js/src/jit/BacktrackingAllocator.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jit/BacktrackingAllocator.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1816 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include "jit/BacktrackingAllocator.h"
    1.11 +#include "jit/BitSet.h"
    1.12 +
    1.13 +using namespace js;
    1.14 +using namespace js::jit;
    1.15 +
    1.16 +using mozilla::DebugOnly;
    1.17 +
    1.18 +bool
    1.19 +BacktrackingAllocator::init()
    1.20 +{
    1.21 +    RegisterSet remainingRegisters(allRegisters_);
    1.22 +    while (!remainingRegisters.empty(/* float = */ false)) {
    1.23 +        AnyRegister reg = AnyRegister(remainingRegisters.takeGeneral());
    1.24 +        registers[reg.code()].allocatable = true;
    1.25 +    }
    1.26 +    while (!remainingRegisters.empty(/* float = */ true)) {
    1.27 +        AnyRegister reg = AnyRegister(remainingRegisters.takeFloat());
    1.28 +        registers[reg.code()].allocatable = true;
    1.29 +    }
    1.30 +
    1.31 +    LifoAlloc *lifoAlloc = mir->alloc().lifoAlloc();
    1.32 +    for (size_t i = 0; i < AnyRegister::Total; i++) {
    1.33 +        registers[i].reg = AnyRegister::FromCode(i);
    1.34 +        registers[i].allocations.setAllocator(lifoAlloc);
    1.35 +
    1.36 +        LiveInterval *fixed = fixedIntervals[i];
    1.37 +        for (size_t j = 0; j < fixed->numRanges(); j++) {
    1.38 +            AllocatedRange range(fixed, fixed->getRange(j));
    1.39 +            if (!registers[i].allocations.insert(range))
    1.40 +                return false;
    1.41 +        }
    1.42 +    }
    1.43 +
    1.44 +    hotcode.setAllocator(lifoAlloc);
    1.45 +
    1.46 +    // Partition the graph into hot and cold sections, for helping to make
    1.47 +    // splitting decisions. Since we don't have any profiling data this is a
    1.48 +    // crapshoot, so just mark the bodies of inner loops as hot and everything
    1.49 +    // else as cold.
    1.50 +
    1.51 +    LiveInterval *hotcodeInterval = LiveInterval::New(alloc(), 0);
    1.52 +
    1.53 +    LBlock *backedge = nullptr;
    1.54 +    for (size_t i = 0; i < graph.numBlocks(); i++) {
    1.55 +        LBlock *block = graph.getBlock(i);
    1.56 +
    1.57 +        // If we see a loop header, mark the backedge so we know when we have
    1.58 +        // hit the end of the loop. Don't process the loop immediately, so that
    1.59 +        // if there is an inner loop we will ignore the outer backedge.
    1.60 +        if (block->mir()->isLoopHeader())
    1.61 +            backedge = block->mir()->backedge()->lir();
    1.62 +
    1.63 +        if (block == backedge) {
    1.64 +            LBlock *header = block->mir()->loopHeaderOfBackedge()->lir();
    1.65 +            CodePosition from = inputOf(header->firstId());
    1.66 +            CodePosition to = outputOf(block->lastId()).next();
    1.67 +            if (!hotcodeInterval->addRange(from, to))
    1.68 +                return false;
    1.69 +        }
    1.70 +    }
    1.71 +
    1.72 +    for (size_t i = 0; i < hotcodeInterval->numRanges(); i++) {
    1.73 +        AllocatedRange range(hotcodeInterval, hotcodeInterval->getRange(i));
    1.74 +        if (!hotcode.insert(range))
    1.75 +            return false;
    1.76 +    }
    1.77 +
    1.78 +    return true;
    1.79 +}
    1.80 +
    1.81 +bool
    1.82 +BacktrackingAllocator::go()
    1.83 +{
    1.84 +    IonSpew(IonSpew_RegAlloc, "Beginning register allocation");
    1.85 +
    1.86 +    IonSpew(IonSpew_RegAlloc, "Beginning liveness analysis");
    1.87 +    if (!buildLivenessInfo())
    1.88 +        return false;
    1.89 +    IonSpew(IonSpew_RegAlloc, "Liveness analysis complete");
    1.90 +
    1.91 +    if (!init())
    1.92 +        return false;
    1.93 +
    1.94 +    if (IonSpewEnabled(IonSpew_RegAlloc))
    1.95 +        dumpLiveness();
    1.96 +
    1.97 +    if (!allocationQueue.reserve(graph.numVirtualRegisters() * 3 / 2))
    1.98 +        return false;
    1.99 +
   1.100 +    if (!groupAndQueueRegisters())
   1.101 +        return false;
   1.102 +
   1.103 +    if (IonSpewEnabled(IonSpew_RegAlloc))
   1.104 +        dumpRegisterGroups();
   1.105 +
   1.106 +    // Allocate, spill and split register intervals until finished.
   1.107 +    while (!allocationQueue.empty()) {
   1.108 +        if (mir->shouldCancel("Backtracking Allocation"))
   1.109 +            return false;
   1.110 +
   1.111 +        QueueItem item = allocationQueue.removeHighest();
   1.112 +        if (item.interval ? !processInterval(item.interval) : !processGroup(item.group))
   1.113 +            return false;
   1.114 +    }
   1.115 +
   1.116 +    if (IonSpewEnabled(IonSpew_RegAlloc))
   1.117 +        dumpAllocations();
   1.118 +
   1.119 +    return resolveControlFlow() && reifyAllocations() && populateSafepoints();
   1.120 +}
   1.121 +
   1.122 +static bool
   1.123 +LifetimesOverlap(BacktrackingVirtualRegister *reg0, BacktrackingVirtualRegister *reg1)
   1.124 +{
   1.125 +    // Registers may have been eagerly split in two, see tryGroupReusedRegister.
   1.126 +    // In such cases, only consider the first interval.
   1.127 +    JS_ASSERT(reg0->numIntervals() <= 2 && reg1->numIntervals() <= 2);
   1.128 +
   1.129 +    LiveInterval *interval0 = reg0->getInterval(0), *interval1 = reg1->getInterval(0);
   1.130 +
   1.131 +    // Interval ranges are sorted in reverse order. The lifetimes overlap if
   1.132 +    // any of their ranges overlap.
   1.133 +    size_t index0 = 0, index1 = 0;
   1.134 +    while (index0 < interval0->numRanges() && index1 < interval1->numRanges()) {
   1.135 +        const LiveInterval::Range
   1.136 +            *range0 = interval0->getRange(index0),
   1.137 +            *range1 = interval1->getRange(index1);
   1.138 +        if (range0->from >= range1->to)
   1.139 +            index0++;
   1.140 +        else if (range1->from >= range0->to)
   1.141 +            index1++;
   1.142 +        else
   1.143 +            return true;
   1.144 +    }
   1.145 +
   1.146 +    return false;
   1.147 +}
   1.148 +
   1.149 +bool
   1.150 +BacktrackingAllocator::canAddToGroup(VirtualRegisterGroup *group, BacktrackingVirtualRegister *reg)
   1.151 +{
   1.152 +    for (size_t i = 0; i < group->registers.length(); i++) {
   1.153 +        if (LifetimesOverlap(reg, &vregs[group->registers[i]]))
   1.154 +            return false;
   1.155 +    }
   1.156 +    return true;
   1.157 +}
   1.158 +
   1.159 +bool
   1.160 +BacktrackingAllocator::tryGroupRegisters(uint32_t vreg0, uint32_t vreg1)
   1.161 +{
   1.162 +    // See if reg0 and reg1 can be placed in the same group, following the
   1.163 +    // restrictions imposed by VirtualRegisterGroup and any other registers
   1.164 +    // already grouped with reg0 or reg1.
   1.165 +    BacktrackingVirtualRegister *reg0 = &vregs[vreg0], *reg1 = &vregs[vreg1];
   1.166 +
   1.167 +    if (reg0->isFloatReg() != reg1->isFloatReg())
   1.168 +        return true;
   1.169 +
   1.170 +    VirtualRegisterGroup *group0 = reg0->group(), *group1 = reg1->group();
   1.171 +
   1.172 +    if (!group0 && group1)
   1.173 +        return tryGroupRegisters(vreg1, vreg0);
   1.174 +
   1.175 +    if (group0) {
   1.176 +        if (group1) {
   1.177 +            if (group0 == group1) {
   1.178 +                // The registers are already grouped together.
   1.179 +                return true;
   1.180 +            }
   1.181 +            // Try to unify the two distinct groups.
   1.182 +            for (size_t i = 0; i < group1->registers.length(); i++) {
   1.183 +                if (!canAddToGroup(group0, &vregs[group1->registers[i]]))
   1.184 +                    return true;
   1.185 +            }
   1.186 +            for (size_t i = 0; i < group1->registers.length(); i++) {
   1.187 +                uint32_t vreg = group1->registers[i];
   1.188 +                if (!group0->registers.append(vreg))
   1.189 +                    return false;
   1.190 +                vregs[vreg].setGroup(group0);
   1.191 +            }
   1.192 +            return true;
   1.193 +        }
   1.194 +        if (!canAddToGroup(group0, reg1))
   1.195 +            return true;
   1.196 +        if (!group0->registers.append(vreg1))
   1.197 +            return false;
   1.198 +        reg1->setGroup(group0);
   1.199 +        return true;
   1.200 +    }
   1.201 +
   1.202 +    if (LifetimesOverlap(reg0, reg1))
   1.203 +        return true;
   1.204 +
   1.205 +    VirtualRegisterGroup *group = new(alloc()) VirtualRegisterGroup(alloc());
   1.206 +    if (!group->registers.append(vreg0) || !group->registers.append(vreg1))
   1.207 +        return false;
   1.208 +
   1.209 +    reg0->setGroup(group);
   1.210 +    reg1->setGroup(group);
   1.211 +    return true;
   1.212 +}
   1.213 +
   1.214 +bool
   1.215 +BacktrackingAllocator::tryGroupReusedRegister(uint32_t def, uint32_t use)
   1.216 +{
   1.217 +    BacktrackingVirtualRegister &reg = vregs[def], &usedReg = vregs[use];
   1.218 +
   1.219 +    // reg is a vreg which reuses its input usedReg for its output physical
   1.220 +    // register. Try to group reg with usedReg if at all possible, as avoiding
   1.221 +    // copies before reg's instruction is crucial for the quality of the
   1.222 +    // generated code (MUST_REUSE_INPUT is used by all arithmetic instructions
   1.223 +    // on x86/x64).
   1.224 +
   1.225 +    if (reg.intervalFor(inputOf(reg.ins()))) {
   1.226 +        JS_ASSERT(reg.isTemp());
   1.227 +        reg.setMustCopyInput();
   1.228 +        return true;
   1.229 +    }
   1.230 +
   1.231 +    if (!usedReg.intervalFor(outputOf(reg.ins()))) {
   1.232 +        // The input is not live after the instruction, either in a safepoint
   1.233 +        // for the instruction or in subsequent code. The input and output
   1.234 +        // can thus be in the same group.
   1.235 +        return tryGroupRegisters(use, def);
   1.236 +    }
   1.237 +
   1.238 +    // The input is live afterwards, either in future instructions or in a
   1.239 +    // safepoint for the reusing instruction. This is impossible to satisfy
   1.240 +    // without copying the input.
   1.241 +    //
   1.242 +    // It may or may not be better to split the interval at the point of the
   1.243 +    // definition, which may permit grouping. One case where it is definitely
   1.244 +    // better to split is if the input never has any register uses after the
   1.245 +    // instruction. Handle this splitting eagerly.
   1.246 +
   1.247 +    if (usedReg.numIntervals() != 1 ||
   1.248 +        (usedReg.def()->isPreset() && !usedReg.def()->output()->isRegister())) {
   1.249 +        reg.setMustCopyInput();
   1.250 +        return true;
   1.251 +    }
   1.252 +    LiveInterval *interval = usedReg.getInterval(0);
   1.253 +    LBlock *block = insData[reg.ins()].block();
   1.254 +
   1.255 +    // The input's lifetime must end within the same block as the definition,
   1.256 +    // otherwise it could live on in phis elsewhere.
   1.257 +    if (interval->end() > outputOf(block->lastId())) {
   1.258 +        reg.setMustCopyInput();
   1.259 +        return true;
   1.260 +    }
   1.261 +
   1.262 +    for (UsePositionIterator iter = interval->usesBegin(); iter != interval->usesEnd(); iter++) {
   1.263 +        if (iter->pos <= inputOf(reg.ins()))
   1.264 +            continue;
   1.265 +
   1.266 +        LUse *use = iter->use;
   1.267 +        if (FindReusingDefinition(insData[iter->pos].ins(), use)) {
   1.268 +            reg.setMustCopyInput();
   1.269 +            return true;
   1.270 +        }
   1.271 +        if (use->policy() != LUse::ANY && use->policy() != LUse::KEEPALIVE) {
   1.272 +            reg.setMustCopyInput();
   1.273 +            return true;
   1.274 +        }
   1.275 +    }
   1.276 +
   1.277 +    LiveInterval *preInterval = LiveInterval::New(alloc(), interval->vreg(), 0);
   1.278 +    for (size_t i = 0; i < interval->numRanges(); i++) {
   1.279 +        const LiveInterval::Range *range = interval->getRange(i);
   1.280 +        JS_ASSERT(range->from <= inputOf(reg.ins()));
   1.281 +
   1.282 +        CodePosition to = (range->to <= outputOf(reg.ins())) ? range->to : outputOf(reg.ins());
   1.283 +        if (!preInterval->addRange(range->from, to))
   1.284 +            return false;
   1.285 +    }
   1.286 +
   1.287 +    LiveInterval *postInterval = LiveInterval::New(alloc(), interval->vreg(), 0);
   1.288 +    if (!postInterval->addRange(inputOf(reg.ins()), interval->end()))
   1.289 +        return false;
   1.290 +
   1.291 +    LiveIntervalVector newIntervals;
   1.292 +    if (!newIntervals.append(preInterval) || !newIntervals.append(postInterval))
   1.293 +        return false;
   1.294 +
   1.295 +    distributeUses(interval, newIntervals);
   1.296 +
   1.297 +    if (!split(interval, newIntervals))
   1.298 +        return false;
   1.299 +
   1.300 +    JS_ASSERT(usedReg.numIntervals() == 2);
   1.301 +
   1.302 +    usedReg.setCanonicalSpillExclude(inputOf(reg.ins()));
   1.303 +
   1.304 +    return tryGroupRegisters(use, def);
   1.305 +}
   1.306 +
   1.307 +bool
   1.308 +BacktrackingAllocator::groupAndQueueRegisters()
   1.309 +{
   1.310 +    // Try to group registers with their reused inputs.
   1.311 +    // Virtual register number 0 is unused.
   1.312 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
   1.313 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
   1.314 +        BacktrackingVirtualRegister &reg = vregs[i];
   1.315 +        if (!reg.numIntervals())
   1.316 +            continue;
   1.317 +
   1.318 +        if (reg.def()->policy() == LDefinition::MUST_REUSE_INPUT) {
   1.319 +            LUse *use = reg.ins()->getOperand(reg.def()->getReusedInput())->toUse();
   1.320 +            if (!tryGroupReusedRegister(i, use->virtualRegister()))
   1.321 +                return false;
   1.322 +        }
   1.323 +    }
   1.324 +
   1.325 +    // Try to group phis with their inputs.
   1.326 +    for (size_t i = 0; i < graph.numBlocks(); i++) {
   1.327 +        LBlock *block = graph.getBlock(i);
   1.328 +        for (size_t j = 0; j < block->numPhis(); j++) {
   1.329 +            LPhi *phi = block->getPhi(j);
   1.330 +            uint32_t output = phi->getDef(0)->virtualRegister();
   1.331 +            for (size_t k = 0, kend = phi->numOperands(); k < kend; k++) {
   1.332 +                uint32_t input = phi->getOperand(k)->toUse()->virtualRegister();
   1.333 +                if (!tryGroupRegisters(input, output))
   1.334 +                    return false;
   1.335 +            }
   1.336 +        }
   1.337 +    }
   1.338 +
   1.339 +    // Virtual register number 0 is unused.
   1.340 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
   1.341 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
   1.342 +        if (mir->shouldCancel("Backtracking Enqueue Registers"))
   1.343 +            return false;
   1.344 +
   1.345 +        BacktrackingVirtualRegister &reg = vregs[i];
   1.346 +        JS_ASSERT(reg.numIntervals() <= 2);
   1.347 +        JS_ASSERT(!reg.canonicalSpill());
   1.348 +
   1.349 +        if (!reg.numIntervals())
   1.350 +            continue;
   1.351 +
   1.352 +        // Disable this for now; see bugs 906858, 931487, and 932465.
   1.353 +#if 0
   1.354 +        // Eagerly set the canonical spill slot for registers which are preset
   1.355 +        // for that slot, and reuse it for other registers in the group.
   1.356 +        LDefinition *def = reg.def();
   1.357 +        if (def->policy() == LDefinition::PRESET && !def->output()->isRegister()) {
   1.358 +            reg.setCanonicalSpill(*def->output());
   1.359 +            if (reg.group() && reg.group()->spill.isUse())
   1.360 +                reg.group()->spill = *def->output();
   1.361 +        }
   1.362 +#endif
   1.363 +
   1.364 +        // Place all intervals for this register on the allocation queue.
   1.365 +        // During initial queueing use single queue items for groups of
   1.366 +        // registers, so that they will be allocated together and reduce the
   1.367 +        // risk of unnecessary conflicts. This is in keeping with the idea that
   1.368 +        // register groups are effectively single registers whose value changes
   1.369 +        // during execution. If any intervals in the group are evicted later
   1.370 +        // then they will be reallocated individually.
   1.371 +        size_t start = 0;
   1.372 +        if (VirtualRegisterGroup *group = reg.group()) {
   1.373 +            if (i == group->canonicalReg()) {
   1.374 +                size_t priority = computePriority(group);
   1.375 +                if (!allocationQueue.insert(QueueItem(group, priority)))
   1.376 +                    return false;
   1.377 +            }
   1.378 +            start++;
   1.379 +        }
   1.380 +        for (; start < reg.numIntervals(); start++) {
   1.381 +            LiveInterval *interval = reg.getInterval(start);
   1.382 +            if (interval->numRanges() > 0) {
   1.383 +                size_t priority = computePriority(interval);
   1.384 +                if (!allocationQueue.insert(QueueItem(interval, priority)))
   1.385 +                    return false;
   1.386 +            }
   1.387 +        }
   1.388 +    }
   1.389 +
   1.390 +    return true;
   1.391 +}
   1.392 +
   1.393 +static const size_t MAX_ATTEMPTS = 2;
   1.394 +
   1.395 +bool
   1.396 +BacktrackingAllocator::tryAllocateFixed(LiveInterval *interval, bool *success,
   1.397 +                                        bool *pfixed, LiveInterval **pconflicting)
   1.398 +{
   1.399 +    // Spill intervals which are required to be in a certain stack slot.
   1.400 +    if (!interval->requirement()->allocation().isRegister()) {
   1.401 +        IonSpew(IonSpew_RegAlloc, "stack allocation requirement");
   1.402 +        interval->setAllocation(interval->requirement()->allocation());
   1.403 +        *success = true;
   1.404 +        return true;
   1.405 +    }
   1.406 +
   1.407 +    AnyRegister reg = interval->requirement()->allocation().toRegister();
   1.408 +    return tryAllocateRegister(registers[reg.code()], interval, success, pfixed, pconflicting);
   1.409 +}
   1.410 +
   1.411 +bool
   1.412 +BacktrackingAllocator::tryAllocateNonFixed(LiveInterval *interval, bool *success,
   1.413 +                                           bool *pfixed, LiveInterval **pconflicting)
   1.414 +{
   1.415 +    // If we want, but do not require an interval to be in a specific
   1.416 +    // register, only look at that register for allocating and evict
   1.417 +    // or spill if it is not available. Picking a separate register may
   1.418 +    // be even worse than spilling, as it will still necessitate moves
   1.419 +    // and will tie up more registers than if we spilled.
   1.420 +    if (interval->hint()->kind() == Requirement::FIXED) {
   1.421 +        AnyRegister reg = interval->hint()->allocation().toRegister();
   1.422 +        if (!tryAllocateRegister(registers[reg.code()], interval, success, pfixed, pconflicting))
   1.423 +            return false;
   1.424 +        if (*success)
   1.425 +            return true;
   1.426 +    }
   1.427 +
   1.428 +    // Spill intervals which have no hint or register requirement.
   1.429 +    if (interval->requirement()->kind() == Requirement::NONE) {
   1.430 +        spill(interval);
   1.431 +        *success = true;
   1.432 +        return true;
   1.433 +    }
   1.434 +
   1.435 +    if (!*pconflicting || minimalInterval(interval)) {
   1.436 +        // Search for any available register which the interval can be
   1.437 +        // allocated to.
   1.438 +        for (size_t i = 0; i < AnyRegister::Total; i++) {
   1.439 +            if (!tryAllocateRegister(registers[i], interval, success, pfixed, pconflicting))
   1.440 +                return false;
   1.441 +            if (*success)
   1.442 +                return true;
   1.443 +        }
   1.444 +    }
   1.445 +
   1.446 +    // We failed to allocate this interval.
   1.447 +    JS_ASSERT(!*success);
   1.448 +    return true;
   1.449 +}
   1.450 +
   1.451 +bool
   1.452 +BacktrackingAllocator::processInterval(LiveInterval *interval)
   1.453 +{
   1.454 +    if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.455 +        IonSpew(IonSpew_RegAlloc, "Allocating v%u [priority %lu] [weight %lu]: %s",
   1.456 +                interval->vreg(), computePriority(interval), computeSpillWeight(interval),
   1.457 +                interval->rangesToString());
   1.458 +    }
   1.459 +
   1.460 +    // An interval can be processed by doing any of the following:
   1.461 +    //
   1.462 +    // - Assigning the interval a register. The interval cannot overlap any
   1.463 +    //   other interval allocated for that physical register.
   1.464 +    //
   1.465 +    // - Spilling the interval, provided it has no register uses.
   1.466 +    //
   1.467 +    // - Splitting the interval into two or more intervals which cover the
   1.468 +    //   original one. The new intervals are placed back onto the priority
   1.469 +    //   queue for later processing.
   1.470 +    //
   1.471 +    // - Evicting one or more existing allocated intervals, and then doing one
   1.472 +    //   of the above operations. Evicted intervals are placed back on the
   1.473 +    //   priority queue. Any evicted intervals must have a lower spill weight
   1.474 +    //   than the interval being processed.
   1.475 +    //
   1.476 +    // As long as this structure is followed, termination is guaranteed.
   1.477 +    // In general, we want to minimize the amount of interval splitting
   1.478 +    // (which generally necessitates spills), so allocate longer lived, lower
   1.479 +    // weight intervals first and evict and split them later if they prevent
   1.480 +    // allocation for higher weight intervals.
   1.481 +
   1.482 +    bool canAllocate = setIntervalRequirement(interval);
   1.483 +
   1.484 +    bool fixed;
   1.485 +    LiveInterval *conflict = nullptr;
   1.486 +    for (size_t attempt = 0;; attempt++) {
   1.487 +        if (canAllocate) {
   1.488 +            bool success = false;
   1.489 +            fixed = false;
   1.490 +            conflict = nullptr;
   1.491 +
   1.492 +            // Ok, let's try allocating for this interval.
   1.493 +            if (interval->requirement()->kind() == Requirement::FIXED) {
   1.494 +                if (!tryAllocateFixed(interval, &success, &fixed, &conflict))
   1.495 +                    return false;
   1.496 +            } else {
   1.497 +                if (!tryAllocateNonFixed(interval, &success, &fixed, &conflict))
   1.498 +                    return false;
   1.499 +            }
   1.500 +
   1.501 +            // If that worked, we're done!
   1.502 +            if (success)
   1.503 +                return true;
   1.504 +
   1.505 +            // If that didn't work, but we have a non-fixed LiveInterval known
   1.506 +            // to be conflicting, maybe we can evict it and try again.
   1.507 +            if (attempt < MAX_ATTEMPTS &&
   1.508 +                !fixed &&
   1.509 +                conflict &&
   1.510 +                computeSpillWeight(conflict) < computeSpillWeight(interval))
   1.511 +            {
   1.512 +                if (!evictInterval(conflict))
   1.513 +                    return false;
   1.514 +                continue;
   1.515 +            }
   1.516 +        }
   1.517 +
   1.518 +        // A minimal interval cannot be split any further. If we try to split
   1.519 +        // it at this point we will just end up with the same interval and will
   1.520 +        // enter an infinite loop. Weights and the initial live intervals must
   1.521 +        // be constructed so that any minimal interval is allocatable.
   1.522 +        JS_ASSERT(!minimalInterval(interval));
   1.523 +
   1.524 +        if (canAllocate && fixed)
   1.525 +            return splitAcrossCalls(interval);
   1.526 +        return chooseIntervalSplit(interval, conflict);
   1.527 +    }
   1.528 +}
   1.529 +
   1.530 +bool
   1.531 +BacktrackingAllocator::processGroup(VirtualRegisterGroup *group)
   1.532 +{
   1.533 +    if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.534 +        IonSpew(IonSpew_RegAlloc, "Allocating group v%u [priority %lu] [weight %lu]",
   1.535 +                group->registers[0], computePriority(group), computeSpillWeight(group));
   1.536 +    }
   1.537 +
   1.538 +    bool fixed;
   1.539 +    LiveInterval *conflict;
   1.540 +    for (size_t attempt = 0;; attempt++) {
   1.541 +        // Search for any available register which the group can be allocated to.
   1.542 +        fixed = false;
   1.543 +        conflict = nullptr;
   1.544 +        for (size_t i = 0; i < AnyRegister::Total; i++) {
   1.545 +            bool success;
   1.546 +            if (!tryAllocateGroupRegister(registers[i], group, &success, &fixed, &conflict))
   1.547 +                return false;
   1.548 +            if (success) {
   1.549 +                conflict = nullptr;
   1.550 +                break;
   1.551 +            }
   1.552 +        }
   1.553 +
   1.554 +        if (attempt < MAX_ATTEMPTS &&
   1.555 +            !fixed &&
   1.556 +            conflict &&
   1.557 +            conflict->hasVreg() &&
   1.558 +            computeSpillWeight(conflict) < computeSpillWeight(group))
   1.559 +        {
   1.560 +            if (!evictInterval(conflict))
   1.561 +                return false;
   1.562 +            continue;
   1.563 +        }
   1.564 +
   1.565 +        for (size_t i = 0; i < group->registers.length(); i++) {
   1.566 +            VirtualRegister &reg = vregs[group->registers[i]];
   1.567 +            JS_ASSERT(reg.numIntervals() <= 2);
   1.568 +            if (!processInterval(reg.getInterval(0)))
   1.569 +                return false;
   1.570 +        }
   1.571 +
   1.572 +        return true;
   1.573 +    }
   1.574 +}
   1.575 +
   1.576 +bool
   1.577 +BacktrackingAllocator::setIntervalRequirement(LiveInterval *interval)
   1.578 +{
   1.579 +    // Set any requirement or hint on interval according to its definition and
   1.580 +    // uses. Return false if there are conflicting requirements which will
   1.581 +    // require the interval to be split.
   1.582 +    interval->setHint(Requirement());
   1.583 +    interval->setRequirement(Requirement());
   1.584 +
   1.585 +    BacktrackingVirtualRegister *reg = &vregs[interval->vreg()];
   1.586 +
   1.587 +    // Set a hint if another interval in the same group is in a register.
   1.588 +    if (VirtualRegisterGroup *group = reg->group()) {
   1.589 +        if (group->allocation.isRegister()) {
   1.590 +            if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.591 +                IonSpew(IonSpew_RegAlloc, "Hint %s, used by group allocation",
   1.592 +                        group->allocation.toString());
   1.593 +            }
   1.594 +            interval->setHint(Requirement(group->allocation));
   1.595 +        }
   1.596 +    }
   1.597 +
   1.598 +    if (interval->index() == 0) {
   1.599 +        // The first interval is the definition, so deal with any definition
   1.600 +        // constraints/hints.
   1.601 +
   1.602 +        LDefinition::Policy policy = reg->def()->policy();
   1.603 +        if (policy == LDefinition::PRESET) {
   1.604 +            // Preset policies get a FIXED requirement.
   1.605 +            if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.606 +                IonSpew(IonSpew_RegAlloc, "Requirement %s, preset by definition",
   1.607 +                        reg->def()->output()->toString());
   1.608 +            }
   1.609 +            interval->setRequirement(Requirement(*reg->def()->output()));
   1.610 +        } else if (reg->ins()->isPhi()) {
   1.611 +            // Phis don't have any requirements, but they should prefer their
   1.612 +            // input allocations. This is captured by the group hints above.
   1.613 +        } else {
   1.614 +            // Non-phis get a REGISTER requirement.
   1.615 +            interval->setRequirement(Requirement(Requirement::REGISTER));
   1.616 +        }
   1.617 +    }
   1.618 +
   1.619 +    // Search uses for requirements.
   1.620 +    for (UsePositionIterator iter = interval->usesBegin();
   1.621 +         iter != interval->usesEnd();
   1.622 +         iter++)
   1.623 +    {
   1.624 +        LUse::Policy policy = iter->use->policy();
   1.625 +        if (policy == LUse::FIXED) {
   1.626 +            AnyRegister required = GetFixedRegister(reg->def(), iter->use);
   1.627 +
   1.628 +            if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.629 +                IonSpew(IonSpew_RegAlloc, "Requirement %s, due to use at %u",
   1.630 +                        required.name(), iter->pos.pos());
   1.631 +            }
   1.632 +
   1.633 +            // If there are multiple fixed registers which the interval is
   1.634 +            // required to use, fail. The interval will need to be split before
   1.635 +            // it can be allocated.
   1.636 +            if (!interval->addRequirement(Requirement(LAllocation(required))))
   1.637 +                return false;
   1.638 +        } else if (policy == LUse::REGISTER) {
   1.639 +            if (!interval->addRequirement(Requirement(Requirement::REGISTER)))
   1.640 +                return false;
   1.641 +        }
   1.642 +    }
   1.643 +
   1.644 +    return true;
   1.645 +}
   1.646 +
   1.647 +bool
   1.648 +BacktrackingAllocator::tryAllocateGroupRegister(PhysicalRegister &r, VirtualRegisterGroup *group,
   1.649 +                                                bool *psuccess, bool *pfixed, LiveInterval **pconflicting)
   1.650 +{
   1.651 +    *psuccess = false;
   1.652 +
   1.653 +    if (!r.allocatable)
   1.654 +        return true;
   1.655 +
   1.656 +    if (r.reg.isFloat() != vregs[group->registers[0]].isFloatReg())
   1.657 +        return true;
   1.658 +
   1.659 +    bool allocatable = true;
   1.660 +    LiveInterval *conflicting = nullptr;
   1.661 +
   1.662 +    for (size_t i = 0; i < group->registers.length(); i++) {
   1.663 +        VirtualRegister &reg = vregs[group->registers[i]];
   1.664 +        JS_ASSERT(reg.numIntervals() <= 2);
   1.665 +        LiveInterval *interval = reg.getInterval(0);
   1.666 +
   1.667 +        for (size_t j = 0; j < interval->numRanges(); j++) {
   1.668 +            AllocatedRange range(interval, interval->getRange(j)), existing;
   1.669 +            if (r.allocations.contains(range, &existing)) {
   1.670 +                if (conflicting) {
   1.671 +                    if (conflicting != existing.interval)
   1.672 +                        return true;
   1.673 +                } else {
   1.674 +                    conflicting = existing.interval;
   1.675 +                }
   1.676 +                allocatable = false;
   1.677 +            }
   1.678 +        }
   1.679 +    }
   1.680 +
   1.681 +    if (!allocatable) {
   1.682 +        JS_ASSERT(conflicting);
   1.683 +        if (!*pconflicting || computeSpillWeight(conflicting) < computeSpillWeight(*pconflicting))
   1.684 +            *pconflicting = conflicting;
   1.685 +        if (!conflicting->hasVreg())
   1.686 +            *pfixed = true;
   1.687 +        return true;
   1.688 +    }
   1.689 +
   1.690 +    *psuccess = true;
   1.691 +
   1.692 +    group->allocation = LAllocation(r.reg);
   1.693 +    return true;
   1.694 +}
   1.695 +
   1.696 +bool
   1.697 +BacktrackingAllocator::tryAllocateRegister(PhysicalRegister &r, LiveInterval *interval,
   1.698 +                                           bool *success, bool *pfixed, LiveInterval **pconflicting)
   1.699 +{
   1.700 +    *success = false;
   1.701 +
   1.702 +    if (!r.allocatable)
   1.703 +        return true;
   1.704 +
   1.705 +    BacktrackingVirtualRegister *reg = &vregs[interval->vreg()];
   1.706 +    if (reg->isFloatReg() != r.reg.isFloat())
   1.707 +        return true;
   1.708 +
   1.709 +    JS_ASSERT_IF(interval->requirement()->kind() == Requirement::FIXED,
   1.710 +                 interval->requirement()->allocation() == LAllocation(r.reg));
   1.711 +
   1.712 +    for (size_t i = 0; i < interval->numRanges(); i++) {
   1.713 +        AllocatedRange range(interval, interval->getRange(i)), existing;
   1.714 +        if (r.allocations.contains(range, &existing)) {
   1.715 +            if (existing.interval->hasVreg()) {
   1.716 +                if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.717 +                    IonSpew(IonSpew_RegAlloc, "%s collides with v%u [%u,%u> [weight %lu]",
   1.718 +                            r.reg.name(), existing.interval->vreg(),
   1.719 +                            existing.range->from.pos(), existing.range->to.pos(),
   1.720 +                            computeSpillWeight(existing.interval));
   1.721 +                }
   1.722 +                if (!*pconflicting || computeSpillWeight(existing.interval) < computeSpillWeight(*pconflicting))
   1.723 +                    *pconflicting = existing.interval;
   1.724 +            } else {
   1.725 +                if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.726 +                    IonSpew(IonSpew_RegAlloc, "%s collides with fixed use [%u,%u>",
   1.727 +                            r.reg.name(), existing.range->from.pos(), existing.range->to.pos());
   1.728 +                }
   1.729 +                *pfixed = true;
   1.730 +            }
   1.731 +            return true;
   1.732 +        }
   1.733 +    }
   1.734 +
   1.735 +    IonSpew(IonSpew_RegAlloc, "allocated to %s", r.reg.name());
   1.736 +
   1.737 +    for (size_t i = 0; i < interval->numRanges(); i++) {
   1.738 +        AllocatedRange range(interval, interval->getRange(i));
   1.739 +        if (!r.allocations.insert(range))
   1.740 +            return false;
   1.741 +    }
   1.742 +
   1.743 +    // Set any register hint for allocating other intervals in the same group.
   1.744 +    if (VirtualRegisterGroup *group = reg->group()) {
   1.745 +        if (!group->allocation.isRegister())
   1.746 +            group->allocation = LAllocation(r.reg);
   1.747 +    }
   1.748 +
   1.749 +    interval->setAllocation(LAllocation(r.reg));
   1.750 +    *success = true;
   1.751 +    return true;
   1.752 +}
   1.753 +
   1.754 +bool
   1.755 +BacktrackingAllocator::evictInterval(LiveInterval *interval)
   1.756 +{
   1.757 +    if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.758 +        IonSpew(IonSpew_RegAlloc, "Evicting interval v%u: %s",
   1.759 +                interval->vreg(), interval->rangesToString());
   1.760 +    }
   1.761 +
   1.762 +    JS_ASSERT(interval->getAllocation()->isRegister());
   1.763 +
   1.764 +    AnyRegister reg(interval->getAllocation()->toRegister());
   1.765 +    PhysicalRegister &physical = registers[reg.code()];
   1.766 +    JS_ASSERT(physical.reg == reg && physical.allocatable);
   1.767 +
   1.768 +    for (size_t i = 0; i < interval->numRanges(); i++) {
   1.769 +        AllocatedRange range(interval, interval->getRange(i));
   1.770 +        physical.allocations.remove(range);
   1.771 +    }
   1.772 +
   1.773 +    interval->setAllocation(LAllocation());
   1.774 +
   1.775 +    size_t priority = computePriority(interval);
   1.776 +    return allocationQueue.insert(QueueItem(interval, priority));
   1.777 +}
   1.778 +
   1.779 +void
   1.780 +BacktrackingAllocator::distributeUses(LiveInterval *interval,
   1.781 +                                      const LiveIntervalVector &newIntervals)
   1.782 +{
   1.783 +    JS_ASSERT(newIntervals.length() >= 2);
   1.784 +
   1.785 +    // Simple redistribution of uses from an old interval to a set of new
   1.786 +    // intervals. Intervals are permitted to overlap, in which case this will
   1.787 +    // assign uses in the overlapping section to the interval with the latest
   1.788 +    // start position.
   1.789 +    for (UsePositionIterator iter(interval->usesBegin());
   1.790 +         iter != interval->usesEnd();
   1.791 +         iter++)
   1.792 +    {
   1.793 +        CodePosition pos = iter->pos;
   1.794 +        LiveInterval *addInterval = nullptr;
   1.795 +        for (size_t i = 0; i < newIntervals.length(); i++) {
   1.796 +            LiveInterval *newInterval = newIntervals[i];
   1.797 +            if (newInterval->covers(pos)) {
   1.798 +                if (!addInterval || newInterval->start() < addInterval->start())
   1.799 +                    addInterval = newInterval;
   1.800 +            }
   1.801 +        }
   1.802 +        addInterval->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
   1.803 +    }
   1.804 +}
   1.805 +
   1.806 +bool
   1.807 +BacktrackingAllocator::split(LiveInterval *interval,
   1.808 +                             const LiveIntervalVector &newIntervals)
   1.809 +{
   1.810 +    if (IonSpewEnabled(IonSpew_RegAlloc)) {
   1.811 +        IonSpew(IonSpew_RegAlloc, "splitting interval v%u %s into:",
   1.812 +                interval->vreg(), interval->rangesToString());
   1.813 +        for (size_t i = 0; i < newIntervals.length(); i++)
   1.814 +            IonSpew(IonSpew_RegAlloc, "    %s", newIntervals[i]->rangesToString());
   1.815 +    }
   1.816 +
   1.817 +    JS_ASSERT(newIntervals.length() >= 2);
   1.818 +
   1.819 +    // Find the earliest interval in the new list.
   1.820 +    LiveInterval *first = newIntervals[0];
   1.821 +    for (size_t i = 1; i < newIntervals.length(); i++) {
   1.822 +        if (newIntervals[i]->start() < first->start())
   1.823 +            first = newIntervals[i];
   1.824 +    }
   1.825 +
   1.826 +    // Replace the old interval in the virtual register's state with the new intervals.
   1.827 +    VirtualRegister *reg = &vregs[interval->vreg()];
   1.828 +    reg->replaceInterval(interval, first);
   1.829 +    for (size_t i = 0; i < newIntervals.length(); i++) {
   1.830 +        if (newIntervals[i] != first && !reg->addInterval(newIntervals[i]))
   1.831 +            return false;
   1.832 +    }
   1.833 +
   1.834 +    return true;
   1.835 +}
   1.836 +
   1.837 +bool BacktrackingAllocator::requeueIntervals(const LiveIntervalVector &newIntervals)
   1.838 +{
   1.839 +    // Queue the new intervals for register assignment.
   1.840 +    for (size_t i = 0; i < newIntervals.length(); i++) {
   1.841 +        LiveInterval *newInterval = newIntervals[i];
   1.842 +        size_t priority = computePriority(newInterval);
   1.843 +        if (!allocationQueue.insert(QueueItem(newInterval, priority)))
   1.844 +            return false;
   1.845 +    }
   1.846 +    return true;
   1.847 +}
   1.848 +
   1.849 +void
   1.850 +BacktrackingAllocator::spill(LiveInterval *interval)
   1.851 +{
   1.852 +    IonSpew(IonSpew_RegAlloc, "Spilling interval");
   1.853 +
   1.854 +    JS_ASSERT(interval->requirement()->kind() == Requirement::NONE);
   1.855 +    JS_ASSERT(!interval->getAllocation()->isStackSlot());
   1.856 +
   1.857 +    // We can't spill bogus intervals.
   1.858 +    JS_ASSERT(interval->hasVreg());
   1.859 +
   1.860 +    BacktrackingVirtualRegister *reg = &vregs[interval->vreg()];
   1.861 +
   1.862 +    bool useCanonical = !reg->hasCanonicalSpillExclude()
   1.863 +        || interval->start() < reg->canonicalSpillExclude();
   1.864 +
   1.865 +    if (useCanonical) {
   1.866 +        if (reg->canonicalSpill()) {
   1.867 +            IonSpew(IonSpew_RegAlloc, "  Picked canonical spill location %s",
   1.868 +                    reg->canonicalSpill()->toString());
   1.869 +            interval->setAllocation(*reg->canonicalSpill());
   1.870 +            return;
   1.871 +        }
   1.872 +
   1.873 +        if (reg->group() && !reg->group()->spill.isUse()) {
   1.874 +            IonSpew(IonSpew_RegAlloc, "  Reusing group spill location %s",
   1.875 +                    reg->group()->spill.toString());
   1.876 +            interval->setAllocation(reg->group()->spill);
   1.877 +            reg->setCanonicalSpill(reg->group()->spill);
   1.878 +            return;
   1.879 +        }
   1.880 +    }
   1.881 +
   1.882 +    uint32_t stackSlot = stackSlotAllocator.allocateSlot(reg->type());
   1.883 +    JS_ASSERT(stackSlot <= stackSlotAllocator.stackHeight());
   1.884 +
   1.885 +    LStackSlot alloc(stackSlot);
   1.886 +    interval->setAllocation(alloc);
   1.887 +
   1.888 +    IonSpew(IonSpew_RegAlloc, "  Allocating spill location %s", alloc.toString());
   1.889 +
   1.890 +    if (useCanonical) {
   1.891 +        reg->setCanonicalSpill(alloc);
   1.892 +        if (reg->group())
   1.893 +            reg->group()->spill = alloc;
   1.894 +    }
   1.895 +}
   1.896 +
   1.897 +// Add moves to resolve conflicting assignments between a block and its
   1.898 +// predecessors. XXX try to common this with LinearScanAllocator.
   1.899 +bool
   1.900 +BacktrackingAllocator::resolveControlFlow()
   1.901 +{
   1.902 +    // Virtual register number 0 is unused.
   1.903 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
   1.904 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
   1.905 +        BacktrackingVirtualRegister *reg = &vregs[i];
   1.906 +
   1.907 +        if (mir->shouldCancel("Backtracking Resolve Control Flow (vreg loop)"))
   1.908 +            return false;
   1.909 +
   1.910 +        for (size_t j = 1; j < reg->numIntervals(); j++) {
   1.911 +            LiveInterval *interval = reg->getInterval(j);
   1.912 +            JS_ASSERT(interval->index() == j);
   1.913 +
   1.914 +            bool skip = false;
   1.915 +            for (int k = j - 1; k >= 0; k--) {
   1.916 +                LiveInterval *prevInterval = reg->getInterval(k);
   1.917 +                if (prevInterval->start() != interval->start())
   1.918 +                    break;
   1.919 +                if (*prevInterval->getAllocation() == *interval->getAllocation()) {
   1.920 +                    skip = true;
   1.921 +                    break;
   1.922 +                }
   1.923 +            }
   1.924 +            if (skip)
   1.925 +                continue;
   1.926 +
   1.927 +            CodePosition start = interval->start();
   1.928 +            InstructionData *data = &insData[start];
   1.929 +            if (interval->start() > inputOf(data->block()->firstId())) {
   1.930 +                JS_ASSERT(start == inputOf(data->ins()) || start == outputOf(data->ins()));
   1.931 +
   1.932 +                LiveInterval *prevInterval = reg->intervalFor(start.previous());
   1.933 +                if (start.subpos() == CodePosition::INPUT) {
   1.934 +                    if (!moveInput(inputOf(data->ins()), prevInterval, interval, reg->type()))
   1.935 +                        return false;
   1.936 +                } else {
   1.937 +                    if (!moveAfter(outputOf(data->ins()), prevInterval, interval, reg->type()))
   1.938 +                        return false;
   1.939 +                }
   1.940 +            }
   1.941 +        }
   1.942 +    }
   1.943 +
   1.944 +    for (size_t i = 0; i < graph.numBlocks(); i++) {
   1.945 +        if (mir->shouldCancel("Backtracking Resolve Control Flow (block loop)"))
   1.946 +            return false;
   1.947 +
   1.948 +        LBlock *successor = graph.getBlock(i);
   1.949 +        MBasicBlock *mSuccessor = successor->mir();
   1.950 +        if (mSuccessor->numPredecessors() < 1)
   1.951 +            continue;
   1.952 +
   1.953 +        // Resolve phis to moves
   1.954 +        for (size_t j = 0; j < successor->numPhis(); j++) {
   1.955 +            LPhi *phi = successor->getPhi(j);
   1.956 +            JS_ASSERT(phi->numDefs() == 1);
   1.957 +            LDefinition *def = phi->getDef(0);
   1.958 +            VirtualRegister *vreg = &vregs[def];
   1.959 +            LiveInterval *to = vreg->intervalFor(inputOf(successor->firstId()));
   1.960 +            JS_ASSERT(to);
   1.961 +
   1.962 +            for (size_t k = 0; k < mSuccessor->numPredecessors(); k++) {
   1.963 +                LBlock *predecessor = mSuccessor->getPredecessor(k)->lir();
   1.964 +                JS_ASSERT(predecessor->mir()->numSuccessors() == 1);
   1.965 +
   1.966 +                LAllocation *input = phi->getOperand(predecessor->mir()->positionInPhiSuccessor());
   1.967 +                LiveInterval *from = vregs[input].intervalFor(outputOf(predecessor->lastId()));
   1.968 +                JS_ASSERT(from);
   1.969 +
   1.970 +                if (!moveAtExit(predecessor, from, to, def->type()))
   1.971 +                    return false;
   1.972 +            }
   1.973 +        }
   1.974 +
   1.975 +        // Resolve split intervals with moves
   1.976 +        BitSet *live = liveIn[mSuccessor->id()];
   1.977 +
   1.978 +        for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
   1.979 +            VirtualRegister &reg = vregs[*liveRegId];
   1.980 +
   1.981 +            for (size_t j = 0; j < mSuccessor->numPredecessors(); j++) {
   1.982 +                LBlock *predecessor = mSuccessor->getPredecessor(j)->lir();
   1.983 +
   1.984 +                for (size_t k = 0; k < reg.numIntervals(); k++) {
   1.985 +                    LiveInterval *to = reg.getInterval(k);
   1.986 +                    if (!to->covers(inputOf(successor->firstId())))
   1.987 +                        continue;
   1.988 +                    if (to->covers(outputOf(predecessor->lastId())))
   1.989 +                        continue;
   1.990 +
   1.991 +                    LiveInterval *from = reg.intervalFor(outputOf(predecessor->lastId()));
   1.992 +
   1.993 +                    if (mSuccessor->numPredecessors() > 1) {
   1.994 +                        JS_ASSERT(predecessor->mir()->numSuccessors() == 1);
   1.995 +                        if (!moveAtExit(predecessor, from, to, reg.type()))
   1.996 +                            return false;
   1.997 +                    } else {
   1.998 +                        if (!moveAtEntry(successor, from, to, reg.type()))
   1.999 +                            return false;
  1.1000 +                    }
  1.1001 +                }
  1.1002 +            }
  1.1003 +        }
  1.1004 +    }
  1.1005 +
  1.1006 +    return true;
  1.1007 +}
  1.1008 +
  1.1009 +bool
  1.1010 +BacktrackingAllocator::isReusedInput(LUse *use, LInstruction *ins, bool considerCopy)
  1.1011 +{
  1.1012 +    if (LDefinition *def = FindReusingDefinition(ins, use))
  1.1013 +        return considerCopy || !vregs[def->virtualRegister()].mustCopyInput();
  1.1014 +    return false;
  1.1015 +}
  1.1016 +
  1.1017 +bool
  1.1018 +BacktrackingAllocator::isRegisterUse(LUse *use, LInstruction *ins, bool considerCopy)
  1.1019 +{
  1.1020 +    switch (use->policy()) {
  1.1021 +      case LUse::ANY:
  1.1022 +        return isReusedInput(use, ins, considerCopy);
  1.1023 +
  1.1024 +      case LUse::REGISTER:
  1.1025 +      case LUse::FIXED:
  1.1026 +        return true;
  1.1027 +
  1.1028 +      default:
  1.1029 +        return false;
  1.1030 +    }
  1.1031 +}
  1.1032 +
  1.1033 +bool
  1.1034 +BacktrackingAllocator::isRegisterDefinition(LiveInterval *interval)
  1.1035 +{
  1.1036 +    if (interval->index() != 0)
  1.1037 +        return false;
  1.1038 +
  1.1039 +    VirtualRegister &reg = vregs[interval->vreg()];
  1.1040 +    if (reg.ins()->isPhi())
  1.1041 +        return false;
  1.1042 +
  1.1043 +    if (reg.def()->policy() == LDefinition::PRESET && !reg.def()->output()->isRegister())
  1.1044 +        return false;
  1.1045 +
  1.1046 +    return true;
  1.1047 +}
  1.1048 +
  1.1049 +bool
  1.1050 +BacktrackingAllocator::reifyAllocations()
  1.1051 +{
  1.1052 +    // Virtual register number 0 is unused.
  1.1053 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
  1.1054 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
  1.1055 +        VirtualRegister *reg = &vregs[i];
  1.1056 +
  1.1057 +        if (mir->shouldCancel("Backtracking Reify Allocations (main loop)"))
  1.1058 +            return false;
  1.1059 +
  1.1060 +        for (size_t j = 0; j < reg->numIntervals(); j++) {
  1.1061 +            LiveInterval *interval = reg->getInterval(j);
  1.1062 +            JS_ASSERT(interval->index() == j);
  1.1063 +
  1.1064 +            if (interval->index() == 0) {
  1.1065 +                reg->def()->setOutput(*interval->getAllocation());
  1.1066 +                if (reg->ins()->recoversInput()) {
  1.1067 +                    LSnapshot *snapshot = reg->ins()->snapshot();
  1.1068 +                    for (size_t i = 0; i < snapshot->numEntries(); i++) {
  1.1069 +                        LAllocation *entry = snapshot->getEntry(i);
  1.1070 +                        if (entry->isUse() && entry->toUse()->policy() == LUse::RECOVERED_INPUT)
  1.1071 +                            *entry = *reg->def()->output();
  1.1072 +                    }
  1.1073 +                }
  1.1074 +            }
  1.1075 +
  1.1076 +            for (UsePositionIterator iter(interval->usesBegin());
  1.1077 +                 iter != interval->usesEnd();
  1.1078 +                 iter++)
  1.1079 +            {
  1.1080 +                LAllocation *alloc = iter->use;
  1.1081 +                *alloc = *interval->getAllocation();
  1.1082 +
  1.1083 +                // For any uses which feed into MUST_REUSE_INPUT definitions,
  1.1084 +                // add copies if the use and def have different allocations.
  1.1085 +                LInstruction *ins = insData[iter->pos].ins();
  1.1086 +                if (LDefinition *def = FindReusingDefinition(ins, alloc)) {
  1.1087 +                    LiveInterval *outputInterval =
  1.1088 +                        vregs[def->virtualRegister()].intervalFor(outputOf(ins));
  1.1089 +                    LAllocation *res = outputInterval->getAllocation();
  1.1090 +                    LAllocation *sourceAlloc = interval->getAllocation();
  1.1091 +
  1.1092 +                    if (*res != *alloc) {
  1.1093 +                        LMoveGroup *group = getInputMoveGroup(inputOf(ins));
  1.1094 +                        if (!group->addAfter(sourceAlloc, res, def->type()))
  1.1095 +                            return false;
  1.1096 +                        *alloc = *res;
  1.1097 +                    }
  1.1098 +                }
  1.1099 +            }
  1.1100 +
  1.1101 +            addLiveRegistersForInterval(reg, interval);
  1.1102 +        }
  1.1103 +    }
  1.1104 +
  1.1105 +    graph.setLocalSlotCount(stackSlotAllocator.stackHeight());
  1.1106 +    return true;
  1.1107 +}
  1.1108 +
  1.1109 +bool
  1.1110 +BacktrackingAllocator::populateSafepoints()
  1.1111 +{
  1.1112 +    size_t firstSafepoint = 0;
  1.1113 +
  1.1114 +    // Virtual register number 0 is unused.
  1.1115 +    JS_ASSERT(!vregs[0u].def());
  1.1116 +    for (uint32_t i = 1; i < vregs.numVirtualRegisters(); i++) {
  1.1117 +        BacktrackingVirtualRegister *reg = &vregs[i];
  1.1118 +
  1.1119 +        if (!reg->def() || (!IsTraceable(reg) && !IsSlotsOrElements(reg) && !IsNunbox(reg)))
  1.1120 +            continue;
  1.1121 +
  1.1122 +        firstSafepoint = findFirstSafepoint(reg->getInterval(0), firstSafepoint);
  1.1123 +        if (firstSafepoint >= graph.numSafepoints())
  1.1124 +            break;
  1.1125 +
  1.1126 +        // Find the furthest endpoint.
  1.1127 +        CodePosition end = reg->getInterval(0)->end();
  1.1128 +        for (size_t j = 1; j < reg->numIntervals(); j++)
  1.1129 +            end = Max(end, reg->getInterval(j)->end());
  1.1130 +
  1.1131 +        for (size_t j = firstSafepoint; j < graph.numSafepoints(); j++) {
  1.1132 +            LInstruction *ins = graph.getSafepoint(j);
  1.1133 +
  1.1134 +            // Stop processing safepoints if we know we're out of this virtual
  1.1135 +            // register's range.
  1.1136 +            if (end < outputOf(ins))
  1.1137 +                break;
  1.1138 +
  1.1139 +            // Include temps but not instruction outputs. Also make sure MUST_REUSE_INPUT
  1.1140 +            // is not used with gcthings or nunboxes, or we would have to add the input reg
  1.1141 +            // to this safepoint.
  1.1142 +            if (ins == reg->ins() && !reg->isTemp()) {
  1.1143 +                DebugOnly<LDefinition*> def = reg->def();
  1.1144 +                JS_ASSERT_IF(def->policy() == LDefinition::MUST_REUSE_INPUT,
  1.1145 +                             def->type() == LDefinition::GENERAL ||
  1.1146 +                             def->type() == LDefinition::INT32 ||
  1.1147 +                             def->type() == LDefinition::FLOAT32 ||
  1.1148 +                             def->type() == LDefinition::DOUBLE);
  1.1149 +                continue;
  1.1150 +            }
  1.1151 +
  1.1152 +            LSafepoint *safepoint = ins->safepoint();
  1.1153 +
  1.1154 +            for (size_t k = 0; k < reg->numIntervals(); k++) {
  1.1155 +                LiveInterval *interval = reg->getInterval(k);
  1.1156 +                if (!interval->covers(inputOf(ins)))
  1.1157 +                    continue;
  1.1158 +
  1.1159 +                LAllocation *a = interval->getAllocation();
  1.1160 +                if (a->isGeneralReg() && ins->isCall())
  1.1161 +                    continue;
  1.1162 +
  1.1163 +                switch (reg->type()) {
  1.1164 +                  case LDefinition::OBJECT:
  1.1165 +                    safepoint->addGcPointer(*a);
  1.1166 +                    break;
  1.1167 +                  case LDefinition::SLOTS:
  1.1168 +                    safepoint->addSlotsOrElementsPointer(*a);
  1.1169 +                    break;
  1.1170 +#ifdef JS_NUNBOX32
  1.1171 +                  case LDefinition::TYPE:
  1.1172 +                    safepoint->addNunboxType(i, *a);
  1.1173 +                    break;
  1.1174 +                  case LDefinition::PAYLOAD:
  1.1175 +                    safepoint->addNunboxPayload(i, *a);
  1.1176 +                    break;
  1.1177 +#else
  1.1178 +                  case LDefinition::BOX:
  1.1179 +                    safepoint->addBoxedValue(*a);
  1.1180 +                    break;
  1.1181 +#endif
  1.1182 +                  default:
  1.1183 +                    MOZ_ASSUME_UNREACHABLE("Bad register type");
  1.1184 +                }
  1.1185 +            }
  1.1186 +        }
  1.1187 +    }
  1.1188 +
  1.1189 +    return true;
  1.1190 +}
  1.1191 +
  1.1192 +void
  1.1193 +BacktrackingAllocator::dumpRegisterGroups()
  1.1194 +{
  1.1195 +    fprintf(stderr, "Register groups:\n");
  1.1196 +
  1.1197 +    // Virtual register number 0 is unused.
  1.1198 +    JS_ASSERT(!vregs[0u].group());
  1.1199 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
  1.1200 +        VirtualRegisterGroup *group = vregs[i].group();
  1.1201 +        if (group && i == group->canonicalReg()) {
  1.1202 +            for (size_t j = 0; j < group->registers.length(); j++)
  1.1203 +                fprintf(stderr, " v%u", group->registers[j]);
  1.1204 +            fprintf(stderr, "\n");
  1.1205 +        }
  1.1206 +    }
  1.1207 +}
  1.1208 +
  1.1209 +void
  1.1210 +BacktrackingAllocator::dumpLiveness()
  1.1211 +{
  1.1212 +#ifdef DEBUG
  1.1213 +    fprintf(stderr, "Virtual Registers:\n");
  1.1214 +
  1.1215 +    for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
  1.1216 +        LBlock *block = graph.getBlock(blockIndex);
  1.1217 +        MBasicBlock *mir = block->mir();
  1.1218 +
  1.1219 +        fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex));
  1.1220 +        for (size_t i = 0; i < mir->numSuccessors(); i++)
  1.1221 +            fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id());
  1.1222 +        fprintf(stderr, "\n");
  1.1223 +
  1.1224 +        for (size_t i = 0; i < block->numPhis(); i++) {
  1.1225 +            LPhi *phi = block->getPhi(i);
  1.1226 +
  1.1227 +            // Don't print the inputOf for phi nodes, since it's never used.
  1.1228 +            fprintf(stderr, "[,%u Phi [def v%u] <-",
  1.1229 +                    outputOf(phi).pos(),
  1.1230 +                    phi->getDef(0)->virtualRegister());
  1.1231 +            for (size_t j = 0; j < phi->numOperands(); j++)
  1.1232 +                fprintf(stderr, " %s", phi->getOperand(j)->toString());
  1.1233 +            fprintf(stderr, "]\n");
  1.1234 +        }
  1.1235 +
  1.1236 +        for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
  1.1237 +            LInstruction *ins = *iter;
  1.1238 +
  1.1239 +            fprintf(stderr, "[%u,%u %s]", inputOf(ins).pos(), outputOf(ins).pos(), ins->opName());
  1.1240 +
  1.1241 +            for (size_t i = 0; i < ins->numTemps(); i++) {
  1.1242 +                LDefinition *temp = ins->getTemp(i);
  1.1243 +                if (!temp->isBogusTemp())
  1.1244 +                    fprintf(stderr, " [temp v%u]", temp->virtualRegister());
  1.1245 +            }
  1.1246 +
  1.1247 +            for (size_t i = 0; i < ins->numDefs(); i++) {
  1.1248 +                LDefinition *def = ins->getDef(i);
  1.1249 +                fprintf(stderr, " [def v%u]", def->virtualRegister());
  1.1250 +            }
  1.1251 +
  1.1252 +            for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next())
  1.1253 +                fprintf(stderr, " [use %s]", alloc->toString());
  1.1254 +
  1.1255 +            fprintf(stderr, "\n");
  1.1256 +        }
  1.1257 +    }
  1.1258 +
  1.1259 +    fprintf(stderr, "\nLive Ranges:\n\n");
  1.1260 +
  1.1261 +    for (size_t i = 0; i < AnyRegister::Total; i++)
  1.1262 +        if (registers[i].allocatable)
  1.1263 +            fprintf(stderr, "reg %s: %s\n", AnyRegister::FromCode(i).name(), fixedIntervals[i]->rangesToString());
  1.1264 +
  1.1265 +    // Virtual register number 0 is unused.
  1.1266 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
  1.1267 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
  1.1268 +        fprintf(stderr, "v%lu:", static_cast<unsigned long>(i));
  1.1269 +        VirtualRegister &vreg = vregs[i];
  1.1270 +        for (size_t j = 0; j < vreg.numIntervals(); j++) {
  1.1271 +            if (j)
  1.1272 +                fprintf(stderr, " *");
  1.1273 +            fprintf(stderr, "%s", vreg.getInterval(j)->rangesToString());
  1.1274 +        }
  1.1275 +        fprintf(stderr, "\n");
  1.1276 +    }
  1.1277 +
  1.1278 +    fprintf(stderr, "\n");
  1.1279 +#endif // DEBUG
  1.1280 +}
  1.1281 +
  1.1282 +#ifdef DEBUG
  1.1283 +struct BacktrackingAllocator::PrintLiveIntervalRange
  1.1284 +{
  1.1285 +    void operator()(const AllocatedRange &item)
  1.1286 +    {
  1.1287 +        if (item.range == item.interval->getRange(0)) {
  1.1288 +            if (item.interval->hasVreg())
  1.1289 +                fprintf(stderr, "  v%u: %s\n",
  1.1290 +                       item.interval->vreg(),
  1.1291 +                       item.interval->rangesToString());
  1.1292 +            else
  1.1293 +                fprintf(stderr, "  fixed: %s\n",
  1.1294 +                       item.interval->rangesToString());
  1.1295 +        }
  1.1296 +    }
  1.1297 +};
  1.1298 +#endif
  1.1299 +
  1.1300 +void
  1.1301 +BacktrackingAllocator::dumpAllocations()
  1.1302 +{
  1.1303 +#ifdef DEBUG
  1.1304 +    fprintf(stderr, "Allocations:\n");
  1.1305 +
  1.1306 +    // Virtual register number 0 is unused.
  1.1307 +    JS_ASSERT(vregs[0u].numIntervals() == 0);
  1.1308 +    for (size_t i = 1; i < graph.numVirtualRegisters(); i++) {
  1.1309 +        fprintf(stderr, "v%lu:", static_cast<unsigned long>(i));
  1.1310 +        VirtualRegister &vreg = vregs[i];
  1.1311 +        for (size_t j = 0; j < vreg.numIntervals(); j++) {
  1.1312 +            if (j)
  1.1313 +                fprintf(stderr, " *");
  1.1314 +            LiveInterval *interval = vreg.getInterval(j);
  1.1315 +            fprintf(stderr, "%s :: %s", interval->rangesToString(), interval->getAllocation()->toString());
  1.1316 +        }
  1.1317 +        fprintf(stderr, "\n");
  1.1318 +    }
  1.1319 +
  1.1320 +    fprintf(stderr, "\n");
  1.1321 +
  1.1322 +    for (size_t i = 0; i < AnyRegister::Total; i++) {
  1.1323 +        if (registers[i].allocatable) {
  1.1324 +            fprintf(stderr, "reg %s:\n", AnyRegister::FromCode(i).name());
  1.1325 +            registers[i].allocations.forEach(PrintLiveIntervalRange());
  1.1326 +        }
  1.1327 +    }
  1.1328 +
  1.1329 +    fprintf(stderr, "\n");
  1.1330 +#endif // DEBUG
  1.1331 +}
  1.1332 +
  1.1333 +bool
  1.1334 +BacktrackingAllocator::addLiveInterval(LiveIntervalVector &intervals, uint32_t vreg,
  1.1335 +                                       LiveInterval *spillInterval,
  1.1336 +                                       CodePosition from, CodePosition to)
  1.1337 +{
  1.1338 +    LiveInterval *interval = LiveInterval::New(alloc(), vreg, 0);
  1.1339 +    interval->setSpillInterval(spillInterval);
  1.1340 +    return interval->addRange(from, to) && intervals.append(interval);
  1.1341 +}
  1.1342 +
  1.1343 +///////////////////////////////////////////////////////////////////////////////
  1.1344 +// Heuristic Methods
  1.1345 +///////////////////////////////////////////////////////////////////////////////
  1.1346 +
  1.1347 +size_t
  1.1348 +BacktrackingAllocator::computePriority(const LiveInterval *interval)
  1.1349 +{
  1.1350 +    // The priority of an interval is its total length, so that longer lived
  1.1351 +    // intervals will be processed before shorter ones (even if the longer ones
  1.1352 +    // have a low spill weight). See processInterval().
  1.1353 +    size_t lifetimeTotal = 0;
  1.1354 +
  1.1355 +    for (size_t i = 0; i < interval->numRanges(); i++) {
  1.1356 +        const LiveInterval::Range *range = interval->getRange(i);
  1.1357 +        lifetimeTotal += range->to.pos() - range->from.pos();
  1.1358 +    }
  1.1359 +
  1.1360 +    return lifetimeTotal;
  1.1361 +}
  1.1362 +
  1.1363 +size_t
  1.1364 +BacktrackingAllocator::computePriority(const VirtualRegisterGroup *group)
  1.1365 +{
  1.1366 +    size_t priority = 0;
  1.1367 +    for (size_t j = 0; j < group->registers.length(); j++) {
  1.1368 +        uint32_t vreg = group->registers[j];
  1.1369 +        priority += computePriority(vregs[vreg].getInterval(0));
  1.1370 +    }
  1.1371 +    return priority;
  1.1372 +}
  1.1373 +
  1.1374 +bool
  1.1375 +BacktrackingAllocator::minimalDef(const LiveInterval *interval, LInstruction *ins)
  1.1376 +{
  1.1377 +    // Whether interval is a minimal interval capturing a definition at ins.
  1.1378 +    return (interval->end() <= minimalDefEnd(ins).next()) &&
  1.1379 +        ((!ins->isPhi() && interval->start() == inputOf(ins)) || interval->start() == outputOf(ins));
  1.1380 +}
  1.1381 +
  1.1382 +bool
  1.1383 +BacktrackingAllocator::minimalUse(const LiveInterval *interval, LInstruction *ins)
  1.1384 +{
  1.1385 +    // Whether interval is a minimal interval capturing a use at ins.
  1.1386 +    return (interval->start() == inputOf(ins)) &&
  1.1387 +        (interval->end() == outputOf(ins) || interval->end() == outputOf(ins).next());
  1.1388 +}
  1.1389 +
  1.1390 +bool
  1.1391 +BacktrackingAllocator::minimalInterval(const LiveInterval *interval, bool *pfixed)
  1.1392 +{
  1.1393 +    if (!interval->hasVreg()) {
  1.1394 +        *pfixed = true;
  1.1395 +        return true;
  1.1396 +    }
  1.1397 +
  1.1398 +    if (interval->index() == 0) {
  1.1399 +        VirtualRegister &reg = vregs[interval->vreg()];
  1.1400 +        if (pfixed)
  1.1401 +            *pfixed = reg.def()->policy() == LDefinition::PRESET && reg.def()->output()->isRegister();
  1.1402 +        return minimalDef(interval, reg.ins());
  1.1403 +    }
  1.1404 +
  1.1405 +    bool fixed = false, minimal = false;
  1.1406 +
  1.1407 +    for (UsePositionIterator iter = interval->usesBegin(); iter != interval->usesEnd(); iter++) {
  1.1408 +        LUse *use = iter->use;
  1.1409 +
  1.1410 +        switch (use->policy()) {
  1.1411 +          case LUse::FIXED:
  1.1412 +            if (fixed)
  1.1413 +                return false;
  1.1414 +            fixed = true;
  1.1415 +            if (minimalUse(interval, insData[iter->pos].ins()))
  1.1416 +                minimal = true;
  1.1417 +            break;
  1.1418 +
  1.1419 +          case LUse::REGISTER:
  1.1420 +            if (minimalUse(interval, insData[iter->pos].ins()))
  1.1421 +                minimal = true;
  1.1422 +            break;
  1.1423 +
  1.1424 +          default:
  1.1425 +            break;
  1.1426 +        }
  1.1427 +    }
  1.1428 +
  1.1429 +    if (pfixed)
  1.1430 +        *pfixed = fixed;
  1.1431 +    return minimal;
  1.1432 +}
  1.1433 +
  1.1434 +size_t
  1.1435 +BacktrackingAllocator::computeSpillWeight(const LiveInterval *interval)
  1.1436 +{
  1.1437 +    // Minimal intervals have an extremely high spill weight, to ensure they
  1.1438 +    // can evict any other intervals and be allocated to a register.
  1.1439 +    bool fixed;
  1.1440 +    if (minimalInterval(interval, &fixed))
  1.1441 +        return fixed ? 2000000 : 1000000;
  1.1442 +
  1.1443 +    size_t usesTotal = 0;
  1.1444 +
  1.1445 +    if (interval->index() == 0) {
  1.1446 +        VirtualRegister *reg = &vregs[interval->vreg()];
  1.1447 +        if (reg->def()->policy() == LDefinition::PRESET && reg->def()->output()->isRegister())
  1.1448 +            usesTotal += 2000;
  1.1449 +        else if (!reg->ins()->isPhi())
  1.1450 +            usesTotal += 2000;
  1.1451 +    }
  1.1452 +
  1.1453 +    for (UsePositionIterator iter = interval->usesBegin(); iter != interval->usesEnd(); iter++) {
  1.1454 +        LUse *use = iter->use;
  1.1455 +
  1.1456 +        switch (use->policy()) {
  1.1457 +          case LUse::ANY:
  1.1458 +            usesTotal += 1000;
  1.1459 +            break;
  1.1460 +
  1.1461 +          case LUse::REGISTER:
  1.1462 +          case LUse::FIXED:
  1.1463 +            usesTotal += 2000;
  1.1464 +            break;
  1.1465 +
  1.1466 +          case LUse::KEEPALIVE:
  1.1467 +            break;
  1.1468 +
  1.1469 +          default:
  1.1470 +            // Note: RECOVERED_INPUT will not appear in UsePositionIterator.
  1.1471 +            MOZ_ASSUME_UNREACHABLE("Bad use");
  1.1472 +        }
  1.1473 +    }
  1.1474 +
  1.1475 +    // Intervals for registers in groups get higher weights.
  1.1476 +    if (interval->hint()->kind() != Requirement::NONE)
  1.1477 +        usesTotal += 2000;
  1.1478 +
  1.1479 +    // Compute spill weight as a use density, lowering the weight for long
  1.1480 +    // lived intervals with relatively few uses.
  1.1481 +    size_t lifetimeTotal = computePriority(interval);
  1.1482 +    return lifetimeTotal ? usesTotal / lifetimeTotal : 0;
  1.1483 +}
  1.1484 +
  1.1485 +size_t
  1.1486 +BacktrackingAllocator::computeSpillWeight(const VirtualRegisterGroup *group)
  1.1487 +{
  1.1488 +    size_t maxWeight = 0;
  1.1489 +    for (size_t j = 0; j < group->registers.length(); j++) {
  1.1490 +        uint32_t vreg = group->registers[j];
  1.1491 +        maxWeight = Max(maxWeight, computeSpillWeight(vregs[vreg].getInterval(0)));
  1.1492 +    }
  1.1493 +    return maxWeight;
  1.1494 +}
  1.1495 +
  1.1496 +bool
  1.1497 +BacktrackingAllocator::trySplitAcrossHotcode(LiveInterval *interval, bool *success)
  1.1498 +{
  1.1499 +    // If this interval has portions that are hot and portions that are cold,
  1.1500 +    // split it at the boundaries between hot and cold code.
  1.1501 +
  1.1502 +    const LiveInterval::Range *hotRange = nullptr;
  1.1503 +
  1.1504 +    for (size_t i = 0; i < interval->numRanges(); i++) {
  1.1505 +        AllocatedRange range(interval, interval->getRange(i)), existing;
  1.1506 +        if (hotcode.contains(range, &existing)) {
  1.1507 +            hotRange = existing.range;
  1.1508 +            break;
  1.1509 +        }
  1.1510 +    }
  1.1511 +
  1.1512 +    // Don't split if there is no hot code in the interval.
  1.1513 +    if (!hotRange)
  1.1514 +        return true;
  1.1515 +
  1.1516 +    // Don't split if there is no cold code in the interval.
  1.1517 +    bool coldCode = false;
  1.1518 +    for (size_t i = 0; i < interval->numRanges(); i++) {
  1.1519 +        if (!hotRange->contains(interval->getRange(i))) {
  1.1520 +            coldCode = true;
  1.1521 +            break;
  1.1522 +        }
  1.1523 +    }
  1.1524 +    if (!coldCode)
  1.1525 +        return true;
  1.1526 +
  1.1527 +    SplitPositionVector splitPositions;
  1.1528 +    if (!splitPositions.append(hotRange->from) || !splitPositions.append(hotRange->to))
  1.1529 +        return false;
  1.1530 +    *success = true;
  1.1531 +    return splitAt(interval, splitPositions);
  1.1532 +}
  1.1533 +
  1.1534 +bool
  1.1535 +BacktrackingAllocator::trySplitAfterLastRegisterUse(LiveInterval *interval, LiveInterval *conflict, bool *success)
  1.1536 +{
  1.1537 +    // If this interval's later uses do not require it to be in a register,
  1.1538 +    // split it after the last use which does require a register. If conflict
  1.1539 +    // is specified, only consider register uses before the conflict starts.
  1.1540 +
  1.1541 +    CodePosition lastRegisterFrom, lastRegisterTo, lastUse;
  1.1542 +
  1.1543 +    for (UsePositionIterator iter(interval->usesBegin());
  1.1544 +         iter != interval->usesEnd();
  1.1545 +         iter++)
  1.1546 +    {
  1.1547 +        LUse *use = iter->use;
  1.1548 +        LInstruction *ins = insData[iter->pos].ins();
  1.1549 +
  1.1550 +        // Uses in the interval should be sorted.
  1.1551 +        JS_ASSERT(iter->pos >= lastUse);
  1.1552 +        lastUse = inputOf(ins);
  1.1553 +
  1.1554 +        if (!conflict || outputOf(ins) < conflict->start()) {
  1.1555 +            if (isRegisterUse(use, ins, /* considerCopy = */ true)) {
  1.1556 +                lastRegisterFrom = inputOf(ins);
  1.1557 +                lastRegisterTo = iter->pos.next();
  1.1558 +            }
  1.1559 +        }
  1.1560 +    }
  1.1561 +
  1.1562 +    if (!lastRegisterFrom.pos() || lastRegisterFrom == lastUse) {
  1.1563 +        // Can't trim non-register uses off the end by splitting.
  1.1564 +        return true;
  1.1565 +    }
  1.1566 +
  1.1567 +    SplitPositionVector splitPositions;
  1.1568 +    if (!splitPositions.append(lastRegisterTo))
  1.1569 +        return false;
  1.1570 +    *success = true;
  1.1571 +    return splitAt(interval, splitPositions);
  1.1572 +}
  1.1573 +
  1.1574 +bool
  1.1575 +BacktrackingAllocator::splitAtAllRegisterUses(LiveInterval *interval)
  1.1576 +{
  1.1577 +    // Split this interval so that all its register uses become minimal
  1.1578 +    // intervals and allow the vreg to be spilled throughout its range.
  1.1579 +
  1.1580 +    LiveIntervalVector newIntervals;
  1.1581 +    uint32_t vreg = interval->vreg();
  1.1582 +
  1.1583 +    // If this LiveInterval is the result of an earlier split which created a
  1.1584 +    // spill interval, that spill interval covers the whole range, so we don't
  1.1585 +    // need to create a new one.
  1.1586 +    bool spillIntervalIsNew = false;
  1.1587 +    LiveInterval *spillInterval = interval->spillInterval();
  1.1588 +    if (!spillInterval) {
  1.1589 +        spillInterval = LiveInterval::New(alloc(), vreg, 0);
  1.1590 +        spillIntervalIsNew = true;
  1.1591 +    }
  1.1592 +
  1.1593 +    CodePosition spillStart = interval->start();
  1.1594 +    if (isRegisterDefinition(interval)) {
  1.1595 +        // Treat the definition of the interval as a register use so that it
  1.1596 +        // can be split and spilled ASAP.
  1.1597 +        CodePosition from = interval->start();
  1.1598 +        CodePosition to = minimalDefEnd(insData[from].ins()).next();
  1.1599 +        if (!addLiveInterval(newIntervals, vreg, spillInterval, from, to))
  1.1600 +            return false;
  1.1601 +        spillStart = to;
  1.1602 +    }
  1.1603 +
  1.1604 +    if (spillIntervalIsNew) {
  1.1605 +        for (size_t i = 0; i < interval->numRanges(); i++) {
  1.1606 +            const LiveInterval::Range *range = interval->getRange(i);
  1.1607 +            CodePosition from = range->from < spillStart ? spillStart : range->from;
  1.1608 +            if (!spillInterval->addRange(from, range->to))
  1.1609 +                return false;
  1.1610 +        }
  1.1611 +    }
  1.1612 +
  1.1613 +    for (UsePositionIterator iter(interval->usesBegin());
  1.1614 +         iter != interval->usesEnd();
  1.1615 +         iter++)
  1.1616 +    {
  1.1617 +        LInstruction *ins = insData[iter->pos].ins();
  1.1618 +        if (iter->pos < spillStart) {
  1.1619 +            newIntervals.back()->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1620 +        } else if (isRegisterUse(iter->use, ins)) {
  1.1621 +            // For register uses which are not useRegisterAtStart, pick an
  1.1622 +            // interval that covers both the instruction's input and output, so
  1.1623 +            // that the register is not reused for an output.
  1.1624 +            CodePosition from = inputOf(ins);
  1.1625 +            CodePosition to = iter->pos.next();
  1.1626 +
  1.1627 +            // Use the same interval for duplicate use positions, except when
  1.1628 +            // the uses are fixed (they may require incompatible registers).
  1.1629 +            if (newIntervals.empty() || newIntervals.back()->end() != to || iter->use->policy() == LUse::FIXED) {
  1.1630 +                if (!addLiveInterval(newIntervals, vreg, spillInterval, from, to))
  1.1631 +                    return false;
  1.1632 +            }
  1.1633 +
  1.1634 +            newIntervals.back()->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1635 +        } else {
  1.1636 +            JS_ASSERT(spillIntervalIsNew);
  1.1637 +            spillInterval->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1638 +        }
  1.1639 +    }
  1.1640 +
  1.1641 +    if (spillIntervalIsNew && !newIntervals.append(spillInterval))
  1.1642 +        return false;
  1.1643 +
  1.1644 +    return split(interval, newIntervals) && requeueIntervals(newIntervals);
  1.1645 +}
  1.1646 +
  1.1647 +// Find the next split position after the current position.
  1.1648 +static size_t NextSplitPosition(size_t activeSplitPosition,
  1.1649 +                                const SplitPositionVector &splitPositions,
  1.1650 +                                CodePosition currentPos)
  1.1651 +{
  1.1652 +    while (activeSplitPosition < splitPositions.length() &&
  1.1653 +           splitPositions[activeSplitPosition] <= currentPos)
  1.1654 +    {
  1.1655 +        ++activeSplitPosition;
  1.1656 +    }
  1.1657 +    return activeSplitPosition;
  1.1658 +}
  1.1659 +
  1.1660 +// Test whether the current position has just crossed a split point.
  1.1661 +static bool SplitHere(size_t activeSplitPosition,
  1.1662 +                      const SplitPositionVector &splitPositions,
  1.1663 +                      CodePosition currentPos)
  1.1664 +{
  1.1665 +    return activeSplitPosition < splitPositions.length() &&
  1.1666 +           currentPos >= splitPositions[activeSplitPosition];
  1.1667 +}
  1.1668 +
  1.1669 +bool
  1.1670 +BacktrackingAllocator::splitAt(LiveInterval *interval,
  1.1671 +                               const SplitPositionVector &splitPositions)
  1.1672 +{
  1.1673 +    // Split the interval at the given split points. Unlike splitAtAllRegisterUses,
  1.1674 +    // consolidate any register uses which have no intervening split points into the
  1.1675 +    // same resulting interval.
  1.1676 +
  1.1677 +    // splitPositions should be non-empty and sorted.
  1.1678 +    JS_ASSERT(!splitPositions.empty());
  1.1679 +    for (size_t i = 1; i < splitPositions.length(); ++i)
  1.1680 +        JS_ASSERT(splitPositions[i-1] < splitPositions[i]);
  1.1681 +
  1.1682 +    // Don't spill the interval until after the end of its definition.
  1.1683 +    CodePosition spillStart = interval->start();
  1.1684 +    if (isRegisterDefinition(interval))
  1.1685 +        spillStart = minimalDefEnd(insData[interval->start()].ins()).next();
  1.1686 +
  1.1687 +    uint32_t vreg = interval->vreg();
  1.1688 +
  1.1689 +    // If this LiveInterval is the result of an earlier split which created a
  1.1690 +    // spill interval, that spill interval covers the whole range, so we don't
  1.1691 +    // need to create a new one.
  1.1692 +    bool spillIntervalIsNew = false;
  1.1693 +    LiveInterval *spillInterval = interval->spillInterval();
  1.1694 +    if (!spillInterval) {
  1.1695 +        spillInterval = LiveInterval::New(alloc(), vreg, 0);
  1.1696 +        spillIntervalIsNew = true;
  1.1697 +
  1.1698 +        for (size_t i = 0; i < interval->numRanges(); i++) {
  1.1699 +            const LiveInterval::Range *range = interval->getRange(i);
  1.1700 +            CodePosition from = range->from < spillStart ? spillStart : range->from;
  1.1701 +            if (!spillInterval->addRange(from, range->to))
  1.1702 +                return false;
  1.1703 +        }
  1.1704 +    }
  1.1705 +
  1.1706 +    LiveIntervalVector newIntervals;
  1.1707 +
  1.1708 +    CodePosition lastRegisterUse;
  1.1709 +    if (spillStart != interval->start()) {
  1.1710 +        LiveInterval *newInterval = LiveInterval::New(alloc(), vreg, 0);
  1.1711 +        newInterval->setSpillInterval(spillInterval);
  1.1712 +        if (!newIntervals.append(newInterval))
  1.1713 +            return false;
  1.1714 +        lastRegisterUse = interval->start();
  1.1715 +    }
  1.1716 +
  1.1717 +    size_t activeSplitPosition = NextSplitPosition(0, splitPositions, interval->start());
  1.1718 +    for (UsePositionIterator iter(interval->usesBegin()); iter != interval->usesEnd(); iter++) {
  1.1719 +        LInstruction *ins = insData[iter->pos].ins();
  1.1720 +        if (iter->pos < spillStart) {
  1.1721 +            newIntervals.back()->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1722 +            activeSplitPosition = NextSplitPosition(activeSplitPosition, splitPositions, iter->pos);
  1.1723 +        } else if (isRegisterUse(iter->use, ins)) {
  1.1724 +            if (lastRegisterUse.pos() == 0 ||
  1.1725 +                SplitHere(activeSplitPosition, splitPositions, iter->pos))
  1.1726 +            {
  1.1727 +                // Place this register use into a different interval from the
  1.1728 +                // last one if there are any split points between the two uses.
  1.1729 +                LiveInterval *newInterval = LiveInterval::New(alloc(), vreg, 0);
  1.1730 +                newInterval->setSpillInterval(spillInterval);
  1.1731 +                if (!newIntervals.append(newInterval))
  1.1732 +                    return false;
  1.1733 +                activeSplitPosition = NextSplitPosition(activeSplitPosition,
  1.1734 +                                                        splitPositions,
  1.1735 +                                                        iter->pos);
  1.1736 +            }
  1.1737 +            newIntervals.back()->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1738 +            lastRegisterUse = iter->pos;
  1.1739 +        } else {
  1.1740 +            JS_ASSERT(spillIntervalIsNew);
  1.1741 +            spillInterval->addUseAtEnd(new(alloc()) UsePosition(iter->use, iter->pos));
  1.1742 +        }
  1.1743 +    }
  1.1744 +
  1.1745 +    // Compute ranges for each new interval that cover all its uses.
  1.1746 +    size_t activeRange = interval->numRanges();
  1.1747 +    for (size_t i = 0; i < newIntervals.length(); i++) {
  1.1748 +        LiveInterval *newInterval = newIntervals[i];
  1.1749 +        CodePosition start, end;
  1.1750 +        if (i == 0 && spillStart != interval->start()) {
  1.1751 +            start = interval->start();
  1.1752 +            if (newInterval->usesEmpty())
  1.1753 +                end = spillStart;
  1.1754 +            else
  1.1755 +                end = newInterval->usesBack()->pos.next();
  1.1756 +        } else {
  1.1757 +            start = inputOf(insData[newInterval->usesBegin()->pos].ins());
  1.1758 +            end = newInterval->usesBack()->pos.next();
  1.1759 +        }
  1.1760 +        for (; activeRange > 0; --activeRange) {
  1.1761 +            const LiveInterval::Range *range = interval->getRange(activeRange - 1);
  1.1762 +            if (range->to <= start)
  1.1763 +                continue;
  1.1764 +            if (range->from >= end)
  1.1765 +                break;
  1.1766 +            if (!newInterval->addRange(Max(range->from, start),
  1.1767 +                                       Min(range->to, end)))
  1.1768 +                return false;
  1.1769 +            if (range->to >= end)
  1.1770 +                break;
  1.1771 +        }
  1.1772 +    }
  1.1773 +
  1.1774 +    if (spillIntervalIsNew && !newIntervals.append(spillInterval))
  1.1775 +        return false;
  1.1776 +
  1.1777 +    return split(interval, newIntervals) && requeueIntervals(newIntervals);
  1.1778 +}
  1.1779 +
  1.1780 +bool
  1.1781 +BacktrackingAllocator::splitAcrossCalls(LiveInterval *interval)
  1.1782 +{
  1.1783 +    // Split the interval to separate register uses and non-register uses and
  1.1784 +    // allow the vreg to be spilled across its range.
  1.1785 +
  1.1786 +    // Find the locations of all calls in the interval's range. Fixed intervals
  1.1787 +    // are introduced by buildLivenessInfo only for calls when allocating for
  1.1788 +    // the backtracking allocator. fixedIntervalsUnion is sorted backwards, so
  1.1789 +    // iterate through it backwards.
  1.1790 +    SplitPositionVector callPositions;
  1.1791 +    for (size_t i = fixedIntervalsUnion->numRanges(); i > 0; i--) {
  1.1792 +        const LiveInterval::Range *range = fixedIntervalsUnion->getRange(i - 1);
  1.1793 +        if (interval->covers(range->from) && interval->covers(range->from.previous())) {
  1.1794 +            if (!callPositions.append(range->from))
  1.1795 +                return false;
  1.1796 +        }
  1.1797 +    }
  1.1798 +    JS_ASSERT(callPositions.length());
  1.1799 +
  1.1800 +    return splitAt(interval, callPositions);
  1.1801 +}
  1.1802 +
  1.1803 +bool
  1.1804 +BacktrackingAllocator::chooseIntervalSplit(LiveInterval *interval, LiveInterval *conflict)
  1.1805 +{
  1.1806 +    bool success = false;
  1.1807 +
  1.1808 +    if (!trySplitAcrossHotcode(interval, &success))
  1.1809 +        return false;
  1.1810 +    if (success)
  1.1811 +        return true;
  1.1812 +
  1.1813 +    if (!trySplitAfterLastRegisterUse(interval, conflict, &success))
  1.1814 +        return false;
  1.1815 +    if (success)
  1.1816 +        return true;
  1.1817 +
  1.1818 +    return splitAtAllRegisterUses(interval);
  1.1819 +}

mercurial