2)
  1.3770 +        return f.fail(callNode, "Math.min/max must be passed at least 2 arguments");
  1.3771 +
  1.3772 +    ParseNode *firstArg = CallArgList(callNode);
  1.3773 +    MDefinition *firstDef;
  1.3774 +    Type firstType;
  1.3775 +    if (!CheckExpr(f, firstArg, &firstDef, &firstType))
  1.3776 +        return false;
  1.3777 +
  1.3778 +    bool opIsDouble = firstType.isMaybeDouble();
  1.3779 +    bool opIsInteger = firstType.isInt();
  1.3780 +    MIRType opType = firstType.toMIRType();
  1.3781 +
  1.3782 +    if (!opIsDouble && !opIsInteger)
  1.3783 +        return f.failf(firstArg, "%s is not a subtype of double? or int", firstType.toChars());
  1.3784 +
  1.3785 +    MDefinition *lastDef = firstDef;
  1.3786 +    ParseNode *nextArg = NextNode(firstArg);
  1.3787 +    for (unsigned i = 1; i < CallArgListLength(callNode); i++, nextArg = NextNode(nextArg)) {
  1.3788 +        MDefinition *nextDef;
  1.3789 +        Type nextType;
  1.3790 +        if (!CheckExpr(f, nextArg, &nextDef, &nextType))
  1.3791 +            return false;
  1.3792 +
  1.3793 +        if (opIsDouble && !nextType.isMaybeDouble())
  1.3794 +            return f.failf(nextArg, "%s is not a subtype of double?", nextType.toChars());
  1.3795 +        if (opIsInteger && !nextType.isInt())
  1.3796 +            return f.failf(nextArg, "%s is not a subtype of int", nextType.toChars());
  1.3797 +
  1.3798 +        lastDef = f.minMax(lastDef, nextDef, opType, isMax);
  1.3799 +    }
  1.3800 +
  1.3801 +    if (opIsDouble && retType != RetType::Double)
  1.3802 +        return f.failf(callNode, "return type is double, used as %s", retType.toType().toChars());
  1.3803 +    if (opIsInteger && retType != RetType::Signed)
  1.3804 +        return f.failf(callNode, "return type is int, used as %s", retType.toType().toChars());
  1.3805 +
  1.3806 +    *type = opIsDouble ? Type::Double : Type::Signed;
  1.3807 +    *def = lastDef;
  1.3808 +    return true;
  1.3809 +}
  1.3810 +
  1.3811 +typedef bool (*CheckArgType)(FunctionCompiler &f, ParseNode *argNode, Type type);
  1.3812 +
  1.3813 +static bool
  1.3814 +CheckCallArgs(FunctionCompiler &f, ParseNode *callNode, CheckArgType checkArg,
  1.3815 +              FunctionCompiler::Call *call)
  1.3816 +{
  1.3817 +    f.startCallArgs(call);
  1.3818 +
  1.3819 +    ParseNode *argNode = CallArgList(callNode);
  1.3820 +    for (unsigned i = 0; i < CallArgListLength(callNode); i++, argNode = NextNode(argNode)) {
  1.3821 +        MDefinition *def;
  1.3822 +        Type type;
  1.3823 +        if (!CheckExpr(f, argNode, &def, &type))
  1.3824 +            return false;
  1.3825 +
  1.3826 +        if (!checkArg(f, argNode, type))
  1.3827 +            return false;
  1.3828 +
  1.3829 +        if (!f.passArg(def, VarType::FromCheckedType(type), call))
  1.3830 +            return false;
  1.3831 +    }
  1.3832 +
  1.3833 +    f.finishCallArgs(call);
  1.3834 +    return true;
  1.3835 +}
  1.3836 +
  1.3837 +static bool
  1.3838 +CheckSignatureAgainstExisting(ModuleCompiler &m, ParseNode *usepn, const Signature &sig,
  1.3839 +                              const Signature &existing)
  1.3840 +{
  1.3841 +    if (sig.args().length() != existing.args().length()) {
  1.3842 +        return m.failf(usepn, "incompatible number of arguments (%u here vs. %u before)",
  1.3843 +                       sig.args().length(), existing.args().length());
  1.3844 +    }
  1.3845 +
  1.3846 +    for (unsigned i = 0; i < sig.args().length(); i++) {
  1.3847 +        if (sig.arg(i) != existing.arg(i)) {
  1.3848 +            return m.failf(usepn, "incompatible type for argument %u: (%s here vs. %s before)",
  1.3849 +                           i, sig.arg(i).toType().toChars(), existing.arg(i).toType().toChars());
  1.3850 +        }
  1.3851 +    }
  1.3852 +
  1.3853 +    if (sig.retType() != existing.retType()) {
  1.3854 +        return m.failf(usepn, "%s incompatible with previous return of type %s",
  1.3855 +                       sig.retType().toType().toChars(), existing.retType().toType().toChars());
  1.3856 +    }
  1.3857 +
  1.3858 +    JS_ASSERT(sig == existing);
  1.3859 +    return true;
  1.3860 +}
  1.3861 +
  1.3862 +static bool
  1.3863 +CheckFunctionSignature(ModuleCompiler &m, ParseNode *usepn, Signature &&sig, PropertyName *name,
  1.3864 +                       ModuleCompiler::Func **func)
  1.3865 +{
  1.3866 +    ModuleCompiler::Func *existing = m.lookupFunction(name);
  1.3867 +    if (!existing) {
  1.3868 +        if (!CheckModuleLevelName(m, usepn, name))
  1.3869 +            return false;
  1.3870 +        return m.addFunction(name, Move(sig), func);
  1.3871 +    }
  1.3872 +
  1.3873 +    if (!CheckSignatureAgainstExisting(m, usepn, sig, existing->sig()))
  1.3874 +        return false;
  1.3875 +
  1.3876 +    *func = existing;
  1.3877 +    return true;
  1.3878 +}
  1.3879 +
  1.3880 +static bool
  1.3881 +CheckIsVarType(FunctionCompiler &f, ParseNode *argNode, Type type)
  1.3882 +{
  1.3883 +    if (!type.isVarType())
  1.3884 +        return f.failf(argNode, "%s is not a subtype of int, float or double", type.toChars());
  1.3885 +    return true;
  1.3886 +}
  1.3887 +
  1.3888 +static bool
  1.3889 +CheckInternalCall(FunctionCompiler &f, ParseNode *callNode, PropertyName *calleeName,
  1.3890 +                  RetType retType, MDefinition **def, Type *type)
  1.3891 +{
  1.3892 +    FunctionCompiler::Call call(f, callNode, retType);
  1.3893 +
  1.3894 +    if (!CheckCallArgs(f, callNode, CheckIsVarType, &call))
  1.3895 +        return false;
  1.3896 +
  1.3897 +    ModuleCompiler::Func *callee;
  1.3898 +    if (!CheckFunctionSignature(f.m(), callNode, Move(call.sig()), calleeName, &callee))
  1.3899 +        return false;
  1.3900 +
  1.3901 +    if (!f.internalCall(*callee, call, def))
  1.3902 +        return false;
  1.3903 +
  1.3904 +    *type = retType.toType();
  1.3905 +    return true;
  1.3906 +}
  1.3907 +
  1.3908 +static bool
  1.3909 +CheckFuncPtrTableAgainstExisting(ModuleCompiler &m, ParseNode *usepn,
  1.3910 +                                 PropertyName *name, Signature &&sig, unsigned mask,
  1.3911 +                                 ModuleCompiler::FuncPtrTable **tableOut)
  1.3912 +{
  1.3913 +    if (const ModuleCompiler::Global *existing = m.lookupGlobal(name)) {
  1.3914 +        if (existing->which() != ModuleCompiler::Global::FuncPtrTable)
  1.3915 +            return m.failName(usepn, "'%s' is not a function-pointer table", name);
  1.3916 +
  1.3917 +        ModuleCompiler::FuncPtrTable &table = m.funcPtrTable(existing->funcPtrTableIndex());
  1.3918 +        if (mask != table.mask())
  1.3919 +            return m.failf(usepn, "mask does not match previous value (%u)", table.mask());
  1.3920 +
  1.3921 +        if (!CheckSignatureAgainstExisting(m, usepn, sig, table.sig()))
  1.3922 +            return false;
  1.3923 +
  1.3924 +        *tableOut = &table;
  1.3925 +        return true;
  1.3926 +    }
  1.3927 +
  1.3928 +    if (!CheckModuleLevelName(m, usepn, name))
  1.3929 +        return false;
  1.3930 +
  1.3931 +    return m.addFuncPtrTable(name, Move(sig), mask, tableOut);
  1.3932 +}
  1.3933 +
  1.3934 +static bool
  1.3935 +CheckFuncPtrCall(FunctionCompiler &f, ParseNode *callNode, RetType retType, MDefinition **def, Type *type)
  1.3936 +{
  1.3937 +    ParseNode *callee = CallCallee(callNode);
  1.3938 +    ParseNode *tableNode = ElemBase(callee);
  1.3939 +    ParseNode *indexExpr = ElemIndex(callee);
  1.3940 +
  1.3941 +    if (!tableNode->isKind(PNK_NAME))
  1.3942 +        return f.fail(tableNode, "expecting name of function-pointer array");
  1.3943 +
  1.3944 +    PropertyName *name = tableNode->name();
  1.3945 +    if (const ModuleCompiler::Global *existing = f.lookupGlobal(name)) {
  1.3946 +        if (existing->which() != ModuleCompiler::Global::FuncPtrTable)
  1.3947 +            return f.failName(tableNode, "'%s' is not the name of a function-pointer array", name);
  1.3948 +    }
  1.3949 +
  1.3950 +    if (!indexExpr->isKind(PNK_BITAND))
  1.3951 +        return f.fail(indexExpr, "function-pointer table index expression needs & mask");
  1.3952 +
  1.3953 +    ParseNode *indexNode = BinaryLeft(indexExpr);
  1.3954 +    ParseNode *maskNode = BinaryRight(indexExpr);
  1.3955 +
  1.3956 +    uint32_t mask;
  1.3957 +    if (!IsLiteralInt(f.m(), maskNode, &mask) || mask == UINT32_MAX || !IsPowerOfTwo(mask + 1))
  1.3958 +        return f.fail(maskNode, "function-pointer table index mask value must be a power of two");
  1.3959 +
  1.3960 +    MDefinition *indexDef;
  1.3961 +    Type indexType;
  1.3962 +    if (!CheckExpr(f, indexNode, &indexDef, &indexType))
  1.3963 +        return false;
  1.3964 +
  1.3965 +    if (!indexType.isIntish())
  1.3966 +        return f.failf(indexNode, "%s is not a subtype of intish", indexType.toChars());
  1.3967 +
  1.3968 +    FunctionCompiler::Call call(f, callNode, retType);
  1.3969 +
  1.3970 +    if (!CheckCallArgs(f, callNode, CheckIsVarType, &call))
  1.3971 +        return false;
  1.3972 +
  1.3973 +    ModuleCompiler::FuncPtrTable *table;
  1.3974 +    if (!CheckFuncPtrTableAgainstExisting(f.m(), tableNode, name, Move(call.sig()), mask, &table))
  1.3975 +        return false;
  1.3976 +
  1.3977 +    if (!f.funcPtrCall(*table, indexDef, call, def))
  1.3978 +        return false;
  1.3979 +
  1.3980 +    *type = retType.toType();
  1.3981 +    return true;
  1.3982 +}
  1.3983 +
  1.3984 +static bool
  1.3985 +CheckIsExternType(FunctionCompiler &f, ParseNode *argNode, Type type)
  1.3986 +{
  1.3987 +    if (!type.isExtern())
  1.3988 +        return f.failf(argNode, "%s is not a subtype of extern", type.toChars());
  1.3989 +    return true;
  1.3990 +}
  1.3991 +
  1.3992 +static bool
  1.3993 +CheckFFICall(FunctionCompiler &f, ParseNode *callNode, unsigned ffiIndex, RetType retType,
  1.3994 +             MDefinition **def, Type *type)
  1.3995 +{
  1.3996 +    PropertyName *calleeName = CallCallee(callNode)->name();
  1.3997 +
  1.3998 +    if (retType == RetType::Float)
  1.3999 +        return f.fail(callNode, "FFI calls can't return float");
  1.4000 +
  1.4001 +    FunctionCompiler::Call call(f, callNode, retType);
  1.4002 +    if (!CheckCallArgs(f, callNode, CheckIsExternType, &call))
  1.4003 +        return false;
  1.4004 +
  1.4005 +    unsigned exitIndex;
  1.4006 +    if (!f.m().addExit(ffiIndex, calleeName, Move(call.sig()), &exitIndex))
  1.4007 +        return false;
  1.4008 +
  1.4009 +    if (!f.ffiCall(exitIndex, call, retType.toMIRType(), def))
  1.4010 +        return false;
  1.4011 +
  1.4012 +    *type = retType.toType();
  1.4013 +    return true;
  1.4014 +}
  1.4015 +
  1.4016 +static bool CheckCall(FunctionCompiler &f, ParseNode *call, RetType retType, MDefinition **def, Type *type);
  1.4017 +
  1.4018 +static bool
  1.4019 +CheckFRoundArg(FunctionCompiler &f, ParseNode *arg, MDefinition **def, Type *type)
  1.4020 +{
  1.4021 +    if (arg->isKind(PNK_CALL))
  1.4022 +        return CheckCall(f, arg, RetType::Float, def, type);
  1.4023 +
  1.4024 +    MDefinition *inputDef;
  1.4025 +    Type inputType;
  1.4026 +    if (!CheckExpr(f, arg, &inputDef, &inputType))
  1.4027 +        return false;
  1.4028 +
  1.4029 +    if (inputType.isMaybeDouble() || inputType.isSigned())
  1.4030 +        *def = f.unary<MToFloat32>(inputDef);
  1.4031 +    else if (inputType.isUnsigned())
  1.4032 +        *def = f.unary<MAsmJSUnsignedToFloat32>(inputDef);
  1.4033 +    else if (inputType.isFloatish())
  1.4034 +        *def = inputDef;
  1.4035 +    else
  1.4036 +        return f.failf(arg, "%s is not a subtype of signed, unsigned, double? or floatish", inputType.toChars());
  1.4037 +
  1.4038 +    *type = Type::Float;
  1.4039 +    return true;
  1.4040 +}
  1.4041 +
  1.4042 +static bool
  1.4043 +CheckMathFRound(FunctionCompiler &f, ParseNode *callNode, RetType retType, MDefinition **def, Type *type)
  1.4044 +{
  1.4045 +    ParseNode *argNode = nullptr;
  1.4046 +    if (!IsFloatCoercion(f.m(), callNode, &argNode))
  1.4047 +        return f.fail(callNode, "invalid call to fround");
  1.4048 +
  1.4049 +    MDefinition *operand;
  1.4050 +    Type operandType;
  1.4051 +    if (!CheckFRoundArg(f, argNode, &operand, &operandType))
  1.4052 +        return false;
  1.4053 +
  1.4054 +    JS_ASSERT(operandType == Type::Float);
  1.4055 +
  1.4056 +    switch (retType.which()) {
  1.4057 +      case RetType::Double:
  1.4058 +        *def = f.unary<MToDouble>(operand);
  1.4059 +        *type = Type::Double;
  1.4060 +        return true;
  1.4061 +      case RetType::Signed:
  1.4062 +        *def = f.unary<MTruncateToInt32>(operand);
  1.4063 +        *type = Type::Signed;
  1.4064 +        return true;
  1.4065 +      case RetType::Float:
  1.4066 +        *def = operand;
  1.4067 +        *type = Type::Float;
  1.4068 +        return true;
  1.4069 +      case RetType::Void:
  1.4070 +        // definition and return types should be ignored by the caller
  1.4071 +        return true;
  1.4072 +    }
  1.4073 +
  1.4074 +    MOZ_ASSUME_UNREACHABLE("return value of fround is ignored");
  1.4075 +}
  1.4076 +
  1.4077 +static bool
  1.4078 +CheckIsMaybeDouble(FunctionCompiler &f, ParseNode *argNode, Type type)
  1.4079 +{
  1.4080 +    if (!type.isMaybeDouble())
  1.4081 +        return f.failf(argNode, "%s is not a subtype of double?", type.toChars());
  1.4082 +    return true;
  1.4083 +}
  1.4084 +
  1.4085 +static bool
  1.4086 +CheckIsMaybeFloat(FunctionCompiler &f, ParseNode *argNode, Type type)
  1.4087 +{
  1.4088 +    if (!type.isMaybeFloat())
  1.4089 +        return f.failf(argNode, "%s is not a subtype of float?", type.toChars());
  1.4090 +    return true;
  1.4091 +}
  1.4092 +
  1.4093 +static bool
  1.4094 +CheckMathBuiltinCall(FunctionCompiler &f, ParseNode *callNode, AsmJSMathBuiltinFunction func,
  1.4095 +                     RetType retType, MDefinition **def, Type *type)
  1.4096 +{
  1.4097 +    unsigned arity = 0;
  1.4098 +    AsmJSImmKind doubleCallee, floatCallee;
  1.4099 +    switch (func) {
  1.4100 +      case AsmJSMathBuiltin_imul:   return CheckMathIMul(f, callNode, retType, def, type);
  1.4101 +      case AsmJSMathBuiltin_abs:    return CheckMathAbs(f, callNode, retType, def, type);
  1.4102 +      case AsmJSMathBuiltin_sqrt:   return CheckMathSqrt(f, callNode, retType, def, type);
  1.4103 +      case AsmJSMathBuiltin_fround: return CheckMathFRound(f, callNode, retType, def, type);
  1.4104 +      case AsmJSMathBuiltin_min:    return CheckMathMinMax(f, callNode, retType, def, type, /* isMax = */ false);
  1.4105 +      case AsmJSMathBuiltin_max:    return CheckMathMinMax(f, callNode, retType, def, type, /* isMax = */ true);
  1.4106 +      case AsmJSMathBuiltin_ceil:   arity = 1; doubleCallee = AsmJSImm_CeilD;  floatCallee = AsmJSImm_CeilF;   break;
  1.4107 +      case AsmJSMathBuiltin_floor:  arity = 1; doubleCallee = AsmJSImm_FloorD; floatCallee = AsmJSImm_FloorF;  break;
  1.4108 +      case AsmJSMathBuiltin_sin:    arity = 1; doubleCallee = AsmJSImm_SinD;   floatCallee = AsmJSImm_Invalid; break;
  1.4109 +      case AsmJSMathBuiltin_cos:    arity = 1; doubleCallee = AsmJSImm_CosD;   floatCallee = AsmJSImm_Invalid; break;
  1.4110 +      case AsmJSMathBuiltin_tan:    arity = 1; doubleCallee = AsmJSImm_TanD;   floatCallee = AsmJSImm_Invalid; break;
  1.4111 +      case AsmJSMathBuiltin_asin:   arity = 1; doubleCallee = AsmJSImm_ASinD;  floatCallee = AsmJSImm_Invalid; break;
  1.4112 +      case AsmJSMathBuiltin_acos:   arity = 1; doubleCallee = AsmJSImm_ACosD;  floatCallee = AsmJSImm_Invalid; break;
  1.4113 +      case AsmJSMathBuiltin_atan:   arity = 1; doubleCallee = AsmJSImm_ATanD;  floatCallee = AsmJSImm_Invalid; break;
  1.4114 +      case AsmJSMathBuiltin_exp:    arity = 1; doubleCallee = AsmJSImm_ExpD;   floatCallee = AsmJSImm_Invalid; break;
  1.4115 +      case AsmJSMathBuiltin_log:    arity = 1; doubleCallee = AsmJSImm_LogD;   floatCallee = AsmJSImm_Invalid; break;
  1.4116 +      case AsmJSMathBuiltin_pow:    arity = 2; doubleCallee = AsmJSImm_PowD;   floatCallee = AsmJSImm_Invalid; break;
  1.4117 +      case AsmJSMathBuiltin_atan2:  arity = 2; doubleCallee = AsmJSImm_ATan2D; floatCallee = AsmJSImm_Invalid; break;
  1.4118 +      default: MOZ_ASSUME_UNREACHABLE("unexpected mathBuiltin function");
  1.4119 +    }
  1.4120 +
  1.4121 +    if (retType == RetType::Float && floatCallee == AsmJSImm_Invalid)
  1.4122 +        return f.fail(callNode, "math builtin cannot be used as float");
  1.4123 +    if (retType != RetType::Double && retType != RetType::Float)
  1.4124 +        return f.failf(callNode, "return type of math function is double or float, used as %s", retType.toType().toChars());
  1.4125 +
  1.4126 +    FunctionCompiler::Call call(f, callNode, retType);
  1.4127 +    if (retType == RetType::Float && !CheckCallArgs(f, callNode, CheckIsMaybeFloat, &call))
  1.4128 +        return false;
  1.4129 +    if (retType == RetType::Double && !CheckCallArgs(f, callNode, CheckIsMaybeDouble, &call))
  1.4130 +        return false;
  1.4131 +
  1.4132 +    if (call.sig().args().length() != arity)
  1.4133 +        return f.failf(callNode, "call passed %u arguments, expected %u", call.sig().args().length(), arity);
  1.4134 +
  1.4135 +    if (retType == RetType::Float && !f.builtinCall(floatCallee, call, retType.toMIRType(), def))
  1.4136 +        return false;
  1.4137 +    if (retType == RetType::Double && !f.builtinCall(doubleCallee, call, retType.toMIRType(), def))
  1.4138 +        return false;
  1.4139 +
  1.4140 +    *type = retType.toType();
  1.4141 +    return true;
  1.4142 +}
  1.4143 +
  1.4144 +static bool
  1.4145 +CheckCall(FunctionCompiler &f, ParseNode *call, RetType retType, MDefinition **def, Type *type)
  1.4146 +{
  1.4147 +    JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
  1.4148 +
  1.4149 +    ParseNode *callee = CallCallee(call);
  1.4150 +
  1.4151 +    if (callee->isKind(PNK_ELEM))
  1.4152 +        return CheckFuncPtrCall(f, call, retType, def, type);
  1.4153 +
  1.4154 +    if (!callee->isKind(PNK_NAME))
  1.4155 +        return f.fail(callee, "unexpected callee expression type");
  1.4156 +
  1.4157 +    PropertyName *calleeName = callee->name();
  1.4158 +
  1.4159 +    if (const ModuleCompiler::Global *global = f.lookupGlobal(calleeName)) {
  1.4160 +        switch (global->which()) {
  1.4161 +          case ModuleCompiler::Global::FFI:
  1.4162 +            return CheckFFICall(f, call, global->ffiIndex(), retType, def, type);
  1.4163 +          case ModuleCompiler::Global::MathBuiltinFunction:
  1.4164 +            return CheckMathBuiltinCall(f, call, global->mathBuiltinFunction(), retType, def, type);
  1.4165 +          case ModuleCompiler::Global::ConstantLiteral:
  1.4166 +          case ModuleCompiler::Global::ConstantImport:
  1.4167 +          case ModuleCompiler::Global::Variable:
  1.4168 +          case ModuleCompiler::Global::FuncPtrTable:
  1.4169 +          case ModuleCompiler::Global::ArrayView:
  1.4170 +            return f.failName(callee, "'%s' is not callable function", callee->name());
  1.4171 +          case ModuleCompiler::Global::Function:
  1.4172 +            break;
  1.4173 +        }
  1.4174 +    }
  1.4175 +
  1.4176 +    return CheckInternalCall(f, call, calleeName, retType, def, type);
  1.4177 +}
  1.4178 +
  1.4179 +static bool
  1.4180 +CheckPos(FunctionCompiler &f, ParseNode *pos, MDefinition **def, Type *type)
  1.4181 +{
  1.4182 +    JS_ASSERT(pos->isKind(PNK_POS));
  1.4183 +    ParseNode *operand = UnaryKid(pos);
  1.4184 +
  1.4185 +    if (operand->isKind(PNK_CALL))
  1.4186 +        return CheckCall(f, operand, RetType::Double, def, type);
  1.4187 +
  1.4188 +    MDefinition *operandDef;
  1.4189 +    Type operandType;
  1.4190 +    if (!CheckExpr(f, operand, &operandDef, &operandType))
  1.4191 +        return false;
  1.4192 +
  1.4193 +    if (operandType.isMaybeFloat() || operandType.isSigned())
  1.4194 +        *def = f.unary<MToDouble>(operandDef);
  1.4195 +    else if (operandType.isUnsigned())
  1.4196 +        *def = f.unary<MAsmJSUnsignedToDouble>(operandDef);
  1.4197 +    else if (operandType.isMaybeDouble())
  1.4198 +        *def = operandDef;
  1.4199 +    else
  1.4200 +        return f.failf(operand, "%s is not a subtype of signed, unsigned, float or double?", operandType.toChars());
  1.4201 +
  1.4202 +    *type = Type::Double;
  1.4203 +    return true;
  1.4204 +}
  1.4205 +
  1.4206 +static bool
  1.4207 +CheckNot(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4208 +{
  1.4209 +    JS_ASSERT(expr->isKind(PNK_NOT));
  1.4210 +    ParseNode *operand = UnaryKid(expr);
  1.4211 +
  1.4212 +    MDefinition *operandDef;
  1.4213 +    Type operandType;
  1.4214 +    if (!CheckExpr(f, operand, &operandDef, &operandType))
  1.4215 +        return false;
  1.4216 +
  1.4217 +    if (!operandType.isInt())
  1.4218 +        return f.failf(operand, "%s is not a subtype of int", operandType.toChars());
  1.4219 +
  1.4220 +    *def = f.unary<MNot>(operandDef);
  1.4221 +    *type = Type::Int;
  1.4222 +    return true;
  1.4223 +}
  1.4224 +
  1.4225 +static bool
  1.4226 +CheckNeg(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4227 +{
  1.4228 +    JS_ASSERT(expr->isKind(PNK_NEG));
  1.4229 +    ParseNode *operand = UnaryKid(expr);
  1.4230 +
  1.4231 +    MDefinition *operandDef;
  1.4232 +    Type operandType;
  1.4233 +    if (!CheckExpr(f, operand, &operandDef, &operandType))
  1.4234 +        return false;
  1.4235 +
  1.4236 +    if (operandType.isInt()) {
  1.4237 +        *def = f.unary<MAsmJSNeg>(operandDef, MIRType_Int32);
  1.4238 +        *type = Type::Intish;
  1.4239 +        return true;
  1.4240 +    }
  1.4241 +
  1.4242 +    if (operandType.isMaybeDouble()) {
  1.4243 +        *def = f.unary<MAsmJSNeg>(operandDef, MIRType_Double);
  1.4244 +        *type = Type::Double;
  1.4245 +        return true;
  1.4246 +    }
  1.4247 +
  1.4248 +    if (operandType.isMaybeFloat()) {
  1.4249 +        *def = f.unary<MAsmJSNeg>(operandDef, MIRType_Float32);
  1.4250 +        *type = Type::Floatish;
  1.4251 +        return true;
  1.4252 +    }
  1.4253 +
  1.4254 +    return f.failf(operand, "%s is not a subtype of int, float? or double?", operandType.toChars());
  1.4255 +}
  1.4256 +
  1.4257 +static bool
  1.4258 +CheckCoerceToInt(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4259 +{
  1.4260 +    JS_ASSERT(expr->isKind(PNK_BITNOT));
  1.4261 +    ParseNode *operand = UnaryKid(expr);
  1.4262 +
  1.4263 +    MDefinition *operandDef;
  1.4264 +    Type operandType;
  1.4265 +    if (!CheckExpr(f, operand, &operandDef, &operandType))
  1.4266 +        return false;
  1.4267 +
  1.4268 +    if (operandType.isMaybeDouble() || operandType.isMaybeFloat()) {
  1.4269 +        *def = f.unary<MTruncateToInt32>(operandDef);
  1.4270 +        *type = Type::Signed;
  1.4271 +        return true;
  1.4272 +    }
  1.4273 +
  1.4274 +    if (!operandType.isIntish())
  1.4275 +        return f.failf(operand, "%s is not a subtype of double?, float? or intish", operandType.toChars());
  1.4276 +
  1.4277 +    *def = operandDef;
  1.4278 +    *type = Type::Signed;
  1.4279 +    return true;
  1.4280 +}
  1.4281 +
  1.4282 +static bool
  1.4283 +CheckBitNot(FunctionCompiler &f, ParseNode *neg, MDefinition **def, Type *type)
  1.4284 +{
  1.4285 +    JS_ASSERT(neg->isKind(PNK_BITNOT));
  1.4286 +    ParseNode *operand = UnaryKid(neg);
  1.4287 +
  1.4288 +    if (operand->isKind(PNK_BITNOT))
  1.4289 +        return CheckCoerceToInt(f, operand, def, type);
  1.4290 +
  1.4291 +    MDefinition *operandDef;
  1.4292 +    Type operandType;
  1.4293 +    if (!CheckExpr(f, operand, &operandDef, &operandType))
  1.4294 +        return false;
  1.4295 +
  1.4296 +    if (!operandType.isIntish())
  1.4297 +        return f.failf(operand, "%s is not a subtype of intish", operandType.toChars());
  1.4298 +
  1.4299 +    *def = f.bitwise<MBitNot>(operandDef);
  1.4300 +    *type = Type::Signed;
  1.4301 +    return true;
  1.4302 +}
  1.4303 +
  1.4304 +static bool
  1.4305 +CheckComma(FunctionCompiler &f, ParseNode *comma, MDefinition **def, Type *type)
  1.4306 +{
  1.4307 +    JS_ASSERT(comma->isKind(PNK_COMMA));
  1.4308 +    ParseNode *operands = ListHead(comma);
  1.4309 +
  1.4310 +    ParseNode *pn = operands;
  1.4311 +    for (; NextNode(pn); pn = NextNode(pn)) {
  1.4312 +        MDefinition *_1;
  1.4313 +        Type _2;
  1.4314 +        if (pn->isKind(PNK_CALL)) {
  1.4315 +            if (!CheckCall(f, pn, RetType::Void, &_1, &_2))
  1.4316 +                return false;
  1.4317 +        } else {
  1.4318 +            if (!CheckExpr(f, pn, &_1, &_2))
  1.4319 +                return false;
  1.4320 +        }
  1.4321 +    }
  1.4322 +
  1.4323 +    if (!CheckExpr(f, pn, def, type))
  1.4324 +        return false;
  1.4325 +
  1.4326 +    return true;
  1.4327 +}
  1.4328 +
  1.4329 +static bool
  1.4330 +CheckConditional(FunctionCompiler &f, ParseNode *ternary, MDefinition **def, Type *type)
  1.4331 +{
  1.4332 +    JS_ASSERT(ternary->isKind(PNK_CONDITIONAL));
  1.4333 +    ParseNode *cond = TernaryKid1(ternary);
  1.4334 +    ParseNode *thenExpr = TernaryKid2(ternary);
  1.4335 +    ParseNode *elseExpr = TernaryKid3(ternary);
  1.4336 +
  1.4337 +    MDefinition *condDef;
  1.4338 +    Type condType;
  1.4339 +    if (!CheckExpr(f, cond, &condDef, &condType))
  1.4340 +        return false;
  1.4341 +
  1.4342 +    if (!condType.isInt())
  1.4343 +        return f.failf(cond, "%s is not a subtype of int", condType.toChars());
  1.4344 +
  1.4345 +    MBasicBlock *thenBlock = nullptr, *elseBlock = nullptr;
  1.4346 +    if (!f.branchAndStartThen(condDef, &thenBlock, &elseBlock, thenExpr, elseExpr))
  1.4347 +        return false;
  1.4348 +
  1.4349 +    MDefinition *thenDef;
  1.4350 +    Type thenType;
  1.4351 +    if (!CheckExpr(f, thenExpr, &thenDef, &thenType))
  1.4352 +        return false;
  1.4353 +
  1.4354 +    BlockVector thenBlocks(f.cx());
  1.4355 +    if (!f.appendThenBlock(&thenBlocks))
  1.4356 +        return false;
  1.4357 +
  1.4358 +    f.pushPhiInput(thenDef);
  1.4359 +    f.switchToElse(elseBlock);
  1.4360 +
  1.4361 +    MDefinition *elseDef;
  1.4362 +    Type elseType;
  1.4363 +    if (!CheckExpr(f, elseExpr, &elseDef, &elseType))
  1.4364 +        return false;
  1.4365 +
  1.4366 +    f.pushPhiInput(elseDef);
  1.4367 +
  1.4368 +    if (thenType.isInt() && elseType.isInt()) {
  1.4369 +        *type = Type::Int;
  1.4370 +    } else if (thenType.isDouble() && elseType.isDouble()) {
  1.4371 +        *type = Type::Double;
  1.4372 +    } else if (thenType.isFloat() && elseType.isFloat()) {
  1.4373 +        *type = Type::Float;
  1.4374 +    } else {
  1.4375 +        return f.failf(ternary, "then/else branches of conditional must both produce int or double, "
  1.4376 +                       "current types are %s and %s", thenType.toChars(), elseType.toChars());
  1.4377 +    }
  1.4378 +
  1.4379 +    if (!f.joinIfElse(thenBlocks, elseExpr))
  1.4380 +        return false;
  1.4381 +
  1.4382 +    *def = f.popPhiOutput();
  1.4383 +    return true;
  1.4384 +}
  1.4385 +
  1.4386 +static bool
  1.4387 +IsValidIntMultiplyConstant(ModuleCompiler &m, ParseNode *expr)
  1.4388 +{
  1.4389 +    if (!IsNumericLiteral(m, expr))
  1.4390 +        return false;
  1.4391 +
  1.4392 +    NumLit literal = ExtractNumericLiteral(m, expr);
  1.4393 +    switch (literal.which()) {
  1.4394 +      case NumLit::Fixnum:
  1.4395 +      case NumLit::NegativeInt:
  1.4396 +        if (abs(literal.toInt32()) < (1<<20))
  1.4397 +            return true;
  1.4398 +        return false;
  1.4399 +      case NumLit::BigUnsigned:
  1.4400 +      case NumLit::Double:
  1.4401 +      case NumLit::Float:
  1.4402 +      case NumLit::OutOfRangeInt:
  1.4403 +        return false;
  1.4404 +    }
  1.4405 +
  1.4406 +    MOZ_ASSUME_UNREACHABLE("Bad literal");
  1.4407 +}
  1.4408 +
  1.4409 +static bool
  1.4410 +CheckMultiply(FunctionCompiler &f, ParseNode *star, MDefinition **def, Type *type)
  1.4411 +{
  1.4412 +    JS_ASSERT(star->isKind(PNK_STAR));
  1.4413 +    ParseNode *lhs = BinaryLeft(star);
  1.4414 +    ParseNode *rhs = BinaryRight(star);
  1.4415 +
  1.4416 +    MDefinition *lhsDef;
  1.4417 +    Type lhsType;
  1.4418 +    if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.4419 +        return false;
  1.4420 +
  1.4421 +    MDefinition *rhsDef;
  1.4422 +    Type rhsType;
  1.4423 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.4424 +        return false;
  1.4425 +
  1.4426 +    if (lhsType.isInt() && rhsType.isInt()) {
  1.4427 +        if (!IsValidIntMultiplyConstant(f.m(), lhs) && !IsValidIntMultiplyConstant(f.m(), rhs))
  1.4428 +            return f.fail(star, "one arg to int multiply must be a small (-2^20, 2^20) int literal");
  1.4429 +        *def = f.mul(lhsDef, rhsDef, MIRType_Int32, MMul::Integer);
  1.4430 +        *type = Type::Intish;
  1.4431 +        return true;
  1.4432 +    }
  1.4433 +
  1.4434 +    if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
  1.4435 +        *def = f.mul(lhsDef, rhsDef, MIRType_Double, MMul::Normal);
  1.4436 +        *type = Type::Double;
  1.4437 +        return true;
  1.4438 +    }
  1.4439 +
  1.4440 +    if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
  1.4441 +        *def = f.mul(lhsDef, rhsDef, MIRType_Float32, MMul::Normal);
  1.4442 +        *type = Type::Floatish;
  1.4443 +        return true;
  1.4444 +    }
  1.4445 +
  1.4446 +    return f.fail(star, "multiply operands must be both int, both double? or both float?");
  1.4447 +}
  1.4448 +
  1.4449 +static bool
  1.4450 +CheckAddOrSub(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type,
  1.4451 +              unsigned *numAddOrSubOut = nullptr)
  1.4452 +{
  1.4453 +    JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
  1.4454 +
  1.4455 +    JS_ASSERT(expr->isKind(PNK_ADD) || expr->isKind(PNK_SUB));
  1.4456 +    ParseNode *lhs = BinaryLeft(expr);
  1.4457 +    ParseNode *rhs = BinaryRight(expr);
  1.4458 +
  1.4459 +    MDefinition *lhsDef, *rhsDef;
  1.4460 +    Type lhsType, rhsType;
  1.4461 +    unsigned lhsNumAddOrSub, rhsNumAddOrSub;
  1.4462 +
  1.4463 +    if (lhs->isKind(PNK_ADD) || lhs->isKind(PNK_SUB)) {
  1.4464 +        if (!CheckAddOrSub(f, lhs, &lhsDef, &lhsType, &lhsNumAddOrSub))
  1.4465 +            return false;
  1.4466 +        if (lhsType == Type::Intish)
  1.4467 +            lhsType = Type::Int;
  1.4468 +    } else {
  1.4469 +        if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.4470 +            return false;
  1.4471 +        lhsNumAddOrSub = 0;
  1.4472 +    }
  1.4473 +
  1.4474 +    if (rhs->isKind(PNK_ADD) || rhs->isKind(PNK_SUB)) {
  1.4475 +        if (!CheckAddOrSub(f, rhs, &rhsDef, &rhsType, &rhsNumAddOrSub))
  1.4476 +            return false;
  1.4477 +        if (rhsType == Type::Intish)
  1.4478 +            rhsType = Type::Int;
  1.4479 +    } else {
  1.4480 +        if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.4481 +            return false;
  1.4482 +        rhsNumAddOrSub = 0;
  1.4483 +    }
  1.4484 +
  1.4485 +    unsigned numAddOrSub = lhsNumAddOrSub + rhsNumAddOrSub + 1;
  1.4486 +    if (numAddOrSub > (1<<20))
  1.4487 +        return f.fail(expr, "too many + or - without intervening coercion");
  1.4488 +
  1.4489 +    if (lhsType.isInt() && rhsType.isInt()) {
  1.4490 +        *def = expr->isKind(PNK_ADD)
  1.4491 +               ? f.binary<MAdd>(lhsDef, rhsDef, MIRType_Int32)
  1.4492 +               : f.binary<MSub>(lhsDef, rhsDef, MIRType_Int32);
  1.4493 +        *type = Type::Intish;
  1.4494 +    } else if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
  1.4495 +        *def = expr->isKind(PNK_ADD)
  1.4496 +               ? f.binary<MAdd>(lhsDef, rhsDef, MIRType_Double)
  1.4497 +               : f.binary<MSub>(lhsDef, rhsDef, MIRType_Double);
  1.4498 +        *type = Type::Double;
  1.4499 +    } else if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
  1.4500 +        *def = expr->isKind(PNK_ADD)
  1.4501 +               ? f.binary<MAdd>(lhsDef, rhsDef, MIRType_Float32)
  1.4502 +               : f.binary<MSub>(lhsDef, rhsDef, MIRType_Float32);
  1.4503 +        *type = Type::Floatish;
  1.4504 +    } else {
  1.4505 +        return f.failf(expr, "operands to + or - must both be int, float? or double?, got %s and %s",
  1.4506 +                       lhsType.toChars(), rhsType.toChars());
  1.4507 +    }
  1.4508 +
  1.4509 +    if (numAddOrSubOut)
  1.4510 +        *numAddOrSubOut = numAddOrSub;
  1.4511 +    return true;
  1.4512 +}
  1.4513 +
  1.4514 +static bool
  1.4515 +CheckDivOrMod(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4516 +{
  1.4517 +    JS_ASSERT(expr->isKind(PNK_DIV) || expr->isKind(PNK_MOD));
  1.4518 +    ParseNode *lhs = BinaryLeft(expr);
  1.4519 +    ParseNode *rhs = BinaryRight(expr);
  1.4520 +
  1.4521 +    MDefinition *lhsDef, *rhsDef;
  1.4522 +    Type lhsType, rhsType;
  1.4523 +    if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.4524 +        return false;
  1.4525 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.4526 +        return false;
  1.4527 +
  1.4528 +    if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
  1.4529 +        *def = expr->isKind(PNK_DIV)
  1.4530 +               ? f.div(lhsDef, rhsDef, MIRType_Double, /* unsignd = */ false)
  1.4531 +               : f.mod(lhsDef, rhsDef, MIRType_Double, /* unsignd = */ false);
  1.4532 +        *type = Type::Double;
  1.4533 +        return true;
  1.4534 +    }
  1.4535 +
  1.4536 +    if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
  1.4537 +        if (expr->isKind(PNK_DIV))
  1.4538 +            *def = f.div(lhsDef, rhsDef, MIRType_Float32, /* unsignd = */ false);
  1.4539 +        else
  1.4540 +            return f.fail(expr, "modulo cannot receive float arguments");
  1.4541 +        *type = Type::Floatish;
  1.4542 +        return true;
  1.4543 +    }
  1.4544 +
  1.4545 +    if (lhsType.isSigned() && rhsType.isSigned()) {
  1.4546 +        if (expr->isKind(PNK_DIV))
  1.4547 +            *def = f.div(lhsDef, rhsDef, MIRType_Int32, /* unsignd = */ false);
  1.4548 +        else
  1.4549 +            *def = f.mod(lhsDef, rhsDef, MIRType_Int32, /* unsignd = */ false);
  1.4550 +        *type = Type::Intish;
  1.4551 +        return true;
  1.4552 +    }
  1.4553 +
  1.4554 +    if (lhsType.isUnsigned() && rhsType.isUnsigned()) {
  1.4555 +        if (expr->isKind(PNK_DIV))
  1.4556 +            *def = f.div(lhsDef, rhsDef, MIRType_Int32, /* unsignd = */ true);
  1.4557 +        else
  1.4558 +            *def = f.mod(lhsDef, rhsDef, MIRType_Int32, /* unsignd = */ true);
  1.4559 +        *type = Type::Intish;
  1.4560 +        return true;
  1.4561 +    }
  1.4562 +
  1.4563 +    return f.failf(expr, "arguments to / or %% must both be double?, float?, signed, or unsigned; "
  1.4564 +                   "%s and %s are given", lhsType.toChars(), rhsType.toChars());
  1.4565 +}
  1.4566 +
  1.4567 +static bool
  1.4568 +CheckComparison(FunctionCompiler &f, ParseNode *comp, MDefinition **def, Type *type)
  1.4569 +{
  1.4570 +    JS_ASSERT(comp->isKind(PNK_LT) || comp->isKind(PNK_LE) || comp->isKind(PNK_GT) ||
  1.4571 +              comp->isKind(PNK_GE) || comp->isKind(PNK_EQ) || comp->isKind(PNK_NE));
  1.4572 +    ParseNode *lhs = BinaryLeft(comp);
  1.4573 +    ParseNode *rhs = BinaryRight(comp);
  1.4574 +
  1.4575 +    MDefinition *lhsDef, *rhsDef;
  1.4576 +    Type lhsType, rhsType;
  1.4577 +    if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.4578 +        return false;
  1.4579 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.4580 +        return false;
  1.4581 +
  1.4582 +    if ((lhsType.isSigned() && rhsType.isSigned()) || (lhsType.isUnsigned() && rhsType.isUnsigned())) {
  1.4583 +        MCompare::CompareType compareType = (lhsType.isUnsigned() && rhsType.isUnsigned())
  1.4584 +                                            ? MCompare::Compare_UInt32
  1.4585 +                                            : MCompare::Compare_Int32;
  1.4586 +        *def = f.compare(lhsDef, rhsDef, comp->getOp(), compareType);
  1.4587 +        *type = Type::Int;
  1.4588 +        return true;
  1.4589 +    }
  1.4590 +
  1.4591 +    if (lhsType.isDouble() && rhsType.isDouble()) {
  1.4592 +        *def = f.compare(lhsDef, rhsDef, comp->getOp(), MCompare::Compare_Double);
  1.4593 +        *type = Type::Int;
  1.4594 +        return true;
  1.4595 +    }
  1.4596 +
  1.4597 +    if (lhsType.isFloat() && rhsType.isFloat()) {
  1.4598 +        *def = f.compare(lhsDef, rhsDef, comp->getOp(), MCompare::Compare_Float32);
  1.4599 +        *type = Type::Int;
  1.4600 +        return true;
  1.4601 +    }
  1.4602 +
  1.4603 +    return f.failf(comp, "arguments to a comparison must both be signed, unsigned, floats or doubles; "
  1.4604 +                   "%s and %s are given", lhsType.toChars(), rhsType.toChars());
  1.4605 +}
  1.4606 +
  1.4607 +static bool
  1.4608 +CheckBitwise(FunctionCompiler &f, ParseNode *bitwise, MDefinition **def, Type *type)
  1.4609 +{
  1.4610 +    ParseNode *lhs = BinaryLeft(bitwise);
  1.4611 +    ParseNode *rhs = BinaryRight(bitwise);
  1.4612 +
  1.4613 +    int32_t identityElement;
  1.4614 +    bool onlyOnRight;
  1.4615 +    switch (bitwise->getKind()) {
  1.4616 +      case PNK_BITOR:  identityElement = 0;  onlyOnRight = false; *type = Type::Signed;   break;
  1.4617 +      case PNK_BITAND: identityElement = -1; onlyOnRight = false; *type = Type::Signed;   break;
  1.4618 +      case PNK_BITXOR: identityElement = 0;  onlyOnRight = false; *type = Type::Signed;   break;
  1.4619 +      case PNK_LSH:    identityElement = 0;  onlyOnRight = true;  *type = Type::Signed;   break;
  1.4620 +      case PNK_RSH:    identityElement = 0;  onlyOnRight = true;  *type = Type::Signed;   break;
  1.4621 +      case PNK_URSH:   identityElement = 0;  onlyOnRight = true;  *type = Type::Unsigned; break;
  1.4622 +      default: MOZ_ASSUME_UNREACHABLE("not a bitwise op");
  1.4623 +    }
  1.4624 +
  1.4625 +    uint32_t i;
  1.4626 +    if (!onlyOnRight && IsLiteralInt(f.m(), lhs, &i) && i == uint32_t(identityElement)) {
  1.4627 +        Type rhsType;
  1.4628 +        if (!CheckExpr(f, rhs, def, &rhsType))
  1.4629 +            return false;
  1.4630 +        if (!rhsType.isIntish())
  1.4631 +            return f.failf(bitwise, "%s is not a subtype of intish", rhsType.toChars());
  1.4632 +        return true;
  1.4633 +    }
  1.4634 +
  1.4635 +    if (IsLiteralInt(f.m(), rhs, &i) && i == uint32_t(identityElement)) {
  1.4636 +        if (bitwise->isKind(PNK_BITOR) && lhs->isKind(PNK_CALL))
  1.4637 +            return CheckCall(f, lhs, RetType::Signed, def, type);
  1.4638 +
  1.4639 +        Type lhsType;
  1.4640 +        if (!CheckExpr(f, lhs, def, &lhsType))
  1.4641 +            return false;
  1.4642 +        if (!lhsType.isIntish())
  1.4643 +            return f.failf(bitwise, "%s is not a subtype of intish", lhsType.toChars());
  1.4644 +        return true;
  1.4645 +    }
  1.4646 +
  1.4647 +    MDefinition *lhsDef;
  1.4648 +    Type lhsType;
  1.4649 +    if (!CheckExpr(f, lhs, &lhsDef, &lhsType))
  1.4650 +        return false;
  1.4651 +
  1.4652 +    MDefinition *rhsDef;
  1.4653 +    Type rhsType;
  1.4654 +    if (!CheckExpr(f, rhs, &rhsDef, &rhsType))
  1.4655 +        return false;
  1.4656 +
  1.4657 +    if (!lhsType.isIntish())
  1.4658 +        return f.failf(lhs, "%s is not a subtype of intish", lhsType.toChars());
  1.4659 +    if (!rhsType.isIntish())
  1.4660 +        return f.failf(rhs, "%s is not a subtype of intish", rhsType.toChars());
  1.4661 +
  1.4662 +    switch (bitwise->getKind()) {
  1.4663 +      case PNK_BITOR:  *def = f.bitwise<MBitOr>(lhsDef, rhsDef); break;
  1.4664 +      case PNK_BITAND: *def = f.bitwise<MBitAnd>(lhsDef, rhsDef); break;
  1.4665 +      case PNK_BITXOR: *def = f.bitwise<MBitXor>(lhsDef, rhsDef); break;
  1.4666 +      case PNK_LSH:    *def = f.bitwise<MLsh>(lhsDef, rhsDef); break;
  1.4667 +      case PNK_RSH:    *def = f.bitwise<MRsh>(lhsDef, rhsDef); break;
  1.4668 +      case PNK_URSH:   *def = f.bitwise<MUrsh>(lhsDef, rhsDef); break;
  1.4669 +      default: MOZ_ASSUME_UNREACHABLE("not a bitwise op");
  1.4670 +    }
  1.4671 +
  1.4672 +    return true;
  1.4673 +}
  1.4674 +
  1.4675 +static bool
  1.4676 +CheckUncoercedCall(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4677 +{
  1.4678 +    JS_ASSERT(expr->isKind(PNK_CALL));
  1.4679 +
  1.4680 +    ParseNode *arg;
  1.4681 +    if (!IsFloatCoercion(f.m(), expr, &arg)) {
  1.4682 +        return f.fail(expr, "all function calls must either be ignored (via f(); or "
  1.4683 +                            "comma-expression), coerced to signed (via f()|0), coerced to float "
  1.4684 +                            "(via fround(f())) or coerced to double (via +f())");
  1.4685 +    }
  1.4686 +
  1.4687 +    return CheckFRoundArg(f, arg, def, type);
  1.4688 +}
  1.4689 +
  1.4690 +static bool
  1.4691 +CheckExpr(FunctionCompiler &f, ParseNode *expr, MDefinition **def, Type *type)
  1.4692 +{
  1.4693 +    JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
  1.4694 +
  1.4695 +    if (!f.mirGen().ensureBallast())
  1.4696 +        return false;
  1.4697 +
  1.4698 +    if (IsNumericLiteral(f.m(), expr))
  1.4699 +        return CheckNumericLiteral(f, expr, def, type);
  1.4700 +
  1.4701 +    switch (expr->getKind()) {
  1.4702 +      case PNK_NAME:        return CheckVarRef(f, expr, def, type);
  1.4703 +      case PNK_ELEM:        return CheckLoadArray(f, expr, def, type);
  1.4704 +      case PNK_ASSIGN:      return CheckAssign(f, expr, def, type);
  1.4705 +      case PNK_POS:         return CheckPos(f, expr, def, type);
  1.4706 +      case PNK_NOT:         return CheckNot(f, expr, def, type);
  1.4707 +      case PNK_NEG:         return CheckNeg(f, expr, def, type);
  1.4708 +      case PNK_BITNOT:      return CheckBitNot(f, expr, def, type);
  1.4709 +      case PNK_COMMA:       return CheckComma(f, expr, def, type);
  1.4710 +      case PNK_CONDITIONAL: return CheckConditional(f, expr, def, type);
  1.4711 +      case PNK_STAR:        return CheckMultiply(f, expr, def, type);
  1.4712 +      case PNK_CALL:        return CheckUncoercedCall(f, expr, def, type);
  1.4713 +
  1.4714 +      case PNK_ADD:
  1.4715 +      case PNK_SUB:         return CheckAddOrSub(f, expr, def, type);
  1.4716 +
  1.4717 +      case PNK_DIV:
  1.4718 +      case PNK_MOD:         return CheckDivOrMod(f, expr, def, type);
  1.4719 +
  1.4720 +      case PNK_LT:
  1.4721 +      case PNK_LE:
  1.4722 +      case PNK_GT:
  1.4723 +      case PNK_GE:
  1.4724 +      case PNK_EQ:
  1.4725 +      case PNK_NE:          return CheckComparison(f, expr, def, type);
  1.4726 +
  1.4727 +      case PNK_BITOR:
  1.4728 +      case PNK_BITAND:
  1.4729 +      case PNK_BITXOR:
  1.4730 +      case PNK_LSH:
  1.4731 +      case PNK_RSH:
  1.4732 +      case PNK_URSH:        return CheckBitwise(f, expr, def, type);
  1.4733 +
  1.4734 +      default:;
  1.4735 +    }
  1.4736 +
  1.4737 +    return f.fail(expr, "unsupported expression");
  1.4738 +}
  1.4739 +
  1.4740 +static bool
  1.4741 +CheckStatement(FunctionCompiler &f, ParseNode *stmt, LabelVector *maybeLabels = nullptr);
  1.4742 +
  1.4743 +static bool
  1.4744 +CheckExprStatement(FunctionCompiler &f, ParseNode *exprStmt)
  1.4745 +{
  1.4746 +    JS_ASSERT(exprStmt->isKind(PNK_SEMI));
  1.4747 +    ParseNode *expr = UnaryKid(exprStmt);
  1.4748 +
  1.4749 +    if (!expr)
  1.4750 +        return true;
  1.4751 +
  1.4752 +    MDefinition *_1;
  1.4753 +    Type _2;
  1.4754 +
  1.4755 +    if (expr->isKind(PNK_CALL))
  1.4756 +        return CheckCall(f, expr, RetType::Void, &_1, &_2);
  1.4757 +
  1.4758 +    return CheckExpr(f, UnaryKid(exprStmt), &_1, &_2);
  1.4759 +}
  1.4760 +
  1.4761 +static bool
  1.4762 +CheckWhile(FunctionCompiler &f, ParseNode *whileStmt, const LabelVector *maybeLabels)
  1.4763 +{
  1.4764 +    JS_ASSERT(whileStmt->isKind(PNK_WHILE));
  1.4765 +    ParseNode *cond = BinaryLeft(whileStmt);
  1.4766 +    ParseNode *body = BinaryRight(whileStmt);
  1.4767 +
  1.4768 +    MBasicBlock *loopEntry;
  1.4769 +    if (!f.startPendingLoop(whileStmt, &loopEntry, body))
  1.4770 +        return false;
  1.4771 +
  1.4772 +    MDefinition *condDef;
  1.4773 +    Type condType;
  1.4774 +    if (!CheckExpr(f, cond, &condDef, &condType))
  1.4775 +        return false;
  1.4776 +
  1.4777 +    if (!condType.isInt())
  1.4778 +        return f.failf(cond, "%s is not a subtype of int", condType.toChars());
  1.4779 +
  1.4780 +    MBasicBlock *afterLoop;
  1.4781 +    if (!f.branchAndStartLoopBody(condDef, &afterLoop, body, NextNode(whileStmt)))
  1.4782 +        return false;
  1.4783 +
  1.4784 +    if (!CheckStatement(f, body))
  1.4785 +        return false;
  1.4786 +
  1.4787 +    if (!f.bindContinues(whileStmt, maybeLabels))
  1.4788 +        return false;
  1.4789 +
  1.4790 +    return f.closeLoop(loopEntry, afterLoop);
  1.4791 +}
  1.4792 +
  1.4793 +static bool
  1.4794 +CheckFor(FunctionCompiler &f, ParseNode *forStmt, const LabelVector *maybeLabels)
  1.4795 +{
  1.4796 +    JS_ASSERT(forStmt->isKind(PNK_FOR));
  1.4797 +    ParseNode *forHead = BinaryLeft(forStmt);
  1.4798 +    ParseNode *body = BinaryRight(forStmt);
  1.4799 +
  1.4800 +    if (!forHead->isKind(PNK_FORHEAD))
  1.4801 +        return f.fail(forHead, "unsupported for-loop statement");
  1.4802 +
  1.4803 +    ParseNode *maybeInit = TernaryKid1(forHead);
  1.4804 +    ParseNode *maybeCond = TernaryKid2(forHead);
  1.4805 +    ParseNode *maybeInc = TernaryKid3(forHead);
  1.4806 +
  1.4807 +    if (maybeInit) {
  1.4808 +        MDefinition *_1;
  1.4809 +        Type _2;
  1.4810 +        if (!CheckExpr(f, maybeInit, &_1, &_2))
  1.4811 +            return false;
  1.4812 +    }
  1.4813 +
  1.4814 +    MBasicBlock *loopEntry;
  1.4815 +    if (!f.startPendingLoop(forStmt, &loopEntry, body))
  1.4816 +        return false;
  1.4817 +
  1.4818 +    MDefinition *condDef;
  1.4819 +    if (maybeCond) {
  1.4820 +        Type condType;
  1.4821 +        if (!CheckExpr(f, maybeCond, &condDef, &condType))
  1.4822 +            return false;
  1.4823 +
  1.4824 +        if (!condType.isInt())
  1.4825 +            return f.failf(maybeCond, "%s is not a subtype of int", condType.toChars());
  1.4826 +    } else {
  1.4827 +        condDef = f.constant(Int32Value(1), Type::Int);
  1.4828 +    }
  1.4829 +
  1.4830 +    MBasicBlock *afterLoop;
  1.4831 +    if (!f.branchAndStartLoopBody(condDef, &afterLoop, body, NextNode(forStmt)))
  1.4832 +        return false;
  1.4833 +
  1.4834 +    if (!CheckStatement(f, body))
  1.4835 +        return false;
  1.4836 +
  1.4837 +    if (!f.bindContinues(forStmt, maybeLabels))
  1.4838 +        return false;
  1.4839 +
  1.4840 +    if (maybeInc) {
  1.4841 +        MDefinition *_1;
  1.4842 +        Type _2;
  1.4843 +        if (!CheckExpr(f, maybeInc, &_1, &_2))
  1.4844 +            return false;
  1.4845 +    }
  1.4846 +
  1.4847 +    return f.closeLoop(loopEntry, afterLoop);
  1.4848 +}
  1.4849 +
  1.4850 +static bool
  1.4851 +CheckDoWhile(FunctionCompiler &f, ParseNode *whileStmt, const LabelVector *maybeLabels)
  1.4852 +{
  1.4853 +    JS_ASSERT(whileStmt->isKind(PNK_DOWHILE));
  1.4854 +    ParseNode *body = BinaryLeft(whileStmt);
  1.4855 +    ParseNode *cond = BinaryRight(whileStmt);
  1.4856 +
  1.4857 +    MBasicBlock *loopEntry;
  1.4858 +    if (!f.startPendingLoop(whileStmt, &loopEntry, body))
  1.4859 +        return false;
  1.4860 +
  1.4861 +    if (!CheckStatement(f, body))
  1.4862 +        return false;
  1.4863 +
  1.4864 +    if (!f.bindContinues(whileStmt, maybeLabels))
  1.4865 +        return false;
  1.4866 +
  1.4867 +    MDefinition *condDef;
  1.4868 +    Type condType;
  1.4869 +    if (!CheckExpr(f, cond, &condDef, &condType))
  1.4870 +        return false;
  1.4871 +
  1.4872 +    if (!condType.isInt())
  1.4873 +        return f.failf(cond, "%s is not a subtype of int", condType.toChars());
  1.4874 +
  1.4875 +    return f.branchAndCloseDoWhileLoop(condDef, loopEntry, NextNode(whileStmt));
  1.4876 +}
  1.4877 +
  1.4878 +static bool
  1.4879 +CheckLabel(FunctionCompiler &f, ParseNode *labeledStmt, LabelVector *maybeLabels)
  1.4880 +{
  1.4881 +    JS_ASSERT(labeledStmt->isKind(PNK_LABEL));
  1.4882 +    PropertyName *label = LabeledStatementLabel(labeledStmt);
  1.4883 +    ParseNode *stmt = LabeledStatementStatement(labeledStmt);
  1.4884 +
  1.4885 +    if (maybeLabels) {
  1.4886 +        if (!maybeLabels->append(label))
  1.4887 +            return false;
  1.4888 +        if (!CheckStatement(f, stmt, maybeLabels))
  1.4889 +            return false;
  1.4890 +        return true;
  1.4891 +    }
  1.4892 +
  1.4893 +    LabelVector labels(f.cx());
  1.4894 +    if (!labels.append(label))
  1.4895 +        return false;
  1.4896 +
  1.4897 +    if (!CheckStatement(f, stmt, &labels))
  1.4898 +        return false;
  1.4899 +
  1.4900 +    return f.bindLabeledBreaks(&labels, labeledStmt);
  1.4901 +}
  1.4902 +
  1.4903 +static bool
  1.4904 +CheckLeafCondition(FunctionCompiler &f, ParseNode *cond, ParseNode *thenStmt, ParseNode *elseOrJoinStmt,
  1.4905 +                   MBasicBlock **thenBlock, MBasicBlock **elseOrJoinBlock)
  1.4906 +{
  1.4907 +    MDefinition *condDef;
  1.4908 +    Type condType;
  1.4909 +    if (!CheckExpr(f, cond, &condDef, &condType))
  1.4910 +        return false;
  1.4911 +    if (!condType.isInt())
  1.4912 +        return f.failf(cond, "%s is not a subtype of int", condType.toChars());
  1.4913 +
  1.4914 +    if (!f.branchAndStartThen(condDef, thenBlock, elseOrJoinBlock, thenStmt, elseOrJoinStmt))
  1.4915 +        return false;
  1.4916 +    return true;
  1.4917 +}
  1.4918 +
  1.4919 +static bool
  1.4920 +CheckIfCondition(FunctionCompiler &f, ParseNode *cond, ParseNode *thenStmt, ParseNode *elseOrJoinStmt,
  1.4921 +                 MBasicBlock **thenBlock, MBasicBlock **elseOrJoinBlock);
  1.4922 +
  1.4923 +static bool
  1.4924 +CheckIfConditional(FunctionCompiler &f, ParseNode *conditional, ParseNode *thenStmt, ParseNode *elseOrJoinStmt,
  1.4925 +                   MBasicBlock **thenBlock, MBasicBlock **elseOrJoinBlock)
  1.4926 +{
  1.4927 +    JS_ASSERT(conditional->isKind(PNK_CONDITIONAL));
  1.4928 +
  1.4929 +    // a ? b : c <=> (a && b) || (!a && c)
  1.4930 +    // b is always referred to the AND condition, as we need A and B to reach this test,
  1.4931 +    // c is always referred as the OR condition, as we reach it if we don't have A.
  1.4932 +    ParseNode *cond = TernaryKid1(conditional);
  1.4933 +    ParseNode *lhs = TernaryKid2(conditional);
  1.4934 +    ParseNode *rhs = TernaryKid3(conditional);
  1.4935 +
  1.4936 +    MBasicBlock *maybeAndTest = nullptr, *maybeOrTest = nullptr;
  1.4937 +    MBasicBlock **ifTrueBlock = &maybeAndTest, **ifFalseBlock = &maybeOrTest;
  1.4938 +    ParseNode *ifTrueBlockNode = lhs, *ifFalseBlockNode = rhs;
  1.4939 +
  1.4940 +    // Try to spot opportunities for short-circuiting in the AND subpart
  1.4941 +    uint32_t andTestLiteral = 0;
  1.4942 +    bool skipAndTest = false;
  1.4943 +
  1.4944 +    if (IsLiteralInt(f.m(), lhs, &andTestLiteral)) {
  1.4945 +        skipAndTest = true;
  1.4946 +        if (andTestLiteral == 0) {
  1.4947 +            // (a ? 0 : b) is equivalent to !a && b
  1.4948 +            // If a is true, jump to the elseBlock directly
  1.4949 +            ifTrueBlock = elseOrJoinBlock;
  1.4950 +            ifTrueBlockNode = elseOrJoinStmt;
  1.4951 +        } else {
  1.4952 +            // (a ? 1 : b) is equivalent to a || b
  1.4953 +            // If a is true, jump to the thenBlock directly
  1.4954 +            ifTrueBlock = thenBlock;
  1.4955 +            ifTrueBlockNode = thenStmt;
  1.4956 +        }
  1.4957 +    }
  1.4958 +
  1.4959 +    // Try to spot opportunities for short-circuiting in the OR subpart
  1.4960 +    uint32_t orTestLiteral = 0;
  1.4961 +    bool skipOrTest = false;
  1.4962 +
  1.4963 +    if (IsLiteralInt(f.m(), rhs, &orTestLiteral)) {
  1.4964 +        skipOrTest = true;
  1.4965 +        if (orTestLiteral == 0) {
  1.4966 +            // (a ? b : 0) is equivalent to a && b
  1.4967 +            // If a is false, jump to the elseBlock directly
  1.4968 +            ifFalseBlock = elseOrJoinBlock;
  1.4969 +            ifFalseBlockNode = elseOrJoinStmt;
  1.4970 +        } else {
  1.4971 +            // (a ? b : 1) is equivalent to !a || b
  1.4972 +            // If a is false, jump to the thenBlock directly
  1.4973 +            ifFalseBlock = thenBlock;
  1.4974 +            ifFalseBlockNode = thenStmt;
  1.4975 +        }
  1.4976 +    }
  1.4977 +
  1.4978 +    // Pathological cases: a ? 0 : 0 (i.e. false) or a ? 1 : 1 (i.e. true)
  1.4979 +    // These cases can't be optimized properly at this point: one of the blocks might be
  1.4980 +    // created and won't ever be executed. Furthermore, it introduces inconsistencies in the
  1.4981 +    // MIR graph (even if we try to create a block by hand, it will have no predecessor, which
  1.4982 +    // breaks graph assumptions). The only way we could optimize it is to do it directly in
  1.4983 +    // CheckIf by removing the control flow entirely.
  1.4984 +    if (skipOrTest && skipAndTest && (!!orTestLiteral == !!andTestLiteral))
  1.4985 +        return CheckLeafCondition(f, conditional, thenStmt, elseOrJoinStmt, thenBlock, elseOrJoinBlock);
  1.4986 +
  1.4987 +    if (!CheckIfCondition(f, cond, ifTrueBlockNode, ifFalseBlockNode, ifTrueBlock, ifFalseBlock))
  1.4988 +        return false;
  1.4989 +    f.assertCurrentBlockIs(*ifTrueBlock);
  1.4990 +
  1.4991 +    // Add supplementary tests, if needed
  1.4992 +    if (!skipAndTest) {
  1.4993 +        if (!CheckIfCondition(f, lhs, thenStmt, elseOrJoinStmt, thenBlock, elseOrJoinBlock))
  1.4994 +            return false;
  1.4995 +        f.assertCurrentBlockIs(*thenBlock);
  1.4996 +    }
  1.4997 +
  1.4998 +    if (!skipOrTest) {
  1.4999 +        f.switchToElse(*ifFalseBlock);
  1.5000 +        if (!CheckIfCondition(f, rhs, thenStmt, elseOrJoinStmt, thenBlock, elseOrJoinBlock))
  1.5001 +            return false;
  1.5002 +        f.assertCurrentBlockIs(*thenBlock);
  1.5003 +    }
  1.5004 +
  1.5005 +    // We might not be on the thenBlock in one case
  1.5006 +    if (ifTrueBlock == elseOrJoinBlock) {
  1.5007 +        JS_ASSERT(skipAndTest && andTestLiteral == 0);
  1.5008 +        f.switchToElse(*thenBlock);
  1.5009 +    }
  1.5010 +
  1.5011 +    // Check post-conditions
  1.5012 +    f.assertCurrentBlockIs(*thenBlock);
  1.5013 +    JS_ASSERT_IF(!f.inDeadCode(), *thenBlock && *elseOrJoinBlock);
  1.5014 +    return true;
  1.5015 +}
  1.5016 +
  1.5017 +/*
  1.5018 + * Recursive function that checks for a complex condition (formed with ternary
  1.5019 + * conditionals) and creates the associated short-circuiting control flow graph.
  1.5020 + *
  1.5021 + * After a call to CheckCondition, the followings are true:
  1.5022 + * - if *thenBlock and *elseOrJoinBlock were non-null on entry, their value is
  1.5023 + *   not changed by this function.
  1.5024 + * - *thenBlock and *elseOrJoinBlock are non-null on exit.
  1.5025 + * - the current block on exit is the *thenBlock.
  1.5026 + */
  1.5027 +static bool
  1.5028 +CheckIfCondition(FunctionCompiler &f, ParseNode *cond, ParseNode *thenStmt,
  1.5029 +                 ParseNode *elseOrJoinStmt, MBasicBlock **thenBlock, MBasicBlock **elseOrJoinBlock)
  1.5030 +{
  1.5031 +    JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
  1.5032 +
  1.5033 +    if (cond->isKind(PNK_CONDITIONAL))
  1.5034 +        return CheckIfConditional(f, cond, thenStmt, elseOrJoinStmt, thenBlock, elseOrJoinBlock);
  1.5035 +
  1.5036 +    // We've reached a leaf, i.e. an atomic condition
  1.5037 +    JS_ASSERT(!cond->isKind(PNK_CONDITIONAL));
  1.5038 +    if (!CheckLeafCondition(f, cond, thenStmt, elseOrJoinStmt, thenBlock, elseOrJoinBlock))
  1.5039 +        return false;
  1.5040 +
  1.5041 +    // Check post-conditions
  1.5042 +    f.assertCurrentBlockIs(*thenBlock);
  1.5043 +    JS_ASSERT_IF(!f.inDeadCode(), *thenBlock && *elseOrJoinBlock);
  1.5044 +    return true;
  1.5045 +}
  1.5046 +
  1.5047 +static bool
  1.5048 +CheckIf(FunctionCompiler &f, ParseNode *ifStmt)
  1.5049 +{
  1.5050 +    // Handle if/else-if chains using iteration instead of recursion. This
  1.5051 +    // avoids blowing the C stack quota for long if/else-if chains and also
  1.5052 +    // creates fewer MBasicBlocks at join points (by creating one join block
  1.5053 +    // for the entire if/else-if chain).
  1.5054 +    BlockVector thenBlocks(f.cx());
  1.5055 +
  1.5056 +    ParseNode *nextStmt = NextNode(ifStmt);
  1.5057 +  recurse:
  1.5058 +    JS_ASSERT(ifStmt->isKind(PNK_IF));
  1.5059 +    ParseNode *cond = TernaryKid1(ifStmt);
  1.5060 +    ParseNode *thenStmt = TernaryKid2(ifStmt);
  1.5061 +    ParseNode *elseStmt = TernaryKid3(ifStmt);
  1.5062 +
  1.5063 +    MBasicBlock *thenBlock = nullptr, *elseBlock = nullptr;
  1.5064 +    ParseNode *elseOrJoinStmt = elseStmt ? elseStmt : nextStmt;
  1.5065 +
  1.5066 +    if (!CheckIfCondition(f, cond, thenStmt, elseOrJoinStmt, &thenBlock, &elseBlock))
  1.5067 +        return false;
  1.5068 +
  1.5069 +    if (!CheckStatement(f, thenStmt))
  1.5070 +        return false;
  1.5071 +
  1.5072 +    if (!f.appendThenBlock(&thenBlocks))
  1.5073 +        return false;
  1.5074 +
  1.5075 +    if (!elseStmt) {
  1.5076 +        if (!f.joinIf(thenBlocks, elseBlock))
  1.5077 +            return false;
  1.5078 +    } else {
  1.5079 +        f.switchToElse(elseBlock);
  1.5080 +
  1.5081 +        if (elseStmt->isKind(PNK_IF)) {
  1.5082 +            ifStmt = elseStmt;
  1.5083 +            goto recurse;
  1.5084 +        }
  1.5085 +
  1.5086 +        if (!CheckStatement(f, elseStmt))
  1.5087 +            return false;
  1.5088 +
  1.5089 +        if (!f.joinIfElse(thenBlocks, nextStmt))
  1.5090 +            return false;
  1.5091 +    }
  1.5092 +
  1.5093 +    return true;
  1.5094 +}
  1.5095 +
  1.5096 +static bool
  1.5097 +CheckCaseExpr(FunctionCompiler &f, ParseNode *caseExpr, int32_t *value)
  1.5098 +{
  1.5099 +    if (!IsNumericLiteral(f.m(), caseExpr))
  1.5100 +        return f.fail(caseExpr, "switch case expression must be an integer literal");
  1.5101 +
  1.5102 +    NumLit literal = ExtractNumericLiteral(f.m(), caseExpr);
  1.5103 +    switch (literal.which()) {
  1.5104 +      case NumLit::Fixnum:
  1.5105 +      case NumLit::NegativeInt:
  1.5106 +        *value = literal.toInt32();
  1.5107 +        break;
  1.5108 +      case NumLit::OutOfRangeInt:
  1.5109 +      case NumLit::BigUnsigned:
  1.5110 +        return f.fail(caseExpr, "switch case expression out of integer range");
  1.5111 +      case NumLit::Double:
  1.5112 +      case NumLit::Float:
  1.5113 +        return f.fail(caseExpr, "switch case expression must be an integer literal");
  1.5114 +    }
  1.5115 +
  1.5116 +    return true;
  1.5117 +}
  1.5118 +
  1.5119 +static bool
  1.5120 +CheckDefaultAtEnd(FunctionCompiler &f, ParseNode *stmt)
  1.5121 +{
  1.5122 +    for (; stmt; stmt = NextNode(stmt)) {
  1.5123 +        JS_ASSERT(stmt->isKind(PNK_CASE) || stmt->isKind(PNK_DEFAULT));
  1.5124 +        if (stmt->isKind(PNK_DEFAULT) && NextNode(stmt) != nullptr)
  1.5125 +            return f.fail(stmt, "default label must be at the end");
  1.5126 +    }
  1.5127 +
  1.5128 +    return true;
  1.5129 +}
  1.5130 +
  1.5131 +static bool
  1.5132 +CheckSwitchRange(FunctionCompiler &f, ParseNode *stmt, int32_t *low, int32_t *high,
  1.5133 +                 int32_t *tableLength)
  1.5134 +{
  1.5135 +    if (stmt->isKind(PNK_DEFAULT)) {
  1.5136 +        *low = 0;
  1.5137 +        *high = -1;
  1.5138 +        *tableLength = 0;
  1.5139 +        return true;
  1.5140 +    }
  1.5141 +
  1.5142 +    int32_t i = 0;
  1.5143 +    if (!CheckCaseExpr(f, CaseExpr(stmt), &i))
  1.5144 +        return false;
  1.5145 +
  1.5146 +    *low = *high = i;
  1.5147 +
  1.5148 +    ParseNode *initialStmt = stmt;
  1.5149 +    for (stmt = NextNode(stmt); stmt && stmt->isKind(PNK_CASE); stmt = NextNode(stmt)) {
  1.5150 +        int32_t i = 0;
  1.5151 +        if (!CheckCaseExpr(f, CaseExpr(stmt), &i))
  1.5152 +            return false;
  1.5153 +
  1.5154 +        *low = Min(*low, i);
  1.5155 +        *high = Max(*high, i);
  1.5156 +    }
  1.5157 +
  1.5158 +    int64_t i64 = (int64_t(*high) - int64_t(*low)) + 1;
  1.5159 +    if (i64 > 4*1024*1024)
  1.5160 +        return f.fail(initialStmt, "all switch statements generate tables; this table would be too big");
  1.5161 +
  1.5162 +    *tableLength = int32_t(i64);
  1.5163 +    return true;
  1.5164 +}
  1.5165 +
  1.5166 +static bool
  1.5167 +CheckSwitch(FunctionCompiler &f, ParseNode *switchStmt)
  1.5168 +{
  1.5169 +    JS_ASSERT(switchStmt->isKind(PNK_SWITCH));
  1.5170 +    ParseNode *switchExpr = BinaryLeft(switchStmt);
  1.5171 +    ParseNode *switchBody = BinaryRight(switchStmt);
  1.5172 +
  1.5173 +    if (!switchBody->isKind(PNK_STATEMENTLIST))
  1.5174 +        return f.fail(switchBody, "switch body may not contain 'let' declarations");
  1.5175 +
  1.5176 +    MDefinition *exprDef;
  1.5177 +    Type exprType;
  1.5178 +    if (!CheckExpr(f, switchExpr, &exprDef, &exprType))
  1.5179 +        return false;
  1.5180 +
  1.5181 +    if (!exprType.isSigned())
  1.5182 +        return f.failf(switchExpr, "%s is not a subtype of signed", exprType.toChars());
  1.5183 +
  1.5184 +    ParseNode *stmt = ListHead(switchBody);
  1.5185 +
  1.5186 +    if (!CheckDefaultAtEnd(f, stmt))
  1.5187 +        return false;
  1.5188 +
  1.5189 +    if (!stmt)
  1.5190 +        return true;
  1.5191 +
  1.5192 +    int32_t low = 0, high = 0, tableLength = 0;
  1.5193 +    if (!CheckSwitchRange(f, stmt, &low, &high, &tableLength))
  1.5194 +        return false;
  1.5195 +
  1.5196 +    BlockVector cases(f.cx());
  1.5197 +    if (!cases.resize(tableLength))
  1.5198 +        return false;
  1.5199 +
  1.5200 +    MBasicBlock *switchBlock;
  1.5201 +    if (!f.startSwitch(switchStmt, exprDef, low, high, &switchBlock))
  1.5202 +        return false;
  1.5203 +
  1.5204 +    for (; stmt && stmt->isKind(PNK_CASE); stmt = NextNode(stmt)) {
  1.5205 +        int32_t caseValue = ExtractNumericLiteral(f.m(), CaseExpr(stmt)).toInt32();
  1.5206 +        unsigned caseIndex = caseValue - low;
  1.5207 +
  1.5208 +        if (cases[caseIndex])
  1.5209 +            return f.fail(stmt, "no duplicate case labels");
  1.5210 +
  1.5211 +        if (!f.startSwitchCase(switchBlock, &cases[caseIndex], stmt))
  1.5212 +            return false;
  1.5213 +
  1.5214 +        if (!CheckStatement(f, CaseBody(stmt)))
  1.5215 +            return false;
  1.5216 +    }
  1.5217 +
  1.5218 +    MBasicBlock *defaultBlock;
  1.5219 +    if (!f.startSwitchDefault(switchBlock, &cases, &defaultBlock, stmt))
  1.5220 +        return false;
  1.5221 +
  1.5222 +    if (stmt && stmt->isKind(PNK_DEFAULT)) {
  1.5223 +        if (!CheckStatement(f, CaseBody(stmt)))
  1.5224 +            return false;
  1.5225 +    }
  1.5226 +
  1.5227 +    return f.joinSwitch(switchBlock, cases, defaultBlock);
  1.5228 +}
  1.5229 +
  1.5230 +static bool
  1.5231 +CheckReturnType(FunctionCompiler &f, ParseNode *usepn, RetType retType)
  1.5232 +{
  1.5233 +    if (!f.hasAlreadyReturned()) {
  1.5234 +        f.setReturnedType(retType);
  1.5235 +        return true;
  1.5236 +    }
  1.5237 +
  1.5238 +    if (f.returnedType() != retType) {
  1.5239 +        return f.failf(usepn, "%s incompatible with previous return of type %s",
  1.5240 +                       retType.toType().toChars(), f.returnedType().toType().toChars());
  1.5241 +    }
  1.5242 +
  1.5243 +    return true;
  1.5244 +}
  1.5245 +
  1.5246 +static bool
  1.5247 +CheckReturn(FunctionCompiler &f, ParseNode *returnStmt)
  1.5248 +{
  1.5249 +    ParseNode *expr = ReturnExpr(returnStmt);
  1.5250 +
  1.5251 +    if (!expr) {
  1.5252 +        if (!CheckReturnType(f, returnStmt, RetType::Void))
  1.5253 +            return false;
  1.5254 +
  1.5255 +        f.returnVoid();
  1.5256 +        return true;
  1.5257 +    }
  1.5258 +
  1.5259 +    MDefinition *def;
  1.5260 +    Type type;
  1.5261 +    if (!CheckExpr(f, expr, &def, &type))
  1.5262 +        return false;
  1.5263 +
  1.5264 +    RetType retType;
  1.5265 +    if (type.isSigned())
  1.5266 +        retType = RetType::Signed;
  1.5267 +    else if (type.isDouble())
  1.5268 +        retType = RetType::Double;
  1.5269 +    else if (type.isFloat())
  1.5270 +        retType = RetType::Float;
  1.5271 +    else if (type.isVoid())
  1.5272 +        retType = RetType::Void;
  1.5273 +    else
  1.5274 +        return f.failf(expr, "%s is not a valid return type", type.toChars());
  1.5275 +
  1.5276 +    if (!CheckReturnType(f, expr, retType))
  1.5277 +        return false;
  1.5278 +
  1.5279 +    if (retType == RetType::Void)
  1.5280 +        f.returnVoid();
  1.5281 +    else
  1.5282 +        f.returnExpr(def);
  1.5283 +    return true;
  1.5284 +}
  1.5285 +
  1.5286 +static bool
  1.5287 +CheckStatementList(FunctionCompiler &f, ParseNode *stmtList)
  1.5288 +{
  1.5289 +    JS_ASSERT(stmtList->isKind(PNK_STATEMENTLIST));
  1.5290 +
  1.5291 +    for (ParseNode *stmt = ListHead(stmtList); stmt; stmt = NextNode(stmt)) {
  1.5292 +        if (!CheckStatement(f, stmt))
  1.5293 +            return false;
  1.5294 +    }
  1.5295 +
  1.5296 +    return true;
  1.5297 +}
  1.5298 +
  1.5299 +static bool
  1.5300 +CheckStatement(FunctionCompiler &f, ParseNode *stmt, LabelVector *maybeLabels)
  1.5301 +{
  1.5302 +    JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
  1.5303 +
  1.5304 +    if (!f.mirGen().ensureBallast())
  1.5305 +        return false;
  1.5306 +
  1.5307 +    switch (stmt->getKind()) {
  1.5308 +      case PNK_SEMI:          return CheckExprStatement(f, stmt);
  1.5309 +      case PNK_WHILE:         return CheckWhile(f, stmt, maybeLabels);
  1.5310 +      case PNK_FOR:           return CheckFor(f, stmt, maybeLabels);
  1.5311 +      case PNK_DOWHILE:       return CheckDoWhile(f, stmt, maybeLabels);
  1.5312 +      case PNK_LABEL:         return CheckLabel(f, stmt, maybeLabels);
  1.5313 +      case PNK_IF:            return CheckIf(f, stmt);
  1.5314 +      case PNK_SWITCH:        return CheckSwitch(f, stmt);
  1.5315 +      case PNK_RETURN:        return CheckReturn(f, stmt);
  1.5316 +      case PNK_STATEMENTLIST: return CheckStatementList(f, stmt);
  1.5317 +      case PNK_BREAK:         return f.addBreak(LoopControlMaybeLabel(stmt));
  1.5318 +      case PNK_CONTINUE:      return f.addContinue(LoopControlMaybeLabel(stmt));
  1.5319 +      default:;
  1.5320 +    }
  1.5321 +
  1.5322 +    return f.fail(stmt, "unexpected statement kind");
  1.5323 +}
  1.5324 +
  1.5325 +static bool
  1.5326 +ParseFunction(ModuleCompiler &m, ParseNode **fnOut)
  1.5327 +{
  1.5328 +    TokenStream &tokenStream = m.tokenStream();
  1.5329 +
  1.5330 +    DebugOnly<TokenKind> tk = tokenStream.getToken();
  1.5331 +    JS_ASSERT(tk == TOK_FUNCTION);
  1.5332 +
  1.5333 +    RootedPropertyName name(m.cx());
  1.5334 +
  1.5335 +    TokenKind tt = tokenStream.getToken();
  1.5336 +    if (tt == TOK_NAME) {
  1.5337 +        name = tokenStream.currentName();
  1.5338 +    } else if (tt == TOK_YIELD) {
  1.5339 +        if (!m.parser().checkYieldNameValidity())
  1.5340 +            return false;
  1.5341 +        name = m.cx()->names().yield;
  1.5342 +    } else {
  1.5343 +        return false;  // The regular parser will throw a SyntaxError, no need to m.fail.
  1.5344 +    }
  1.5345 +
  1.5346 +    ParseNode *fn = m.parser().handler.newFunctionDefinition();
  1.5347 +    if (!fn)
  1.5348 +        return false;
  1.5349 +
  1.5350 +    // This flows into FunctionBox, so must be tenured.
  1.5351 +    RootedFunction fun(m.cx(), NewFunction(m.cx(), NullPtr(), nullptr, 0, JSFunction::INTERPRETED,
  1.5352 +                                           m.cx()->global(), name, JSFunction::FinalizeKind,
  1.5353 +                                           TenuredObject));
  1.5354 +    if (!fun)
  1.5355 +        return false;
  1.5356 +
  1.5357 +    AsmJSParseContext *outerpc = m.parser().pc;
  1.5358 +
  1.5359 +    Directives directives(outerpc);
  1.5360 +    FunctionBox *funbox = m.parser().newFunctionBox(fn, fun, outerpc, directives, NotGenerator);
  1.5361 +    if (!funbox)
  1.5362 +        return false;
  1.5363 +
  1.5364 +    Directives newDirectives = directives;
  1.5365 +    AsmJSParseContext funpc(&m.parser(), outerpc, fn, funbox, &newDirectives,
  1.5366 +                            outerpc->staticLevel + 1, outerpc->blockidGen,
  1.5367 +                            /* blockScopeDepth = */ 0);
  1.5368 +    if (!funpc.init(tokenStream))
  1.5369 +        return false;
  1.5370 +
  1.5371 +    if (!m.parser().functionArgsAndBodyGeneric(fn, fun, Normal, Statement, &newDirectives))
  1.5372 +        return false;
  1.5373 +
  1.5374 +    if (tokenStream.hadError() || directives != newDirectives)
  1.5375 +        return false;
  1.5376 +
  1.5377 +    outerpc->blockidGen = funpc.blockidGen;
  1.5378 +    fn->pn_blockid = outerpc->blockid();
  1.5379 +
  1.5380 +    *fnOut = fn;
  1.5381 +    return true;
  1.5382 +}
  1.5383 +
  1.5384 +static bool
  1.5385 +CheckFunction(ModuleCompiler &m, LifoAlloc &lifo, MIRGenerator **mir, ModuleCompiler::Func **funcOut)
  1.5386 +{
  1.5387 +    int64_t before = PRMJ_Now();
  1.5388 +
  1.5389 +    // asm.js modules can be quite large when represented as parse trees so pop
  1.5390 +    // the backing LifoAlloc after parsing/compiling each function.
  1.5391 +    AsmJSParser::Mark mark = m.parser().mark();
  1.5392 +
  1.5393 +    ParseNode *fn;
  1.5394 +    if (!ParseFunction(m, &fn))
  1.5395 +        return false;
  1.5396 +
  1.5397 +    if (!CheckFunctionHead(m, fn))
  1.5398 +        return false;
  1.5399 +
  1.5400 +    FunctionCompiler f(m, fn, lifo);
  1.5401 +    if (!f.init())
  1.5402 +        return false;
  1.5403 +
  1.5404 +    ParseNode *stmtIter = ListHead(FunctionStatementList(fn));
  1.5405 +
  1.5406 +    VarTypeVector argTypes(m.lifo());
  1.5407 +    if (!CheckArguments(f, &stmtIter, &argTypes))
  1.5408 +        return false;
  1.5409 +
  1.5410 +    if (!CheckVariables(f, &stmtIter))
  1.5411 +        return false;
  1.5412 +
  1.5413 +    if (!f.prepareToEmitMIR(argTypes))
  1.5414 +        return false;
  1.5415 +
  1.5416 +    ParseNode *lastNonEmptyStmt = nullptr;
  1.5417 +    for (; stmtIter; stmtIter = NextNode(stmtIter)) {
  1.5418 +        if (!CheckStatement(f, stmtIter))
  1.5419 +            return false;
  1.5420 +        if (!IsEmptyStatement(stmtIter))
  1.5421 +            lastNonEmptyStmt = stmtIter;
  1.5422 +    }
  1.5423 +
  1.5424 +    RetType retType;
  1.5425 +    if (!CheckFinalReturn(f, lastNonEmptyStmt, &retType))
  1.5426 +        return false;
  1.5427 +
  1.5428 +    if (!CheckReturnType(f, lastNonEmptyStmt, retType))
  1.5429 +        return false;
  1.5430 +
  1.5431 +    Signature sig(Move(argTypes), retType);
  1.5432 +    ModuleCompiler::Func *func = nullptr;
  1.5433 +    if (!CheckFunctionSignature(m, fn, Move(sig), FunctionName(fn), &func))
  1.5434 +        return false;
  1.5435 +
  1.5436 +    if (func->defined())
  1.5437 +        return m.failName(fn, "function '%s' already defined", FunctionName(fn));
  1.5438 +
  1.5439 +    uint32_t funcBegin = fn->pn_pos.begin;
  1.5440 +    uint32_t funcEnd = fn->pn_pos.end;
  1.5441 +    // The begin/end char range is relative to the beginning of the module,
  1.5442 +    // hence the assertions.
  1.5443 +    JS_ASSERT(funcBegin > m.moduleStart());
  1.5444 +    JS_ASSERT(funcEnd > m.moduleStart());
  1.5445 +    funcBegin -= m.moduleStart();
  1.5446 +    funcEnd -= m.moduleStart();
  1.5447 +    func->finish(funcBegin, funcEnd);
  1.5448 +
  1.5449 +    func->accumulateCompileTime((PRMJ_Now() - before) / PRMJ_USEC_PER_MSEC);
  1.5450 +
  1.5451 +    m.parser().release(mark);
  1.5452 +
  1.5453 +    // Copy the cumulative minimum heap size constraint to the MIR for use in analysis.  The length
  1.5454 +    // is also constrained to particular lengths, so firstly round up - a larger 'heap required
  1.5455 +    // length' can help range analysis to prove that bounds checks are not needed.
  1.5456 +    uint32_t len = js::RoundUpToNextValidAsmJSHeapLength(m.minHeapLength());
  1.5457 +    m.requireHeapLengthToBeAtLeast(len);
  1.5458 +
  1.5459 +    *mir = f.extractMIR();
  1.5460 +    (*mir)->noteMinAsmJSHeapLength(len);
  1.5461 +    *funcOut = func;
  1.5462 +    return true;
  1.5463 +}
  1.5464 +
  1.5465 +static bool
  1.5466 +GenerateCode(ModuleCompiler &m, ModuleCompiler::Func &func, MIRGenerator &mir, LIRGraph &lir)
  1.5467 +{
  1.5468 +    int64_t before = PRMJ_Now();
  1.5469 +
  1.5470 +    // A single MacroAssembler is reused for all function compilations so
  1.5471 +    // that there is a single linear code segment for each module. To avoid
  1.5472 +    // spiking memory, a LifoAllocScope in the caller frees all MIR/LIR
  1.5473 +    // after each function is compiled. This method is responsible for cleaning
  1.5474 +    // out any dangling pointers that the MacroAssembler may have kept.
  1.5475 +    m.masm().resetForNewCodeGenerator(mir.alloc());
  1.5476 +
  1.5477 +    m.masm().bind(func.code());
  1.5478 +
  1.5479 +    ScopedJSDeletePtr<CodeGenerator> codegen(js_new<CodeGenerator>(&mir, &lir, &m.masm()));
  1.5480 +    if (!codegen || !codegen->generateAsmJS(&m.stackOverflowLabel()))
  1.5481 +        return m.fail(nullptr, "internal codegen failure (probably out of memory)");
  1.5482 +
  1.5483 +#if defined(MOZ_VTUNE) || defined(JS_ION_PERF)
  1.5484 +    // Profiling might not be active now, but it may be activated later (perhaps
  1.5485 +    // after the module has been cached and reloaded from the cache). Function
  1.5486 +    // profiling info isn't huge, so store it always (in --enable-profiling
  1.5487 +    // builds, which is only Nightly builds, but default).
  1.5488 +    if (!m.trackProfiledFunction(func, m.masm().currentOffset()))
  1.5489 +        return false;
  1.5490 +#endif
  1.5491 +
  1.5492 +#ifdef JS_ION_PERF
  1.5493 +    // Per-block profiling info uses significantly more memory so only store
  1.5494 +    // this information if it is actively requested.
  1.5495 +    if (PerfBlockEnabled()) {
  1.5496 +        if (!m.trackPerfProfiledBlocks(mir.perfSpewer(), func, m.masm().currentOffset()))
  1.5497 +            return false;
  1.5498 +    }
  1.5499 +#endif
  1.5500 +
  1.5501 +    // Align internal function headers.
  1.5502 +    m.masm().align(CodeAlignment);
  1.5503 +
  1.5504 +    func.accumulateCompileTime((PRMJ_Now() - before) / PRMJ_USEC_PER_MSEC);
  1.5505 +    if (!m.maybeReportCompileTime(func))
  1.5506 +        return false;
  1.5507 +
  1.5508 +    // Unlike regular IonMonkey which links and generates a new JitCode for
  1.5509 +    // every function, we accumulate all the functions in the module in a
  1.5510 +    // single MacroAssembler and link at end. Linking asm.js doesn't require a
  1.5511 +    // CodeGenerator so we can destroy it now.
  1.5512 +    return true;
  1.5513 +}
  1.5514 +
  1.5515 +static bool
  1.5516 +CheckAllFunctionsDefined(ModuleCompiler &m)
  1.5517 +{
  1.5518 +    for (unsigned i = 0; i < m.numFunctions(); i++) {
  1.5519 +        if (!m.function(i).code()->bound())
  1.5520 +            return m.failName(nullptr, "missing definition of function %s", m.function(i).name());
  1.5521 +    }
  1.5522 +
  1.5523 +    return true;
  1.5524 +}
  1.5525 +
  1.5526 +static bool
  1.5527 +CheckFunctionsSequential(ModuleCompiler &m)
  1.5528 +{
  1.5529 +    // Use a single LifoAlloc to allocate all the temporary compiler IR.
  1.5530 +    // All allocated LifoAlloc'd memory is released after compiling each
  1.5531 +    // function by the LifoAllocScope inside the loop.
  1.5532 +    LifoAlloc lifo(LIFO_ALLOC_PRIMARY_CHUNK_SIZE);
  1.5533 +
  1.5534 +    while (PeekToken(m.parser()) == TOK_FUNCTION) {
  1.5535 +        LifoAllocScope scope(&lifo);
  1.5536 +
  1.5537 +        MIRGenerator *mir;
  1.5538 +        ModuleCompiler::Func *func;
  1.5539 +        if (!CheckFunction(m, lifo, &mir, &func))
  1.5540 +            return false;
  1.5541 +
  1.5542 +        int64_t before = PRMJ_Now();
  1.5543 +
  1.5544 +        IonContext icx(m.cx(), &mir->alloc());
  1.5545 +
  1.5546 +        IonSpewNewFunction(&mir->graph(), NullPtr());
  1.5547 +
  1.5548 +        if (!OptimizeMIR(mir))
  1.5549 +            return m.failOffset(func->srcOffset(), "internal compiler failure (probably out of memory)");
  1.5550 +
  1.5551 +        LIRGraph *lir = GenerateLIR(mir);
  1.5552 +        if (!lir)
  1.5553 +            return m.failOffset(func->srcOffset(), "internal compiler failure (probably out of memory)");
  1.5554 +
  1.5555 +        func->accumulateCompileTime((PRMJ_Now() - before) / PRMJ_USEC_PER_MSEC);
  1.5556 +
  1.5557 +        if (!GenerateCode(m, *func, *mir, *lir))
  1.5558 +            return false;
  1.5559 +
  1.5560 +        IonSpewEndFunction();
  1.5561 +    }
  1.5562 +
  1.5563 +    if (!CheckAllFunctionsDefined(m))
  1.5564 +        return false;
  1.5565 +
  1.5566 +    return true;
  1.5567 +}
  1.5568 +
  1.5569 +#ifdef JS_THREADSAFE
  1.5570 +
  1.5571 +// Currently, only one asm.js parallel compilation is allowed at a time.
  1.5572 +// This RAII class attempts to claim this parallel compilation using atomic ops
  1.5573 +// on rt->workerThreadState->asmJSCompilationInProgress.
  1.5574 +class ParallelCompilationGuard
  1.5575 +{
  1.5576 +    bool parallelState_;
  1.5577 +  public:
  1.5578 +    ParallelCompilationGuard() : parallelState_(false) {}
  1.5579 +    ~ParallelCompilationGuard() {
  1.5580 +        if (parallelState_) {
  1.5581 +            JS_ASSERT(WorkerThreadState().asmJSCompilationInProgress == true);
  1.5582 +            WorkerThreadState().asmJSCompilationInProgress = false;
  1.5583 +        }
  1.5584 +    }
  1.5585 +    bool claim() {
  1.5586 +        JS_ASSERT(!parallelState_);
  1.5587 +        if (!WorkerThreadState().asmJSCompilationInProgress.compareExchange(false, true))
  1.5588 +            return false;
  1.5589 +        parallelState_ = true;
  1.5590 +        return true;
  1.5591 +    }
  1.5592 +};
  1.5593 +
  1.5594 +static bool
  1.5595 +ParallelCompilationEnabled(ExclusiveContext *cx)
  1.5596 +{
  1.5597 +    // If 'cx' isn't a JSContext, then we are already off the main thread so
  1.5598 +    // off-thread compilation must be enabled. However, since there are a fixed
  1.5599 +    // number of worker threads and one is already being consumed by this
  1.5600 +    // parsing task, ensure that there another free thread to avoid deadlock.
  1.5601 +    // (Note: there is at most one thread used for parsing so we don't have to
  1.5602 +    // worry about general dining philosophers.)
  1.5603 +    if (WorkerThreadState().threadCount <= 1)
  1.5604 +        return false;
  1.5605 +
  1.5606 +    if (!cx->isJSContext())
  1.5607 +        return true;
  1.5608 +    return cx->asJSContext()->runtime()->canUseParallelIonCompilation();
  1.5609 +}
  1.5610 +
  1.5611 +// State of compilation as tracked and updated by the main thread.
  1.5612 +struct ParallelGroupState
  1.5613 +{
  1.5614 +    js::Vector<AsmJSParallelTask> &tasks;
  1.5615 +    int32_t outstandingJobs; // Good work, jobs!
  1.5616 +    uint32_t compiledJobs;
  1.5617 +
  1.5618 +    ParallelGroupState(js::Vector<AsmJSParallelTask> &tasks)
  1.5619 +      : tasks(tasks), outstandingJobs(0), compiledJobs(0)
  1.5620 +    { }
  1.5621 +};
  1.5622 +
  1.5623 +// Block until a worker-assigned LifoAlloc becomes finished.
  1.5624 +static AsmJSParallelTask *
  1.5625 +GetFinishedCompilation(ModuleCompiler &m, ParallelGroupState &group)
  1.5626 +{
  1.5627 +    AutoLockWorkerThreadState lock;
  1.5628 +
  1.5629 +    while (!WorkerThreadState().asmJSWorkerFailed()) {
  1.5630 +        if (!WorkerThreadState().asmJSFinishedList().empty()) {
  1.5631 +            group.outstandingJobs--;
  1.5632 +            return WorkerThreadState().asmJSFinishedList().popCopy();
  1.5633 +        }
  1.5634 +        WorkerThreadState().wait(GlobalWorkerThreadState::CONSUMER);
  1.5635 +    }
  1.5636 +
  1.5637 +    return nullptr;
  1.5638 +}
  1.5639 +
  1.5640 +static bool
  1.5641 +GenerateCodeForFinishedJob(ModuleCompiler &m, ParallelGroupState &group, AsmJSParallelTask **outTask)
  1.5642 +{
  1.5643 +    // Block until a used LifoAlloc becomes available.
  1.5644 +    AsmJSParallelTask *task = GetFinishedCompilation(m, group);
  1.5645 +    if (!task)
  1.5646 +        return false;
  1.5647 +
  1.5648 +    ModuleCompiler::Func &func = *reinterpret_cast<ModuleCompiler::Func *>(task->func);
  1.5649 +    func.accumulateCompileTime(task->compileTime);
  1.5650 +
  1.5651 +    {
  1.5652 +        // Perform code generation on the main thread.
  1.5653 +        IonContext ionContext(m.cx(), &task->mir->alloc());
  1.5654 +        if (!GenerateCode(m, func, *task->mir, *task->lir))
  1.5655 +            return false;
  1.5656 +    }
  1.5657 +
  1.5658 +    group.compiledJobs++;
  1.5659 +
  1.5660 +    // Clear the LifoAlloc for use by another worker.
  1.5661 +    TempAllocator &tempAlloc = task->mir->alloc();
  1.5662 +    tempAlloc.TempAllocator::~TempAllocator();
  1.5663 +    task->lifo.releaseAll();
  1.5664 +
  1.5665 +    *outTask = task;
  1.5666 +    return true;
  1.5667 +}
  1.5668 +
  1.5669 +static inline bool
  1.5670 +GetUnusedTask(ParallelGroupState &group, uint32_t i, AsmJSParallelTask **outTask)
  1.5671 +{
  1.5672 +    // Since functions are dispatched in order, if fewer than |numLifos| functions
  1.5673 +    // have been generated, then the |i'th| LifoAlloc must never have been
  1.5674 +    // assigned to a worker thread.
  1.5675 +    if (i >= group.tasks.length())
  1.5676 +        return false;
  1.5677 +    *outTask = &group.tasks[i];
  1.5678 +    return true;
  1.5679 +}
  1.5680 +
  1.5681 +static bool
  1.5682 +CheckFunctionsParallelImpl(ModuleCompiler &m, ParallelGroupState &group)
  1.5683 +{
  1.5684 +#ifdef DEBUG
  1.5685 +    {
  1.5686 +        AutoLockWorkerThreadState lock;
  1.5687 +        JS_ASSERT(WorkerThreadState().asmJSWorklist().empty());
  1.5688 +        JS_ASSERT(WorkerThreadState().asmJSFinishedList().empty());
  1.5689 +    }
  1.5690 +#endif
  1.5691 +    WorkerThreadState().resetAsmJSFailureState();
  1.5692 +
  1.5693 +    for (unsigned i = 0; PeekToken(m.parser()) == TOK_FUNCTION; i++) {
  1.5694 +        // Get exclusive access to an empty LifoAlloc from the thread group's pool.
  1.5695 +        AsmJSParallelTask *task = nullptr;
  1.5696 +        if (!GetUnusedTask(group, i, &task) && !GenerateCodeForFinishedJob(m, group, &task))
  1.5697 +            return false;
  1.5698 +
  1.5699 +        // Generate MIR into the LifoAlloc on the main thread.
  1.5700 +        MIRGenerator *mir;
  1.5701 +        ModuleCompiler::Func *func;
  1.5702 +        if (!CheckFunction(m, task->lifo, &mir, &func))
  1.5703 +            return false;
  1.5704 +
  1.5705 +        // Perform optimizations and LIR generation on a worker thread.
  1.5706 +        task->init(m.cx()->compartment()->runtimeFromAnyThread(), func, mir);
  1.5707 +        if (!StartOffThreadAsmJSCompile(m.cx(), task))
  1.5708 +            return false;
  1.5709 +
  1.5710 +        group.outstandingJobs++;
  1.5711 +    }
  1.5712 +
  1.5713 +    // Block for all outstanding workers to complete.
  1.5714 +    while (group.outstandingJobs > 0) {
  1.5715 +        AsmJSParallelTask *ignored = nullptr;
  1.5716 +        if (!GenerateCodeForFinishedJob(m, group, &ignored))
  1.5717 +            return false;
  1.5718 +    }
  1.5719 +
  1.5720 +    if (!CheckAllFunctionsDefined(m))
  1.5721 +        return false;
  1.5722 +
  1.5723 +    JS_ASSERT(group.outstandingJobs == 0);
  1.5724 +    JS_ASSERT(group.compiledJobs == m.numFunctions());
  1.5725 +#ifdef DEBUG
  1.5726 +    {
  1.5727 +        AutoLockWorkerThreadState lock;
  1.5728 +        JS_ASSERT(WorkerThreadState().asmJSWorklist().empty());
  1.5729 +        JS_ASSERT(WorkerThreadState().asmJSFinishedList().empty());
  1.5730 +    }
  1.5731 +#endif
  1.5732 +    JS_ASSERT(!WorkerThreadState().asmJSWorkerFailed());
  1.5733 +    return true;
  1.5734 +}
  1.5735 +
  1.5736 +static void
  1.5737 +CancelOutstandingJobs(ModuleCompiler &m, ParallelGroupState &group)
  1.5738 +{
  1.5739 +    // This is failure-handling code, so it's not allowed to fail.
  1.5740 +    // The problem is that all memory for compilation is stored in LifoAllocs
  1.5741 +    // maintained in the scope of CheckFunctionsParallel() -- so in order
  1.5742 +    // for that function to safely return, and thereby remove the LifoAllocs,
  1.5743 +    // none of that memory can be in use or reachable by workers.
  1.5744 +
  1.5745 +    JS_ASSERT(group.outstandingJobs >= 0);
  1.5746 +    if (!group.outstandingJobs)
  1.5747 +        return;
  1.5748 +
  1.5749 +    AutoLockWorkerThreadState lock;
  1.5750 +
  1.5751 +    // From the compiling tasks, eliminate those waiting for worker assignation.
  1.5752 +    group.outstandingJobs -= WorkerThreadState().asmJSWorklist().length();
  1.5753 +    WorkerThreadState().asmJSWorklist().clear();
  1.5754 +
  1.5755 +    // From the compiling tasks, eliminate those waiting for codegen.
  1.5756 +    group.outstandingJobs -= WorkerThreadState().asmJSFinishedList().length();
  1.5757 +    WorkerThreadState().asmJSFinishedList().clear();
  1.5758 +
  1.5759 +    // Eliminate tasks that failed without adding to the finished list.
  1.5760 +    group.outstandingJobs -= WorkerThreadState().harvestFailedAsmJSJobs();
  1.5761 +
  1.5762 +    // Any remaining tasks are therefore undergoing active compilation.
  1.5763 +    JS_ASSERT(group.outstandingJobs >= 0);
  1.5764 +    while (group.outstandingJobs > 0) {
  1.5765 +        WorkerThreadState().wait(GlobalWorkerThreadState::CONSUMER);
  1.5766 +
  1.5767 +        group.outstandingJobs -= WorkerThreadState().harvestFailedAsmJSJobs();
  1.5768 +        group.outstandingJobs -= WorkerThreadState().asmJSFinishedList().length();
  1.5769 +        WorkerThreadState().asmJSFinishedList().clear();
  1.5770 +    }
  1.5771 +
  1.5772 +    JS_ASSERT(group.outstandingJobs == 0);
  1.5773 +    JS_ASSERT(WorkerThreadState().asmJSWorklist().empty());
  1.5774 +    JS_ASSERT(WorkerThreadState().asmJSFinishedList().empty());
  1.5775 +}
  1.5776 +
  1.5777 +static const size_t LIFO_ALLOC_PARALLEL_CHUNK_SIZE = 1 << 12;
  1.5778 +
  1.5779 +static bool
  1.5780 +CheckFunctionsParallel(ModuleCompiler &m)
  1.5781 +{
  1.5782 +    // If parallel compilation isn't enabled (not enough cores, disabled by
  1.5783 +    // pref, etc) or another thread is currently compiling asm.js in parallel,
  1.5784 +    // fall back to sequential compilation. (We could lift the latter
  1.5785 +    // constraint by hoisting asmJS* state out of WorkerThreadState so multiple
  1.5786 +    // concurrent asm.js parallel compilations don't race.)
  1.5787 +    ParallelCompilationGuard g;
  1.5788 +    if (!ParallelCompilationEnabled(m.cx()) || !g.claim())
  1.5789 +        return CheckFunctionsSequential(m);
  1.5790 +
  1.5791 +    IonSpew(IonSpew_Logs, "Can't log asm.js script. (Compiled on background thread.)");
  1.5792 +
  1.5793 +    // Saturate all worker threads plus the main thread.
  1.5794 +    size_t numParallelJobs = WorkerThreadState().threadCount + 1;
  1.5795 +
  1.5796 +    // Allocate scoped AsmJSParallelTask objects. Each contains a unique
  1.5797 +    // LifoAlloc that provides all necessary memory for compilation.
  1.5798 +    js::Vector<AsmJSParallelTask, 0> tasks(m.cx());
  1.5799 +    if (!tasks.initCapacity(numParallelJobs))
  1.5800 +        return false;
  1.5801 +
  1.5802 +    for (size_t i = 0; i < numParallelJobs; i++)
  1.5803 +        tasks.infallibleAppend(LIFO_ALLOC_PARALLEL_CHUNK_SIZE);
  1.5804 +
  1.5805 +    // With compilation memory in-scope, dispatch worker threads.
  1.5806 +    ParallelGroupState group(tasks);
  1.5807 +    if (!CheckFunctionsParallelImpl(m, group)) {
  1.5808 +        CancelOutstandingJobs(m, group);
  1.5809 +
  1.5810 +        // If failure was triggered by a worker thread, report error.
  1.5811 +        if (void *maybeFunc = WorkerThreadState().maybeAsmJSFailedFunction()) {
  1.5812 +            ModuleCompiler::Func *func = reinterpret_cast<ModuleCompiler::Func *>(maybeFunc);
  1.5813 +            return m.failOffset(func->srcOffset(), "allocation failure during compilation");
  1.5814 +        }
  1.5815 +
  1.5816 +        // Otherwise, the error occurred on the main thread and was already reported.
  1.5817 +        return false;
  1.5818 +    }
  1.5819 +    return true;
  1.5820 +}
  1.5821 +#endif // JS_THREADSAFE
  1.5822 +
  1.5823 +static bool
  1.5824 +CheckFuncPtrTable(ModuleCompiler &m, ParseNode *var)
  1.5825 +{
  1.5826 +    if (!IsDefinition(var))
  1.5827 +        return m.fail(var, "function-pointer table name must be unique");
  1.5828 +
  1.5829 +    ParseNode *arrayLiteral = MaybeDefinitionInitializer(var);
  1.5830 +    if (!arrayLiteral || !arrayLiteral->isKind(PNK_ARRAY))
  1.5831 +        return m.fail(var, "function-pointer table's initializer must be an array literal");
  1.5832 +
  1.5833 +    unsigned length = ListLength(arrayLiteral);
  1.5834 +
  1.5835 +    if (!IsPowerOfTwo(length))
  1.5836 +        return m.failf(arrayLiteral, "function-pointer table length must be a power of 2 (is %u)", length);
  1.5837 +
  1.5838 +    unsigned mask = length - 1;
  1.5839 +
  1.5840 +    ModuleCompiler::FuncPtrVector elems(m.cx());
  1.5841 +    const Signature *firstSig = nullptr;
  1.5842 +
  1.5843 +    for (ParseNode *elem = ListHead(arrayLiteral); elem; elem = NextNode(elem)) {
  1.5844 +        if (!elem->isKind(PNK_NAME))
  1.5845 +            return m.fail(elem, "function-pointer table's elements must be names of functions");
  1.5846 +
  1.5847 +        PropertyName *funcName = elem->name();
  1.5848 +        const ModuleCompiler::Func *func = m.lookupFunction(funcName);
  1.5849 +        if (!func)
  1.5850 +            return m.fail(elem, "function-pointer table's elements must be names of functions");
  1.5851 +
  1.5852 +        if (firstSig) {
  1.5853 +            if (*firstSig != func->sig())
  1.5854 +                return m.fail(elem, "all functions in table must have same signature");
  1.5855 +        } else {
  1.5856 +            firstSig = &func->sig();
  1.5857 +        }
  1.5858 +
  1.5859 +        if (!elems.append(func))
  1.5860 +            return false;
  1.5861 +    }
  1.5862 +
  1.5863 +    Signature sig(m.lifo());
  1.5864 +    if (!sig.copy(*firstSig))
  1.5865 +        return false;
  1.5866 +
  1.5867 +    ModuleCompiler::FuncPtrTable *table;
  1.5868 +    if (!CheckFuncPtrTableAgainstExisting(m, var, var->name(), Move(sig), mask, &table))
  1.5869 +        return false;
  1.5870 +
  1.5871 +    table->initElems(Move(elems));
  1.5872 +    return true;
  1.5873 +}
  1.5874 +
  1.5875 +static bool
  1.5876 +CheckFuncPtrTables(ModuleCompiler &m)
  1.5877 +{
  1.5878 +    while (true) {
  1.5879 +        ParseNode *varStmt;
  1.5880 +        if (!ParseVarOrConstStatement(m.parser(), &varStmt))
  1.5881 +            return false;
  1.5882 +        if (!varStmt)
  1.5883 +            break;
  1.5884 +        for (ParseNode *var = VarListHead(varStmt); var; var = NextNode(var)) {
  1.5885 +            if (!CheckFuncPtrTable(m, var))
  1.5886 +                return false;
  1.5887 +        }
  1.5888 +    }
  1.5889 +
  1.5890 +    for (unsigned i = 0; i < m.numFuncPtrTables(); i++) {
  1.5891 +        if (!m.funcPtrTable(i).initialized())
  1.5892 +            return m.fail(nullptr, "expecting function-pointer table");
  1.5893 +    }
  1.5894 +
  1.5895 +    return true;
  1.5896 +}
  1.5897 +
  1.5898 +static bool
  1.5899 +CheckModuleExportFunction(ModuleCompiler &m, ParseNode *returnExpr)
  1.5900 +{
  1.5901 +    if (!returnExpr->isKind(PNK_NAME))
  1.5902 +        return m.fail(returnExpr, "export statement must be of the form 'return name'");
  1.5903 +
  1.5904 +    PropertyName *funcName = returnExpr->name();
  1.5905 +
  1.5906 +    const ModuleCompiler::Func *func = m.lookupFunction(funcName);
  1.5907 +    if (!func)
  1.5908 +        return m.failName(returnExpr, "exported function name '%s' not found", funcName);
  1.5909 +
  1.5910 +    return m.addExportedFunction(func, /* maybeFieldName = */ nullptr);
  1.5911 +}
  1.5912 +
  1.5913 +static bool
  1.5914 +CheckModuleExportObject(ModuleCompiler &m, ParseNode *object)
  1.5915 +{
  1.5916 +    JS_ASSERT(object->isKind(PNK_OBJECT));
  1.5917 +
  1.5918 +    for (ParseNode *pn = ListHead(object); pn; pn = NextNode(pn)) {
  1.5919 +        if (!IsNormalObjectField(m.cx(), pn))
  1.5920 +            return m.fail(pn, "only normal object properties may be used in the export object literal");
  1.5921 +
  1.5922 +        PropertyName *fieldName = ObjectNormalFieldName(m.cx(), pn);
  1.5923 +
  1.5924 +        ParseNode *initNode = ObjectFieldInitializer(pn);
  1.5925 +        if (!initNode->isKind(PNK_NAME))
  1.5926 +            return m.fail(initNode, "initializer of exported object literal must be name of function");
  1.5927 +
  1.5928 +        PropertyName *funcName = initNode->name();
  1.5929 +
  1.5930 +        const ModuleCompiler::Func *func = m.lookupFunction(funcName);
  1.5931 +        if (!func)
  1.5932 +            return m.failName(initNode, "exported function name '%s' not found", funcName);
  1.5933 +
  1.5934 +        if (!m.addExportedFunction(func, fieldName))
  1.5935 +            return false;
  1.5936 +    }
  1.5937 +
  1.5938 +    return true;
  1.5939 +}
  1.5940 +
  1.5941 +static bool
  1.5942 +CheckModuleReturn(ModuleCompiler &m)
  1.5943 +{
  1.5944 +    if (PeekToken(m.parser()) != TOK_RETURN) {
  1.5945 +        TokenKind tk = PeekToken(m.parser());
  1.5946 +        if (tk == TOK_RC || tk == TOK_EOF)
  1.5947 +            return m.fail(nullptr, "expecting return statement");
  1.5948 +        return m.fail(nullptr, "invalid asm.js statement");
  1.5949 +    }
  1.5950 +
  1.5951 +    ParseNode *returnStmt = m.parser().statement();
  1.5952 +    if (!returnStmt)
  1.5953 +        return false;
  1.5954 +
  1.5955 +    ParseNode *returnExpr = ReturnExpr(returnStmt);
  1.5956 +    if (!returnExpr)
  1.5957 +        return m.fail(returnStmt, "export statement must return something");
  1.5958 +
  1.5959 +    if (returnExpr->isKind(PNK_OBJECT)) {
  1.5960 +        if (!CheckModuleExportObject(m, returnExpr))
  1.5961 +            return false;
  1.5962 +    } else {
  1.5963 +        if (!CheckModuleExportFunction(m, returnExpr))
  1.5964 +            return false;
  1.5965 +    }
  1.5966 +
  1.5967 +    // Function statements are not added to the lexical scope in ParseContext
  1.5968 +    // (since cx->tempLifoAlloc is marked/released after each function
  1.5969 +    // statement) and thus all the identifiers in the return statement will be
  1.5970 +    // mistaken as free variables and added to lexdeps. Clear these now.
  1.5971 +    m.parser().pc->lexdeps->clear();
  1.5972 +    return true;
  1.5973 +}
  1.5974 +
  1.5975 +// All registers except the stack pointer.
  1.5976 +static const RegisterSet AllRegsExceptSP =
  1.5977 +    RegisterSet(GeneralRegisterSet(Registers::AllMask &
  1.5978 +                                   ~(uint32_t(1) << Registers::StackPointer)),
  1.5979 +                FloatRegisterSet(FloatRegisters::AllMask));
  1.5980 +#if defined(JS_CODEGEN_ARM)
  1.5981 +// The ARM system ABI also includes d15 in the non volatile float registers.
  1.5982 +static const RegisterSet NonVolatileRegs =
  1.5983 +    RegisterSet(GeneralRegisterSet(Registers::NonVolatileMask),
  1.5984 +                    FloatRegisterSet(FloatRegisters::NonVolatileMask | (1 << FloatRegisters::d15)));
  1.5985 +#else
  1.5986 +static const RegisterSet NonVolatileRegs =
  1.5987 +    RegisterSet(GeneralRegisterSet(Registers::NonVolatileMask),
  1.5988 +                FloatRegisterSet(FloatRegisters::NonVolatileMask));
  1.5989 +#endif
  1.5990 +
  1.5991 +static void
  1.5992 +LoadAsmJSActivationIntoRegister(MacroAssembler &masm, Register reg)
  1.5993 +{
  1.5994 +    masm.movePtr(AsmJSImm_Runtime, reg);
  1.5995 +    size_t offset = offsetof(JSRuntime, mainThread) +
  1.5996 +                    PerThreadData::offsetOfAsmJSActivationStackReadOnly();
  1.5997 +    masm.loadPtr(Address(reg, offset), reg);
  1.5998 +}
  1.5999 +
  1.6000 +static void
  1.6001 +LoadJSContextFromActivation(MacroAssembler &masm, Register activation, Register dest)
  1.6002 +{
  1.6003 +    masm.loadPtr(Address(activation, AsmJSActivation::offsetOfContext()), dest);
  1.6004 +}
  1.6005 +
  1.6006 +static void
  1.6007 +AssertStackAlignment(MacroAssembler &masm)
  1.6008 +{
  1.6009 +    JS_ASSERT((AlignmentAtPrologue + masm.framePushed()) % StackAlignment == 0);
  1.6010 +#ifdef DEBUG
  1.6011 +    Label ok;
  1.6012 +    JS_ASSERT(IsPowerOfTwo(StackAlignment));
  1.6013 +    masm.branchTestPtr(Assembler::Zero, StackPointer, Imm32(StackAlignment - 1), &ok);
  1.6014 +    masm.assumeUnreachable("Stack should be aligned.");
  1.6015 +    masm.bind(&ok);
  1.6016 +#endif
  1.6017 +}
  1.6018 +
  1.6019 +template <class VectorT>
  1.6020 +static unsigned
  1.6021 +StackArgBytes(const VectorT &argTypes)
  1.6022 +{
  1.6023 +    ABIArgIter<VectorT> iter(argTypes);
  1.6024 +    while (!iter.done())
  1.6025 +        iter++;
  1.6026 +    return iter.stackBytesConsumedSoFar();
  1.6027 +}
  1.6028 +
  1.6029 +static unsigned
  1.6030 +StackDecrementForCall(MacroAssembler &masm, unsigned bytesToPush)
  1.6031 +{
  1.6032 +    // Include extra padding so that, after pushing the bytesToPush,
  1.6033 +    // the stack is aligned for a call instruction.
  1.6034 +    unsigned alreadyPushed = AlignmentAtPrologue + masm.framePushed();
  1.6035 +    return AlignBytes(alreadyPushed + bytesToPush, StackAlignment) - alreadyPushed;
  1.6036 +}
  1.6037 +
  1.6038 +template <class VectorT>
  1.6039 +static unsigned
  1.6040 +StackDecrementForCall(MacroAssembler &masm, const VectorT &argTypes, unsigned extraBytes = 0)
  1.6041 +{
  1.6042 +    return StackDecrementForCall(masm, StackArgBytes(argTypes) + extraBytes);
  1.6043 +}
  1.6044 +
  1.6045 +static const unsigned FramePushedAfterSave = NonVolatileRegs.gprs().size() * sizeof(intptr_t) +
  1.6046 +                                             NonVolatileRegs.fpus().size() * sizeof(double);
  1.6047 +
  1.6048 +// On arm, we need to include an extra word of space at the top of the stack so
  1.6049 +// we can explicitly store the return address before making the call to C++ or
  1.6050 +// Ion. On x86/x64, this isn't necessary since the call instruction pushes the
  1.6051 +// return address.
  1.6052 +#ifdef JS_CODEGEN_ARM
  1.6053 +static const unsigned MaybeRetAddr = sizeof(void*);
  1.6054 +#else
  1.6055 +static const unsigned MaybeRetAddr = 0;
  1.6056 +#endif
  1.6057 +
  1.6058 +static bool
  1.6059 +GenerateEntry(ModuleCompiler &m, const AsmJSModule::ExportedFunction &exportedFunc)
  1.6060 +{
  1.6061 +    MacroAssembler &masm = m.masm();
  1.6062 +
  1.6063 +    // In constrast to the system ABI, the Ion convention is that all registers
  1.6064 +    // are clobbered by calls. Thus, we must save the caller's non-volatile
  1.6065 +    // registers.
  1.6066 +    //
  1.6067 +    // NB: GenerateExits assumes that masm.framePushed() == 0 before
  1.6068 +    // PushRegsInMask(NonVolatileRegs).
  1.6069 +    masm.setFramePushed(0);
  1.6070 +    masm.PushRegsInMask(NonVolatileRegs);
  1.6071 +    JS_ASSERT(masm.framePushed() == FramePushedAfterSave);
  1.6072 +
  1.6073 +    // Remember the stack pointer in the current AsmJSActivation. This will be
  1.6074 +    // used by error exit paths to set the stack pointer back to what it was
  1.6075 +    // right after the (C++) caller's non-volatile registers were saved so that
  1.6076 +    // they can be restored.
  1.6077 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6078 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6079 +    masm.storePtr(StackPointer, Address(activation, AsmJSActivation::offsetOfErrorRejoinSP()));
  1.6080 +
  1.6081 +    // ARM has a globally-pinned GlobalReg (x64 uses RIP-relative addressing,
  1.6082 +    // x86 uses immediates in effective addresses) and NaN register (used as
  1.6083 +    // part of the out-of-bounds handling in heap loads/stores).
  1.6084 +#if defined(JS_CODEGEN_ARM)
  1.6085 +    masm.movePtr(IntArgReg1, GlobalReg);
  1.6086 +    masm.ma_vimm(GenericNaN(), NANReg);
  1.6087 +#endif
  1.6088 +
  1.6089 +    // ARM and x64 have a globally-pinned HeapReg (x86 uses immediates in
  1.6090 +    // effective addresses).
  1.6091 +#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_ARM)
  1.6092 +    masm.loadPtr(Address(IntArgReg1, m.module().heapOffset()), HeapReg);
  1.6093 +#endif
  1.6094 +
  1.6095 +    // Get 'argv' into a non-arg register and save it on the stack.
  1.6096 +    Register argv = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6097 +    Register scratch = ABIArgGenerator::NonArgReturnVolatileReg1;
  1.6098 +#if defined(JS_CODEGEN_X86)
  1.6099 +    masm.loadPtr(Address(StackPointer, NativeFrameSize + masm.framePushed()), argv);
  1.6100 +#else
  1.6101 +    masm.movePtr(IntArgReg0, argv);
  1.6102 +#endif
  1.6103 +    masm.Push(argv);
  1.6104 +
  1.6105 +    // Bump the stack for the call.
  1.6106 +    const ModuleCompiler::Func &func = *m.lookupFunction(exportedFunc.name());
  1.6107 +    unsigned stackDec = StackDecrementForCall(masm, func.sig().args());
  1.6108 +    masm.reserveStack(stackDec);
  1.6109 +
  1.6110 +    // Copy parameters out of argv and into the registers/stack-slots specified by
  1.6111 +    // the system ABI.
  1.6112 +    for (ABIArgTypeIter iter(func.sig().args()); !iter.done(); iter++) {
  1.6113 +        unsigned argOffset = iter.index() * sizeof(uint64_t);
  1.6114 +        Address src(argv, argOffset);
  1.6115 +        switch (iter->kind()) {
  1.6116 +          case ABIArg::GPR:
  1.6117 +            masm.load32(src, iter->gpr());
  1.6118 +            break;
  1.6119 +          case ABIArg::FPU:
  1.6120 +            masm.loadDouble(src, iter->fpu());
  1.6121 +            break;
  1.6122 +          case ABIArg::Stack:
  1.6123 +            if (iter.mirType() == MIRType_Int32) {
  1.6124 +                masm.load32(src, scratch);
  1.6125 +                masm.storePtr(scratch, Address(StackPointer, iter->offsetFromArgBase()));
  1.6126 +            } else {
  1.6127 +                JS_ASSERT(iter.mirType() == MIRType_Double || iter.mirType() == MIRType_Float32);
  1.6128 +                masm.loadDouble(src, ScratchFloatReg);
  1.6129 +                masm.storeDouble(ScratchFloatReg, Address(StackPointer, iter->offsetFromArgBase()));
  1.6130 +            }
  1.6131 +            break;
  1.6132 +        }
  1.6133 +    }
  1.6134 +
  1.6135 +    // Call into the real function.
  1.6136 +    AssertStackAlignment(masm);
  1.6137 +    masm.call(CallSiteDesc::Entry(), func.code());
  1.6138 +
  1.6139 +    // Pop the stack and recover the original 'argv' argument passed to the
  1.6140 +    // trampoline (which was pushed on the stack).
  1.6141 +    masm.freeStack(stackDec);
  1.6142 +    masm.Pop(argv);
  1.6143 +
  1.6144 +    // Store the return value in argv[0]
  1.6145 +    switch (func.sig().retType().which()) {
  1.6146 +      case RetType::Void:
  1.6147 +        break;
  1.6148 +      case RetType::Signed:
  1.6149 +        masm.storeValue(JSVAL_TYPE_INT32, ReturnReg, Address(argv, 0));
  1.6150 +        break;
  1.6151 +      case RetType::Float:
  1.6152 +        masm.convertFloat32ToDouble(ReturnFloatReg, ReturnFloatReg);
  1.6153 +        // Fall through as ReturnFloatReg now contains a Double
  1.6154 +      case RetType::Double:
  1.6155 +        masm.canonicalizeDouble(ReturnFloatReg);
  1.6156 +        masm.storeDouble(ReturnFloatReg, Address(argv, 0));
  1.6157 +        break;
  1.6158 +    }
  1.6159 +
  1.6160 +    // Restore clobbered non-volatile registers of the caller.
  1.6161 +    masm.PopRegsInMask(NonVolatileRegs);
  1.6162 +
  1.6163 +    JS_ASSERT(masm.framePushed() == 0);
  1.6164 +
  1.6165 +    masm.move32(Imm32(true), ReturnReg);
  1.6166 +    masm.abiret();
  1.6167 +    return true;
  1.6168 +}
  1.6169 +
  1.6170 +static inline bool
  1.6171 +TryEnablingIon(JSContext *cx, AsmJSModule &module, HandleFunction fun, uint32_t exitIndex,
  1.6172 +               int32_t argc, Value *argv)
  1.6173 +{
  1.6174 +    if (!fun->hasScript())
  1.6175 +        return true;
  1.6176 +
  1.6177 +    // Test if the function is Ion compiled
  1.6178 +    JSScript *script = fun->nonLazyScript();
  1.6179 +    if (!script->hasIonScript())
  1.6180 +        return true;
  1.6181 +
  1.6182 +    // Currently we can't rectify arguments. Therefore disabling if argc is too low.
  1.6183 +    if (fun->nargs() > size_t(argc))
  1.6184 +        return true;
  1.6185 +
  1.6186 +    // Normally the types should corresond, since we just ran with those types,
  1.6187 +    // but there are reports this is asserting. Therefore doing it as a check, instead of DEBUG only.
  1.6188 +    if (!types::TypeScript::ThisTypes(script)->hasType(types::Type::UndefinedType()))
  1.6189 +        return true;
  1.6190 +    for(uint32_t i = 0; i < fun->nargs(); i++) {
  1.6191 +        types::StackTypeSet *typeset = types::TypeScript::ArgTypes(script, i);
  1.6192 +        types::Type type = types::Type::DoubleType();
  1.6193 +        if (!argv[i].isDouble())
  1.6194 +            type = types::Type::PrimitiveType(argv[i].extractNonDoubleType());
  1.6195 +        if (!typeset->hasType(type))
  1.6196 +            return true;
  1.6197 +    }
  1.6198 +
  1.6199 +    // Enable
  1.6200 +    IonScript *ionScript = script->ionScript();
  1.6201 +    if (!ionScript->addDependentAsmJSModule(cx, DependentAsmJSModuleExit(&module, exitIndex)))
  1.6202 +        return false;
  1.6203 +
  1.6204 +    module.exitIndexToGlobalDatum(exitIndex).exit = module.ionExitTrampoline(module.exit(exitIndex));
  1.6205 +    return true;
  1.6206 +}
  1.6207 +
  1.6208 +namespace js {
  1.6209 +
  1.6210 +int32_t
  1.6211 +InvokeFromAsmJS_Ignore(JSContext *cx, int32_t exitIndex, int32_t argc, Value *argv)
  1.6212 +{
  1.6213 +    AsmJSModule &module = cx->mainThread().asmJSActivationStackFromOwnerThread()->module();
  1.6214 +
  1.6215 +    RootedFunction fun(cx, module.exitIndexToGlobalDatum(exitIndex).fun);
  1.6216 +    RootedValue fval(cx, ObjectValue(*fun));
  1.6217 +    RootedValue rval(cx);
  1.6218 +    if (!Invoke(cx, UndefinedValue(), fval, argc, argv, &rval))
  1.6219 +        return false;
  1.6220 +
  1.6221 +    if (!TryEnablingIon(cx, module, fun, exitIndex, argc, argv))
  1.6222 +        return false;
  1.6223 +
  1.6224 +    return true;
  1.6225 +}
  1.6226 +
  1.6227 +int32_t
  1.6228 +InvokeFromAsmJS_ToInt32(JSContext *cx, int32_t exitIndex, int32_t argc, Value *argv)
  1.6229 +{
  1.6230 +    AsmJSModule &module = cx->mainThread().asmJSActivationStackFromOwnerThread()->module();
  1.6231 +
  1.6232 +    RootedFunction fun(cx, module.exitIndexToGlobalDatum(exitIndex).fun);
  1.6233 +    RootedValue fval(cx, ObjectValue(*fun));
  1.6234 +    RootedValue rval(cx);
  1.6235 +    if (!Invoke(cx, UndefinedValue(), fval, argc, argv, &rval))
  1.6236 +        return false;
  1.6237 +
  1.6238 +    if (!TryEnablingIon(cx, module, fun, exitIndex, argc, argv))
  1.6239 +        return false;
  1.6240 +
  1.6241 +    int32_t i32;
  1.6242 +    if (!ToInt32(cx, rval, &i32))
  1.6243 +        return false;
  1.6244 +    argv[0] = Int32Value(i32);
  1.6245 +
  1.6246 +    return true;
  1.6247 +}
  1.6248 +
  1.6249 +int32_t
  1.6250 +InvokeFromAsmJS_ToNumber(JSContext *cx, int32_t exitIndex, int32_t argc, Value *argv)
  1.6251 +{
  1.6252 +    AsmJSModule &module = cx->mainThread().asmJSActivationStackFromOwnerThread()->module();
  1.6253 +
  1.6254 +    RootedFunction fun(cx, module.exitIndexToGlobalDatum(exitIndex).fun);
  1.6255 +    RootedValue fval(cx, ObjectValue(*fun));
  1.6256 +    RootedValue rval(cx);
  1.6257 +    if (!Invoke(cx, UndefinedValue(), fval, argc, argv, &rval))
  1.6258 +        return false;
  1.6259 +
  1.6260 +    if (!TryEnablingIon(cx, module, fun, exitIndex, argc, argv))
  1.6261 +        return false;
  1.6262 +
  1.6263 +    double dbl;
  1.6264 +    if (!ToNumber(cx, rval, &dbl))
  1.6265 +        return false;
  1.6266 +    argv[0] = DoubleValue(dbl);
  1.6267 +
  1.6268 +    return true;
  1.6269 +}
  1.6270 +
  1.6271 +}  // namespace js
  1.6272 +
  1.6273 +static void
  1.6274 +FillArgumentArray(ModuleCompiler &m, const VarTypeVector &argTypes,
  1.6275 +                  unsigned offsetToArgs, unsigned offsetToCallerStackArgs,
  1.6276 +                  Register scratch)
  1.6277 +{
  1.6278 +    MacroAssembler &masm = m.masm();
  1.6279 +
  1.6280 +    for (ABIArgTypeIter i(argTypes); !i.done(); i++) {
  1.6281 +        Address dstAddr = Address(StackPointer, offsetToArgs + i.index() * sizeof(Value));
  1.6282 +        switch (i->kind()) {
  1.6283 +          case ABIArg::GPR:
  1.6284 +            masm.storeValue(JSVAL_TYPE_INT32, i->gpr(), dstAddr);
  1.6285 +            break;
  1.6286 +          case ABIArg::FPU: {
  1.6287 +              masm.canonicalizeDouble(i->fpu());
  1.6288 +              masm.storeDouble(i->fpu(), dstAddr);
  1.6289 +              break;
  1.6290 +          }
  1.6291 +          case ABIArg::Stack:
  1.6292 +            if (i.mirType() == MIRType_Int32) {
  1.6293 +                Address src(StackPointer, offsetToCallerStackArgs + i->offsetFromArgBase());
  1.6294 +#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
  1.6295 +                masm.load32(src, scratch);
  1.6296 +                masm.storeValue(JSVAL_TYPE_INT32, scratch, dstAddr);
  1.6297 +#else
  1.6298 +                masm.memIntToValue(src, dstAddr);
  1.6299 +#endif
  1.6300 +            } else {
  1.6301 +                JS_ASSERT(i.mirType() == MIRType_Double);
  1.6302 +                Address src(StackPointer, offsetToCallerStackArgs + i->offsetFromArgBase());
  1.6303 +                masm.loadDouble(src, ScratchFloatReg);
  1.6304 +                masm.canonicalizeDouble(ScratchFloatReg);
  1.6305 +                masm.storeDouble(ScratchFloatReg, dstAddr);
  1.6306 +            }
  1.6307 +            break;
  1.6308 +        }
  1.6309 +    }
  1.6310 +}
  1.6311 +
  1.6312 +static void
  1.6313 +GenerateFFIInterpreterExit(ModuleCompiler &m, const ModuleCompiler::ExitDescriptor &exit,
  1.6314 +                           unsigned exitIndex, Label *throwLabel)
  1.6315 +{
  1.6316 +    MacroAssembler &masm = m.masm();
  1.6317 +    masm.align(CodeAlignment);
  1.6318 +    m.setInterpExitOffset(exitIndex);
  1.6319 +    masm.setFramePushed(0);
  1.6320 +#if defined(JS_CODEGEN_ARM)
  1.6321 +    masm.Push(lr);
  1.6322 +#endif
  1.6323 +
  1.6324 +    MIRType typeArray[] = { MIRType_Pointer,   // cx
  1.6325 +                            MIRType_Pointer,   // exitDatum
  1.6326 +                            MIRType_Int32,     // argc
  1.6327 +                            MIRType_Pointer }; // argv
  1.6328 +    MIRTypeVector invokeArgTypes(m.cx());
  1.6329 +    invokeArgTypes.infallibleAppend(typeArray, ArrayLength(typeArray));
  1.6330 +
  1.6331 +    // The stack layout looks like:
  1.6332 +    // | return address | stack arguments | array of values |
  1.6333 +    unsigned arraySize = Max<size_t>(1, exit.sig().args().length()) * sizeof(Value);
  1.6334 +    unsigned stackDec = StackDecrementForCall(masm, invokeArgTypes, arraySize + MaybeRetAddr);
  1.6335 +    masm.reserveStack(stackDec);
  1.6336 +
  1.6337 +    // Fill the argument array.
  1.6338 +    unsigned offsetToCallerStackArgs = AlignmentAtPrologue + masm.framePushed();
  1.6339 +    unsigned offsetToArgv = StackArgBytes(invokeArgTypes) + MaybeRetAddr;
  1.6340 +    Register scratch = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6341 +    FillArgumentArray(m, exit.sig().args(), offsetToArgv, offsetToCallerStackArgs, scratch);
  1.6342 +
  1.6343 +    // Prepare the arguments for the call to InvokeFromAsmJS_*.
  1.6344 +    ABIArgMIRTypeIter i(invokeArgTypes);
  1.6345 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg1;
  1.6346 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6347 +
  1.6348 +    // Record sp in the AsmJSActivation for stack-walking.
  1.6349 +    masm.storePtr(StackPointer, Address(activation, AsmJSActivation::offsetOfExitSP()));
  1.6350 +
  1.6351 +    // argument 0: cx
  1.6352 +    if (i->kind() == ABIArg::GPR) {
  1.6353 +        LoadJSContextFromActivation(masm, activation, i->gpr());
  1.6354 +    } else {
  1.6355 +        LoadJSContextFromActivation(masm, activation, scratch);
  1.6356 +        masm.storePtr(scratch, Address(StackPointer, i->offsetFromArgBase()));
  1.6357 +    }
  1.6358 +    i++;
  1.6359 +
  1.6360 +    // argument 1: exitIndex
  1.6361 +    if (i->kind() == ABIArg::GPR)
  1.6362 +        masm.mov(ImmWord(exitIndex), i->gpr());
  1.6363 +    else
  1.6364 +        masm.store32(Imm32(exitIndex), Address(StackPointer, i->offsetFromArgBase()));
  1.6365 +    i++;
  1.6366 +
  1.6367 +    // argument 2: argc
  1.6368 +    unsigned argc = exit.sig().args().length();
  1.6369 +    if (i->kind() == ABIArg::GPR)
  1.6370 +        masm.mov(ImmWord(argc), i->gpr());
  1.6371 +    else
  1.6372 +        masm.store32(Imm32(argc), Address(StackPointer, i->offsetFromArgBase()));
  1.6373 +    i++;
  1.6374 +
  1.6375 +    // argument 3: argv
  1.6376 +    Address argv(StackPointer, offsetToArgv);
  1.6377 +    if (i->kind() == ABIArg::GPR) {
  1.6378 +        masm.computeEffectiveAddress(argv, i->gpr());
  1.6379 +    } else {
  1.6380 +        masm.computeEffectiveAddress(argv, scratch);
  1.6381 +        masm.storePtr(scratch, Address(StackPointer, i->offsetFromArgBase()));
  1.6382 +    }
  1.6383 +    i++;
  1.6384 +    JS_ASSERT(i.done());
  1.6385 +
  1.6386 +    // Make the call, test whether it succeeded, and extract the return value.
  1.6387 +    AssertStackAlignment(masm);
  1.6388 +    switch (exit.sig().retType().which()) {
  1.6389 +      case RetType::Void:
  1.6390 +        masm.callExit(AsmJSImm_InvokeFromAsmJS_Ignore, i.stackBytesConsumedSoFar());
  1.6391 +        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
  1.6392 +        break;
  1.6393 +      case RetType::Signed:
  1.6394 +        masm.callExit(AsmJSImm_InvokeFromAsmJS_ToInt32, i.stackBytesConsumedSoFar());
  1.6395 +        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
  1.6396 +        masm.unboxInt32(argv, ReturnReg);
  1.6397 +        break;
  1.6398 +      case RetType::Double:
  1.6399 +        masm.callExit(AsmJSImm_InvokeFromAsmJS_ToNumber, i.stackBytesConsumedSoFar());
  1.6400 +        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
  1.6401 +        masm.loadDouble(argv, ReturnFloatReg);
  1.6402 +        break;
  1.6403 +      case RetType::Float:
  1.6404 +        MOZ_ASSUME_UNREACHABLE("Float32 shouldn't be returned from a FFI");
  1.6405 +        break;
  1.6406 +    }
  1.6407 +
  1.6408 +    // Note: the caller is IonMonkey code which means there are no non-volatile
  1.6409 +    // registers to restore.
  1.6410 +    masm.freeStack(stackDec);
  1.6411 +    masm.ret();
  1.6412 +}
  1.6413 +
  1.6414 +static void
  1.6415 +GenerateOOLConvert(ModuleCompiler &m, RetType retType, Label *throwLabel)
  1.6416 +{
  1.6417 +    MacroAssembler &masm = m.masm();
  1.6418 +
  1.6419 +    MIRType typeArray[] = { MIRType_Pointer,   // cx
  1.6420 +                            MIRType_Pointer }; // argv
  1.6421 +    MIRTypeVector callArgTypes(m.cx());
  1.6422 +    callArgTypes.infallibleAppend(typeArray, ArrayLength(typeArray));
  1.6423 +
  1.6424 +    // The stack is assumed to be aligned.  The frame is allocated by GenerateFFIIonExit and
  1.6425 +    // the stack usage here needs to kept in sync with GenerateFFIIonExit.
  1.6426 +
  1.6427 +    // Store value
  1.6428 +    unsigned offsetToArgv = StackArgBytes(callArgTypes) + MaybeRetAddr;
  1.6429 +    masm.storeValue(JSReturnOperand, Address(StackPointer, offsetToArgv));
  1.6430 +
  1.6431 +    Register scratch = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6432 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg1;
  1.6433 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6434 +
  1.6435 +    // Record sp in the AsmJSActivation for stack-walking.
  1.6436 +    masm.storePtr(StackPointer, Address(activation, AsmJSActivation::offsetOfExitSP()));
  1.6437 +
  1.6438 +    // Store real arguments
  1.6439 +    ABIArgMIRTypeIter i(callArgTypes);
  1.6440 +
  1.6441 +    // argument 0: cx
  1.6442 +    if (i->kind() == ABIArg::GPR) {
  1.6443 +        LoadJSContextFromActivation(masm, activation, i->gpr());
  1.6444 +    } else {
  1.6445 +        LoadJSContextFromActivation(masm, activation, scratch);
  1.6446 +        masm.storePtr(scratch, Address(StackPointer, i->offsetFromArgBase()));
  1.6447 +    }
  1.6448 +    i++;
  1.6449 +
  1.6450 +    // argument 1: argv
  1.6451 +    Address argv(StackPointer, offsetToArgv);
  1.6452 +    if (i->kind() == ABIArg::GPR) {
  1.6453 +        masm.computeEffectiveAddress(argv, i->gpr());
  1.6454 +    } else {
  1.6455 +        masm.computeEffectiveAddress(argv, scratch);
  1.6456 +        masm.storePtr(scratch, Address(StackPointer, i->offsetFromArgBase()));
  1.6457 +    }
  1.6458 +    i++;
  1.6459 +    JS_ASSERT(i.done());
  1.6460 +
  1.6461 +    // Call
  1.6462 +    AssertStackAlignment(masm);
  1.6463 +    switch (retType.which()) {
  1.6464 +      case RetType::Signed:
  1.6465 +        masm.callExit(AsmJSImm_CoerceInPlace_ToInt32, i.stackBytesConsumedSoFar());
  1.6466 +        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
  1.6467 +        masm.unboxInt32(Address(StackPointer, offsetToArgv), ReturnReg);
  1.6468 +        break;
  1.6469 +      case RetType::Double:
  1.6470 +        masm.callExit(AsmJSImm_CoerceInPlace_ToNumber, i.stackBytesConsumedSoFar());
  1.6471 +        masm.branchTest32(Assembler::Zero, ReturnReg, ReturnReg, throwLabel);
  1.6472 +        masm.loadDouble(Address(StackPointer, offsetToArgv), ReturnFloatReg);
  1.6473 +        break;
  1.6474 +      default:
  1.6475 +        MOZ_ASSUME_UNREACHABLE("Unsupported convert type");
  1.6476 +    }
  1.6477 +}
  1.6478 +
  1.6479 +static void
  1.6480 +GenerateFFIIonExit(ModuleCompiler &m, const ModuleCompiler::ExitDescriptor &exit,
  1.6481 +                         unsigned exitIndex, Label *throwLabel)
  1.6482 +{
  1.6483 +    MacroAssembler &masm = m.masm();
  1.6484 +    masm.align(CodeAlignment);
  1.6485 +    m.setIonExitOffset(exitIndex);
  1.6486 +    masm.setFramePushed(0);
  1.6487 +
  1.6488 +#if defined(JS_CODEGEN_X64)
  1.6489 +    masm.Push(HeapReg);
  1.6490 +#elif defined(JS_CODEGEN_ARM)
  1.6491 +    // The lr register holds the return address and needs to be saved.  The GlobalReg
  1.6492 +    // (r10) and HeapReg (r11) also need to be restored before returning to asm.js code.
  1.6493 +    // The NANReg also needs to be restored, but is a constant and is reloaded before
  1.6494 +    // returning to asm.js code.
  1.6495 +    masm.PushRegsInMask(RegisterSet(GeneralRegisterSet((1<<GlobalReg.code()) |
  1.6496 +                                                       (1<<HeapReg.code()) |
  1.6497 +                                                       (1<<lr.code())),
  1.6498 +                                    FloatRegisterSet(uint32_t(0))));
  1.6499 +#endif
  1.6500 +
  1.6501 +    // The stack frame is used for the call into Ion and also for calls into C for OOL
  1.6502 +    // conversion of the result.  A frame large enough for both is allocated.
  1.6503 +    //
  1.6504 +    // Arguments to the Ion function are in the following order on the stack:
  1.6505 +    // | return address | descriptor | callee | argc | this | arg1 | arg2 | ...
  1.6506 +    unsigned argBytes = 3 * sizeof(size_t) + (1 + exit.sig().args().length()) * sizeof(Value);
  1.6507 +    unsigned offsetToArgs = MaybeRetAddr;
  1.6508 +    unsigned stackDecForIonCall = StackDecrementForCall(masm, argBytes + offsetToArgs);
  1.6509 +
  1.6510 +    // Reserve space for a call to AsmJSImm_CoerceInPlace_* and an array of values used by
  1.6511 +    // OOLConvert which reuses the same frame. This code needs to be kept in sync with the
  1.6512 +    // stack usage in GenerateOOLConvert.
  1.6513 +    MIRType typeArray[] = { MIRType_Pointer, MIRType_Pointer }; // cx, argv
  1.6514 +    MIRTypeVector callArgTypes(m.cx());
  1.6515 +    callArgTypes.infallibleAppend(typeArray, ArrayLength(typeArray));
  1.6516 +    unsigned oolExtraBytes = sizeof(Value) + MaybeRetAddr;
  1.6517 +    unsigned stackDecForOOLCall = StackDecrementForCall(masm, callArgTypes, oolExtraBytes);
  1.6518 +
  1.6519 +    // Allocate a frame large enough for both of the above calls.
  1.6520 +    unsigned stackDec = Max(stackDecForIonCall, stackDecForOOLCall);
  1.6521 +
  1.6522 +    masm.reserveStack(stackDec);
  1.6523 +    AssertStackAlignment(masm);
  1.6524 +
  1.6525 +    // 1. Descriptor
  1.6526 +    size_t argOffset = offsetToArgs;
  1.6527 +    uint32_t descriptor = MakeFrameDescriptor(masm.framePushed(), JitFrame_Entry);
  1.6528 +    masm.storePtr(ImmWord(uintptr_t(descriptor)), Address(StackPointer, argOffset));
  1.6529 +    argOffset += sizeof(size_t);
  1.6530 +
  1.6531 +    // 2. Callee
  1.6532 +    Register callee = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6533 +    Register scratch = ABIArgGenerator::NonArgReturnVolatileReg1;
  1.6534 +
  1.6535 +    // 2.1. Get ExitDatum
  1.6536 +    unsigned globalDataOffset = m.module().exitIndexToGlobalDataOffset(exitIndex);
  1.6537 +#if defined(JS_CODEGEN_X64)
  1.6538 +    CodeOffsetLabel label2 = masm.leaRipRelative(callee);
  1.6539 +    m.masm().append(AsmJSGlobalAccess(label2.offset(), globalDataOffset));
  1.6540 +#elif defined(JS_CODEGEN_X86)
  1.6541 +    CodeOffsetLabel label2 = masm.movlWithPatch(Imm32(0), callee);
  1.6542 +    m.masm().append(AsmJSGlobalAccess(label2.offset(), globalDataOffset));
  1.6543 +#else
  1.6544 +    masm.lea(Operand(GlobalReg, globalDataOffset), callee);
  1.6545 +#endif
  1.6546 +
  1.6547 +    // 2.2. Get callee
  1.6548 +    masm.loadPtr(Address(callee, offsetof(AsmJSModule::ExitDatum, fun)), callee);
  1.6549 +
  1.6550 +    // 2.3. Save callee
  1.6551 +    masm.storePtr(callee, Address(StackPointer, argOffset));
  1.6552 +    argOffset += sizeof(size_t);
  1.6553 +
  1.6554 +    // 3. Argc
  1.6555 +    unsigned argc = exit.sig().args().length();
  1.6556 +    masm.storePtr(ImmWord(uintptr_t(argc)), Address(StackPointer, argOffset));
  1.6557 +    argOffset += sizeof(size_t);
  1.6558 +
  1.6559 +    // 4. |this| value
  1.6560 +    masm.storeValue(UndefinedValue(), Address(StackPointer, argOffset));
  1.6561 +    argOffset += sizeof(Value);
  1.6562 +
  1.6563 +    // 5. Fill the arguments
  1.6564 +    unsigned offsetToCallerStackArgs = masm.framePushed();
  1.6565 +#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
  1.6566 +    offsetToCallerStackArgs += NativeFrameSize;
  1.6567 +#endif
  1.6568 +    FillArgumentArray(m, exit.sig().args(), argOffset, offsetToCallerStackArgs, scratch);
  1.6569 +    argOffset += exit.sig().args().length() * sizeof(Value);
  1.6570 +    JS_ASSERT(argOffset == offsetToArgs + argBytes);
  1.6571 +
  1.6572 +    // Get the pointer to the ion code
  1.6573 +    Label done, oolConvert;
  1.6574 +    Label *maybeDebugBreakpoint = nullptr;
  1.6575 +
  1.6576 +#ifdef DEBUG
  1.6577 +    Label ionFailed;
  1.6578 +    maybeDebugBreakpoint = &ionFailed;
  1.6579 +    masm.branchIfFunctionHasNoScript(callee, &ionFailed);
  1.6580 +#endif
  1.6581 +
  1.6582 +    masm.loadPtr(Address(callee, JSFunction::offsetOfNativeOrScript()), callee);
  1.6583 +    masm.loadBaselineOrIonNoArgCheck(callee, callee, SequentialExecution, maybeDebugBreakpoint);
  1.6584 +
  1.6585 +    AssertStackAlignment(masm);
  1.6586 +
  1.6587 +    {
  1.6588 +        // Enable Activation.
  1.6589 +        //
  1.6590 +        // This sequence requires four registers, and needs to preserve the 'callee'
  1.6591 +        // register, so there are five live registers.
  1.6592 +        JS_ASSERT(callee == AsmJSIonExitRegCallee);
  1.6593 +        Register reg0 = AsmJSIonExitRegE0;
  1.6594 +        Register reg1 = AsmJSIonExitRegE1;
  1.6595 +        Register reg2 = AsmJSIonExitRegE2;
  1.6596 +        Register reg3 = AsmJSIonExitRegE3;
  1.6597 +
  1.6598 +        LoadAsmJSActivationIntoRegister(masm, reg0);
  1.6599 +
  1.6600 +        // Record sp in the AsmJSActivation for stack-walking.
  1.6601 +        masm.storePtr(StackPointer, Address(reg0, AsmJSActivation::offsetOfExitSP()));
  1.6602 +
  1.6603 +        // The following is inlined:
  1.6604 +        //   JSContext *cx = activation->cx();
  1.6605 +        //   Activation *act = cx->mainThread().activation();
  1.6606 +        //   act.active_ = true;
  1.6607 +        //   act.prevIonTop_ = cx->mainThread().ionTop;
  1.6608 +        //   act.prevJitJSContext_ = cx->mainThread().jitJSContext;
  1.6609 +        //   cx->mainThread().jitJSContext = cx;
  1.6610 +        // On the ARM store8() uses the secondScratchReg (lr) as a temp.
  1.6611 +        size_t offsetOfActivation = offsetof(JSRuntime, mainThread) +
  1.6612 +                                    PerThreadData::offsetOfActivation();
  1.6613 +        size_t offsetOfIonTop = offsetof(JSRuntime, mainThread) + offsetof(PerThreadData, ionTop);
  1.6614 +        size_t offsetOfJitJSContext = offsetof(JSRuntime, mainThread) +
  1.6615 +                                      offsetof(PerThreadData, jitJSContext);
  1.6616 +        masm.loadPtr(Address(reg0, AsmJSActivation::offsetOfContext()), reg3);
  1.6617 +        masm.loadPtr(Address(reg3, JSContext::offsetOfRuntime()), reg0);
  1.6618 +        masm.loadPtr(Address(reg0, offsetOfActivation), reg1);
  1.6619 +        masm.store8(Imm32(1), Address(reg1, JitActivation::offsetOfActiveUint8()));
  1.6620 +        masm.loadPtr(Address(reg0, offsetOfIonTop), reg2);
  1.6621 +        masm.storePtr(reg2, Address(reg1, JitActivation::offsetOfPrevIonTop()));
  1.6622 +        masm.loadPtr(Address(reg0, offsetOfJitJSContext), reg2);
  1.6623 +        masm.storePtr(reg2, Address(reg1, JitActivation::offsetOfPrevJitJSContext()));
  1.6624 +        masm.storePtr(reg3, Address(reg0, offsetOfJitJSContext));
  1.6625 +    }
  1.6626 +
  1.6627 +    // 2. Call
  1.6628 +    AssertStackAlignment(masm);
  1.6629 +    masm.callIonFromAsmJS(callee);
  1.6630 +    AssertStackAlignment(masm);
  1.6631 +
  1.6632 +    {
  1.6633 +        // Disable Activation.
  1.6634 +        //
  1.6635 +        // This sequence needs three registers, and must preserve the JSReturnReg_Data and
  1.6636 +        // JSReturnReg_Type, so there are five live registers.
  1.6637 +        JS_ASSERT(JSReturnReg_Data == AsmJSIonExitRegReturnData);
  1.6638 +        JS_ASSERT(JSReturnReg_Type == AsmJSIonExitRegReturnType);
  1.6639 +        Register reg0 = AsmJSIonExitRegD0;
  1.6640 +        Register reg1 = AsmJSIonExitRegD1;
  1.6641 +        Register reg2 = AsmJSIonExitRegD2;
  1.6642 +
  1.6643 +        LoadAsmJSActivationIntoRegister(masm, reg0);
  1.6644 +
  1.6645 +        // The following is inlined:
  1.6646 +        //   JSContext *cx = activation->cx();
  1.6647 +        //   Activation *act = cx->mainThread().activation();
  1.6648 +        //   act.active_ = false;
  1.6649 +        //   cx->mainThread().ionTop = prevIonTop_;
  1.6650 +        //   cx->mainThread().jitJSContext = prevJitJSContext_;
  1.6651 +        // On the ARM store8() uses the secondScratchReg (lr) as a temp.
  1.6652 +        size_t offsetOfActivation = offsetof(JSRuntime, mainThread) +
  1.6653 +                                    PerThreadData::offsetOfActivation();
  1.6654 +        size_t offsetOfIonTop = offsetof(JSRuntime, mainThread) + offsetof(PerThreadData, ionTop);
  1.6655 +        size_t offsetOfJitJSContext = offsetof(JSRuntime, mainThread) +
  1.6656 +                                      offsetof(PerThreadData, jitJSContext);
  1.6657 +        masm.loadPtr(Address(reg0, AsmJSActivation::offsetOfContext()), reg0);
  1.6658 +        masm.loadPtr(Address(reg0, JSContext::offsetOfRuntime()), reg0);
  1.6659 +        masm.loadPtr(Address(reg0, offsetOfActivation), reg1);
  1.6660 +        masm.store8(Imm32(0), Address(reg1, JitActivation::offsetOfActiveUint8()));
  1.6661 +        masm.loadPtr(Address(reg1, JitActivation::offsetOfPrevIonTop()), reg2);
  1.6662 +        masm.storePtr(reg2, Address(reg0, offsetOfIonTop));
  1.6663 +        masm.loadPtr(Address(reg1, JitActivation::offsetOfPrevJitJSContext()), reg2);
  1.6664 +        masm.storePtr(reg2, Address(reg0, offsetOfJitJSContext));
  1.6665 +    }
  1.6666 +
  1.6667 +#ifdef DEBUG
  1.6668 +    masm.branchTestMagicValue(Assembler::Equal, JSReturnOperand, JS_ION_ERROR, throwLabel);
  1.6669 +    masm.branchTestMagic(Assembler::Equal, JSReturnOperand, &ionFailed);
  1.6670 +#else
  1.6671 +    masm.branchTestMagic(Assembler::Equal, JSReturnOperand, throwLabel);
  1.6672 +#endif
  1.6673 +
  1.6674 +    uint32_t oolConvertFramePushed = masm.framePushed();
  1.6675 +    switch (exit.sig().retType().which()) {
  1.6676 +      case RetType::Void:
  1.6677 +        break;
  1.6678 +      case RetType::Signed:
  1.6679 +        masm.convertValueToInt32(JSReturnOperand, ReturnFloatReg, ReturnReg, &oolConvert,
  1.6680 +                                 /* -0 check */ false);
  1.6681 +        break;
  1.6682 +      case RetType::Double:
  1.6683 +        masm.convertValueToDouble(JSReturnOperand, ReturnFloatReg, &oolConvert);
  1.6684 +        break;
  1.6685 +      case RetType::Float:
  1.6686 +        MOZ_ASSUME_UNREACHABLE("Float shouldn't be returned from a FFI");
  1.6687 +        break;
  1.6688 +    }
  1.6689 +
  1.6690 +    masm.bind(&done);
  1.6691 +    masm.freeStack(stackDec);
  1.6692 +#if defined(JS_CODEGEN_ARM)
  1.6693 +    masm.ma_vimm(GenericNaN(), NANReg);
  1.6694 +    masm.PopRegsInMask(RegisterSet(GeneralRegisterSet((1<<GlobalReg.code()) |
  1.6695 +                                                      (1<<HeapReg.code()) |
  1.6696 +                                                      (1<<pc.code())),
  1.6697 +                                   FloatRegisterSet(uint32_t(0))));
  1.6698 +#else
  1.6699 +# if defined(JS_CODEGEN_X64)
  1.6700 +    masm.Pop(HeapReg);
  1.6701 +# endif
  1.6702 +    masm.ret();
  1.6703 +#endif
  1.6704 +    JS_ASSERT(masm.framePushed() == 0);
  1.6705 +
  1.6706 +    // oolConvert
  1.6707 +    if (oolConvert.used()) {
  1.6708 +        masm.bind(&oolConvert);
  1.6709 +        masm.setFramePushed(oolConvertFramePushed);
  1.6710 +        GenerateOOLConvert(m, exit.sig().retType(), throwLabel);
  1.6711 +        masm.setFramePushed(0);
  1.6712 +        masm.jump(&done);
  1.6713 +    }
  1.6714 +
  1.6715 +#ifdef DEBUG
  1.6716 +    masm.bind(&ionFailed);
  1.6717 +    masm.assumeUnreachable("AsmJS to IonMonkey call failed.");
  1.6718 +#endif
  1.6719 +}
  1.6720 +
  1.6721 +// See "asm.js FFI calls" comment above.
  1.6722 +static void
  1.6723 +GenerateFFIExit(ModuleCompiler &m, const ModuleCompiler::ExitDescriptor &exit, unsigned exitIndex,
  1.6724 +                Label *throwLabel)
  1.6725 +{
  1.6726 +    // Generate the slow path through the interpreter
  1.6727 +    GenerateFFIInterpreterExit(m, exit, exitIndex, throwLabel);
  1.6728 +
  1.6729 +    // Generate the fast path
  1.6730 +    GenerateFFIIonExit(m, exit, exitIndex, throwLabel);
  1.6731 +}
  1.6732 +
  1.6733 +// The stack-overflow exit is called when the stack limit has definitely been
  1.6734 +// exceeded. In this case, we can clobber everything since we are about to pop
  1.6735 +// all the frames.
  1.6736 +static bool
  1.6737 +GenerateStackOverflowExit(ModuleCompiler &m, Label *throwLabel)
  1.6738 +{
  1.6739 +    MacroAssembler &masm = m.masm();
  1.6740 +    masm.align(CodeAlignment);
  1.6741 +    masm.bind(&m.stackOverflowLabel());
  1.6742 +
  1.6743 +    // The overflow check always occurs before the initial function-specific
  1.6744 +    // stack-size adjustment. See CodeGenerator::generateAsmJSPrologue.
  1.6745 +    masm.setFramePushed(AlignmentMidPrologue - AlignmentAtPrologue);
  1.6746 +
  1.6747 +    MIRTypeVector argTypes(m.cx());
  1.6748 +    argTypes.infallibleAppend(MIRType_Pointer); // cx
  1.6749 +
  1.6750 +    unsigned stackDec = StackDecrementForCall(masm, argTypes, MaybeRetAddr);
  1.6751 +    masm.reserveStack(stackDec);
  1.6752 +
  1.6753 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6754 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6755 +
  1.6756 +    // Record sp in the AsmJSActivation for stack-walking.
  1.6757 +    masm.storePtr(StackPointer, Address(activation, AsmJSActivation::offsetOfExitSP()));
  1.6758 +
  1.6759 +    ABIArgMIRTypeIter i(argTypes);
  1.6760 +
  1.6761 +    // argument 0: cx
  1.6762 +    if (i->kind() == ABIArg::GPR) {
  1.6763 +        LoadJSContextFromActivation(masm, activation, i->gpr());
  1.6764 +    } else {
  1.6765 +        LoadJSContextFromActivation(masm, activation, activation);
  1.6766 +        masm.storePtr(activation, Address(StackPointer, i->offsetFromArgBase()));
  1.6767 +    }
  1.6768 +    i++;
  1.6769 +
  1.6770 +    JS_ASSERT(i.done());
  1.6771 +
  1.6772 +    AssertStackAlignment(masm);
  1.6773 +    masm.callExit(AsmJSImm_ReportOverRecursed, i.stackBytesConsumedSoFar());
  1.6774 +
  1.6775 +    // Don't worry about restoring the stack; throwLabel will pop everything.
  1.6776 +    masm.jump(throwLabel);
  1.6777 +    return !masm.oom();
  1.6778 +}
  1.6779 +
  1.6780 +// The operation-callback exit is called from arbitrarily-interrupted asm.js
  1.6781 +// code. That means we must first save *all* registers and restore *all*
  1.6782 +// registers (except the stack pointer) when we resume. The address to resume to
  1.6783 +// (assuming that js::HandleExecutionInterrupt doesn't indicate that the
  1.6784 +// execution should be aborted) is stored in AsmJSActivation::resumePC_.
  1.6785 +// Unfortunately, loading this requires a scratch register which we don't have
  1.6786 +// after restoring all registers. To hack around this, push the resumePC on the
  1.6787 +// stack so that it can be popped directly into PC.
  1.6788 +static bool
  1.6789 +GenerateInterruptExit(ModuleCompiler &m, Label *throwLabel)
  1.6790 +{
  1.6791 +    MacroAssembler &masm = m.masm();
  1.6792 +    masm.align(CodeAlignment);
  1.6793 +    masm.bind(&m.interruptLabel());
  1.6794 +
  1.6795 +#ifndef JS_CODEGEN_ARM
  1.6796 +    // Be very careful here not to perturb the machine state before saving it
  1.6797 +    // to the stack. In particular, add/sub instructions may set conditions in
  1.6798 +    // the flags register.
  1.6799 +    masm.push(Imm32(0));            // space for resumePC
  1.6800 +    masm.pushFlags();               // after this we are safe to use sub
  1.6801 +    masm.setFramePushed(0);         // set to zero so we can use masm.framePushed() below
  1.6802 +    masm.PushRegsInMask(AllRegsExceptSP); // save all GP/FP registers (except SP)
  1.6803 +
  1.6804 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6805 +    Register scratch = ABIArgGenerator::NonArgReturnVolatileReg1;
  1.6806 +
  1.6807 +    // Store resumePC into the reserved space.
  1.6808 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6809 +    masm.loadPtr(Address(activation, AsmJSActivation::offsetOfResumePC()), scratch);
  1.6810 +    masm.storePtr(scratch, Address(StackPointer, masm.framePushed() + sizeof(void*)));
  1.6811 +
  1.6812 +    // We know that StackPointer is word-aligned, but not necessarily
  1.6813 +    // stack-aligned, so we need to align it dynamically.
  1.6814 +    masm.mov(StackPointer, ABIArgGenerator::NonVolatileReg);
  1.6815 +#if defined(JS_CODEGEN_X86)
  1.6816 +    // Ensure that at least one slot is pushed for passing 'cx' below.
  1.6817 +    masm.push(Imm32(0));
  1.6818 +#endif
  1.6819 +    masm.andPtr(Imm32(~(StackAlignment - 1)), StackPointer);
  1.6820 +    if (ShadowStackSpace)
  1.6821 +        masm.subPtr(Imm32(ShadowStackSpace), StackPointer);
  1.6822 +
  1.6823 +    // argument 0: cx
  1.6824 +#if defined(JS_CODEGEN_X86)
  1.6825 +    LoadJSContextFromActivation(masm, activation, scratch);
  1.6826 +    masm.storePtr(scratch, Address(StackPointer, 0));
  1.6827 +#elif defined(JS_CODEGEN_X64)
  1.6828 +    LoadJSContextFromActivation(masm, activation, IntArgReg0);
  1.6829 +#endif
  1.6830 +
  1.6831 +    masm.call(AsmJSImm_HandleExecutionInterrupt);
  1.6832 +    masm.branchIfFalseBool(ReturnReg, throwLabel);
  1.6833 +
  1.6834 +    // Restore the StackPointer to it's position before the call.
  1.6835 +    masm.mov(ABIArgGenerator::NonVolatileReg, StackPointer);
  1.6836 +
  1.6837 +    // Restore the machine state to before the interrupt.
  1.6838 +    masm.PopRegsInMask(AllRegsExceptSP); // restore all GP/FP registers (except SP)
  1.6839 +    masm.popFlags();              // after this, nothing that sets conditions
  1.6840 +    masm.ret();                   // pop resumePC into PC
  1.6841 +#else
  1.6842 +    masm.setFramePushed(0);         // set to zero so we can use masm.framePushed() below
  1.6843 +    masm.PushRegsInMask(RegisterSet(GeneralRegisterSet(Registers::AllMask & ~(1<<Registers::sp)), FloatRegisterSet(uint32_t(0))));   // save all GP registers,excep sp
  1.6844 +
  1.6845 +    // Save both the APSR and FPSCR in non-volatile registers.
  1.6846 +    masm.as_mrs(r4);
  1.6847 +    masm.as_vmrs(r5);
  1.6848 +    // Save the stack pointer in a non-volatile register.
  1.6849 +    masm.mov(sp,r6);
  1.6850 +    // Align the stack.
  1.6851 +    masm.ma_and(Imm32(~7), sp, sp);
  1.6852 +
  1.6853 +    // Store resumePC into the return PC stack slot.
  1.6854 +    LoadAsmJSActivationIntoRegister(masm, IntArgReg0);
  1.6855 +    masm.loadPtr(Address(IntArgReg0, AsmJSActivation::offsetOfResumePC()), IntArgReg1);
  1.6856 +    masm.storePtr(IntArgReg1, Address(r6, 14 * sizeof(uint32_t*)));
  1.6857 +
  1.6858 +    // argument 0: cx
  1.6859 +    masm.loadPtr(Address(IntArgReg0, AsmJSActivation::offsetOfContext()), IntArgReg0);
  1.6860 +
  1.6861 +    masm.PushRegsInMask(RegisterSet(GeneralRegisterSet(0), FloatRegisterSet(FloatRegisters::AllMask)));   // save all FP registers
  1.6862 +    masm.call(AsmJSImm_HandleExecutionInterrupt);
  1.6863 +    masm.branchIfFalseBool(ReturnReg, throwLabel);
  1.6864 +
  1.6865 +    // Restore the machine state to before the interrupt. this will set the pc!
  1.6866 +    masm.PopRegsInMask(RegisterSet(GeneralRegisterSet(0), FloatRegisterSet(FloatRegisters::AllMask)));   // restore all FP registers
  1.6867 +    masm.mov(r6,sp);
  1.6868 +    masm.as_vmsr(r5);
  1.6869 +    masm.as_msr(r4);
  1.6870 +    // Restore all GP registers
  1.6871 +    masm.startDataTransferM(IsLoad, sp, IA, WriteBack);
  1.6872 +    masm.transferReg(r0);
  1.6873 +    masm.transferReg(r1);
  1.6874 +    masm.transferReg(r2);
  1.6875 +    masm.transferReg(r3);
  1.6876 +    masm.transferReg(r4);
  1.6877 +    masm.transferReg(r5);
  1.6878 +    masm.transferReg(r6);
  1.6879 +    masm.transferReg(r7);
  1.6880 +    masm.transferReg(r8);
  1.6881 +    masm.transferReg(r9);
  1.6882 +    masm.transferReg(r10);
  1.6883 +    masm.transferReg(r11);
  1.6884 +    masm.transferReg(r12);
  1.6885 +    masm.transferReg(lr);
  1.6886 +    masm.finishDataTransfer();
  1.6887 +    masm.ret();
  1.6888 +
  1.6889 +#endif
  1.6890 +
  1.6891 +    return !masm.oom();
  1.6892 +}
  1.6893 +
  1.6894 +// If an exception is thrown, simply pop all frames (since asm.js does not
  1.6895 +// contain try/catch). To do this:
  1.6896 +//  1. Restore 'sp' to it's value right after the PushRegsInMask in GenerateEntry.
  1.6897 +//  2. PopRegsInMask to restore the caller's non-volatile registers.
  1.6898 +//  3. Return (to CallAsmJS).
  1.6899 +static bool
  1.6900 +GenerateThrowExit(ModuleCompiler &m, Label *throwLabel)
  1.6901 +{
  1.6902 +    MacroAssembler &masm = m.masm();
  1.6903 +    masm.align(CodeAlignment);
  1.6904 +    masm.bind(throwLabel);
  1.6905 +
  1.6906 +    Register activation = ABIArgGenerator::NonArgReturnVolatileReg0;
  1.6907 +    LoadAsmJSActivationIntoRegister(masm, activation);
  1.6908 +
  1.6909 +    masm.setFramePushed(FramePushedAfterSave);
  1.6910 +    masm.loadPtr(Address(activation, AsmJSActivation::offsetOfErrorRejoinSP()), StackPointer);
  1.6911 +
  1.6912 +    masm.PopRegsInMask(NonVolatileRegs);
  1.6913 +    JS_ASSERT(masm.framePushed() == 0);
  1.6914 +
  1.6915 +    masm.mov(ImmWord(0), ReturnReg);
  1.6916 +    masm.abiret();
  1.6917 +
  1.6918 +    return !masm.oom();
  1.6919 +}
  1.6920 +
  1.6921 +static bool
  1.6922 +GenerateStubs(ModuleCompiler &m)
  1.6923 +{
  1.6924 +    for (unsigned i = 0; i < m.module().numExportedFunctions(); i++) {
  1.6925 +        m.setEntryOffset(i);
  1.6926 +        if (!GenerateEntry(m, m.module().exportedFunction(i)))
  1.6927 +            return false;
  1.6928 +        if (m.masm().oom())
  1.6929 +            return false;
  1.6930 +    }
  1.6931 +
  1.6932 +    Label throwLabel;
  1.6933 +
  1.6934 +    // The order of the iterations here is non-deterministic, since
  1.6935 +    // m.allExits() is a hash keyed by pointer values!
  1.6936 +    for (ModuleCompiler::ExitMap::Range r = m.allExits(); !r.empty(); r.popFront()) {
  1.6937 +        GenerateFFIExit(m, r.front().key(), r.front().value(), &throwLabel);
  1.6938 +        if (m.masm().oom())
  1.6939 +            return false;
  1.6940 +    }
  1.6941 +
  1.6942 +    if (m.stackOverflowLabel().used()) {
  1.6943 +        if (!GenerateStackOverflowExit(m, &throwLabel))
  1.6944 +            return false;
  1.6945 +    }
  1.6946 +
  1.6947 +    if (!GenerateInterruptExit(m, &throwLabel))
  1.6948 +        return false;
  1.6949 +
  1.6950 +    if (!GenerateThrowExit(m, &throwLabel))
  1.6951 +        return false;
  1.6952 +
  1.6953 +    return true;
  1.6954 +}
  1.6955 +
  1.6956 +static bool
  1.6957 +FinishModule(ModuleCompiler &m,
  1.6958 +             ScopedJSDeletePtr<AsmJSModule> *module)
  1.6959 +{
  1.6960 +    LifoAlloc lifo(LIFO_ALLOC_PRIMARY_CHUNK_SIZE);
  1.6961 +    TempAllocator alloc(&lifo);
  1.6962 +    IonContext ionContext(m.cx(), &alloc);
  1.6963 +
  1.6964 +    m.masm().resetForNewCodeGenerator(alloc);
  1.6965 +
  1.6966 +    if (!GenerateStubs(m))
  1.6967 +        return false;
  1.6968 +
  1.6969 +    return m.finish(module);
  1.6970 +}
  1.6971 +
  1.6972 +static bool
  1.6973 +CheckModule(ExclusiveContext *cx, AsmJSParser &parser, ParseNode *stmtList,
  1.6974 +            ScopedJSDeletePtr<AsmJSModule> *moduleOut,
  1.6975 +            ScopedJSFreePtr<char> *compilationTimeReport)
  1.6976 +{
  1.6977 +    if (!LookupAsmJSModuleInCache(cx, parser, moduleOut, compilationTimeReport))
  1.6978 +        return false;
  1.6979 +    if (*moduleOut)
  1.6980 +        return true;
  1.6981 +
  1.6982 +    ModuleCompiler m(cx, parser);
  1.6983 +    if (!m.init())
  1.6984 +        return false;
  1.6985 +
  1.6986 +    if (PropertyName *moduleFunctionName = FunctionName(m.moduleFunctionNode())) {
  1.6987 +        if (!CheckModuleLevelName(m, m.moduleFunctionNode(), moduleFunctionName))
  1.6988 +            return false;
  1.6989 +        m.initModuleFunctionName(moduleFunctionName);
  1.6990 +    }
  1.6991 +
  1.6992 +    if (!CheckFunctionHead(m, m.moduleFunctionNode()))
  1.6993 +        return false;
  1.6994 +
  1.6995 +    if (!CheckModuleArguments(m, m.moduleFunctionNode()))
  1.6996 +        return false;
  1.6997 +
  1.6998 +    if (!CheckPrecedingStatements(m, stmtList))
  1.6999 +        return false;
  1.7000 +
  1.7001 +    if (!CheckModuleGlobals(m))
  1.7002 +        return false;
  1.7003 +
  1.7004 +#ifdef JS_THREADSAFE
  1.7005 +    if (!CheckFunctionsParallel(m))
  1.7006 +        return false;
  1.7007 +#else
  1.7008 +    if (!CheckFunctionsSequential(m))
  1.7009 +        return false;
  1.7010 +#endif
  1.7011 +
  1.7012 +    m.finishFunctionBodies();
  1.7013 +
  1.7014 +    if (!CheckFuncPtrTables(m))
  1.7015 +        return false;
  1.7016 +
  1.7017 +    if (!CheckModuleReturn(m))
  1.7018 +        return false;
  1.7019 +
  1.7020 +    TokenKind tk = PeekToken(m.parser());
  1.7021 +    if (tk != TOK_EOF && tk != TOK_RC)
  1.7022 +        return m.fail(nullptr, "top-level export (return) must be the last statement");
  1.7023 +
  1.7024 +    // The instruction cache is flushed when dynamically linking, so can inhibit now.
  1.7025 +    AutoFlushICache afc("CheckModule", /* inhibit= */ true);
  1.7026 +
  1.7027 +    ScopedJSDeletePtr<AsmJSModule> module;
  1.7028 +    if (!FinishModule(m, &module))
  1.7029 +        return false;
  1.7030 +
  1.7031 +    bool storedInCache = StoreAsmJSModuleInCache(parser, *module, cx);
  1.7032 +    module->staticallyLink(cx);
  1.7033 +
  1.7034 +    m.buildCompilationTimeReport(storedInCache, compilationTimeReport);
  1.7035 +    *moduleOut = module.forget();
  1.7036 +    return true;
  1.7037 +}
  1.7038 +
  1.7039 +static bool
  1.7040 +Warn(AsmJSParser &parser, int errorNumber, const char *str)
  1.7041 +{
  1.7042 +    parser.reportNoOffset(ParseWarning, /* strict = */ false, errorNumber, str ? str : "");
  1.7043 +    return false;
  1.7044 +}
  1.7045 +
  1.7046 +static bool
  1.7047 +EstablishPreconditions(ExclusiveContext *cx, AsmJSParser &parser)
  1.7048 +{
  1.7049 +    if (!cx->jitSupportsFloatingPoint())
  1.7050 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by lack of floating point support");
  1.7051 +
  1.7052 +    if (!cx->signalHandlersInstalled())
  1.7053 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Platform missing signal handler support");
  1.7054 +
  1.7055 +    if (cx->gcSystemPageSize() != AsmJSPageSize)
  1.7056 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by non 4KiB system page size");
  1.7057 +
  1.7058 +    if (!parser.options().asmJSOption)
  1.7059 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by javascript.options.asmjs in about:config");
  1.7060 +
  1.7061 +    if (!parser.options().compileAndGo)
  1.7062 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Temporarily disabled for event-handler and other cloneable scripts");
  1.7063 +
  1.7064 +    if (cx->compartment()->debugMode())
  1.7065 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by debugger");
  1.7066 +
  1.7067 +    if (parser.pc->isGenerator())
  1.7068 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by generator context");
  1.7069 +
  1.7070 +    if (parser.pc->isArrowFunction())
  1.7071 +        return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by arrow function context");
  1.7072 +
  1.7073 +#ifdef JS_THREADSAFE
  1.7074 +    if (ParallelCompilationEnabled(cx))
  1.7075 +        EnsureWorkerThreadsInitialized(cx);
  1.7076 +#endif
  1.7077 +
  1.7078 +    return true;
  1.7079 +}
  1.7080 +
  1.7081 +static bool
  1.7082 +NoExceptionPending(ExclusiveContext *cx)
  1.7083 +{
  1.7084 +    return !cx->isJSContext() || !cx->asJSContext()->isExceptionPending();
  1.7085 +}
  1.7086 +
  1.7087 +bool
  1.7088 +js::CompileAsmJS(ExclusiveContext *cx, AsmJSParser &parser, ParseNode *stmtList, bool *validated)
  1.7089 +{
  1.7090 +    *validated = false;
  1.7091 +
  1.7092 +    if (!EstablishPreconditions(cx, parser))
  1.7093 +        return NoExceptionPending(cx);
  1.7094 +
  1.7095 +    ScopedJSFreePtr<char> compilationTimeReport;
  1.7096 +    ScopedJSDeletePtr<AsmJSModule> module;
  1.7097 +    if (!CheckModule(cx, parser, stmtList, &module, &compilationTimeReport))
  1.7098 +        return NoExceptionPending(cx);
  1.7099 +
  1.7100 +    RootedObject moduleObj(cx, AsmJSModuleObject::create(cx, &module));
  1.7101 +    if (!moduleObj)
  1.7102 +        return false;
  1.7103 +
  1.7104 +    FunctionBox *funbox = parser.pc->maybeFunction->pn_funbox;
  1.7105 +    RootedFunction moduleFun(cx, NewAsmJSModuleFunction(cx, funbox->function(), moduleObj));
  1.7106 +    if (!moduleFun)
  1.7107 +        return false;
  1.7108 +
  1.7109 +    JS_ASSERT(funbox->function()->isInterpreted());
  1.7110 +    funbox->object = moduleFun;
  1.7111 +
  1.7112 +    *validated = true;
  1.7113 +    Warn(parser, JSMSG_USE_ASM_TYPE_OK, compilationTimeReport.get());
  1.7114 +    return NoExceptionPending(cx);
  1.7115 +}
  1.7116 +
  1.7117 +bool
  1.7118 +js::IsAsmJSCompilationAvailable(JSContext *cx, unsigned argc, Value *vp)
  1.7119 +{
  1.7120 +    CallArgs args = CallArgsFromVp(argc, vp);
  1.7121 +
  1.7122 +    // See EstablishPreconditions.
  1.7123 +    bool available = cx->jitSupportsFloatingPoint() &&
  1.7124 +                     cx->signalHandlersInstalled() &&
  1.7125 +                     cx->gcSystemPageSize() == AsmJSPageSize &&
  1.7126 +                     !cx->compartment()->debugMode() &&
  1.7127 +                     cx->runtime()->options().asmJS();
  1.7128 +
  1.7129 +    args.rval().set(BooleanValue(available));
  1.7130 +    return true;
  1.7131 +}

mercurial