1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/jit/IonAnalysis.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,2474 @@ 1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- 1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99: 1.6 + * This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 + 1.10 +#include "jit/IonAnalysis.h" 1.11 + 1.12 +#include "jsanalyze.h" 1.13 + 1.14 +#include "jit/BaselineInspector.h" 1.15 +#include "jit/BaselineJIT.h" 1.16 +#include "jit/Ion.h" 1.17 +#include "jit/IonBuilder.h" 1.18 +#include "jit/IonOptimizationLevels.h" 1.19 +#include "jit/LIR.h" 1.20 +#include "jit/Lowering.h" 1.21 +#include "jit/MIRGraph.h" 1.22 + 1.23 +#include "jsinferinlines.h" 1.24 +#include "jsobjinlines.h" 1.25 +#include "jsopcodeinlines.h" 1.26 + 1.27 +using namespace js; 1.28 +using namespace js::jit; 1.29 + 1.30 +using mozilla::DebugOnly; 1.31 + 1.32 +// A critical edge is an edge which is neither its successor's only predecessor 1.33 +// nor its predecessor's only successor. Critical edges must be split to 1.34 +// prevent copy-insertion and code motion from affecting other edges. 1.35 +bool 1.36 +jit::SplitCriticalEdges(MIRGraph &graph) 1.37 +{ 1.38 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.39 + if (block->numSuccessors() < 2) 1.40 + continue; 1.41 + for (size_t i = 0; i < block->numSuccessors(); i++) { 1.42 + MBasicBlock *target = block->getSuccessor(i); 1.43 + if (target->numPredecessors() < 2) 1.44 + continue; 1.45 + 1.46 + // Create a new block inheriting from the predecessor. 1.47 + MBasicBlock *split = MBasicBlock::NewSplitEdge(graph, block->info(), *block); 1.48 + if (!split) 1.49 + return false; 1.50 + split->setLoopDepth(block->loopDepth()); 1.51 + graph.insertBlockAfter(*block, split); 1.52 + split->end(MGoto::New(graph.alloc(), target)); 1.53 + 1.54 + block->replaceSuccessor(i, split); 1.55 + target->replacePredecessor(*block, split); 1.56 + } 1.57 + } 1.58 + return true; 1.59 +} 1.60 + 1.61 +// Operands to a resume point which are dead at the point of the resume can be 1.62 +// replaced with undefined values. This analysis supports limited detection of 1.63 +// dead operands, pruning those which are defined in the resume point's basic 1.64 +// block and have no uses outside the block or at points later than the resume 1.65 +// point. 1.66 +// 1.67 +// This is intended to ensure that extra resume points within a basic block 1.68 +// will not artificially extend the lifetimes of any SSA values. This could 1.69 +// otherwise occur if the new resume point captured a value which is created 1.70 +// between the old and new resume point and is dead at the new resume point. 1.71 +bool 1.72 +jit::EliminateDeadResumePointOperands(MIRGenerator *mir, MIRGraph &graph) 1.73 +{ 1.74 + // If we are compiling try blocks, locals and arguments may be observable 1.75 + // from catch or finally blocks (which Ion does not compile). For now just 1.76 + // disable the pass in this case. 1.77 + if (graph.hasTryBlock()) 1.78 + return true; 1.79 + 1.80 + for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { 1.81 + if (mir->shouldCancel("Eliminate Dead Resume Point Operands (main loop)")) 1.82 + return false; 1.83 + 1.84 + // The logic below can get confused on infinite loops. 1.85 + if (block->isLoopHeader() && block->backedge() == *block) 1.86 + continue; 1.87 + 1.88 + for (MInstructionIterator ins = block->begin(); ins != block->end(); ins++) { 1.89 + // No benefit to replacing constant operands with other constants. 1.90 + if (ins->isConstant()) 1.91 + continue; 1.92 + 1.93 + // Scanning uses does not give us sufficient information to tell 1.94 + // where instructions that are involved in box/unbox operations or 1.95 + // parameter passing might be live. Rewriting uses of these terms 1.96 + // in resume points may affect the interpreter's behavior. Rather 1.97 + // than doing a more sophisticated analysis, just ignore these. 1.98 + if (ins->isUnbox() || ins->isParameter() || ins->isTypeBarrier() || ins->isComputeThis()) 1.99 + continue; 1.100 + 1.101 + // If the instruction's behavior has been constant folded into a 1.102 + // separate instruction, we can't determine precisely where the 1.103 + // instruction becomes dead and can't eliminate its uses. 1.104 + if (ins->isImplicitlyUsed()) 1.105 + continue; 1.106 + 1.107 + // Check if this instruction's result is only used within the 1.108 + // current block, and keep track of its last use in a definition 1.109 + // (not resume point). This requires the instructions in the block 1.110 + // to be numbered, ensured by running this immediately after alias 1.111 + // analysis. 1.112 + uint32_t maxDefinition = 0; 1.113 + for (MUseDefIterator uses(*ins); uses; uses++) { 1.114 + if (uses.def()->block() != *block || 1.115 + uses.def()->isBox() || 1.116 + uses.def()->isPhi()) 1.117 + { 1.118 + maxDefinition = UINT32_MAX; 1.119 + break; 1.120 + } 1.121 + maxDefinition = Max(maxDefinition, uses.def()->id()); 1.122 + } 1.123 + if (maxDefinition == UINT32_MAX) 1.124 + continue; 1.125 + 1.126 + // Walk the uses a second time, removing any in resume points after 1.127 + // the last use in a definition. 1.128 + for (MUseIterator uses(ins->usesBegin()); uses != ins->usesEnd(); ) { 1.129 + if (uses->consumer()->isDefinition()) { 1.130 + uses++; 1.131 + continue; 1.132 + } 1.133 + MResumePoint *mrp = uses->consumer()->toResumePoint(); 1.134 + if (mrp->block() != *block || 1.135 + !mrp->instruction() || 1.136 + mrp->instruction() == *ins || 1.137 + mrp->instruction()->id() <= maxDefinition) 1.138 + { 1.139 + uses++; 1.140 + continue; 1.141 + } 1.142 + 1.143 + // The operand is an uneliminable slot. This currently 1.144 + // includes argument slots in non-strict scripts (due to being 1.145 + // observable via Function.arguments). 1.146 + if (!block->info().canOptimizeOutSlot(uses->index())) { 1.147 + uses++; 1.148 + continue; 1.149 + } 1.150 + 1.151 + // Store an optimized out magic value in place of all dead 1.152 + // resume point operands. Making any such substitution can in 1.153 + // general alter the interpreter's behavior, even though the 1.154 + // code is dead, as the interpreter will still execute opcodes 1.155 + // whose effects cannot be observed. If the undefined value 1.156 + // were to flow to, say, a dead property access the 1.157 + // interpreter could throw an exception; we avoid this problem 1.158 + // by removing dead operands before removing dead code. 1.159 + MConstant *constant = MConstant::New(graph.alloc(), MagicValue(JS_OPTIMIZED_OUT)); 1.160 + block->insertBefore(*(block->begin()), constant); 1.161 + uses = mrp->replaceOperand(uses, constant); 1.162 + } 1.163 + } 1.164 + } 1.165 + 1.166 + return true; 1.167 +} 1.168 + 1.169 +// Instructions are useless if they are unused and have no side effects. 1.170 +// This pass eliminates useless instructions. 1.171 +// The graph itself is unchanged. 1.172 +bool 1.173 +jit::EliminateDeadCode(MIRGenerator *mir, MIRGraph &graph) 1.174 +{ 1.175 + // Traverse in postorder so that we hit uses before definitions. 1.176 + // Traverse instruction list backwards for the same reason. 1.177 + for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { 1.178 + if (mir->shouldCancel("Eliminate Dead Code (main loop)")) 1.179 + return false; 1.180 + 1.181 + // Remove unused instructions. 1.182 + for (MInstructionReverseIterator inst = block->rbegin(); inst != block->rend(); ) { 1.183 + if (!inst->isEffectful() && !inst->resumePoint() && 1.184 + !inst->hasUses() && !inst->isGuard() && 1.185 + !inst->isControlInstruction()) { 1.186 + inst = block->discardAt(inst); 1.187 + } else { 1.188 + inst++; 1.189 + } 1.190 + } 1.191 + } 1.192 + 1.193 + return true; 1.194 +} 1.195 + 1.196 +static inline bool 1.197 +IsPhiObservable(MPhi *phi, Observability observe) 1.198 +{ 1.199 + // If the phi has uses which are not reflected in SSA, then behavior in the 1.200 + // interpreter may be affected by removing the phi. 1.201 + if (phi->isImplicitlyUsed()) 1.202 + return true; 1.203 + 1.204 + // Check for uses of this phi node outside of other phi nodes. 1.205 + // Note that, initially, we skip reading resume points, which we 1.206 + // don't count as actual uses. If the only uses are resume points, 1.207 + // then the SSA name is never consumed by the program. However, 1.208 + // after optimizations have been performed, it's possible that the 1.209 + // actual uses in the program have been (incorrectly) optimized 1.210 + // away, so we must be more conservative and consider resume 1.211 + // points as well. 1.212 + switch (observe) { 1.213 + case AggressiveObservability: 1.214 + for (MUseDefIterator iter(phi); iter; iter++) { 1.215 + if (!iter.def()->isPhi()) 1.216 + return true; 1.217 + } 1.218 + break; 1.219 + 1.220 + case ConservativeObservability: 1.221 + for (MUseIterator iter(phi->usesBegin()); iter != phi->usesEnd(); iter++) { 1.222 + if (!iter->consumer()->isDefinition() || 1.223 + !iter->consumer()->toDefinition()->isPhi()) 1.224 + return true; 1.225 + } 1.226 + break; 1.227 + } 1.228 + 1.229 + uint32_t slot = phi->slot(); 1.230 + CompileInfo &info = phi->block()->info(); 1.231 + JSFunction *fun = info.funMaybeLazy(); 1.232 + 1.233 + // If the Phi is of the |this| value, it must always be observable. 1.234 + if (fun && slot == info.thisSlot()) 1.235 + return true; 1.236 + 1.237 + // If the function may need an arguments object, then make sure to 1.238 + // preserve the scope chain, because it may be needed to construct the 1.239 + // arguments object during bailout. If we've already created an arguments 1.240 + // object (or got one via OSR), preserve that as well. 1.241 + if (fun && info.hasArguments() && 1.242 + (slot == info.scopeChainSlot() || slot == info.argsObjSlot())) 1.243 + { 1.244 + return true; 1.245 + } 1.246 + 1.247 + // The Phi is an uneliminable slot. Currently this includes argument slots 1.248 + // in non-strict scripts (due to being observable via Function.arguments). 1.249 + if (fun && !info.canOptimizeOutSlot(slot)) 1.250 + return true; 1.251 + 1.252 + return false; 1.253 +} 1.254 + 1.255 +// Handles cases like: 1.256 +// x is phi(a, x) --> a 1.257 +// x is phi(a, a) --> a 1.258 +static inline MDefinition * 1.259 +IsPhiRedundant(MPhi *phi) 1.260 +{ 1.261 + MDefinition *first = phi->operandIfRedundant(); 1.262 + if (first == nullptr) 1.263 + return nullptr; 1.264 + 1.265 + // Propagate the ImplicitlyUsed flag if |phi| is replaced with another phi. 1.266 + if (phi->isImplicitlyUsed()) 1.267 + first->setImplicitlyUsedUnchecked(); 1.268 + 1.269 + return first; 1.270 +} 1.271 + 1.272 +bool 1.273 +jit::EliminatePhis(MIRGenerator *mir, MIRGraph &graph, 1.274 + Observability observe) 1.275 +{ 1.276 + // Eliminates redundant or unobservable phis from the graph. A 1.277 + // redundant phi is something like b = phi(a, a) or b = phi(a, b), 1.278 + // both of which can be replaced with a. An unobservable phi is 1.279 + // one that whose value is never used in the program. 1.280 + // 1.281 + // Note that we must be careful not to eliminate phis representing 1.282 + // values that the interpreter will require later. When the graph 1.283 + // is first constructed, we can be more aggressive, because there 1.284 + // is a greater correspondence between the CFG and the bytecode. 1.285 + // After optimizations such as GVN have been performed, however, 1.286 + // the bytecode and CFG may not correspond as closely to one 1.287 + // another. In that case, we must be more conservative. The flag 1.288 + // |conservativeObservability| is used to indicate that eliminate 1.289 + // phis is being run after some optimizations have been performed, 1.290 + // and thus we should use more conservative rules about 1.291 + // observability. The particular danger is that we can optimize 1.292 + // away uses of a phi because we think they are not executable, 1.293 + // but the foundation for that assumption is false TI information 1.294 + // that will eventually be invalidated. Therefore, if 1.295 + // |conservativeObservability| is set, we will consider any use 1.296 + // from a resume point to be observable. Otherwise, we demand a 1.297 + // use from an actual instruction. 1.298 + 1.299 + Vector<MPhi *, 16, SystemAllocPolicy> worklist; 1.300 + 1.301 + // Add all observable phis to a worklist. We use the "in worklist" bit to 1.302 + // mean "this phi is live". 1.303 + for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { 1.304 + if (mir->shouldCancel("Eliminate Phis (populate loop)")) 1.305 + return false; 1.306 + 1.307 + MPhiIterator iter = block->phisBegin(); 1.308 + while (iter != block->phisEnd()) { 1.309 + // Flag all as unused, only observable phis would be marked as used 1.310 + // when processed by the work list. 1.311 + iter->setUnused(); 1.312 + 1.313 + // If the phi is redundant, remove it here. 1.314 + if (MDefinition *redundant = IsPhiRedundant(*iter)) { 1.315 + iter->replaceAllUsesWith(redundant); 1.316 + iter = block->discardPhiAt(iter); 1.317 + continue; 1.318 + } 1.319 + 1.320 + // Enqueue observable Phis. 1.321 + if (IsPhiObservable(*iter, observe)) { 1.322 + iter->setInWorklist(); 1.323 + if (!worklist.append(*iter)) 1.324 + return false; 1.325 + } 1.326 + iter++; 1.327 + } 1.328 + } 1.329 + 1.330 + // Iteratively mark all phis reachable from live phis. 1.331 + while (!worklist.empty()) { 1.332 + if (mir->shouldCancel("Eliminate Phis (worklist)")) 1.333 + return false; 1.334 + 1.335 + MPhi *phi = worklist.popCopy(); 1.336 + JS_ASSERT(phi->isUnused()); 1.337 + phi->setNotInWorklist(); 1.338 + 1.339 + // The removal of Phis can produce newly redundant phis. 1.340 + if (MDefinition *redundant = IsPhiRedundant(phi)) { 1.341 + // Add to the worklist the used phis which are impacted. 1.342 + for (MUseDefIterator it(phi); it; it++) { 1.343 + if (it.def()->isPhi()) { 1.344 + MPhi *use = it.def()->toPhi(); 1.345 + if (!use->isUnused()) { 1.346 + use->setUnusedUnchecked(); 1.347 + use->setInWorklist(); 1.348 + if (!worklist.append(use)) 1.349 + return false; 1.350 + } 1.351 + } 1.352 + } 1.353 + phi->replaceAllUsesWith(redundant); 1.354 + } else { 1.355 + // Otherwise flag them as used. 1.356 + phi->setNotUnused(); 1.357 + } 1.358 + 1.359 + // The current phi is/was used, so all its operands are used. 1.360 + for (size_t i = 0, e = phi->numOperands(); i < e; i++) { 1.361 + MDefinition *in = phi->getOperand(i); 1.362 + if (!in->isPhi() || !in->isUnused() || in->isInWorklist()) 1.363 + continue; 1.364 + in->setInWorklist(); 1.365 + if (!worklist.append(in->toPhi())) 1.366 + return false; 1.367 + } 1.368 + } 1.369 + 1.370 + // Sweep dead phis. 1.371 + for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { 1.372 + MPhiIterator iter = block->phisBegin(); 1.373 + while (iter != block->phisEnd()) { 1.374 + if (iter->isUnused()) 1.375 + iter = block->discardPhiAt(iter); 1.376 + else 1.377 + iter++; 1.378 + } 1.379 + } 1.380 + 1.381 + return true; 1.382 +} 1.383 + 1.384 +namespace { 1.385 + 1.386 +// The type analysis algorithm inserts conversions and box/unbox instructions 1.387 +// to make the IR graph well-typed for future passes. 1.388 +// 1.389 +// Phi adjustment: If a phi's inputs are all the same type, the phi is 1.390 +// specialized to return that type. 1.391 +// 1.392 +// Input adjustment: Each input is asked to apply conversion operations to its 1.393 +// inputs. This may include Box, Unbox, or other instruction-specific type 1.394 +// conversion operations. 1.395 +// 1.396 +class TypeAnalyzer 1.397 +{ 1.398 + MIRGenerator *mir; 1.399 + MIRGraph &graph; 1.400 + Vector<MPhi *, 0, SystemAllocPolicy> phiWorklist_; 1.401 + 1.402 + TempAllocator &alloc() const { 1.403 + return graph.alloc(); 1.404 + } 1.405 + 1.406 + bool addPhiToWorklist(MPhi *phi) { 1.407 + if (phi->isInWorklist()) 1.408 + return true; 1.409 + if (!phiWorklist_.append(phi)) 1.410 + return false; 1.411 + phi->setInWorklist(); 1.412 + return true; 1.413 + } 1.414 + MPhi *popPhi() { 1.415 + MPhi *phi = phiWorklist_.popCopy(); 1.416 + phi->setNotInWorklist(); 1.417 + return phi; 1.418 + } 1.419 + 1.420 + bool respecialize(MPhi *phi, MIRType type); 1.421 + bool propagateSpecialization(MPhi *phi); 1.422 + bool specializePhis(); 1.423 + void replaceRedundantPhi(MPhi *phi); 1.424 + void adjustPhiInputs(MPhi *phi); 1.425 + bool adjustInputs(MDefinition *def); 1.426 + bool insertConversions(); 1.427 + 1.428 + bool checkFloatCoherency(); 1.429 + bool graphContainsFloat32(); 1.430 + bool markPhiConsumers(); 1.431 + bool markPhiProducers(); 1.432 + bool specializeValidFloatOps(); 1.433 + bool tryEmitFloatOperations(); 1.434 + 1.435 + public: 1.436 + TypeAnalyzer(MIRGenerator *mir, MIRGraph &graph) 1.437 + : mir(mir), graph(graph) 1.438 + { } 1.439 + 1.440 + bool analyze(); 1.441 +}; 1.442 + 1.443 +} /* anonymous namespace */ 1.444 + 1.445 +// Try to specialize this phi based on its non-cyclic inputs. 1.446 +static MIRType 1.447 +GuessPhiType(MPhi *phi, bool *hasInputsWithEmptyTypes) 1.448 +{ 1.449 +#ifdef DEBUG 1.450 + // Check that different magic constants aren't flowing together. Ignore 1.451 + // JS_OPTIMIZED_OUT, since an operand could be legitimately optimized 1.452 + // away. 1.453 + MIRType magicType = MIRType_None; 1.454 + for (size_t i = 0; i < phi->numOperands(); i++) { 1.455 + MDefinition *in = phi->getOperand(i); 1.456 + if (in->type() == MIRType_MagicOptimizedArguments || 1.457 + in->type() == MIRType_MagicHole || 1.458 + in->type() == MIRType_MagicIsConstructing) 1.459 + { 1.460 + if (magicType == MIRType_None) 1.461 + magicType = in->type(); 1.462 + MOZ_ASSERT(magicType == in->type()); 1.463 + } 1.464 + } 1.465 +#endif 1.466 + 1.467 + *hasInputsWithEmptyTypes = false; 1.468 + 1.469 + MIRType type = MIRType_None; 1.470 + bool convertibleToFloat32 = false; 1.471 + bool hasPhiInputs = false; 1.472 + for (size_t i = 0, e = phi->numOperands(); i < e; i++) { 1.473 + MDefinition *in = phi->getOperand(i); 1.474 + if (in->isPhi()) { 1.475 + hasPhiInputs = true; 1.476 + if (!in->toPhi()->triedToSpecialize()) 1.477 + continue; 1.478 + if (in->type() == MIRType_None) { 1.479 + // The operand is a phi we tried to specialize, but we were 1.480 + // unable to guess its type. propagateSpecialization will 1.481 + // propagate the type to this phi when it becomes known. 1.482 + continue; 1.483 + } 1.484 + } 1.485 + 1.486 + // Ignore operands which we've never observed. 1.487 + if (in->resultTypeSet() && in->resultTypeSet()->empty()) { 1.488 + *hasInputsWithEmptyTypes = true; 1.489 + continue; 1.490 + } 1.491 + 1.492 + if (type == MIRType_None) { 1.493 + type = in->type(); 1.494 + if (in->canProduceFloat32()) 1.495 + convertibleToFloat32 = true; 1.496 + continue; 1.497 + } 1.498 + if (type != in->type()) { 1.499 + if (convertibleToFloat32 && in->type() == MIRType_Float32) { 1.500 + // If we only saw definitions that can be converted into Float32 before and 1.501 + // encounter a Float32 value, promote previous values to Float32 1.502 + type = MIRType_Float32; 1.503 + } else if (IsNumberType(type) && IsNumberType(in->type())) { 1.504 + // Specialize phis with int32 and double operands as double. 1.505 + type = MIRType_Double; 1.506 + convertibleToFloat32 &= in->canProduceFloat32(); 1.507 + } else { 1.508 + return MIRType_Value; 1.509 + } 1.510 + } 1.511 + } 1.512 + 1.513 + if (type == MIRType_None && !hasPhiInputs) { 1.514 + // All inputs are non-phis with empty typesets. Use MIRType_Value 1.515 + // in this case, as it's impossible to get better type information. 1.516 + JS_ASSERT(*hasInputsWithEmptyTypes); 1.517 + type = MIRType_Value; 1.518 + } 1.519 + 1.520 + return type; 1.521 +} 1.522 + 1.523 +bool 1.524 +TypeAnalyzer::respecialize(MPhi *phi, MIRType type) 1.525 +{ 1.526 + if (phi->type() == type) 1.527 + return true; 1.528 + phi->specialize(type); 1.529 + return addPhiToWorklist(phi); 1.530 +} 1.531 + 1.532 +bool 1.533 +TypeAnalyzer::propagateSpecialization(MPhi *phi) 1.534 +{ 1.535 + JS_ASSERT(phi->type() != MIRType_None); 1.536 + 1.537 + // Verify that this specialization matches any phis depending on it. 1.538 + for (MUseDefIterator iter(phi); iter; iter++) { 1.539 + if (!iter.def()->isPhi()) 1.540 + continue; 1.541 + MPhi *use = iter.def()->toPhi(); 1.542 + if (!use->triedToSpecialize()) 1.543 + continue; 1.544 + if (use->type() == MIRType_None) { 1.545 + // We tried to specialize this phi, but were unable to guess its 1.546 + // type. Now that we know the type of one of its operands, we can 1.547 + // specialize it. 1.548 + if (!respecialize(use, phi->type())) 1.549 + return false; 1.550 + continue; 1.551 + } 1.552 + if (use->type() != phi->type()) { 1.553 + // Specialize phis with int32 that can be converted to float and float operands as floats. 1.554 + if ((use->type() == MIRType_Int32 && use->canProduceFloat32() && phi->type() == MIRType_Float32) || 1.555 + (phi->type() == MIRType_Int32 && phi->canProduceFloat32() && use->type() == MIRType_Float32)) 1.556 + { 1.557 + if (!respecialize(use, MIRType_Float32)) 1.558 + return false; 1.559 + continue; 1.560 + } 1.561 + 1.562 + // Specialize phis with int32 and double operands as double. 1.563 + if (IsNumberType(use->type()) && IsNumberType(phi->type())) { 1.564 + if (!respecialize(use, MIRType_Double)) 1.565 + return false; 1.566 + continue; 1.567 + } 1.568 + 1.569 + // This phi in our use chain can now no longer be specialized. 1.570 + if (!respecialize(use, MIRType_Value)) 1.571 + return false; 1.572 + } 1.573 + } 1.574 + 1.575 + return true; 1.576 +} 1.577 + 1.578 +bool 1.579 +TypeAnalyzer::specializePhis() 1.580 +{ 1.581 + Vector<MPhi *, 0, SystemAllocPolicy> phisWithEmptyInputTypes; 1.582 + 1.583 + for (PostorderIterator block(graph.poBegin()); block != graph.poEnd(); block++) { 1.584 + if (mir->shouldCancel("Specialize Phis (main loop)")) 1.585 + return false; 1.586 + 1.587 + for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); phi++) { 1.588 + bool hasInputsWithEmptyTypes; 1.589 + MIRType type = GuessPhiType(*phi, &hasInputsWithEmptyTypes); 1.590 + phi->specialize(type); 1.591 + if (type == MIRType_None) { 1.592 + // We tried to guess the type but failed because all operands are 1.593 + // phis we still have to visit. Set the triedToSpecialize flag but 1.594 + // don't propagate the type to other phis, propagateSpecialization 1.595 + // will do that once we know the type of one of the operands. 1.596 + 1.597 + // Edge case: when this phi has a non-phi input with an empty 1.598 + // typeset, it's possible for two phis to have a cyclic 1.599 + // dependency and they will both have MIRType_None. Specialize 1.600 + // such phis to MIRType_Value later on. 1.601 + if (hasInputsWithEmptyTypes && !phisWithEmptyInputTypes.append(*phi)) 1.602 + return false; 1.603 + continue; 1.604 + } 1.605 + if (!propagateSpecialization(*phi)) 1.606 + return false; 1.607 + } 1.608 + } 1.609 + 1.610 + do { 1.611 + while (!phiWorklist_.empty()) { 1.612 + if (mir->shouldCancel("Specialize Phis (worklist)")) 1.613 + return false; 1.614 + 1.615 + MPhi *phi = popPhi(); 1.616 + if (!propagateSpecialization(phi)) 1.617 + return false; 1.618 + } 1.619 + 1.620 + // When two phis have a cyclic dependency and inputs that have an empty 1.621 + // typeset (which are ignored by GuessPhiType), we may still have to 1.622 + // specialize these to MIRType_Value. 1.623 + while (!phisWithEmptyInputTypes.empty()) { 1.624 + if (mir->shouldCancel("Specialize Phis (phisWithEmptyInputTypes)")) 1.625 + return false; 1.626 + 1.627 + MPhi *phi = phisWithEmptyInputTypes.popCopy(); 1.628 + if (phi->type() == MIRType_None) { 1.629 + phi->specialize(MIRType_Value); 1.630 + if (!propagateSpecialization(phi)) 1.631 + return false; 1.632 + } 1.633 + } 1.634 + } while (!phiWorklist_.empty()); 1.635 + 1.636 + return true; 1.637 +} 1.638 + 1.639 +void 1.640 +TypeAnalyzer::adjustPhiInputs(MPhi *phi) 1.641 +{ 1.642 + MIRType phiType = phi->type(); 1.643 + JS_ASSERT(phiType != MIRType_None); 1.644 + 1.645 + // If we specialized a type that's not Value, there are 3 cases: 1.646 + // 1. Every input is of that type. 1.647 + // 2. Every observed input is of that type (i.e., some inputs haven't been executed yet). 1.648 + // 3. Inputs were doubles and int32s, and was specialized to double. 1.649 + if (phiType != MIRType_Value) { 1.650 + for (size_t i = 0, e = phi->numOperands(); i < e; i++) { 1.651 + MDefinition *in = phi->getOperand(i); 1.652 + if (in->type() == phiType) 1.653 + continue; 1.654 + 1.655 + if (in->isBox() && in->toBox()->input()->type() == phiType) { 1.656 + phi->replaceOperand(i, in->toBox()->input()); 1.657 + } else { 1.658 + MInstruction *replacement; 1.659 + 1.660 + if (phiType == MIRType_Double && IsFloatType(in->type())) { 1.661 + // Convert int32 operands to double. 1.662 + replacement = MToDouble::New(alloc(), in); 1.663 + } else if (phiType == MIRType_Float32) { 1.664 + if (in->type() == MIRType_Int32 || in->type() == MIRType_Double) { 1.665 + replacement = MToFloat32::New(alloc(), in); 1.666 + } else { 1.667 + // See comment below 1.668 + if (in->type() != MIRType_Value) { 1.669 + MBox *box = MBox::New(alloc(), in); 1.670 + in->block()->insertBefore(in->block()->lastIns(), box); 1.671 + in = box; 1.672 + } 1.673 + 1.674 + MUnbox *unbox = MUnbox::New(alloc(), in, MIRType_Double, MUnbox::Fallible); 1.675 + in->block()->insertBefore(in->block()->lastIns(), unbox); 1.676 + replacement = MToFloat32::New(alloc(), in); 1.677 + } 1.678 + } else { 1.679 + // If we know this branch will fail to convert to phiType, 1.680 + // insert a box that'll immediately fail in the fallible unbox 1.681 + // below. 1.682 + if (in->type() != MIRType_Value) { 1.683 + MBox *box = MBox::New(alloc(), in); 1.684 + in->block()->insertBefore(in->block()->lastIns(), box); 1.685 + in = box; 1.686 + } 1.687 + 1.688 + // Be optimistic and insert unboxes when the operand is a 1.689 + // value. 1.690 + replacement = MUnbox::New(alloc(), in, phiType, MUnbox::Fallible); 1.691 + } 1.692 + 1.693 + in->block()->insertBefore(in->block()->lastIns(), replacement); 1.694 + phi->replaceOperand(i, replacement); 1.695 + } 1.696 + } 1.697 + 1.698 + return; 1.699 + } 1.700 + 1.701 + // Box every typed input. 1.702 + for (size_t i = 0, e = phi->numOperands(); i < e; i++) { 1.703 + MDefinition *in = phi->getOperand(i); 1.704 + if (in->type() == MIRType_Value) 1.705 + continue; 1.706 + 1.707 + if (in->isUnbox() && phi->typeIncludes(in->toUnbox()->input())) { 1.708 + // The input is being explicitly unboxed, so sneak past and grab 1.709 + // the original box. 1.710 + phi->replaceOperand(i, in->toUnbox()->input()); 1.711 + } else { 1.712 + MDefinition *box = BoxInputsPolicy::alwaysBoxAt(alloc(), in->block()->lastIns(), in); 1.713 + phi->replaceOperand(i, box); 1.714 + } 1.715 + } 1.716 +} 1.717 + 1.718 +bool 1.719 +TypeAnalyzer::adjustInputs(MDefinition *def) 1.720 +{ 1.721 + TypePolicy *policy = def->typePolicy(); 1.722 + if (policy && !policy->adjustInputs(alloc(), def->toInstruction())) 1.723 + return false; 1.724 + return true; 1.725 +} 1.726 + 1.727 +void 1.728 +TypeAnalyzer::replaceRedundantPhi(MPhi *phi) 1.729 +{ 1.730 + MBasicBlock *block = phi->block(); 1.731 + js::Value v; 1.732 + switch (phi->type()) { 1.733 + case MIRType_Undefined: 1.734 + v = UndefinedValue(); 1.735 + break; 1.736 + case MIRType_Null: 1.737 + v = NullValue(); 1.738 + break; 1.739 + case MIRType_MagicOptimizedArguments: 1.740 + v = MagicValue(JS_OPTIMIZED_ARGUMENTS); 1.741 + break; 1.742 + case MIRType_MagicOptimizedOut: 1.743 + v = MagicValue(JS_OPTIMIZED_OUT); 1.744 + break; 1.745 + default: 1.746 + MOZ_ASSUME_UNREACHABLE("unexpected type"); 1.747 + } 1.748 + MConstant *c = MConstant::New(alloc(), v); 1.749 + // The instruction pass will insert the box 1.750 + block->insertBefore(*(block->begin()), c); 1.751 + phi->replaceAllUsesWith(c); 1.752 +} 1.753 + 1.754 +bool 1.755 +TypeAnalyzer::insertConversions() 1.756 +{ 1.757 + // Instructions are processed in reverse postorder: all uses are defs are 1.758 + // seen before uses. This ensures that output adjustment (which may rewrite 1.759 + // inputs of uses) does not conflict with input adjustment. 1.760 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { 1.761 + if (mir->shouldCancel("Insert Conversions")) 1.762 + return false; 1.763 + 1.764 + for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd();) { 1.765 + if (phi->type() == MIRType_Undefined || 1.766 + phi->type() == MIRType_Null || 1.767 + phi->type() == MIRType_MagicOptimizedArguments || 1.768 + phi->type() == MIRType_MagicOptimizedOut) 1.769 + { 1.770 + replaceRedundantPhi(*phi); 1.771 + phi = block->discardPhiAt(phi); 1.772 + } else { 1.773 + adjustPhiInputs(*phi); 1.774 + phi++; 1.775 + } 1.776 + } 1.777 + for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++) { 1.778 + if (!adjustInputs(*iter)) 1.779 + return false; 1.780 + } 1.781 + } 1.782 + return true; 1.783 +} 1.784 + 1.785 +// This function tries to emit Float32 specialized operations whenever it's possible. 1.786 +// MIR nodes are flagged as: 1.787 +// - Producers, when they can create Float32 that might need to be coerced into a Double. 1.788 +// Loads in Float32 arrays and conversions to Float32 are producers. 1.789 +// - Consumers, when they can have Float32 as inputs and validate a legal use of a Float32. 1.790 +// Stores in Float32 arrays and conversions to Float32 are consumers. 1.791 +// - Float32 commutative, when using the Float32 instruction instead of the Double instruction 1.792 +// does not result in a compound loss of precision. This is the case for +, -, /, * with 2 1.793 +// operands, for instance. However, an addition with 3 operands is not commutative anymore, 1.794 +// so an intermediate coercion is needed. 1.795 +// Except for phis, all these flags are known after Ion building, so they cannot change during 1.796 +// the process. 1.797 +// 1.798 +// The idea behind the algorithm is easy: whenever we can prove that a commutative operation 1.799 +// has only producers as inputs and consumers as uses, we can specialize the operation as a 1.800 +// float32 operation. Otherwise, we have to convert all float32 inputs to doubles. Even 1.801 +// if a lot of conversions are produced, GVN will take care of eliminating the redundant ones. 1.802 +// 1.803 +// Phis have a special status. Phis need to be flagged as producers or consumers as they can 1.804 +// be inputs or outputs of commutative instructions. Fortunately, producers and consumers 1.805 +// properties are such that we can deduce the property using all non phis inputs first (which form 1.806 +// an initial phi graph) and then propagate all properties from one phi to another using a 1.807 +// fixed point algorithm. The algorithm is ensured to terminate as each iteration has less or as 1.808 +// many flagged phis as the previous iteration (so the worst steady state case is all phis being 1.809 +// flagged as false). 1.810 +// 1.811 +// In a nutshell, the algorithm applies three passes: 1.812 +// 1 - Determine which phis are consumers. Each phi gets an initial value by making a global AND on 1.813 +// all its non-phi inputs. Then each phi propagates its value to other phis. If after propagation, 1.814 +// the flag value changed, we have to reapply the algorithm on all phi operands, as a phi is a 1.815 +// consumer if all of its uses are consumers. 1.816 +// 2 - Determine which phis are producers. It's the same algorithm, except that we have to reapply 1.817 +// the algorithm on all phi uses, as a phi is a producer if all of its operands are producers. 1.818 +// 3 - Go through all commutative operations and ensure their inputs are all producers and their 1.819 +// uses are all consumers. 1.820 +bool 1.821 +TypeAnalyzer::markPhiConsumers() 1.822 +{ 1.823 + JS_ASSERT(phiWorklist_.empty()); 1.824 + 1.825 + // Iterate in postorder so worklist is initialized to RPO. 1.826 + for (PostorderIterator block(graph.poBegin()); block != graph.poEnd(); ++block) { 1.827 + if (mir->shouldCancel("Ensure Float32 commutativity - Consumer Phis - Initial state")) 1.828 + return false; 1.829 + 1.830 + for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); ++phi) { 1.831 + JS_ASSERT(!phi->isInWorklist()); 1.832 + bool canConsumeFloat32 = true; 1.833 + for (MUseDefIterator use(*phi); canConsumeFloat32 && use; use++) { 1.834 + MDefinition *usedef = use.def(); 1.835 + canConsumeFloat32 &= usedef->isPhi() || usedef->canConsumeFloat32(use.use()); 1.836 + } 1.837 + phi->setCanConsumeFloat32(canConsumeFloat32); 1.838 + if (canConsumeFloat32 && !addPhiToWorklist(*phi)) 1.839 + return false; 1.840 + } 1.841 + } 1.842 + 1.843 + while (!phiWorklist_.empty()) { 1.844 + if (mir->shouldCancel("Ensure Float32 commutativity - Consumer Phis - Fixed point")) 1.845 + return false; 1.846 + 1.847 + MPhi *phi = popPhi(); 1.848 + JS_ASSERT(phi->canConsumeFloat32(nullptr /* unused */)); 1.849 + 1.850 + bool validConsumer = true; 1.851 + for (MUseDefIterator use(phi); use; use++) { 1.852 + MDefinition *def = use.def(); 1.853 + if (def->isPhi() && !def->canConsumeFloat32(use.use())) { 1.854 + validConsumer = false; 1.855 + break; 1.856 + } 1.857 + } 1.858 + 1.859 + if (validConsumer) 1.860 + continue; 1.861 + 1.862 + // Propagate invalidated phis 1.863 + phi->setCanConsumeFloat32(false); 1.864 + for (size_t i = 0, e = phi->numOperands(); i < e; ++i) { 1.865 + MDefinition *input = phi->getOperand(i); 1.866 + if (input->isPhi() && !input->isInWorklist() && input->canConsumeFloat32(nullptr /* unused */)) 1.867 + { 1.868 + if (!addPhiToWorklist(input->toPhi())) 1.869 + return false; 1.870 + } 1.871 + } 1.872 + } 1.873 + return true; 1.874 +} 1.875 + 1.876 +bool 1.877 +TypeAnalyzer::markPhiProducers() 1.878 +{ 1.879 + JS_ASSERT(phiWorklist_.empty()); 1.880 + 1.881 + // Iterate in reverse postorder so worklist is initialized to PO. 1.882 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { 1.883 + if (mir->shouldCancel("Ensure Float32 commutativity - Producer Phis - initial state")) 1.884 + return false; 1.885 + 1.886 + for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); ++phi) { 1.887 + JS_ASSERT(!phi->isInWorklist()); 1.888 + bool canProduceFloat32 = true; 1.889 + for (size_t i = 0, e = phi->numOperands(); canProduceFloat32 && i < e; ++i) { 1.890 + MDefinition *input = phi->getOperand(i); 1.891 + canProduceFloat32 &= input->isPhi() || input->canProduceFloat32(); 1.892 + } 1.893 + phi->setCanProduceFloat32(canProduceFloat32); 1.894 + if (canProduceFloat32 && !addPhiToWorklist(*phi)) 1.895 + return false; 1.896 + } 1.897 + } 1.898 + 1.899 + while (!phiWorklist_.empty()) { 1.900 + if (mir->shouldCancel("Ensure Float32 commutativity - Producer Phis - Fixed point")) 1.901 + return false; 1.902 + 1.903 + MPhi *phi = popPhi(); 1.904 + JS_ASSERT(phi->canProduceFloat32()); 1.905 + 1.906 + bool validProducer = true; 1.907 + for (size_t i = 0, e = phi->numOperands(); i < e; ++i) { 1.908 + MDefinition *input = phi->getOperand(i); 1.909 + if (input->isPhi() && !input->canProduceFloat32()) { 1.910 + validProducer = false; 1.911 + break; 1.912 + } 1.913 + } 1.914 + 1.915 + if (validProducer) 1.916 + continue; 1.917 + 1.918 + // Propagate invalidated phis 1.919 + phi->setCanProduceFloat32(false); 1.920 + for (MUseDefIterator use(phi); use; use++) { 1.921 + MDefinition *def = use.def(); 1.922 + if (def->isPhi() && !def->isInWorklist() && def->canProduceFloat32()) 1.923 + { 1.924 + if (!addPhiToWorklist(def->toPhi())) 1.925 + return false; 1.926 + } 1.927 + } 1.928 + } 1.929 + return true; 1.930 +} 1.931 + 1.932 +bool 1.933 +TypeAnalyzer::specializeValidFloatOps() 1.934 +{ 1.935 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { 1.936 + if (mir->shouldCancel("Ensure Float32 commutativity - Instructions")) 1.937 + return false; 1.938 + 1.939 + for (MInstructionIterator ins(block->begin()); ins != block->end(); ++ins) { 1.940 + if (!ins->isFloat32Commutative()) 1.941 + continue; 1.942 + 1.943 + if (ins->type() == MIRType_Float32) 1.944 + continue; 1.945 + 1.946 + // This call will try to specialize the instruction iff all uses are consumers and 1.947 + // all inputs are producers. 1.948 + ins->trySpecializeFloat32(alloc()); 1.949 + } 1.950 + } 1.951 + return true; 1.952 +} 1.953 + 1.954 +bool 1.955 +TypeAnalyzer::graphContainsFloat32() 1.956 +{ 1.957 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { 1.958 + if (mir->shouldCancel("Ensure Float32 commutativity - Graph contains Float32")) 1.959 + return false; 1.960 + 1.961 + for (MDefinitionIterator def(*block); def; def++) { 1.962 + if (def->type() == MIRType_Float32) 1.963 + return true; 1.964 + } 1.965 + } 1.966 + return false; 1.967 +} 1.968 + 1.969 +bool 1.970 +TypeAnalyzer::tryEmitFloatOperations() 1.971 +{ 1.972 + // Backends that currently don't know how to generate Float32 specialized instructions 1.973 + // shouldn't run this pass and just let all instructions as specialized for Double. 1.974 + if (!LIRGenerator::allowFloat32Optimizations()) 1.975 + return true; 1.976 + 1.977 + // Asm.js uses the ahead of time type checks to specialize operations, no need to check 1.978 + // them again at this point. 1.979 + if (mir->compilingAsmJS()) 1.980 + return true; 1.981 + 1.982 + // Check ahead of time that there is at least one definition typed as Float32, otherwise we 1.983 + // don't need this pass. 1.984 + if (!graphContainsFloat32()) 1.985 + return true; 1.986 + 1.987 + if (!markPhiConsumers()) 1.988 + return false; 1.989 + if (!markPhiProducers()) 1.990 + return false; 1.991 + if (!specializeValidFloatOps()) 1.992 + return false; 1.993 + return true; 1.994 +} 1.995 + 1.996 +bool 1.997 +TypeAnalyzer::checkFloatCoherency() 1.998 +{ 1.999 +#ifdef DEBUG 1.1000 + // Asserts that all Float32 instructions are flowing into Float32 consumers or specialized 1.1001 + // operations 1.1002 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { 1.1003 + if (mir->shouldCancel("Check Float32 coherency")) 1.1004 + return false; 1.1005 + 1.1006 + for (MDefinitionIterator def(*block); def; def++) { 1.1007 + if (def->type() != MIRType_Float32) 1.1008 + continue; 1.1009 + 1.1010 + for (MUseDefIterator use(*def); use; use++) { 1.1011 + MDefinition *consumer = use.def(); 1.1012 + JS_ASSERT(consumer->isConsistentFloat32Use(use.use())); 1.1013 + } 1.1014 + } 1.1015 + } 1.1016 +#endif 1.1017 + return true; 1.1018 +} 1.1019 + 1.1020 +bool 1.1021 +TypeAnalyzer::analyze() 1.1022 +{ 1.1023 + if (!tryEmitFloatOperations()) 1.1024 + return false; 1.1025 + if (!specializePhis()) 1.1026 + return false; 1.1027 + if (!insertConversions()) 1.1028 + return false; 1.1029 + if (!checkFloatCoherency()) 1.1030 + return false; 1.1031 + return true; 1.1032 +} 1.1033 + 1.1034 +bool 1.1035 +jit::ApplyTypeInformation(MIRGenerator *mir, MIRGraph &graph) 1.1036 +{ 1.1037 + TypeAnalyzer analyzer(mir, graph); 1.1038 + 1.1039 + if (!analyzer.analyze()) 1.1040 + return false; 1.1041 + 1.1042 + return true; 1.1043 +} 1.1044 + 1.1045 +bool 1.1046 +jit::MakeMRegExpHoistable(MIRGraph &graph) 1.1047 +{ 1.1048 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { 1.1049 + for (MDefinitionIterator iter(*block); iter; iter++) { 1.1050 + if (!iter->isRegExp()) 1.1051 + continue; 1.1052 + 1.1053 + MRegExp *regexp = iter->toRegExp(); 1.1054 + 1.1055 + // Test if MRegExp is hoistable by looking at all uses. 1.1056 + bool hoistable = true; 1.1057 + for (MUseIterator i = regexp->usesBegin(); i != regexp->usesEnd(); i++) { 1.1058 + // Ignore resume points. At this point all uses are listed. 1.1059 + // No DCE or GVN or something has happened. 1.1060 + if (i->consumer()->isResumePoint()) 1.1061 + continue; 1.1062 + 1.1063 + JS_ASSERT(i->consumer()->isDefinition()); 1.1064 + 1.1065 + // All MRegExp* MIR's don't adjust the regexp. 1.1066 + MDefinition *use = i->consumer()->toDefinition(); 1.1067 + if (use->isRegExpReplace()) 1.1068 + continue; 1.1069 + if (use->isRegExpExec()) 1.1070 + continue; 1.1071 + if (use->isRegExpTest()) 1.1072 + continue; 1.1073 + 1.1074 + hoistable = false; 1.1075 + break; 1.1076 + } 1.1077 + 1.1078 + if (!hoistable) 1.1079 + continue; 1.1080 + 1.1081 + // Make MRegExp hoistable 1.1082 + regexp->setMovable(); 1.1083 + 1.1084 + // That would be incorrect for global/sticky, because lastIndex could be wrong. 1.1085 + // Therefore setting the lastIndex to 0. That is faster than a not movable regexp. 1.1086 + RegExpObject *source = regexp->source(); 1.1087 + if (source->sticky() || source->global()) { 1.1088 + JS_ASSERT(regexp->mustClone()); 1.1089 + MConstant *zero = MConstant::New(graph.alloc(), Int32Value(0)); 1.1090 + regexp->block()->insertAfter(regexp, zero); 1.1091 + 1.1092 + MStoreFixedSlot *lastIndex = 1.1093 + MStoreFixedSlot::New(graph.alloc(), regexp, RegExpObject::lastIndexSlot(), zero); 1.1094 + regexp->block()->insertAfter(zero, lastIndex); 1.1095 + } 1.1096 + } 1.1097 + } 1.1098 + 1.1099 + return true; 1.1100 +} 1.1101 + 1.1102 +bool 1.1103 +jit::RenumberBlocks(MIRGraph &graph) 1.1104 +{ 1.1105 + size_t id = 0; 1.1106 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) 1.1107 + block->setId(id++); 1.1108 + 1.1109 + return true; 1.1110 +} 1.1111 + 1.1112 +// A Simple, Fast Dominance Algorithm by Cooper et al. 1.1113 +// Modified to support empty intersections for OSR, and in RPO. 1.1114 +static MBasicBlock * 1.1115 +IntersectDominators(MBasicBlock *block1, MBasicBlock *block2) 1.1116 +{ 1.1117 + MBasicBlock *finger1 = block1; 1.1118 + MBasicBlock *finger2 = block2; 1.1119 + 1.1120 + JS_ASSERT(finger1); 1.1121 + JS_ASSERT(finger2); 1.1122 + 1.1123 + // In the original paper, the block ID comparisons are on the postorder index. 1.1124 + // This implementation iterates in RPO, so the comparisons are reversed. 1.1125 + 1.1126 + // For this function to be called, the block must have multiple predecessors. 1.1127 + // If a finger is then found to be self-dominating, it must therefore be 1.1128 + // reachable from multiple roots through non-intersecting control flow. 1.1129 + // nullptr is returned in this case, to denote an empty intersection. 1.1130 + 1.1131 + while (finger1->id() != finger2->id()) { 1.1132 + while (finger1->id() > finger2->id()) { 1.1133 + MBasicBlock *idom = finger1->immediateDominator(); 1.1134 + if (idom == finger1) 1.1135 + return nullptr; // Empty intersection. 1.1136 + finger1 = idom; 1.1137 + } 1.1138 + 1.1139 + while (finger2->id() > finger1->id()) { 1.1140 + MBasicBlock *idom = finger2->immediateDominator(); 1.1141 + if (idom == finger2) 1.1142 + return nullptr; // Empty intersection. 1.1143 + finger2 = idom; 1.1144 + } 1.1145 + } 1.1146 + return finger1; 1.1147 +} 1.1148 + 1.1149 +static void 1.1150 +ComputeImmediateDominators(MIRGraph &graph) 1.1151 +{ 1.1152 + // The default start block is a root and therefore only self-dominates. 1.1153 + MBasicBlock *startBlock = *graph.begin(); 1.1154 + startBlock->setImmediateDominator(startBlock); 1.1155 + 1.1156 + // Any OSR block is a root and therefore only self-dominates. 1.1157 + MBasicBlock *osrBlock = graph.osrBlock(); 1.1158 + if (osrBlock) 1.1159 + osrBlock->setImmediateDominator(osrBlock); 1.1160 + 1.1161 + bool changed = true; 1.1162 + 1.1163 + while (changed) { 1.1164 + changed = false; 1.1165 + 1.1166 + ReversePostorderIterator block = graph.rpoBegin(); 1.1167 + 1.1168 + // For each block in RPO, intersect all dominators. 1.1169 + for (; block != graph.rpoEnd(); block++) { 1.1170 + // If a node has once been found to have no exclusive dominator, 1.1171 + // it will never have an exclusive dominator, so it may be skipped. 1.1172 + if (block->immediateDominator() == *block) 1.1173 + continue; 1.1174 + 1.1175 + MBasicBlock *newIdom = block->getPredecessor(0); 1.1176 + 1.1177 + // Find the first common dominator. 1.1178 + for (size_t i = 1; i < block->numPredecessors(); i++) { 1.1179 + MBasicBlock *pred = block->getPredecessor(i); 1.1180 + if (pred->immediateDominator() == nullptr) 1.1181 + continue; 1.1182 + 1.1183 + newIdom = IntersectDominators(pred, newIdom); 1.1184 + 1.1185 + // If there is no common dominator, the block self-dominates. 1.1186 + if (newIdom == nullptr) { 1.1187 + block->setImmediateDominator(*block); 1.1188 + changed = true; 1.1189 + break; 1.1190 + } 1.1191 + } 1.1192 + 1.1193 + if (newIdom && block->immediateDominator() != newIdom) { 1.1194 + block->setImmediateDominator(newIdom); 1.1195 + changed = true; 1.1196 + } 1.1197 + } 1.1198 + } 1.1199 + 1.1200 +#ifdef DEBUG 1.1201 + // Assert that all blocks have dominator information. 1.1202 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.1203 + JS_ASSERT(block->immediateDominator() != nullptr); 1.1204 + } 1.1205 +#endif 1.1206 +} 1.1207 + 1.1208 +bool 1.1209 +jit::BuildDominatorTree(MIRGraph &graph) 1.1210 +{ 1.1211 + ComputeImmediateDominators(graph); 1.1212 + 1.1213 + // Traversing through the graph in post-order means that every use 1.1214 + // of a definition is visited before the def itself. Since a def 1.1215 + // dominates its uses, by the time we reach a particular 1.1216 + // block, we have processed all of its dominated children, so 1.1217 + // block->numDominated() is accurate. 1.1218 + for (PostorderIterator i(graph.poBegin()); i != graph.poEnd(); i++) { 1.1219 + MBasicBlock *child = *i; 1.1220 + MBasicBlock *parent = child->immediateDominator(); 1.1221 + 1.1222 + // If the block only self-dominates, it has no definite parent. 1.1223 + if (child == parent) 1.1224 + continue; 1.1225 + 1.1226 + if (!parent->addImmediatelyDominatedBlock(child)) 1.1227 + return false; 1.1228 + 1.1229 + // An additional +1 for the child block. 1.1230 + parent->addNumDominated(child->numDominated() + 1); 1.1231 + } 1.1232 + 1.1233 +#ifdef DEBUG 1.1234 + // If compiling with OSR, many blocks will self-dominate. 1.1235 + // Without OSR, there is only one root block which dominates all. 1.1236 + if (!graph.osrBlock()) 1.1237 + JS_ASSERT(graph.begin()->numDominated() == graph.numBlocks() - 1); 1.1238 +#endif 1.1239 + // Now, iterate through the dominator tree and annotate every 1.1240 + // block with its index in the pre-order traversal of the 1.1241 + // dominator tree. 1.1242 + Vector<MBasicBlock *, 1, IonAllocPolicy> worklist(graph.alloc()); 1.1243 + 1.1244 + // The index of the current block in the CFG traversal. 1.1245 + size_t index = 0; 1.1246 + 1.1247 + // Add all self-dominating blocks to the worklist. 1.1248 + // This includes all roots. Order does not matter. 1.1249 + for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { 1.1250 + MBasicBlock *block = *i; 1.1251 + if (block->immediateDominator() == block) { 1.1252 + if (!worklist.append(block)) 1.1253 + return false; 1.1254 + } 1.1255 + } 1.1256 + // Starting from each self-dominating block, traverse the CFG in pre-order. 1.1257 + while (!worklist.empty()) { 1.1258 + MBasicBlock *block = worklist.popCopy(); 1.1259 + block->setDomIndex(index); 1.1260 + 1.1261 + if (!worklist.append(block->immediatelyDominatedBlocksBegin(), 1.1262 + block->immediatelyDominatedBlocksEnd())) { 1.1263 + return false; 1.1264 + } 1.1265 + index++; 1.1266 + } 1.1267 + 1.1268 + return true; 1.1269 +} 1.1270 + 1.1271 +bool 1.1272 +jit::BuildPhiReverseMapping(MIRGraph &graph) 1.1273 +{ 1.1274 + // Build a mapping such that given a basic block, whose successor has one or 1.1275 + // more phis, we can find our specific input to that phi. To make this fast 1.1276 + // mapping work we rely on a specific property of our structured control 1.1277 + // flow graph: For a block with phis, its predecessors each have only one 1.1278 + // successor with phis. Consider each case: 1.1279 + // * Blocks with less than two predecessors cannot have phis. 1.1280 + // * Breaks. A break always has exactly one successor, and the break 1.1281 + // catch block has exactly one predecessor for each break, as 1.1282 + // well as a final predecessor for the actual loop exit. 1.1283 + // * Continues. A continue always has exactly one successor, and the 1.1284 + // continue catch block has exactly one predecessor for each 1.1285 + // continue, as well as a final predecessor for the actual 1.1286 + // loop continuation. The continue itself has exactly one 1.1287 + // successor. 1.1288 + // * An if. Each branch as exactly one predecessor. 1.1289 + // * A switch. Each branch has exactly one predecessor. 1.1290 + // * Loop tail. A new block is always created for the exit, and if a 1.1291 + // break statement is present, the exit block will forward 1.1292 + // directly to the break block. 1.1293 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.1294 + if (block->numPredecessors() < 2) { 1.1295 + JS_ASSERT(block->phisEmpty()); 1.1296 + continue; 1.1297 + } 1.1298 + 1.1299 + // Assert on the above. 1.1300 + for (size_t j = 0; j < block->numPredecessors(); j++) { 1.1301 + MBasicBlock *pred = block->getPredecessor(j); 1.1302 + 1.1303 +#ifdef DEBUG 1.1304 + size_t numSuccessorsWithPhis = 0; 1.1305 + for (size_t k = 0; k < pred->numSuccessors(); k++) { 1.1306 + MBasicBlock *successor = pred->getSuccessor(k); 1.1307 + if (!successor->phisEmpty()) 1.1308 + numSuccessorsWithPhis++; 1.1309 + } 1.1310 + JS_ASSERT(numSuccessorsWithPhis <= 1); 1.1311 +#endif 1.1312 + 1.1313 + pred->setSuccessorWithPhis(*block, j); 1.1314 + } 1.1315 + } 1.1316 + 1.1317 + return true; 1.1318 +} 1.1319 + 1.1320 +#ifdef DEBUG 1.1321 +static bool 1.1322 +CheckSuccessorImpliesPredecessor(MBasicBlock *A, MBasicBlock *B) 1.1323 +{ 1.1324 + // Assuming B = succ(A), verify A = pred(B). 1.1325 + for (size_t i = 0; i < B->numPredecessors(); i++) { 1.1326 + if (A == B->getPredecessor(i)) 1.1327 + return true; 1.1328 + } 1.1329 + return false; 1.1330 +} 1.1331 + 1.1332 +static bool 1.1333 +CheckPredecessorImpliesSuccessor(MBasicBlock *A, MBasicBlock *B) 1.1334 +{ 1.1335 + // Assuming B = pred(A), verify A = succ(B). 1.1336 + for (size_t i = 0; i < B->numSuccessors(); i++) { 1.1337 + if (A == B->getSuccessor(i)) 1.1338 + return true; 1.1339 + } 1.1340 + return false; 1.1341 +} 1.1342 + 1.1343 +static bool 1.1344 +CheckOperandImpliesUse(MNode *n, MDefinition *operand) 1.1345 +{ 1.1346 + for (MUseIterator i = operand->usesBegin(); i != operand->usesEnd(); i++) { 1.1347 + if (i->consumer() == n) 1.1348 + return true; 1.1349 + } 1.1350 + return false; 1.1351 +} 1.1352 + 1.1353 +static bool 1.1354 +CheckUseImpliesOperand(MDefinition *def, MUse *use) 1.1355 +{ 1.1356 + return use->consumer()->getOperand(use->index()) == def; 1.1357 +} 1.1358 +#endif // DEBUG 1.1359 + 1.1360 +void 1.1361 +jit::AssertBasicGraphCoherency(MIRGraph &graph) 1.1362 +{ 1.1363 +#ifdef DEBUG 1.1364 + JS_ASSERT(graph.entryBlock()->numPredecessors() == 0); 1.1365 + JS_ASSERT(graph.entryBlock()->phisEmpty()); 1.1366 + JS_ASSERT(!graph.entryBlock()->unreachable()); 1.1367 + 1.1368 + if (MBasicBlock *osrBlock = graph.osrBlock()) { 1.1369 + JS_ASSERT(osrBlock->numPredecessors() == 0); 1.1370 + JS_ASSERT(osrBlock->phisEmpty()); 1.1371 + JS_ASSERT(osrBlock != graph.entryBlock()); 1.1372 + JS_ASSERT(!osrBlock->unreachable()); 1.1373 + } 1.1374 + 1.1375 + if (MResumePoint *resumePoint = graph.entryResumePoint()) 1.1376 + JS_ASSERT(resumePoint->block() == graph.entryBlock()); 1.1377 + 1.1378 + // Assert successor and predecessor list coherency. 1.1379 + uint32_t count = 0; 1.1380 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.1381 + count++; 1.1382 + 1.1383 + JS_ASSERT(&block->graph() == &graph); 1.1384 + 1.1385 + for (size_t i = 0; i < block->numSuccessors(); i++) 1.1386 + JS_ASSERT(CheckSuccessorImpliesPredecessor(*block, block->getSuccessor(i))); 1.1387 + 1.1388 + for (size_t i = 0; i < block->numPredecessors(); i++) 1.1389 + JS_ASSERT(CheckPredecessorImpliesSuccessor(*block, block->getPredecessor(i))); 1.1390 + 1.1391 + // Assert that use chains are valid for this instruction. 1.1392 + for (MDefinitionIterator iter(*block); iter; iter++) { 1.1393 + for (uint32_t i = 0, e = iter->numOperands(); i < e; i++) 1.1394 + JS_ASSERT(CheckOperandImpliesUse(*iter, iter->getOperand(i))); 1.1395 + } 1.1396 + for (MResumePointIterator iter(block->resumePointsBegin()); iter != block->resumePointsEnd(); iter++) { 1.1397 + for (uint32_t i = 0, e = iter->numOperands(); i < e; i++) { 1.1398 + if (iter->getUseFor(i)->hasProducer()) 1.1399 + JS_ASSERT(CheckOperandImpliesUse(*iter, iter->getOperand(i))); 1.1400 + } 1.1401 + } 1.1402 + for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); phi++) { 1.1403 + JS_ASSERT(phi->numOperands() == block->numPredecessors()); 1.1404 + } 1.1405 + for (MDefinitionIterator iter(*block); iter; iter++) { 1.1406 + JS_ASSERT(iter->block() == *block); 1.1407 + for (MUseIterator i(iter->usesBegin()); i != iter->usesEnd(); i++) 1.1408 + JS_ASSERT(CheckUseImpliesOperand(*iter, *i)); 1.1409 + 1.1410 + if (iter->isInstruction()) { 1.1411 + if (MResumePoint *resume = iter->toInstruction()->resumePoint()) { 1.1412 + if (MInstruction *ins = resume->instruction()) 1.1413 + JS_ASSERT(ins->block() == iter->block()); 1.1414 + } 1.1415 + } 1.1416 + } 1.1417 + } 1.1418 + 1.1419 + JS_ASSERT(graph.numBlocks() == count); 1.1420 +#endif 1.1421 +} 1.1422 + 1.1423 +#ifdef DEBUG 1.1424 +static void 1.1425 +AssertReversePostOrder(MIRGraph &graph) 1.1426 +{ 1.1427 + // Check that every block is visited after all its predecessors (except backedges). 1.1428 + for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { 1.1429 + JS_ASSERT(!block->isMarked()); 1.1430 + 1.1431 + for (size_t i = 0; i < block->numPredecessors(); i++) { 1.1432 + MBasicBlock *pred = block->getPredecessor(i); 1.1433 + JS_ASSERT_IF(!pred->isLoopBackedge(), pred->isMarked()); 1.1434 + } 1.1435 + 1.1436 + block->mark(); 1.1437 + } 1.1438 + 1.1439 + graph.unmarkBlocks(); 1.1440 +} 1.1441 +#endif 1.1442 + 1.1443 +void 1.1444 +jit::AssertGraphCoherency(MIRGraph &graph) 1.1445 +{ 1.1446 +#ifdef DEBUG 1.1447 + if (!js_JitOptions.checkGraphConsistency) 1.1448 + return; 1.1449 + AssertBasicGraphCoherency(graph); 1.1450 + AssertReversePostOrder(graph); 1.1451 +#endif 1.1452 +} 1.1453 + 1.1454 +void 1.1455 +jit::AssertExtendedGraphCoherency(MIRGraph &graph) 1.1456 +{ 1.1457 + // Checks the basic GraphCoherency but also other conditions that 1.1458 + // do not hold immediately (such as the fact that critical edges 1.1459 + // are split) 1.1460 + 1.1461 +#ifdef DEBUG 1.1462 + if (!js_JitOptions.checkGraphConsistency) 1.1463 + return; 1.1464 + AssertGraphCoherency(graph); 1.1465 + 1.1466 + uint32_t idx = 0; 1.1467 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.1468 + JS_ASSERT(block->id() == idx++); 1.1469 + 1.1470 + // No critical edges: 1.1471 + if (block->numSuccessors() > 1) 1.1472 + for (size_t i = 0; i < block->numSuccessors(); i++) 1.1473 + JS_ASSERT(block->getSuccessor(i)->numPredecessors() == 1); 1.1474 + 1.1475 + if (block->isLoopHeader()) { 1.1476 + JS_ASSERT(block->numPredecessors() == 2); 1.1477 + MBasicBlock *backedge = block->getPredecessor(1); 1.1478 + JS_ASSERT(backedge->id() >= block->id()); 1.1479 + JS_ASSERT(backedge->numSuccessors() == 1); 1.1480 + JS_ASSERT(backedge->getSuccessor(0) == *block); 1.1481 + } 1.1482 + 1.1483 + if (!block->phisEmpty()) { 1.1484 + for (size_t i = 0; i < block->numPredecessors(); i++) { 1.1485 + MBasicBlock *pred = block->getPredecessor(i); 1.1486 + JS_ASSERT(pred->successorWithPhis() == *block); 1.1487 + JS_ASSERT(pred->positionInPhiSuccessor() == i); 1.1488 + } 1.1489 + } 1.1490 + 1.1491 + uint32_t successorWithPhis = 0; 1.1492 + for (size_t i = 0; i < block->numSuccessors(); i++) 1.1493 + if (!block->getSuccessor(i)->phisEmpty()) 1.1494 + successorWithPhis++; 1.1495 + 1.1496 + JS_ASSERT(successorWithPhis <= 1); 1.1497 + JS_ASSERT_IF(successorWithPhis, block->successorWithPhis() != nullptr); 1.1498 + 1.1499 + // I'd like to assert this, but it's not necc. true. Sometimes we set this 1.1500 + // flag to non-nullptr just because a successor has multiple preds, even if it 1.1501 + // does not actually have any phis. 1.1502 + // 1.1503 + // JS_ASSERT_IF(!successorWithPhis, block->successorWithPhis() == nullptr); 1.1504 + } 1.1505 +#endif 1.1506 +} 1.1507 + 1.1508 + 1.1509 +struct BoundsCheckInfo 1.1510 +{ 1.1511 + MBoundsCheck *check; 1.1512 + uint32_t validUntil; 1.1513 +}; 1.1514 + 1.1515 +typedef HashMap<uint32_t, 1.1516 + BoundsCheckInfo, 1.1517 + DefaultHasher<uint32_t>, 1.1518 + IonAllocPolicy> BoundsCheckMap; 1.1519 + 1.1520 +// Compute a hash for bounds checks which ignores constant offsets in the index. 1.1521 +static HashNumber 1.1522 +BoundsCheckHashIgnoreOffset(MBoundsCheck *check) 1.1523 +{ 1.1524 + SimpleLinearSum indexSum = ExtractLinearSum(check->index()); 1.1525 + uintptr_t index = indexSum.term ? uintptr_t(indexSum.term) : 0; 1.1526 + uintptr_t length = uintptr_t(check->length()); 1.1527 + return index ^ length; 1.1528 +} 1.1529 + 1.1530 +static MBoundsCheck * 1.1531 +FindDominatingBoundsCheck(BoundsCheckMap &checks, MBoundsCheck *check, size_t index) 1.1532 +{ 1.1533 + // See the comment in ValueNumberer::findDominatingDef. 1.1534 + HashNumber hash = BoundsCheckHashIgnoreOffset(check); 1.1535 + BoundsCheckMap::Ptr p = checks.lookup(hash); 1.1536 + if (!p || index > p->value().validUntil) { 1.1537 + // We didn't find a dominating bounds check. 1.1538 + BoundsCheckInfo info; 1.1539 + info.check = check; 1.1540 + info.validUntil = index + check->block()->numDominated(); 1.1541 + 1.1542 + if(!checks.put(hash, info)) 1.1543 + return nullptr; 1.1544 + 1.1545 + return check; 1.1546 + } 1.1547 + 1.1548 + return p->value().check; 1.1549 +} 1.1550 + 1.1551 +// Extract a linear sum from ins, if possible (otherwise giving the sum 'ins + 0'). 1.1552 +SimpleLinearSum 1.1553 +jit::ExtractLinearSum(MDefinition *ins) 1.1554 +{ 1.1555 + if (ins->isBeta()) 1.1556 + ins = ins->getOperand(0); 1.1557 + 1.1558 + if (ins->type() != MIRType_Int32) 1.1559 + return SimpleLinearSum(ins, 0); 1.1560 + 1.1561 + if (ins->isConstant()) { 1.1562 + const Value &v = ins->toConstant()->value(); 1.1563 + JS_ASSERT(v.isInt32()); 1.1564 + return SimpleLinearSum(nullptr, v.toInt32()); 1.1565 + } else if (ins->isAdd() || ins->isSub()) { 1.1566 + MDefinition *lhs = ins->getOperand(0); 1.1567 + MDefinition *rhs = ins->getOperand(1); 1.1568 + if (lhs->type() == MIRType_Int32 && rhs->type() == MIRType_Int32) { 1.1569 + SimpleLinearSum lsum = ExtractLinearSum(lhs); 1.1570 + SimpleLinearSum rsum = ExtractLinearSum(rhs); 1.1571 + 1.1572 + if (lsum.term && rsum.term) 1.1573 + return SimpleLinearSum(ins, 0); 1.1574 + 1.1575 + // Check if this is of the form <SUM> + n, n + <SUM> or <SUM> - n. 1.1576 + if (ins->isAdd()) { 1.1577 + int32_t constant; 1.1578 + if (!SafeAdd(lsum.constant, rsum.constant, &constant)) 1.1579 + return SimpleLinearSum(ins, 0); 1.1580 + return SimpleLinearSum(lsum.term ? lsum.term : rsum.term, constant); 1.1581 + } else if (lsum.term) { 1.1582 + int32_t constant; 1.1583 + if (!SafeSub(lsum.constant, rsum.constant, &constant)) 1.1584 + return SimpleLinearSum(ins, 0); 1.1585 + return SimpleLinearSum(lsum.term, constant); 1.1586 + } 1.1587 + } 1.1588 + } 1.1589 + 1.1590 + return SimpleLinearSum(ins, 0); 1.1591 +} 1.1592 + 1.1593 +// Extract a linear inequality holding when a boolean test goes in the 1.1594 +// specified direction, of the form 'lhs + lhsN <= rhs' (or >=). 1.1595 +bool 1.1596 +jit::ExtractLinearInequality(MTest *test, BranchDirection direction, 1.1597 + SimpleLinearSum *plhs, MDefinition **prhs, bool *plessEqual) 1.1598 +{ 1.1599 + if (!test->getOperand(0)->isCompare()) 1.1600 + return false; 1.1601 + 1.1602 + MCompare *compare = test->getOperand(0)->toCompare(); 1.1603 + 1.1604 + MDefinition *lhs = compare->getOperand(0); 1.1605 + MDefinition *rhs = compare->getOperand(1); 1.1606 + 1.1607 + // TODO: optimize Compare_UInt32 1.1608 + if (!compare->isInt32Comparison()) 1.1609 + return false; 1.1610 + 1.1611 + JS_ASSERT(lhs->type() == MIRType_Int32); 1.1612 + JS_ASSERT(rhs->type() == MIRType_Int32); 1.1613 + 1.1614 + JSOp jsop = compare->jsop(); 1.1615 + if (direction == FALSE_BRANCH) 1.1616 + jsop = NegateCompareOp(jsop); 1.1617 + 1.1618 + SimpleLinearSum lsum = ExtractLinearSum(lhs); 1.1619 + SimpleLinearSum rsum = ExtractLinearSum(rhs); 1.1620 + 1.1621 + if (!SafeSub(lsum.constant, rsum.constant, &lsum.constant)) 1.1622 + return false; 1.1623 + 1.1624 + // Normalize operations to use <= or >=. 1.1625 + switch (jsop) { 1.1626 + case JSOP_LE: 1.1627 + *plessEqual = true; 1.1628 + break; 1.1629 + case JSOP_LT: 1.1630 + /* x < y ==> x + 1 <= y */ 1.1631 + if (!SafeAdd(lsum.constant, 1, &lsum.constant)) 1.1632 + return false; 1.1633 + *plessEqual = true; 1.1634 + break; 1.1635 + case JSOP_GE: 1.1636 + *plessEqual = false; 1.1637 + break; 1.1638 + case JSOP_GT: 1.1639 + /* x > y ==> x - 1 >= y */ 1.1640 + if (!SafeSub(lsum.constant, 1, &lsum.constant)) 1.1641 + return false; 1.1642 + *plessEqual = false; 1.1643 + break; 1.1644 + default: 1.1645 + return false; 1.1646 + } 1.1647 + 1.1648 + *plhs = lsum; 1.1649 + *prhs = rsum.term; 1.1650 + 1.1651 + return true; 1.1652 +} 1.1653 + 1.1654 +static bool 1.1655 +TryEliminateBoundsCheck(BoundsCheckMap &checks, size_t blockIndex, MBoundsCheck *dominated, bool *eliminated) 1.1656 +{ 1.1657 + JS_ASSERT(!*eliminated); 1.1658 + 1.1659 + // Replace all uses of the bounds check with the actual index. 1.1660 + // This is (a) necessary, because we can coalesce two different 1.1661 + // bounds checks and would otherwise use the wrong index and 1.1662 + // (b) helps register allocation. Note that this is safe since 1.1663 + // no other pass after bounds check elimination moves instructions. 1.1664 + dominated->replaceAllUsesWith(dominated->index()); 1.1665 + 1.1666 + if (!dominated->isMovable()) 1.1667 + return true; 1.1668 + 1.1669 + MBoundsCheck *dominating = FindDominatingBoundsCheck(checks, dominated, blockIndex); 1.1670 + if (!dominating) 1.1671 + return false; 1.1672 + 1.1673 + if (dominating == dominated) { 1.1674 + // We didn't find a dominating bounds check. 1.1675 + return true; 1.1676 + } 1.1677 + 1.1678 + // We found two bounds checks with the same hash number, but we still have 1.1679 + // to make sure the lengths and index terms are equal. 1.1680 + if (dominating->length() != dominated->length()) 1.1681 + return true; 1.1682 + 1.1683 + SimpleLinearSum sumA = ExtractLinearSum(dominating->index()); 1.1684 + SimpleLinearSum sumB = ExtractLinearSum(dominated->index()); 1.1685 + 1.1686 + // Both terms should be nullptr or the same definition. 1.1687 + if (sumA.term != sumB.term) 1.1688 + return true; 1.1689 + 1.1690 + // This bounds check is redundant. 1.1691 + *eliminated = true; 1.1692 + 1.1693 + // Normalize the ranges according to the constant offsets in the two indexes. 1.1694 + int32_t minimumA, maximumA, minimumB, maximumB; 1.1695 + if (!SafeAdd(sumA.constant, dominating->minimum(), &minimumA) || 1.1696 + !SafeAdd(sumA.constant, dominating->maximum(), &maximumA) || 1.1697 + !SafeAdd(sumB.constant, dominated->minimum(), &minimumB) || 1.1698 + !SafeAdd(sumB.constant, dominated->maximum(), &maximumB)) 1.1699 + { 1.1700 + return false; 1.1701 + } 1.1702 + 1.1703 + // Update the dominating check to cover both ranges, denormalizing the 1.1704 + // result per the constant offset in the index. 1.1705 + int32_t newMinimum, newMaximum; 1.1706 + if (!SafeSub(Min(minimumA, minimumB), sumA.constant, &newMinimum) || 1.1707 + !SafeSub(Max(maximumA, maximumB), sumA.constant, &newMaximum)) 1.1708 + { 1.1709 + return false; 1.1710 + } 1.1711 + 1.1712 + dominating->setMinimum(newMinimum); 1.1713 + dominating->setMaximum(newMaximum); 1.1714 + return true; 1.1715 +} 1.1716 + 1.1717 +static void 1.1718 +TryEliminateTypeBarrierFromTest(MTypeBarrier *barrier, bool filtersNull, bool filtersUndefined, 1.1719 + MTest *test, BranchDirection direction, bool *eliminated) 1.1720 +{ 1.1721 + JS_ASSERT(filtersNull || filtersUndefined); 1.1722 + 1.1723 + // Watch for code patterns similar to 'if (x.f) { ... = x.f }'. If x.f 1.1724 + // is either an object or null/undefined, there will be a type barrier on 1.1725 + // the latter read as the null/undefined value is never realized there. 1.1726 + // The type barrier can be eliminated, however, by looking at tests 1.1727 + // performed on the result of the first operation that filter out all 1.1728 + // types that have been seen in the first access but not the second. 1.1729 + 1.1730 + // A test 'if (x.f)' filters both null and undefined. 1.1731 + 1.1732 + // Disregard the possible unbox added before the Typebarrier for checking. 1.1733 + MDefinition *input = barrier->input(); 1.1734 + MUnbox *inputUnbox = nullptr; 1.1735 + if (input->isUnbox() && input->toUnbox()->mode() != MUnbox::Fallible) { 1.1736 + inputUnbox = input->toUnbox(); 1.1737 + input = inputUnbox->input(); 1.1738 + } 1.1739 + 1.1740 + MDefinition *subject = nullptr; 1.1741 + bool removeUndefined; 1.1742 + bool removeNull; 1.1743 + test->filtersUndefinedOrNull(direction == TRUE_BRANCH, &subject, &removeUndefined, &removeNull); 1.1744 + 1.1745 + // The Test doesn't filter undefined nor null. 1.1746 + if (!subject) 1.1747 + return; 1.1748 + 1.1749 + // Make sure the subject equals the input to the TypeBarrier. 1.1750 + if (subject != input) 1.1751 + return; 1.1752 + 1.1753 + // When the TypeBarrier filters undefined, the test must at least also do, 1.1754 + // this, before the TypeBarrier can get removed. 1.1755 + if (!removeUndefined && filtersUndefined) 1.1756 + return; 1.1757 + 1.1758 + // When the TypeBarrier filters null, the test must at least also do, 1.1759 + // this, before the TypeBarrier can get removed. 1.1760 + if (!removeNull && filtersNull) 1.1761 + return; 1.1762 + 1.1763 + // Eliminate the TypeBarrier. The possible TypeBarrier unboxing is kept, 1.1764 + // but made infallible. 1.1765 + *eliminated = true; 1.1766 + if (inputUnbox) 1.1767 + inputUnbox->makeInfallible(); 1.1768 + barrier->replaceAllUsesWith(barrier->input()); 1.1769 +} 1.1770 + 1.1771 +static bool 1.1772 +TryEliminateTypeBarrier(MTypeBarrier *barrier, bool *eliminated) 1.1773 +{ 1.1774 + JS_ASSERT(!*eliminated); 1.1775 + 1.1776 + const types::TemporaryTypeSet *barrierTypes = barrier->resultTypeSet(); 1.1777 + const types::TemporaryTypeSet *inputTypes = barrier->input()->resultTypeSet(); 1.1778 + 1.1779 + // Disregard the possible unbox added before the Typebarrier. 1.1780 + if (barrier->input()->isUnbox() && barrier->input()->toUnbox()->mode() != MUnbox::Fallible) 1.1781 + inputTypes = barrier->input()->toUnbox()->input()->resultTypeSet(); 1.1782 + 1.1783 + if (!barrierTypes || !inputTypes) 1.1784 + return true; 1.1785 + 1.1786 + bool filtersNull = barrierTypes->filtersType(inputTypes, types::Type::NullType()); 1.1787 + bool filtersUndefined = barrierTypes->filtersType(inputTypes, types::Type::UndefinedType()); 1.1788 + 1.1789 + if (!filtersNull && !filtersUndefined) 1.1790 + return true; 1.1791 + 1.1792 + MBasicBlock *block = barrier->block(); 1.1793 + while (true) { 1.1794 + BranchDirection direction; 1.1795 + MTest *test = block->immediateDominatorBranch(&direction); 1.1796 + 1.1797 + if (test) { 1.1798 + TryEliminateTypeBarrierFromTest(barrier, filtersNull, filtersUndefined, 1.1799 + test, direction, eliminated); 1.1800 + } 1.1801 + 1.1802 + MBasicBlock *previous = block->immediateDominator(); 1.1803 + if (previous == block) 1.1804 + break; 1.1805 + block = previous; 1.1806 + } 1.1807 + 1.1808 + return true; 1.1809 +} 1.1810 + 1.1811 +// Eliminate checks which are redundant given each other or other instructions. 1.1812 +// 1.1813 +// A type barrier is considered redundant if all missing types have been tested 1.1814 +// for by earlier control instructions. 1.1815 +// 1.1816 +// A bounds check is considered redundant if it's dominated by another bounds 1.1817 +// check with the same length and the indexes differ by only a constant amount. 1.1818 +// In this case we eliminate the redundant bounds check and update the other one 1.1819 +// to cover the ranges of both checks. 1.1820 +// 1.1821 +// Bounds checks are added to a hash map and since the hash function ignores 1.1822 +// differences in constant offset, this offers a fast way to find redundant 1.1823 +// checks. 1.1824 +bool 1.1825 +jit::EliminateRedundantChecks(MIRGraph &graph) 1.1826 +{ 1.1827 + BoundsCheckMap checks(graph.alloc()); 1.1828 + 1.1829 + if (!checks.init()) 1.1830 + return false; 1.1831 + 1.1832 + // Stack for pre-order CFG traversal. 1.1833 + Vector<MBasicBlock *, 1, IonAllocPolicy> worklist(graph.alloc()); 1.1834 + 1.1835 + // The index of the current block in the CFG traversal. 1.1836 + size_t index = 0; 1.1837 + 1.1838 + // Add all self-dominating blocks to the worklist. 1.1839 + // This includes all roots. Order does not matter. 1.1840 + for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { 1.1841 + MBasicBlock *block = *i; 1.1842 + if (block->immediateDominator() == block) { 1.1843 + if (!worklist.append(block)) 1.1844 + return false; 1.1845 + } 1.1846 + } 1.1847 + 1.1848 + // Starting from each self-dominating block, traverse the CFG in pre-order. 1.1849 + while (!worklist.empty()) { 1.1850 + MBasicBlock *block = worklist.popCopy(); 1.1851 + 1.1852 + // Add all immediate dominators to the front of the worklist. 1.1853 + if (!worklist.append(block->immediatelyDominatedBlocksBegin(), 1.1854 + block->immediatelyDominatedBlocksEnd())) { 1.1855 + return false; 1.1856 + } 1.1857 + 1.1858 + for (MDefinitionIterator iter(block); iter; ) { 1.1859 + bool eliminated = false; 1.1860 + 1.1861 + if (iter->isBoundsCheck()) { 1.1862 + if (!TryEliminateBoundsCheck(checks, index, iter->toBoundsCheck(), &eliminated)) 1.1863 + return false; 1.1864 + } else if (iter->isTypeBarrier()) { 1.1865 + if (!TryEliminateTypeBarrier(iter->toTypeBarrier(), &eliminated)) 1.1866 + return false; 1.1867 + } else if (iter->isConvertElementsToDoubles()) { 1.1868 + // Now that code motion passes have finished, replace any 1.1869 + // ConvertElementsToDoubles with the actual elements. 1.1870 + MConvertElementsToDoubles *ins = iter->toConvertElementsToDoubles(); 1.1871 + ins->replaceAllUsesWith(ins->elements()); 1.1872 + } 1.1873 + 1.1874 + if (eliminated) 1.1875 + iter = block->discardDefAt(iter); 1.1876 + else 1.1877 + iter++; 1.1878 + } 1.1879 + index++; 1.1880 + } 1.1881 + 1.1882 + JS_ASSERT(index == graph.numBlocks()); 1.1883 + return true; 1.1884 +} 1.1885 + 1.1886 +// If the given block contains a goto and nothing interesting before that, 1.1887 +// return the goto. Return nullptr otherwise. 1.1888 +static LGoto * 1.1889 +FindLeadingGoto(LBlock *bb) 1.1890 +{ 1.1891 + for (LInstructionIterator ins(bb->begin()); ins != bb->end(); ins++) { 1.1892 + // Ignore labels. 1.1893 + if (ins->isLabel()) 1.1894 + continue; 1.1895 + // If we have a goto, we're good to go. 1.1896 + if (ins->isGoto()) 1.1897 + return ins->toGoto(); 1.1898 + break; 1.1899 + } 1.1900 + return nullptr; 1.1901 +} 1.1902 + 1.1903 +// Eliminate blocks containing nothing interesting besides gotos. These are 1.1904 +// often created by optimizer, which splits all critical edges. If these 1.1905 +// splits end up being unused after optimization and register allocation, 1.1906 +// fold them back away to avoid unnecessary branching. 1.1907 +bool 1.1908 +jit::UnsplitEdges(LIRGraph *lir) 1.1909 +{ 1.1910 + for (size_t i = 0; i < lir->numBlocks(); i++) { 1.1911 + LBlock *bb = lir->getBlock(i); 1.1912 + MBasicBlock *mirBlock = bb->mir(); 1.1913 + 1.1914 + // Renumber the MIR blocks as we go, since we may remove some. 1.1915 + mirBlock->setId(i); 1.1916 + 1.1917 + // Register allocation is done by this point, so we don't need the phis 1.1918 + // anymore. Clear them to avoid needed to keep them current as we edit 1.1919 + // the CFG. 1.1920 + bb->clearPhis(); 1.1921 + mirBlock->discardAllPhis(); 1.1922 + 1.1923 + // First make sure the MIR block looks sane. Some of these checks may be 1.1924 + // over-conservative, but we're attempting to keep everything in MIR 1.1925 + // current as we modify the LIR, so only proceed if the MIR is simple. 1.1926 + if (mirBlock->numPredecessors() == 0 || mirBlock->numSuccessors() != 1 || 1.1927 + !mirBlock->begin()->isGoto()) 1.1928 + { 1.1929 + continue; 1.1930 + } 1.1931 + 1.1932 + // The MIR block is empty, but check the LIR block too (in case the 1.1933 + // register allocator inserted spill code there, or whatever). 1.1934 + LGoto *theGoto = FindLeadingGoto(bb); 1.1935 + if (!theGoto) 1.1936 + continue; 1.1937 + MBasicBlock *target = theGoto->target(); 1.1938 + if (target == mirBlock || target != mirBlock->getSuccessor(0)) 1.1939 + continue; 1.1940 + 1.1941 + // If we haven't yet cleared the phis for the successor, do so now so 1.1942 + // that the CFG manipulation routines don't trip over them. 1.1943 + if (!target->phisEmpty()) { 1.1944 + target->discardAllPhis(); 1.1945 + target->lir()->clearPhis(); 1.1946 + } 1.1947 + 1.1948 + // Edit the CFG to remove lir/mirBlock and reconnect all its edges. 1.1949 + for (size_t j = 0; j < mirBlock->numPredecessors(); j++) { 1.1950 + MBasicBlock *mirPred = mirBlock->getPredecessor(j); 1.1951 + 1.1952 + for (size_t k = 0; k < mirPred->numSuccessors(); k++) { 1.1953 + if (mirPred->getSuccessor(k) == mirBlock) { 1.1954 + mirPred->replaceSuccessor(k, target); 1.1955 + if (!target->addPredecessorWithoutPhis(mirPred)) 1.1956 + return false; 1.1957 + } 1.1958 + } 1.1959 + 1.1960 + LInstruction *predTerm = *mirPred->lir()->rbegin(); 1.1961 + for (size_t k = 0; k < predTerm->numSuccessors(); k++) { 1.1962 + if (predTerm->getSuccessor(k) == mirBlock) 1.1963 + predTerm->setSuccessor(k, target); 1.1964 + } 1.1965 + } 1.1966 + target->removePredecessor(mirBlock); 1.1967 + 1.1968 + // Zap the block. 1.1969 + lir->removeBlock(i); 1.1970 + lir->mir().removeBlock(mirBlock); 1.1971 + --i; 1.1972 + } 1.1973 + 1.1974 + return true; 1.1975 +} 1.1976 + 1.1977 +bool 1.1978 +LinearSum::multiply(int32_t scale) 1.1979 +{ 1.1980 + for (size_t i = 0; i < terms_.length(); i++) { 1.1981 + if (!SafeMul(scale, terms_[i].scale, &terms_[i].scale)) 1.1982 + return false; 1.1983 + } 1.1984 + return SafeMul(scale, constant_, &constant_); 1.1985 +} 1.1986 + 1.1987 +bool 1.1988 +LinearSum::add(const LinearSum &other) 1.1989 +{ 1.1990 + for (size_t i = 0; i < other.terms_.length(); i++) { 1.1991 + if (!add(other.terms_[i].term, other.terms_[i].scale)) 1.1992 + return false; 1.1993 + } 1.1994 + return add(other.constant_); 1.1995 +} 1.1996 + 1.1997 +bool 1.1998 +LinearSum::add(MDefinition *term, int32_t scale) 1.1999 +{ 1.2000 + JS_ASSERT(term); 1.2001 + 1.2002 + if (scale == 0) 1.2003 + return true; 1.2004 + 1.2005 + if (term->isConstant()) { 1.2006 + int32_t constant = term->toConstant()->value().toInt32(); 1.2007 + if (!SafeMul(constant, scale, &constant)) 1.2008 + return false; 1.2009 + return add(constant); 1.2010 + } 1.2011 + 1.2012 + for (size_t i = 0; i < terms_.length(); i++) { 1.2013 + if (term == terms_[i].term) { 1.2014 + if (!SafeAdd(scale, terms_[i].scale, &terms_[i].scale)) 1.2015 + return false; 1.2016 + if (terms_[i].scale == 0) { 1.2017 + terms_[i] = terms_.back(); 1.2018 + terms_.popBack(); 1.2019 + } 1.2020 + return true; 1.2021 + } 1.2022 + } 1.2023 + 1.2024 + terms_.append(LinearTerm(term, scale)); 1.2025 + return true; 1.2026 +} 1.2027 + 1.2028 +bool 1.2029 +LinearSum::add(int32_t constant) 1.2030 +{ 1.2031 + return SafeAdd(constant, constant_, &constant_); 1.2032 +} 1.2033 + 1.2034 +void 1.2035 +LinearSum::print(Sprinter &sp) const 1.2036 +{ 1.2037 + for (size_t i = 0; i < terms_.length(); i++) { 1.2038 + int32_t scale = terms_[i].scale; 1.2039 + int32_t id = terms_[i].term->id(); 1.2040 + JS_ASSERT(scale); 1.2041 + if (scale > 0) { 1.2042 + if (i) 1.2043 + sp.printf("+"); 1.2044 + if (scale == 1) 1.2045 + sp.printf("#%d", id); 1.2046 + else 1.2047 + sp.printf("%d*#%d", scale, id); 1.2048 + } else if (scale == -1) { 1.2049 + sp.printf("-#%d", id); 1.2050 + } else { 1.2051 + sp.printf("%d*#%d", scale, id); 1.2052 + } 1.2053 + } 1.2054 + if (constant_ > 0) 1.2055 + sp.printf("+%d", constant_); 1.2056 + else if (constant_ < 0) 1.2057 + sp.printf("%d", constant_); 1.2058 +} 1.2059 + 1.2060 +void 1.2061 +LinearSum::dump(FILE *fp) const 1.2062 +{ 1.2063 + Sprinter sp(GetIonContext()->cx); 1.2064 + sp.init(); 1.2065 + print(sp); 1.2066 + fprintf(fp, "%s\n", sp.string()); 1.2067 +} 1.2068 + 1.2069 +void 1.2070 +LinearSum::dump() const 1.2071 +{ 1.2072 + dump(stderr); 1.2073 +} 1.2074 + 1.2075 +static bool 1.2076 +AnalyzePoppedThis(JSContext *cx, types::TypeObject *type, 1.2077 + MDefinition *thisValue, MInstruction *ins, bool definitelyExecuted, 1.2078 + HandleObject baseobj, 1.2079 + Vector<types::TypeNewScript::Initializer> *initializerList, 1.2080 + Vector<PropertyName *> *accessedProperties, 1.2081 + bool *phandled) 1.2082 +{ 1.2083 + // Determine the effect that a use of the |this| value when calling |new| 1.2084 + // on a script has on the properties definitely held by the new object. 1.2085 + 1.2086 + if (ins->isCallSetProperty()) { 1.2087 + MCallSetProperty *setprop = ins->toCallSetProperty(); 1.2088 + 1.2089 + if (setprop->object() != thisValue) 1.2090 + return true; 1.2091 + 1.2092 + // Don't use GetAtomId here, we need to watch for SETPROP on 1.2093 + // integer properties and bail out. We can't mark the aggregate 1.2094 + // JSID_VOID type property as being in a definite slot. 1.2095 + if (setprop->name() == cx->names().prototype || 1.2096 + setprop->name() == cx->names().proto || 1.2097 + setprop->name() == cx->names().constructor) 1.2098 + { 1.2099 + return true; 1.2100 + } 1.2101 + 1.2102 + // Ignore assignments to properties that were already written to. 1.2103 + if (baseobj->nativeLookup(cx, NameToId(setprop->name()))) { 1.2104 + *phandled = true; 1.2105 + return true; 1.2106 + } 1.2107 + 1.2108 + // Don't add definite properties for properties that were already 1.2109 + // read in the constructor. 1.2110 + for (size_t i = 0; i < accessedProperties->length(); i++) { 1.2111 + if ((*accessedProperties)[i] == setprop->name()) 1.2112 + return true; 1.2113 + } 1.2114 + 1.2115 + // Don't add definite properties to an object which won't fit in its 1.2116 + // fixed slots. 1.2117 + if (GetGCKindSlots(gc::GetGCObjectKind(baseobj->slotSpan() + 1)) <= baseobj->slotSpan()) 1.2118 + return true; 1.2119 + 1.2120 + // Assignments to new properties must always execute. 1.2121 + if (!definitelyExecuted) 1.2122 + return true; 1.2123 + 1.2124 + RootedId id(cx, NameToId(setprop->name())); 1.2125 + if (!types::AddClearDefiniteGetterSetterForPrototypeChain(cx, type, id)) { 1.2126 + // The prototype chain already contains a getter/setter for this 1.2127 + // property, or type information is too imprecise. 1.2128 + return true; 1.2129 + } 1.2130 + 1.2131 + DebugOnly<unsigned> slotSpan = baseobj->slotSpan(); 1.2132 + if (!DefineNativeProperty(cx, baseobj, id, UndefinedHandleValue, nullptr, nullptr, 1.2133 + JSPROP_ENUMERATE)) 1.2134 + { 1.2135 + return false; 1.2136 + } 1.2137 + JS_ASSERT(baseobj->slotSpan() != slotSpan); 1.2138 + JS_ASSERT(!baseobj->inDictionaryMode()); 1.2139 + 1.2140 + Vector<MResumePoint *> callerResumePoints(cx); 1.2141 + MBasicBlock *block = ins->block(); 1.2142 + for (MResumePoint *rp = block->callerResumePoint(); 1.2143 + rp; 1.2144 + block = rp->block(), rp = block->callerResumePoint()) 1.2145 + { 1.2146 + JSScript *script = rp->block()->info().script(); 1.2147 + if (!types::AddClearDefiniteFunctionUsesInScript(cx, type, script, block->info().script())) 1.2148 + return true; 1.2149 + if (!callerResumePoints.append(rp)) 1.2150 + return false; 1.2151 + } 1.2152 + 1.2153 + for (int i = callerResumePoints.length() - 1; i >= 0; i--) { 1.2154 + MResumePoint *rp = callerResumePoints[i]; 1.2155 + JSScript *script = rp->block()->info().script(); 1.2156 + types::TypeNewScript::Initializer entry(types::TypeNewScript::Initializer::SETPROP_FRAME, 1.2157 + script->pcToOffset(rp->pc())); 1.2158 + if (!initializerList->append(entry)) 1.2159 + return false; 1.2160 + } 1.2161 + 1.2162 + JSScript *script = ins->block()->info().script(); 1.2163 + types::TypeNewScript::Initializer entry(types::TypeNewScript::Initializer::SETPROP, 1.2164 + script->pcToOffset(setprop->resumePoint()->pc())); 1.2165 + if (!initializerList->append(entry)) 1.2166 + return false; 1.2167 + 1.2168 + *phandled = true; 1.2169 + return true; 1.2170 + } 1.2171 + 1.2172 + if (ins->isCallGetProperty()) { 1.2173 + MCallGetProperty *get = ins->toCallGetProperty(); 1.2174 + 1.2175 + /* 1.2176 + * Properties can be read from the 'this' object if the following hold: 1.2177 + * 1.2178 + * - The read is not on a getter along the prototype chain, which 1.2179 + * could cause 'this' to escape. 1.2180 + * 1.2181 + * - The accessed property is either already a definite property or 1.2182 + * is not later added as one. Since the definite properties are 1.2183 + * added to the object at the point of its creation, reading a 1.2184 + * definite property before it is assigned could incorrectly hit. 1.2185 + */ 1.2186 + RootedId id(cx, NameToId(get->name())); 1.2187 + if (!baseobj->nativeLookup(cx, id) && !accessedProperties->append(get->name())) 1.2188 + return false; 1.2189 + 1.2190 + if (!types::AddClearDefiniteGetterSetterForPrototypeChain(cx, type, id)) { 1.2191 + // The |this| value can escape if any property reads it does go 1.2192 + // through a getter. 1.2193 + return true; 1.2194 + } 1.2195 + 1.2196 + *phandled = true; 1.2197 + return true; 1.2198 + } 1.2199 + 1.2200 + if (ins->isPostWriteBarrier()) { 1.2201 + *phandled = true; 1.2202 + return true; 1.2203 + } 1.2204 + 1.2205 + return true; 1.2206 +} 1.2207 + 1.2208 +static int 1.2209 +CmpInstructions(const void *a, const void *b) 1.2210 +{ 1.2211 + return (*static_cast<MInstruction * const *>(a))->id() - 1.2212 + (*static_cast<MInstruction * const *>(b))->id(); 1.2213 +} 1.2214 + 1.2215 +bool 1.2216 +jit::AnalyzeNewScriptProperties(JSContext *cx, JSFunction *fun, 1.2217 + types::TypeObject *type, HandleObject baseobj, 1.2218 + Vector<types::TypeNewScript::Initializer> *initializerList) 1.2219 +{ 1.2220 + JS_ASSERT(cx->compartment()->activeAnalysis); 1.2221 + 1.2222 + // When invoking 'new' on the specified script, try to find some properties 1.2223 + // which will definitely be added to the created object before it has a 1.2224 + // chance to escape and be accessed elsewhere. 1.2225 + 1.2226 + RootedScript script(cx, fun->getOrCreateScript(cx)); 1.2227 + if (!script) 1.2228 + return false; 1.2229 + 1.2230 + if (!jit::IsIonEnabled(cx) || !jit::IsBaselineEnabled(cx) || 1.2231 + !script->compileAndGo() || !script->canBaselineCompile()) 1.2232 + { 1.2233 + return true; 1.2234 + } 1.2235 + 1.2236 + static const uint32_t MAX_SCRIPT_SIZE = 2000; 1.2237 + if (script->length() > MAX_SCRIPT_SIZE) 1.2238 + return true; 1.2239 + 1.2240 + Vector<PropertyName *> accessedProperties(cx); 1.2241 + 1.2242 + LifoAlloc alloc(types::TypeZone::TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE); 1.2243 + 1.2244 + TempAllocator temp(&alloc); 1.2245 + IonContext ictx(cx, &temp); 1.2246 + 1.2247 + if (!cx->compartment()->ensureJitCompartmentExists(cx)) 1.2248 + return false; 1.2249 + 1.2250 + if (!script->hasBaselineScript()) { 1.2251 + MethodStatus status = BaselineCompile(cx, script); 1.2252 + if (status == Method_Error) 1.2253 + return false; 1.2254 + if (status != Method_Compiled) 1.2255 + return true; 1.2256 + } 1.2257 + 1.2258 + types::TypeScript::SetThis(cx, script, types::Type::ObjectType(type)); 1.2259 + 1.2260 + MIRGraph graph(&temp); 1.2261 + CompileInfo info(script, fun, 1.2262 + /* osrPc = */ nullptr, /* constructing = */ false, 1.2263 + DefinitePropertiesAnalysis, 1.2264 + script->needsArgsObj()); 1.2265 + 1.2266 + AutoTempAllocatorRooter root(cx, &temp); 1.2267 + 1.2268 + const OptimizationInfo *optimizationInfo = js_IonOptimizations.get(Optimization_Normal); 1.2269 + 1.2270 + types::CompilerConstraintList *constraints = types::NewCompilerConstraintList(temp); 1.2271 + if (!constraints) { 1.2272 + js_ReportOutOfMemory(cx); 1.2273 + return false; 1.2274 + } 1.2275 + 1.2276 + BaselineInspector inspector(script); 1.2277 + const JitCompileOptions options(cx); 1.2278 + 1.2279 + IonBuilder builder(cx, CompileCompartment::get(cx->compartment()), options, &temp, &graph, constraints, 1.2280 + &inspector, &info, optimizationInfo, /* baselineFrame = */ nullptr); 1.2281 + 1.2282 + if (!builder.build()) { 1.2283 + if (builder.abortReason() == AbortReason_Alloc) 1.2284 + return false; 1.2285 + return true; 1.2286 + } 1.2287 + 1.2288 + types::FinishDefinitePropertiesAnalysis(cx, constraints); 1.2289 + 1.2290 + if (!SplitCriticalEdges(graph)) 1.2291 + return false; 1.2292 + 1.2293 + if (!RenumberBlocks(graph)) 1.2294 + return false; 1.2295 + 1.2296 + if (!BuildDominatorTree(graph)) 1.2297 + return false; 1.2298 + 1.2299 + if (!EliminatePhis(&builder, graph, AggressiveObservability)) 1.2300 + return false; 1.2301 + 1.2302 + MDefinition *thisValue = graph.begin()->getSlot(info.thisSlot()); 1.2303 + 1.2304 + // Get a list of instructions using the |this| value in the order they 1.2305 + // appear in the graph. 1.2306 + Vector<MInstruction *> instructions(cx); 1.2307 + 1.2308 + for (MUseDefIterator uses(thisValue); uses; uses++) { 1.2309 + MDefinition *use = uses.def(); 1.2310 + 1.2311 + // Don't track |this| through assignments to phis. 1.2312 + if (!use->isInstruction()) 1.2313 + return true; 1.2314 + 1.2315 + if (!instructions.append(use->toInstruction())) 1.2316 + return false; 1.2317 + } 1.2318 + 1.2319 + // Sort the instructions to visit in increasing order. 1.2320 + qsort(instructions.begin(), instructions.length(), 1.2321 + sizeof(MInstruction *), CmpInstructions); 1.2322 + 1.2323 + // Find all exit blocks in the graph. 1.2324 + Vector<MBasicBlock *> exitBlocks(cx); 1.2325 + for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { 1.2326 + if (!block->numSuccessors() && !exitBlocks.append(*block)) 1.2327 + return false; 1.2328 + } 1.2329 + 1.2330 + for (size_t i = 0; i < instructions.length(); i++) { 1.2331 + MInstruction *ins = instructions[i]; 1.2332 + 1.2333 + // Track whether the use of |this| is in unconditional code, i.e. 1.2334 + // the block dominates all graph exits. 1.2335 + bool definitelyExecuted = true; 1.2336 + for (size_t i = 0; i < exitBlocks.length(); i++) { 1.2337 + for (MBasicBlock *exit = exitBlocks[i]; 1.2338 + exit != ins->block(); 1.2339 + exit = exit->immediateDominator()) 1.2340 + { 1.2341 + if (exit == exit->immediateDominator()) { 1.2342 + definitelyExecuted = false; 1.2343 + break; 1.2344 + } 1.2345 + } 1.2346 + } 1.2347 + 1.2348 + // Also check to see if the instruction is inside a loop body. Even if 1.2349 + // an access will always execute in the script, if it executes multiple 1.2350 + // times then we can get confused when rolling back objects while 1.2351 + // clearing the new script information. 1.2352 + if (ins->block()->loopDepth() != 0) 1.2353 + definitelyExecuted = false; 1.2354 + 1.2355 + bool handled = false; 1.2356 + if (!AnalyzePoppedThis(cx, type, thisValue, ins, definitelyExecuted, 1.2357 + baseobj, initializerList, &accessedProperties, &handled)) 1.2358 + { 1.2359 + return false; 1.2360 + } 1.2361 + if (!handled) 1.2362 + return true; 1.2363 + } 1.2364 + 1.2365 + return true; 1.2366 +} 1.2367 + 1.2368 +static bool 1.2369 +ArgumentsUseCanBeLazy(JSContext *cx, JSScript *script, MInstruction *ins, size_t index) 1.2370 +{ 1.2371 + // We can read the frame's arguments directly for f.apply(x, arguments). 1.2372 + if (ins->isCall()) { 1.2373 + if (*ins->toCall()->resumePoint()->pc() == JSOP_FUNAPPLY && 1.2374 + ins->toCall()->numActualArgs() == 2 && 1.2375 + index == MCall::IndexOfArgument(1)) 1.2376 + { 1.2377 + return true; 1.2378 + } 1.2379 + } 1.2380 + 1.2381 + // arguments[i] can read fp->canonicalActualArg(i) directly. 1.2382 + if (ins->isCallGetElement() && index == 0) 1.2383 + return true; 1.2384 + 1.2385 + // arguments.length length can read fp->numActualArgs() directly. 1.2386 + if (ins->isCallGetProperty() && index == 0 && ins->toCallGetProperty()->name() == cx->names().length) 1.2387 + return true; 1.2388 + 1.2389 + return false; 1.2390 +} 1.2391 + 1.2392 +bool 1.2393 +jit::AnalyzeArgumentsUsage(JSContext *cx, JSScript *scriptArg) 1.2394 +{ 1.2395 + RootedScript script(cx, scriptArg); 1.2396 + types::AutoEnterAnalysis enter(cx); 1.2397 + 1.2398 + JS_ASSERT(!script->analyzedArgsUsage()); 1.2399 + 1.2400 + // Treat the script as needing an arguments object until we determine it 1.2401 + // does not need one. This both allows us to easily see where the arguments 1.2402 + // object can escape through assignments to the function's named arguments, 1.2403 + // and also simplifies handling of early returns. 1.2404 + script->setNeedsArgsObj(true); 1.2405 + 1.2406 + if (!jit::IsIonEnabled(cx) || !script->compileAndGo()) 1.2407 + return true; 1.2408 + 1.2409 + static const uint32_t MAX_SCRIPT_SIZE = 10000; 1.2410 + if (script->length() > MAX_SCRIPT_SIZE) 1.2411 + return true; 1.2412 + 1.2413 + if (!script->ensureHasTypes(cx)) 1.2414 + return false; 1.2415 + 1.2416 + LifoAlloc alloc(types::TypeZone::TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE); 1.2417 + 1.2418 + TempAllocator temp(&alloc); 1.2419 + IonContext ictx(cx, &temp); 1.2420 + 1.2421 + if (!cx->compartment()->ensureJitCompartmentExists(cx)) 1.2422 + return false; 1.2423 + 1.2424 + MIRGraph graph(&temp); 1.2425 + CompileInfo info(script, script->functionNonDelazifying(), 1.2426 + /* osrPc = */ nullptr, /* constructing = */ false, 1.2427 + ArgumentsUsageAnalysis, 1.2428 + /* needsArgsObj = */ true); 1.2429 + 1.2430 + AutoTempAllocatorRooter root(cx, &temp); 1.2431 + 1.2432 + const OptimizationInfo *optimizationInfo = js_IonOptimizations.get(Optimization_Normal); 1.2433 + 1.2434 + types::CompilerConstraintList *constraints = types::NewCompilerConstraintList(temp); 1.2435 + if (!constraints) 1.2436 + return false; 1.2437 + 1.2438 + BaselineInspector inspector(script); 1.2439 + const JitCompileOptions options(cx); 1.2440 + 1.2441 + IonBuilder builder(nullptr, CompileCompartment::get(cx->compartment()), options, &temp, &graph, constraints, 1.2442 + &inspector, &info, optimizationInfo, /* baselineFrame = */ nullptr); 1.2443 + 1.2444 + if (!builder.build()) { 1.2445 + if (builder.abortReason() == AbortReason_Alloc) 1.2446 + return false; 1.2447 + return true; 1.2448 + } 1.2449 + 1.2450 + if (!SplitCriticalEdges(graph)) 1.2451 + return false; 1.2452 + 1.2453 + if (!RenumberBlocks(graph)) 1.2454 + return false; 1.2455 + 1.2456 + if (!BuildDominatorTree(graph)) 1.2457 + return false; 1.2458 + 1.2459 + if (!EliminatePhis(&builder, graph, AggressiveObservability)) 1.2460 + return false; 1.2461 + 1.2462 + MDefinition *argumentsValue = graph.begin()->getSlot(info.argsObjSlot()); 1.2463 + 1.2464 + for (MUseDefIterator uses(argumentsValue); uses; uses++) { 1.2465 + MDefinition *use = uses.def(); 1.2466 + 1.2467 + // Don't track |arguments| through assignments to phis. 1.2468 + if (!use->isInstruction()) 1.2469 + return true; 1.2470 + 1.2471 + if (!ArgumentsUseCanBeLazy(cx, script, use->toInstruction(), uses.index())) 1.2472 + return true; 1.2473 + } 1.2474 + 1.2475 + script->setNeedsArgsObj(false); 1.2476 + return true; 1.2477 +}