1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/jit/MIR.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,3473 @@ 1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- 1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99: 1.6 + * This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 + 1.10 +#include "jit/MIR.h" 1.11 + 1.12 +#include "mozilla/FloatingPoint.h" 1.13 + 1.14 +#include <ctype.h> 1.15 + 1.16 +#include "jslibmath.h" 1.17 +#include "jsstr.h" 1.18 + 1.19 +#include "jit/BaselineInspector.h" 1.20 +#include "jit/IonBuilder.h" 1.21 +#include "jit/IonSpewer.h" 1.22 +#include "jit/MIRGraph.h" 1.23 +#include "jit/RangeAnalysis.h" 1.24 + 1.25 +#include "jsatominlines.h" 1.26 +#include "jsinferinlines.h" 1.27 +#include "jsobjinlines.h" 1.28 + 1.29 +using namespace js; 1.30 +using namespace js::jit; 1.31 + 1.32 +using mozilla::NumbersAreIdentical; 1.33 +using mozilla::IsFloat32Representable; 1.34 +using mozilla::Maybe; 1.35 + 1.36 +template<size_t Op> static void 1.37 +ConvertDefinitionToDouble(TempAllocator &alloc, MDefinition *def, MInstruction *consumer) 1.38 +{ 1.39 + MInstruction *replace = MToDouble::New(alloc, def); 1.40 + consumer->replaceOperand(Op, replace); 1.41 + consumer->block()->insertBefore(consumer, replace); 1.42 +} 1.43 + 1.44 +static bool 1.45 +CheckUsesAreFloat32Consumers(MInstruction *ins) 1.46 +{ 1.47 + bool allConsumerUses = true; 1.48 + for (MUseDefIterator use(ins); allConsumerUses && use; use++) 1.49 + allConsumerUses &= use.def()->canConsumeFloat32(use.use()); 1.50 + return allConsumerUses; 1.51 +} 1.52 + 1.53 +void 1.54 +MDefinition::PrintOpcodeName(FILE *fp, MDefinition::Opcode op) 1.55 +{ 1.56 + static const char * const names[] = 1.57 + { 1.58 +#define NAME(x) #x, 1.59 + MIR_OPCODE_LIST(NAME) 1.60 +#undef NAME 1.61 + }; 1.62 + const char *name = names[op]; 1.63 + size_t len = strlen(name); 1.64 + for (size_t i = 0; i < len; i++) 1.65 + fprintf(fp, "%c", tolower(name[i])); 1.66 +} 1.67 + 1.68 +static inline bool 1.69 +EqualValues(bool useGVN, MDefinition *left, MDefinition *right) 1.70 +{ 1.71 + if (useGVN) 1.72 + return left->valueNumber() == right->valueNumber(); 1.73 + 1.74 + return left == right; 1.75 +} 1.76 + 1.77 +static MConstant * 1.78 +EvaluateConstantOperands(TempAllocator &alloc, MBinaryInstruction *ins, bool *ptypeChange = nullptr) 1.79 +{ 1.80 + MDefinition *left = ins->getOperand(0); 1.81 + MDefinition *right = ins->getOperand(1); 1.82 + 1.83 + if (!left->isConstant() || !right->isConstant()) 1.84 + return nullptr; 1.85 + 1.86 + Value lhs = left->toConstant()->value(); 1.87 + Value rhs = right->toConstant()->value(); 1.88 + Value ret = UndefinedValue(); 1.89 + 1.90 + switch (ins->op()) { 1.91 + case MDefinition::Op_BitAnd: 1.92 + ret = Int32Value(lhs.toInt32() & rhs.toInt32()); 1.93 + break; 1.94 + case MDefinition::Op_BitOr: 1.95 + ret = Int32Value(lhs.toInt32() | rhs.toInt32()); 1.96 + break; 1.97 + case MDefinition::Op_BitXor: 1.98 + ret = Int32Value(lhs.toInt32() ^ rhs.toInt32()); 1.99 + break; 1.100 + case MDefinition::Op_Lsh: 1.101 + ret = Int32Value(uint32_t(lhs.toInt32()) << (rhs.toInt32() & 0x1F)); 1.102 + break; 1.103 + case MDefinition::Op_Rsh: 1.104 + ret = Int32Value(lhs.toInt32() >> (rhs.toInt32() & 0x1F)); 1.105 + break; 1.106 + case MDefinition::Op_Ursh: 1.107 + ret.setNumber(uint32_t(lhs.toInt32()) >> (rhs.toInt32() & 0x1F)); 1.108 + break; 1.109 + case MDefinition::Op_Add: 1.110 + ret.setNumber(lhs.toNumber() + rhs.toNumber()); 1.111 + break; 1.112 + case MDefinition::Op_Sub: 1.113 + ret.setNumber(lhs.toNumber() - rhs.toNumber()); 1.114 + break; 1.115 + case MDefinition::Op_Mul: 1.116 + ret.setNumber(lhs.toNumber() * rhs.toNumber()); 1.117 + break; 1.118 + case MDefinition::Op_Div: 1.119 + ret.setNumber(NumberDiv(lhs.toNumber(), rhs.toNumber())); 1.120 + break; 1.121 + case MDefinition::Op_Mod: 1.122 + ret.setNumber(NumberMod(lhs.toNumber(), rhs.toNumber())); 1.123 + break; 1.124 + default: 1.125 + MOZ_ASSUME_UNREACHABLE("NYI"); 1.126 + } 1.127 + 1.128 + // setNumber eagerly transforms a number to int32. 1.129 + // Transform back to double, if the output type is double. 1.130 + if (ins->type() == MIRType_Double && ret.isInt32()) 1.131 + ret.setDouble(ret.toNumber()); 1.132 + 1.133 + if (ins->type() != MIRTypeFromValue(ret)) { 1.134 + if (ptypeChange) 1.135 + *ptypeChange = true; 1.136 + return nullptr; 1.137 + } 1.138 + 1.139 + return MConstant::New(alloc, ret); 1.140 +} 1.141 + 1.142 +void 1.143 +MDefinition::printName(FILE *fp) const 1.144 +{ 1.145 + PrintOpcodeName(fp, op()); 1.146 + fprintf(fp, "%u", id()); 1.147 + 1.148 + if (valueNumber() != 0) 1.149 + fprintf(fp, "-vn%u", valueNumber()); 1.150 +} 1.151 + 1.152 +HashNumber 1.153 +MDefinition::valueHash() const 1.154 +{ 1.155 + HashNumber out = op(); 1.156 + for (size_t i = 0, e = numOperands(); i < e; i++) { 1.157 + uint32_t valueNumber = getOperand(i)->valueNumber(); 1.158 + out = valueNumber + (out << 6) + (out << 16) - out; 1.159 + } 1.160 + return out; 1.161 +} 1.162 + 1.163 +bool 1.164 +MDefinition::congruentIfOperandsEqual(const MDefinition *ins) const 1.165 +{ 1.166 + if (op() != ins->op()) 1.167 + return false; 1.168 + 1.169 + if (type() != ins->type()) 1.170 + return false; 1.171 + 1.172 + if (isEffectful() || ins->isEffectful()) 1.173 + return false; 1.174 + 1.175 + if (numOperands() != ins->numOperands()) 1.176 + return false; 1.177 + 1.178 + for (size_t i = 0, e = numOperands(); i < e; i++) { 1.179 + if (getOperand(i)->valueNumber() != ins->getOperand(i)->valueNumber()) 1.180 + return false; 1.181 + } 1.182 + 1.183 + return true; 1.184 +} 1.185 + 1.186 +MDefinition * 1.187 +MDefinition::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.188 +{ 1.189 + // In the default case, there are no constants to fold. 1.190 + return this; 1.191 +} 1.192 + 1.193 +void 1.194 +MDefinition::analyzeEdgeCasesForward() 1.195 +{ 1.196 +} 1.197 + 1.198 +void 1.199 +MDefinition::analyzeEdgeCasesBackward() 1.200 +{ 1.201 +} 1.202 + 1.203 +static bool 1.204 +MaybeEmulatesUndefined(MDefinition *op) 1.205 +{ 1.206 + if (!op->mightBeType(MIRType_Object)) 1.207 + return false; 1.208 + 1.209 + types::TemporaryTypeSet *types = op->resultTypeSet(); 1.210 + if (!types) 1.211 + return true; 1.212 + 1.213 + return types->maybeEmulatesUndefined(); 1.214 +} 1.215 + 1.216 +static bool 1.217 +MaybeCallable(MDefinition *op) 1.218 +{ 1.219 + if (!op->mightBeType(MIRType_Object)) 1.220 + return false; 1.221 + 1.222 + types::TemporaryTypeSet *types = op->resultTypeSet(); 1.223 + if (!types) 1.224 + return true; 1.225 + 1.226 + return types->maybeCallable(); 1.227 +} 1.228 + 1.229 +MTest * 1.230 +MTest::New(TempAllocator &alloc, MDefinition *ins, MBasicBlock *ifTrue, MBasicBlock *ifFalse) 1.231 +{ 1.232 + return new(alloc) MTest(ins, ifTrue, ifFalse); 1.233 +} 1.234 + 1.235 +void 1.236 +MTest::infer() 1.237 +{ 1.238 + JS_ASSERT(operandMightEmulateUndefined()); 1.239 + 1.240 + if (!MaybeEmulatesUndefined(getOperand(0))) 1.241 + markOperandCantEmulateUndefined(); 1.242 +} 1.243 + 1.244 +MDefinition * 1.245 +MTest::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.246 +{ 1.247 + MDefinition *op = getOperand(0); 1.248 + 1.249 + if (op->isNot()) 1.250 + return MTest::New(alloc, op->toNot()->operand(), ifFalse(), ifTrue()); 1.251 + 1.252 + return this; 1.253 +} 1.254 + 1.255 +void 1.256 +MTest::filtersUndefinedOrNull(bool trueBranch, MDefinition **subject, bool *filtersUndefined, 1.257 + bool *filtersNull) 1.258 +{ 1.259 + MDefinition *ins = getOperand(0); 1.260 + if (ins->isCompare()) { 1.261 + ins->toCompare()->filtersUndefinedOrNull(trueBranch, subject, filtersUndefined, filtersNull); 1.262 + return; 1.263 + } 1.264 + 1.265 + if (!trueBranch && ins->isNot()) { 1.266 + *subject = ins->getOperand(0); 1.267 + *filtersUndefined = *filtersNull = true; 1.268 + return; 1.269 + } 1.270 + 1.271 + if (trueBranch) { 1.272 + *subject = ins; 1.273 + *filtersUndefined = *filtersNull = true; 1.274 + return; 1.275 + } 1.276 + 1.277 + *filtersUndefined = *filtersNull = false; 1.278 + *subject = nullptr; 1.279 +} 1.280 + 1.281 +void 1.282 +MDefinition::printOpcode(FILE *fp) const 1.283 +{ 1.284 + PrintOpcodeName(fp, op()); 1.285 + for (size_t j = 0, e = numOperands(); j < e; j++) { 1.286 + fprintf(fp, " "); 1.287 + getOperand(j)->printName(fp); 1.288 + } 1.289 +} 1.290 + 1.291 +void 1.292 +MDefinition::dump(FILE *fp) const 1.293 +{ 1.294 + printName(fp); 1.295 + fprintf(fp, " = "); 1.296 + printOpcode(fp); 1.297 + fprintf(fp, "\n"); 1.298 +} 1.299 + 1.300 +void 1.301 +MDefinition::dump() const 1.302 +{ 1.303 + dump(stderr); 1.304 +} 1.305 + 1.306 +size_t 1.307 +MDefinition::useCount() const 1.308 +{ 1.309 + size_t count = 0; 1.310 + for (MUseIterator i(uses_.begin()); i != uses_.end(); i++) 1.311 + count++; 1.312 + return count; 1.313 +} 1.314 + 1.315 +size_t 1.316 +MDefinition::defUseCount() const 1.317 +{ 1.318 + size_t count = 0; 1.319 + for (MUseIterator i(uses_.begin()); i != uses_.end(); i++) 1.320 + if ((*i)->consumer()->isDefinition()) 1.321 + count++; 1.322 + return count; 1.323 +} 1.324 + 1.325 +bool 1.326 +MDefinition::hasOneUse() const 1.327 +{ 1.328 + MUseIterator i(uses_.begin()); 1.329 + if (i == uses_.end()) 1.330 + return false; 1.331 + i++; 1.332 + return i == uses_.end(); 1.333 +} 1.334 + 1.335 +bool 1.336 +MDefinition::hasOneDefUse() const 1.337 +{ 1.338 + bool hasOneDefUse = false; 1.339 + for (MUseIterator i(uses_.begin()); i != uses_.end(); i++) { 1.340 + if (!(*i)->consumer()->isDefinition()) 1.341 + continue; 1.342 + 1.343 + // We already have a definition use. So 1+ 1.344 + if (hasOneDefUse) 1.345 + return false; 1.346 + 1.347 + // We saw one definition. Loop to test if there is another. 1.348 + hasOneDefUse = true; 1.349 + } 1.350 + 1.351 + return hasOneDefUse; 1.352 +} 1.353 + 1.354 +bool 1.355 +MDefinition::hasDefUses() const 1.356 +{ 1.357 + for (MUseIterator i(uses_.begin()); i != uses_.end(); i++) { 1.358 + if ((*i)->consumer()->isDefinition()) 1.359 + return true; 1.360 + } 1.361 + 1.362 + return false; 1.363 +} 1.364 + 1.365 +MUseIterator 1.366 +MDefinition::removeUse(MUseIterator use) 1.367 +{ 1.368 + return uses_.removeAt(use); 1.369 +} 1.370 + 1.371 +MUseIterator 1.372 +MNode::replaceOperand(MUseIterator use, MDefinition *def) 1.373 +{ 1.374 + JS_ASSERT(def != nullptr); 1.375 + uint32_t index = use->index(); 1.376 + MDefinition *prev = use->producer(); 1.377 + 1.378 + JS_ASSERT(use->index() < numOperands()); 1.379 + JS_ASSERT(use->producer() == getOperand(index)); 1.380 + JS_ASSERT(use->consumer() == this); 1.381 + 1.382 + if (prev == def) 1.383 + return use; 1.384 + 1.385 + MUseIterator result(prev->removeUse(use)); 1.386 + setOperand(index, def); 1.387 + return result; 1.388 +} 1.389 + 1.390 +void 1.391 +MNode::replaceOperand(size_t index, MDefinition *def) 1.392 +{ 1.393 + JS_ASSERT(def != nullptr); 1.394 + MUse *use = getUseFor(index); 1.395 + MDefinition *prev = use->producer(); 1.396 + 1.397 + JS_ASSERT(use->index() == index); 1.398 + JS_ASSERT(use->index() < numOperands()); 1.399 + JS_ASSERT(use->producer() == getOperand(index)); 1.400 + JS_ASSERT(use->consumer() == this); 1.401 + 1.402 + if (prev == def) 1.403 + return; 1.404 + 1.405 + prev->removeUse(use); 1.406 + setOperand(index, def); 1.407 +} 1.408 + 1.409 +void 1.410 +MNode::discardOperand(size_t index) 1.411 +{ 1.412 + MUse *use = getUseFor(index); 1.413 + 1.414 + JS_ASSERT(use->index() == index); 1.415 + JS_ASSERT(use->producer() == getOperand(index)); 1.416 + JS_ASSERT(use->consumer() == this); 1.417 + 1.418 + use->producer()->removeUse(use); 1.419 + 1.420 +#ifdef DEBUG 1.421 + // Causes any producer/consumer lookups to trip asserts. 1.422 + use->set(nullptr, nullptr, index); 1.423 +#endif 1.424 +} 1.425 + 1.426 +void 1.427 +MDefinition::replaceAllUsesWith(MDefinition *dom) 1.428 +{ 1.429 + JS_ASSERT(dom != nullptr); 1.430 + if (dom == this) 1.431 + return; 1.432 + 1.433 + for (size_t i = 0, e = numOperands(); i < e; i++) 1.434 + getOperand(i)->setUseRemovedUnchecked(); 1.435 + 1.436 + for (MUseIterator i(usesBegin()); i != usesEnd(); ) { 1.437 + JS_ASSERT(i->producer() == this); 1.438 + i = i->consumer()->replaceOperand(i, dom); 1.439 + } 1.440 +} 1.441 + 1.442 +bool 1.443 +MDefinition::emptyResultTypeSet() const 1.444 +{ 1.445 + return resultTypeSet() && resultTypeSet()->empty(); 1.446 +} 1.447 + 1.448 +MConstant * 1.449 +MConstant::New(TempAllocator &alloc, const Value &v, types::CompilerConstraintList *constraints) 1.450 +{ 1.451 + return new(alloc) MConstant(v, constraints); 1.452 +} 1.453 + 1.454 +MConstant * 1.455 +MConstant::NewAsmJS(TempAllocator &alloc, const Value &v, MIRType type) 1.456 +{ 1.457 + MConstant *constant = new(alloc) MConstant(v, nullptr); 1.458 + constant->setResultType(type); 1.459 + return constant; 1.460 +} 1.461 + 1.462 +types::TemporaryTypeSet * 1.463 +jit::MakeSingletonTypeSet(types::CompilerConstraintList *constraints, JSObject *obj) 1.464 +{ 1.465 + // Invalidate when this object's TypeObject gets unknown properties. This 1.466 + // happens for instance when we mutate an object's __proto__, in this case 1.467 + // we want to invalidate and mark this TypeSet as containing AnyObject 1.468 + // (because mutating __proto__ will change an object's TypeObject). 1.469 + JS_ASSERT(constraints); 1.470 + types::TypeObjectKey *objType = types::TypeObjectKey::get(obj); 1.471 + objType->hasFlags(constraints, types::OBJECT_FLAG_UNKNOWN_PROPERTIES); 1.472 + 1.473 + return GetIonContext()->temp->lifoAlloc()->new_<types::TemporaryTypeSet>(types::Type::ObjectType(obj)); 1.474 +} 1.475 + 1.476 +MConstant::MConstant(const js::Value &vp, types::CompilerConstraintList *constraints) 1.477 + : value_(vp) 1.478 +{ 1.479 + setResultType(MIRTypeFromValue(vp)); 1.480 + if (vp.isObject()) { 1.481 + // Create a singleton type set for the object. This isn't necessary for 1.482 + // other types as the result type encodes all needed information. 1.483 + setResultTypeSet(MakeSingletonTypeSet(constraints, &vp.toObject())); 1.484 + } 1.485 + 1.486 + setMovable(); 1.487 +} 1.488 + 1.489 +HashNumber 1.490 +MConstant::valueHash() const 1.491 +{ 1.492 + // This disregards some state, since values are 64 bits. But for a hash, 1.493 + // it's completely acceptable. 1.494 + return (HashNumber)JSVAL_TO_IMPL(value_).asBits; 1.495 +} 1.496 +bool 1.497 +MConstant::congruentTo(const MDefinition *ins) const 1.498 +{ 1.499 + if (!ins->isConstant()) 1.500 + return false; 1.501 + return ins->toConstant()->value() == value(); 1.502 +} 1.503 + 1.504 +void 1.505 +MConstant::printOpcode(FILE *fp) const 1.506 +{ 1.507 + PrintOpcodeName(fp, op()); 1.508 + fprintf(fp, " "); 1.509 + switch (type()) { 1.510 + case MIRType_Undefined: 1.511 + fprintf(fp, "undefined"); 1.512 + break; 1.513 + case MIRType_Null: 1.514 + fprintf(fp, "null"); 1.515 + break; 1.516 + case MIRType_Boolean: 1.517 + fprintf(fp, value().toBoolean() ? "true" : "false"); 1.518 + break; 1.519 + case MIRType_Int32: 1.520 + fprintf(fp, "0x%x", value().toInt32()); 1.521 + break; 1.522 + case MIRType_Double: 1.523 + fprintf(fp, "%f", value().toDouble()); 1.524 + break; 1.525 + case MIRType_Float32: 1.526 + { 1.527 + float val = value().toDouble(); 1.528 + fprintf(fp, "%f", val); 1.529 + break; 1.530 + } 1.531 + case MIRType_Object: 1.532 + if (value().toObject().is<JSFunction>()) { 1.533 + JSFunction *fun = &value().toObject().as<JSFunction>(); 1.534 + if (fun->displayAtom()) { 1.535 + fputs("function ", fp); 1.536 + FileEscapedString(fp, fun->displayAtom(), 0); 1.537 + } else { 1.538 + fputs("unnamed function", fp); 1.539 + } 1.540 + if (fun->hasScript()) { 1.541 + JSScript *script = fun->nonLazyScript(); 1.542 + fprintf(fp, " (%s:%d)", 1.543 + script->filename() ? script->filename() : "", (int) script->lineno()); 1.544 + } 1.545 + fprintf(fp, " at %p", (void *) fun); 1.546 + break; 1.547 + } 1.548 + fprintf(fp, "object %p (%s)", (void *)&value().toObject(), 1.549 + value().toObject().getClass()->name); 1.550 + break; 1.551 + case MIRType_String: 1.552 + fprintf(fp, "string %p", (void *)value().toString()); 1.553 + break; 1.554 + case MIRType_MagicOptimizedArguments: 1.555 + fprintf(fp, "magic lazyargs"); 1.556 + break; 1.557 + case MIRType_MagicHole: 1.558 + fprintf(fp, "magic hole"); 1.559 + break; 1.560 + case MIRType_MagicIsConstructing: 1.561 + fprintf(fp, "magic is-constructing"); 1.562 + break; 1.563 + case MIRType_MagicOptimizedOut: 1.564 + fprintf(fp, "magic optimized-out"); 1.565 + break; 1.566 + default: 1.567 + MOZ_ASSUME_UNREACHABLE("unexpected type"); 1.568 + } 1.569 +} 1.570 + 1.571 +bool 1.572 +MConstant::canProduceFloat32() const 1.573 +{ 1.574 + if (!IsNumberType(type())) 1.575 + return false; 1.576 + 1.577 + if (type() == MIRType_Int32) 1.578 + return IsFloat32Representable(static_cast<double>(value_.toInt32())); 1.579 + if (type() == MIRType_Double) 1.580 + return IsFloat32Representable(value_.toDouble()); 1.581 + return true; 1.582 +} 1.583 + 1.584 +MCloneLiteral * 1.585 +MCloneLiteral::New(TempAllocator &alloc, MDefinition *obj) 1.586 +{ 1.587 + return new(alloc) MCloneLiteral(obj); 1.588 +} 1.589 + 1.590 +void 1.591 +MControlInstruction::printOpcode(FILE *fp) const 1.592 +{ 1.593 + MDefinition::printOpcode(fp); 1.594 + for (size_t j = 0; j < numSuccessors(); j++) 1.595 + fprintf(fp, " block%d", getSuccessor(j)->id()); 1.596 +} 1.597 + 1.598 +void 1.599 +MCompare::printOpcode(FILE *fp) const 1.600 +{ 1.601 + MDefinition::printOpcode(fp); 1.602 + fprintf(fp, " %s", js_CodeName[jsop()]); 1.603 +} 1.604 + 1.605 +void 1.606 +MConstantElements::printOpcode(FILE *fp) const 1.607 +{ 1.608 + PrintOpcodeName(fp, op()); 1.609 + fprintf(fp, " %p", value()); 1.610 +} 1.611 + 1.612 +void 1.613 +MLoadTypedArrayElement::printOpcode(FILE *fp) const 1.614 +{ 1.615 + MDefinition::printOpcode(fp); 1.616 + fprintf(fp, " %s", ScalarTypeDescr::typeName(arrayType())); 1.617 +} 1.618 + 1.619 +void 1.620 +MAssertRange::printOpcode(FILE *fp) const 1.621 +{ 1.622 + MDefinition::printOpcode(fp); 1.623 + Sprinter sp(GetIonContext()->cx); 1.624 + sp.init(); 1.625 + assertedRange()->print(sp); 1.626 + fprintf(fp, " %s", sp.string()); 1.627 +} 1.628 + 1.629 +const char * 1.630 +MMathFunction::FunctionName(Function function) 1.631 +{ 1.632 + switch (function) { 1.633 + case Log: return "Log"; 1.634 + case Sin: return "Sin"; 1.635 + case Cos: return "Cos"; 1.636 + case Exp: return "Exp"; 1.637 + case Tan: return "Tan"; 1.638 + case ACos: return "ACos"; 1.639 + case ASin: return "ASin"; 1.640 + case ATan: return "ATan"; 1.641 + case Log10: return "Log10"; 1.642 + case Log2: return "Log2"; 1.643 + case Log1P: return "Log1P"; 1.644 + case ExpM1: return "ExpM1"; 1.645 + case CosH: return "CosH"; 1.646 + case SinH: return "SinH"; 1.647 + case TanH: return "TanH"; 1.648 + case ACosH: return "ACosH"; 1.649 + case ASinH: return "ASinH"; 1.650 + case ATanH: return "ATanH"; 1.651 + case Sign: return "Sign"; 1.652 + case Trunc: return "Trunc"; 1.653 + case Cbrt: return "Cbrt"; 1.654 + case Floor: return "Floor"; 1.655 + case Ceil: return "Ceil"; 1.656 + case Round: return "Round"; 1.657 + default: 1.658 + MOZ_ASSUME_UNREACHABLE("Unknown math function"); 1.659 + } 1.660 +} 1.661 + 1.662 +void 1.663 +MMathFunction::printOpcode(FILE *fp) const 1.664 +{ 1.665 + MDefinition::printOpcode(fp); 1.666 + fprintf(fp, " %s", FunctionName(function())); 1.667 +} 1.668 + 1.669 +MParameter * 1.670 +MParameter::New(TempAllocator &alloc, int32_t index, types::TemporaryTypeSet *types) 1.671 +{ 1.672 + return new(alloc) MParameter(index, types); 1.673 +} 1.674 + 1.675 +void 1.676 +MParameter::printOpcode(FILE *fp) const 1.677 +{ 1.678 + PrintOpcodeName(fp, op()); 1.679 + fprintf(fp, " %d", index()); 1.680 +} 1.681 + 1.682 +HashNumber 1.683 +MParameter::valueHash() const 1.684 +{ 1.685 + return index_; // Why not? 1.686 +} 1.687 + 1.688 +bool 1.689 +MParameter::congruentTo(const MDefinition *ins) const 1.690 +{ 1.691 + if (!ins->isParameter()) 1.692 + return false; 1.693 + 1.694 + return ins->toParameter()->index() == index_; 1.695 +} 1.696 + 1.697 +MCall * 1.698 +MCall::New(TempAllocator &alloc, JSFunction *target, size_t maxArgc, size_t numActualArgs, 1.699 + bool construct, bool isDOMCall) 1.700 +{ 1.701 + JS_ASSERT(maxArgc >= numActualArgs); 1.702 + MCall *ins; 1.703 + if (isDOMCall) { 1.704 + JS_ASSERT(!construct); 1.705 + ins = new(alloc) MCallDOMNative(target, numActualArgs); 1.706 + } else { 1.707 + ins = new(alloc) MCall(target, numActualArgs, construct); 1.708 + } 1.709 + if (!ins->init(alloc, maxArgc + NumNonArgumentOperands)) 1.710 + return nullptr; 1.711 + return ins; 1.712 +} 1.713 + 1.714 +AliasSet 1.715 +MCallDOMNative::getAliasSet() const 1.716 +{ 1.717 + const JSJitInfo *jitInfo = getJitInfo(); 1.718 + 1.719 + JS_ASSERT(jitInfo->aliasSet() != JSJitInfo::AliasNone); 1.720 + // If we don't know anything about the types of our arguments, we have to 1.721 + // assume that type-coercions can have side-effects, so we need to alias 1.722 + // everything. 1.723 + if (jitInfo->aliasSet() != JSJitInfo::AliasDOMSets || !jitInfo->isTypedMethodJitInfo()) 1.724 + return AliasSet::Store(AliasSet::Any); 1.725 + 1.726 + uint32_t argIndex = 0; 1.727 + const JSTypedMethodJitInfo *methodInfo = 1.728 + reinterpret_cast<const JSTypedMethodJitInfo*>(jitInfo); 1.729 + for (const JSJitInfo::ArgType *argType = methodInfo->argTypes; 1.730 + *argType != JSJitInfo::ArgTypeListEnd; 1.731 + ++argType, ++argIndex) 1.732 + { 1.733 + if (argIndex >= numActualArgs()) { 1.734 + // Passing through undefined can't have side-effects 1.735 + continue; 1.736 + } 1.737 + // getArg(0) is "this", so skip it 1.738 + MDefinition *arg = getArg(argIndex+1); 1.739 + MIRType actualType = arg->type(); 1.740 + // The only way to reliably avoid side-effects given the informtion we 1.741 + // have here is if we're passing in a known primitive value to an 1.742 + // argument that expects a primitive value. XXXbz maybe we need to 1.743 + // communicate better information. For example, a sequence argument 1.744 + // will sort of unavoidably have side effects, while a typed array 1.745 + // argument won't have any, but both are claimed to be 1.746 + // JSJitInfo::Object. 1.747 + if ((actualType == MIRType_Value || actualType == MIRType_Object) || 1.748 + (*argType & JSJitInfo::Object)) 1.749 + { 1.750 + return AliasSet::Store(AliasSet::Any); 1.751 + } 1.752 + } 1.753 + 1.754 + // We checked all the args, and they check out. So we only 1.755 + // alias DOM mutations. 1.756 + return AliasSet::Load(AliasSet::DOMProperty); 1.757 +} 1.758 + 1.759 +void 1.760 +MCallDOMNative::computeMovable() 1.761 +{ 1.762 + // We are movable if the jitinfo says we can be and if we're also not 1.763 + // effectful. The jitinfo can't check for the latter, since it depends on 1.764 + // the types of our arguments. 1.765 + const JSJitInfo *jitInfo = getJitInfo(); 1.766 + 1.767 + JS_ASSERT_IF(jitInfo->isMovable, 1.768 + jitInfo->aliasSet() != JSJitInfo::AliasEverything); 1.769 + 1.770 + if (jitInfo->isMovable && !isEffectful()) 1.771 + setMovable(); 1.772 +} 1.773 + 1.774 +bool 1.775 +MCallDOMNative::congruentTo(const MDefinition *ins) const 1.776 +{ 1.777 + if (!isMovable()) 1.778 + return false; 1.779 + 1.780 + if (!ins->isCall()) 1.781 + return false; 1.782 + 1.783 + const MCall *call = ins->toCall(); 1.784 + 1.785 + if (!call->isCallDOMNative()) 1.786 + return false; 1.787 + 1.788 + if (getSingleTarget() != call->getSingleTarget()) 1.789 + return false; 1.790 + 1.791 + if (isConstructing() != call->isConstructing()) 1.792 + return false; 1.793 + 1.794 + if (numActualArgs() != call->numActualArgs()) 1.795 + return false; 1.796 + 1.797 + if (needsArgCheck() != call->needsArgCheck()) 1.798 + return false; 1.799 + 1.800 + if (!congruentIfOperandsEqual(call)) 1.801 + return false; 1.802 + 1.803 + // The other call had better be movable at this point! 1.804 + JS_ASSERT(call->isMovable()); 1.805 + 1.806 + return true; 1.807 +} 1.808 + 1.809 +const JSJitInfo * 1.810 +MCallDOMNative::getJitInfo() const 1.811 +{ 1.812 + JS_ASSERT(getSingleTarget() && getSingleTarget()->isNative()); 1.813 + 1.814 + const JSJitInfo *jitInfo = getSingleTarget()->jitInfo(); 1.815 + JS_ASSERT(jitInfo); 1.816 + 1.817 + return jitInfo; 1.818 +} 1.819 + 1.820 +MApplyArgs * 1.821 +MApplyArgs::New(TempAllocator &alloc, JSFunction *target, MDefinition *fun, MDefinition *argc, 1.822 + MDefinition *self) 1.823 +{ 1.824 + return new(alloc) MApplyArgs(target, fun, argc, self); 1.825 +} 1.826 + 1.827 +MDefinition* 1.828 +MStringLength::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.829 +{ 1.830 + if ((type() == MIRType_Int32) && (string()->isConstant())) { 1.831 + Value value = string()->toConstant()->value(); 1.832 + JSAtom *atom = &value.toString()->asAtom(); 1.833 + return MConstant::New(alloc, Int32Value(atom->length())); 1.834 + } 1.835 + 1.836 + return this; 1.837 +} 1.838 + 1.839 +void 1.840 +MFloor::trySpecializeFloat32(TempAllocator &alloc) 1.841 +{ 1.842 + // No need to look at the output, as it's an integer (see IonBuilder::inlineMathFloor) 1.843 + if (!input()->canProduceFloat32()) { 1.844 + if (input()->type() == MIRType_Float32) 1.845 + ConvertDefinitionToDouble<0>(alloc, input(), this); 1.846 + return; 1.847 + } 1.848 + 1.849 + if (type() == MIRType_Double) 1.850 + setResultType(MIRType_Float32); 1.851 + 1.852 + setPolicyType(MIRType_Float32); 1.853 +} 1.854 + 1.855 +void 1.856 +MRound::trySpecializeFloat32(TempAllocator &alloc) 1.857 +{ 1.858 + // No need to look at the output, as it's an integer (unique way to have 1.859 + // this instruction in IonBuilder::inlineMathRound) 1.860 + JS_ASSERT(type() == MIRType_Int32); 1.861 + 1.862 + if (!input()->canProduceFloat32()) { 1.863 + if (input()->type() == MIRType_Float32) 1.864 + ConvertDefinitionToDouble<0>(alloc, input(), this); 1.865 + return; 1.866 + } 1.867 + 1.868 + setPolicyType(MIRType_Float32); 1.869 +} 1.870 + 1.871 +MCompare * 1.872 +MCompare::New(TempAllocator &alloc, MDefinition *left, MDefinition *right, JSOp op) 1.873 +{ 1.874 + return new(alloc) MCompare(left, right, op); 1.875 +} 1.876 + 1.877 +MCompare * 1.878 +MCompare::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right, JSOp op, 1.879 + CompareType compareType) 1.880 +{ 1.881 + JS_ASSERT(compareType == Compare_Int32 || compareType == Compare_UInt32 || 1.882 + compareType == Compare_Double || compareType == Compare_Float32); 1.883 + MCompare *comp = new(alloc) MCompare(left, right, op); 1.884 + comp->compareType_ = compareType; 1.885 + comp->operandMightEmulateUndefined_ = false; 1.886 + comp->setResultType(MIRType_Int32); 1.887 + return comp; 1.888 +} 1.889 + 1.890 +MTableSwitch * 1.891 +MTableSwitch::New(TempAllocator &alloc, MDefinition *ins, int32_t low, int32_t high) 1.892 +{ 1.893 + return new(alloc) MTableSwitch(alloc, ins, low, high); 1.894 +} 1.895 + 1.896 +MGoto * 1.897 +MGoto::New(TempAllocator &alloc, MBasicBlock *target) 1.898 +{ 1.899 + JS_ASSERT(target); 1.900 + return new(alloc) MGoto(target); 1.901 +} 1.902 + 1.903 +void 1.904 +MUnbox::printOpcode(FILE *fp) const 1.905 +{ 1.906 + PrintOpcodeName(fp, op()); 1.907 + fprintf(fp, " "); 1.908 + getOperand(0)->printName(fp); 1.909 + fprintf(fp, " "); 1.910 + 1.911 + switch (type()) { 1.912 + case MIRType_Int32: fprintf(fp, "to Int32"); break; 1.913 + case MIRType_Double: fprintf(fp, "to Double"); break; 1.914 + case MIRType_Boolean: fprintf(fp, "to Boolean"); break; 1.915 + case MIRType_String: fprintf(fp, "to String"); break; 1.916 + case MIRType_Object: fprintf(fp, "to Object"); break; 1.917 + default: break; 1.918 + } 1.919 + 1.920 + switch (mode()) { 1.921 + case Fallible: fprintf(fp, " (fallible)"); break; 1.922 + case Infallible: fprintf(fp, " (infallible)"); break; 1.923 + case TypeBarrier: fprintf(fp, " (typebarrier)"); break; 1.924 + default: break; 1.925 + } 1.926 +} 1.927 + 1.928 +void 1.929 +MTypeBarrier::printOpcode(FILE *fp) const 1.930 +{ 1.931 + PrintOpcodeName(fp, op()); 1.932 + fprintf(fp, " "); 1.933 + getOperand(0)->printName(fp); 1.934 +} 1.935 + 1.936 +void 1.937 +MPhi::removeOperand(size_t index) 1.938 +{ 1.939 + MUse *use = getUseFor(index); 1.940 + 1.941 + JS_ASSERT(index < inputs_.length()); 1.942 + JS_ASSERT(inputs_.length() > 1); 1.943 + 1.944 + JS_ASSERT(use->index() == index); 1.945 + JS_ASSERT(use->producer() == getOperand(index)); 1.946 + JS_ASSERT(use->consumer() == this); 1.947 + 1.948 + // Remove use from producer's use chain. 1.949 + use->producer()->removeUse(use); 1.950 + 1.951 + // If we have phi(..., a, b, c, d, ..., z) and we plan 1.952 + // on removing a, then first shift downward so that we have 1.953 + // phi(..., b, c, d, ..., z, z): 1.954 + size_t length = inputs_.length(); 1.955 + for (size_t i = index; i < length - 1; i++) { 1.956 + MUse *next = MPhi::getUseFor(i + 1); 1.957 + next->producer()->removeUse(next); 1.958 + MPhi::setOperand(i, next->producer()); 1.959 + } 1.960 + 1.961 + // truncate the inputs_ list: 1.962 + inputs_.shrinkBy(1); 1.963 +} 1.964 + 1.965 +MDefinition * 1.966 +MPhi::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.967 +{ 1.968 + JS_ASSERT(!inputs_.empty()); 1.969 + 1.970 + MDefinition *first = getOperand(0); 1.971 + 1.972 + for (size_t i = 1; i < inputs_.length(); i++) { 1.973 + // Phis need dominator information to fold based on value numbers. For 1.974 + // simplicity, we only compare SSA names right now (bug 714727). 1.975 + if (!EqualValues(false, getOperand(i), first)) 1.976 + return this; 1.977 + } 1.978 + 1.979 + return first; 1.980 +} 1.981 + 1.982 +bool 1.983 +MPhi::congruentTo(const MDefinition *ins) const 1.984 +{ 1.985 + if (!ins->isPhi()) 1.986 + return false; 1.987 + // Since we do not know which predecessor we are merging from, we must 1.988 + // assume that phi instructions in different blocks are not equal. 1.989 + // (Bug 674656) 1.990 + if (ins->block()->id() != block()->id()) 1.991 + return false; 1.992 + 1.993 + return congruentIfOperandsEqual(ins); 1.994 +} 1.995 + 1.996 +bool 1.997 +MPhi::reserveLength(size_t length) 1.998 +{ 1.999 + // Initializes a new MPhi to have an Operand vector of at least the given 1.1000 + // capacity. This permits use of addInput() instead of addInputSlow(), the 1.1001 + // latter of which may call realloc_(). 1.1002 + JS_ASSERT(numOperands() == 0); 1.1003 +#if DEBUG 1.1004 + capacity_ = length; 1.1005 +#endif 1.1006 + return inputs_.reserve(length); 1.1007 +} 1.1008 + 1.1009 +static inline types::TemporaryTypeSet * 1.1010 +MakeMIRTypeSet(MIRType type) 1.1011 +{ 1.1012 + JS_ASSERT(type != MIRType_Value); 1.1013 + types::Type ntype = type == MIRType_Object 1.1014 + ? types::Type::AnyObjectType() 1.1015 + : types::Type::PrimitiveType(ValueTypeFromMIRType(type)); 1.1016 + return GetIonContext()->temp->lifoAlloc()->new_<types::TemporaryTypeSet>(ntype); 1.1017 +} 1.1018 + 1.1019 +bool 1.1020 +jit::MergeTypes(MIRType *ptype, types::TemporaryTypeSet **ptypeSet, 1.1021 + MIRType newType, types::TemporaryTypeSet *newTypeSet) 1.1022 +{ 1.1023 + if (newTypeSet && newTypeSet->empty()) 1.1024 + return true; 1.1025 + if (newType != *ptype) { 1.1026 + if (IsNumberType(newType) && IsNumberType(*ptype)) { 1.1027 + *ptype = MIRType_Double; 1.1028 + } else if (*ptype != MIRType_Value) { 1.1029 + if (!*ptypeSet) { 1.1030 + *ptypeSet = MakeMIRTypeSet(*ptype); 1.1031 + if (!*ptypeSet) 1.1032 + return false; 1.1033 + } 1.1034 + *ptype = MIRType_Value; 1.1035 + } else if (*ptypeSet && (*ptypeSet)->empty()) { 1.1036 + *ptype = newType; 1.1037 + } 1.1038 + } 1.1039 + if (*ptypeSet) { 1.1040 + LifoAlloc *alloc = GetIonContext()->temp->lifoAlloc(); 1.1041 + if (!newTypeSet && newType != MIRType_Value) { 1.1042 + newTypeSet = MakeMIRTypeSet(newType); 1.1043 + if (!newTypeSet) 1.1044 + return false; 1.1045 + } 1.1046 + if (newTypeSet) { 1.1047 + if (!newTypeSet->isSubset(*ptypeSet)) 1.1048 + *ptypeSet = types::TypeSet::unionSets(*ptypeSet, newTypeSet, alloc); 1.1049 + } else { 1.1050 + *ptypeSet = nullptr; 1.1051 + } 1.1052 + } 1.1053 + return true; 1.1054 +} 1.1055 + 1.1056 +bool 1.1057 +MPhi::specializeType() 1.1058 +{ 1.1059 +#ifdef DEBUG 1.1060 + JS_ASSERT(!specialized_); 1.1061 + specialized_ = true; 1.1062 +#endif 1.1063 + 1.1064 + JS_ASSERT(!inputs_.empty()); 1.1065 + 1.1066 + size_t start; 1.1067 + if (hasBackedgeType_) { 1.1068 + // The type of this phi has already been populated with potential types 1.1069 + // that could come in via loop backedges. 1.1070 + start = 0; 1.1071 + } else { 1.1072 + setResultType(getOperand(0)->type()); 1.1073 + setResultTypeSet(getOperand(0)->resultTypeSet()); 1.1074 + start = 1; 1.1075 + } 1.1076 + 1.1077 + MIRType resultType = this->type(); 1.1078 + types::TemporaryTypeSet *resultTypeSet = this->resultTypeSet(); 1.1079 + 1.1080 + for (size_t i = start; i < inputs_.length(); i++) { 1.1081 + MDefinition *def = getOperand(i); 1.1082 + if (!MergeTypes(&resultType, &resultTypeSet, def->type(), def->resultTypeSet())) 1.1083 + return false; 1.1084 + } 1.1085 + 1.1086 + setResultType(resultType); 1.1087 + setResultTypeSet(resultTypeSet); 1.1088 + return true; 1.1089 +} 1.1090 + 1.1091 +bool 1.1092 +MPhi::addBackedgeType(MIRType type, types::TemporaryTypeSet *typeSet) 1.1093 +{ 1.1094 + JS_ASSERT(!specialized_); 1.1095 + 1.1096 + if (hasBackedgeType_) { 1.1097 + MIRType resultType = this->type(); 1.1098 + types::TemporaryTypeSet *resultTypeSet = this->resultTypeSet(); 1.1099 + 1.1100 + if (!MergeTypes(&resultType, &resultTypeSet, type, typeSet)) 1.1101 + return false; 1.1102 + 1.1103 + setResultType(resultType); 1.1104 + setResultTypeSet(resultTypeSet); 1.1105 + } else { 1.1106 + setResultType(type); 1.1107 + setResultTypeSet(typeSet); 1.1108 + hasBackedgeType_ = true; 1.1109 + } 1.1110 + return true; 1.1111 +} 1.1112 + 1.1113 +bool 1.1114 +MPhi::typeIncludes(MDefinition *def) 1.1115 +{ 1.1116 + if (def->type() == MIRType_Int32 && this->type() == MIRType_Double) 1.1117 + return true; 1.1118 + 1.1119 + if (types::TemporaryTypeSet *types = def->resultTypeSet()) { 1.1120 + if (this->resultTypeSet()) 1.1121 + return types->isSubset(this->resultTypeSet()); 1.1122 + if (this->type() == MIRType_Value || types->empty()) 1.1123 + return true; 1.1124 + return this->type() == types->getKnownMIRType(); 1.1125 + } 1.1126 + 1.1127 + if (def->type() == MIRType_Value) { 1.1128 + // This phi must be able to be any value. 1.1129 + return this->type() == MIRType_Value 1.1130 + && (!this->resultTypeSet() || this->resultTypeSet()->unknown()); 1.1131 + } 1.1132 + 1.1133 + return this->mightBeType(def->type()); 1.1134 +} 1.1135 + 1.1136 +void 1.1137 +MPhi::addInput(MDefinition *ins) 1.1138 +{ 1.1139 + // This can only been done if the length was reserved through reserveLength, 1.1140 + // else the slower addInputSlow need to get called. 1.1141 + JS_ASSERT(inputs_.length() < capacity_); 1.1142 + 1.1143 + uint32_t index = inputs_.length(); 1.1144 + inputs_.append(MUse()); 1.1145 + MPhi::setOperand(index, ins); 1.1146 +} 1.1147 + 1.1148 +bool 1.1149 +MPhi::addInputSlow(MDefinition *ins, bool *ptypeChange) 1.1150 +{ 1.1151 + // The list of inputs to an MPhi is given as a vector of MUse nodes, 1.1152 + // each of which is in the list of the producer MDefinition. 1.1153 + // Because appending to a vector may reallocate the vector, it is possible 1.1154 + // that this operation may cause the producers' linked lists to reference 1.1155 + // invalid memory. Therefore, in the event of moving reallocation, each 1.1156 + // MUse must be removed and reinserted from/into its producer's use chain. 1.1157 + uint32_t index = inputs_.length(); 1.1158 + bool performingRealloc = !inputs_.canAppendWithoutRealloc(1); 1.1159 + 1.1160 + // Remove all MUses from all use lists, in case realloc_() moves. 1.1161 + if (performingRealloc) { 1.1162 + for (uint32_t i = 0; i < index; i++) { 1.1163 + MUse *use = &inputs_[i]; 1.1164 + use->producer()->removeUse(use); 1.1165 + } 1.1166 + } 1.1167 + 1.1168 + // Insert the new input. 1.1169 + if (!inputs_.append(MUse())) 1.1170 + return false; 1.1171 + 1.1172 + MPhi::setOperand(index, ins); 1.1173 + 1.1174 + if (ptypeChange) { 1.1175 + MIRType resultType = this->type(); 1.1176 + types::TemporaryTypeSet *resultTypeSet = this->resultTypeSet(); 1.1177 + 1.1178 + if (!MergeTypes(&resultType, &resultTypeSet, ins->type(), ins->resultTypeSet())) 1.1179 + return false; 1.1180 + 1.1181 + if (resultType != this->type() || resultTypeSet != this->resultTypeSet()) { 1.1182 + *ptypeChange = true; 1.1183 + setResultType(resultType); 1.1184 + setResultTypeSet(resultTypeSet); 1.1185 + } 1.1186 + } 1.1187 + 1.1188 + // Add all previously-removed MUses back. 1.1189 + if (performingRealloc) { 1.1190 + for (uint32_t i = 0; i < index; i++) { 1.1191 + MUse *use = &inputs_[i]; 1.1192 + use->producer()->addUse(use); 1.1193 + } 1.1194 + } 1.1195 + 1.1196 + return true; 1.1197 +} 1.1198 + 1.1199 +void 1.1200 +MCall::addArg(size_t argnum, MDefinition *arg) 1.1201 +{ 1.1202 + // The operand vector is initialized in reverse order by the IonBuilder. 1.1203 + // It cannot be checked for consistency until all arguments are added. 1.1204 + setOperand(argnum + NumNonArgumentOperands, arg); 1.1205 +} 1.1206 + 1.1207 +void 1.1208 +MBitNot::infer() 1.1209 +{ 1.1210 + if (getOperand(0)->mightBeType(MIRType_Object)) 1.1211 + specialization_ = MIRType_None; 1.1212 + else 1.1213 + specialization_ = MIRType_Int32; 1.1214 +} 1.1215 + 1.1216 +static inline bool 1.1217 +IsConstant(MDefinition *def, double v) 1.1218 +{ 1.1219 + if (!def->isConstant()) 1.1220 + return false; 1.1221 + 1.1222 + return NumbersAreIdentical(def->toConstant()->value().toNumber(), v); 1.1223 +} 1.1224 + 1.1225 +MDefinition * 1.1226 +MBinaryBitwiseInstruction::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.1227 +{ 1.1228 + if (specialization_ != MIRType_Int32) 1.1229 + return this; 1.1230 + 1.1231 + if (MDefinition *folded = EvaluateConstantOperands(alloc, this)) 1.1232 + return folded; 1.1233 + 1.1234 + return this; 1.1235 +} 1.1236 + 1.1237 +MDefinition * 1.1238 +MBinaryBitwiseInstruction::foldUnnecessaryBitop() 1.1239 +{ 1.1240 + if (specialization_ != MIRType_Int32) 1.1241 + return this; 1.1242 + 1.1243 + // Eliminate bitwise operations that are no-ops when used on integer 1.1244 + // inputs, such as (x | 0). 1.1245 + 1.1246 + MDefinition *lhs = getOperand(0); 1.1247 + MDefinition *rhs = getOperand(1); 1.1248 + 1.1249 + if (IsConstant(lhs, 0)) 1.1250 + return foldIfZero(0); 1.1251 + 1.1252 + if (IsConstant(rhs, 0)) 1.1253 + return foldIfZero(1); 1.1254 + 1.1255 + if (IsConstant(lhs, -1)) 1.1256 + return foldIfNegOne(0); 1.1257 + 1.1258 + if (IsConstant(rhs, -1)) 1.1259 + return foldIfNegOne(1); 1.1260 + 1.1261 + if (EqualValues(false, lhs, rhs)) 1.1262 + return foldIfEqual(); 1.1263 + 1.1264 + return this; 1.1265 +} 1.1266 + 1.1267 +void 1.1268 +MBinaryBitwiseInstruction::infer(BaselineInspector *, jsbytecode *) 1.1269 +{ 1.1270 + if (getOperand(0)->mightBeType(MIRType_Object) || getOperand(1)->mightBeType(MIRType_Object)) 1.1271 + specialization_ = MIRType_None; 1.1272 + else 1.1273 + specializeAsInt32(); 1.1274 +} 1.1275 + 1.1276 +void 1.1277 +MBinaryBitwiseInstruction::specializeAsInt32() 1.1278 +{ 1.1279 + specialization_ = MIRType_Int32; 1.1280 + JS_ASSERT(type() == MIRType_Int32); 1.1281 + 1.1282 + if (isBitOr() || isBitAnd() || isBitXor()) 1.1283 + setCommutative(); 1.1284 +} 1.1285 + 1.1286 +void 1.1287 +MShiftInstruction::infer(BaselineInspector *, jsbytecode *) 1.1288 +{ 1.1289 + if (getOperand(0)->mightBeType(MIRType_Object) || getOperand(1)->mightBeType(MIRType_Object)) 1.1290 + specialization_ = MIRType_None; 1.1291 + else 1.1292 + specialization_ = MIRType_Int32; 1.1293 +} 1.1294 + 1.1295 +void 1.1296 +MUrsh::infer(BaselineInspector *inspector, jsbytecode *pc) 1.1297 +{ 1.1298 + if (getOperand(0)->mightBeType(MIRType_Object) || getOperand(1)->mightBeType(MIRType_Object)) { 1.1299 + specialization_ = MIRType_None; 1.1300 + setResultType(MIRType_Value); 1.1301 + return; 1.1302 + } 1.1303 + 1.1304 + if (inspector->hasSeenDoubleResult(pc)) { 1.1305 + specialization_ = MIRType_Double; 1.1306 + setResultType(MIRType_Double); 1.1307 + return; 1.1308 + } 1.1309 + 1.1310 + specialization_ = MIRType_Int32; 1.1311 + setResultType(MIRType_Int32); 1.1312 +} 1.1313 + 1.1314 +static inline bool 1.1315 +NeedNegativeZeroCheck(MDefinition *def) 1.1316 +{ 1.1317 + // Test if all uses have the same semantics for -0 and 0 1.1318 + for (MUseIterator use = def->usesBegin(); use != def->usesEnd(); use++) { 1.1319 + if (use->consumer()->isResumePoint()) 1.1320 + continue; 1.1321 + 1.1322 + MDefinition *use_def = use->consumer()->toDefinition(); 1.1323 + switch (use_def->op()) { 1.1324 + case MDefinition::Op_Add: { 1.1325 + // If add is truncating -0 and 0 are observed as the same. 1.1326 + if (use_def->toAdd()->isTruncated()) 1.1327 + break; 1.1328 + 1.1329 + // x + y gives -0, when both x and y are -0 1.1330 + 1.1331 + // Figure out the order in which the addition's operands will 1.1332 + // execute. EdgeCaseAnalysis::analyzeLate has renumbered the MIR 1.1333 + // definitions for us so that this just requires comparing ids. 1.1334 + MDefinition *first = use_def->toAdd()->getOperand(0); 1.1335 + MDefinition *second = use_def->toAdd()->getOperand(1); 1.1336 + if (first->id() > second->id()) { 1.1337 + MDefinition *temp = first; 1.1338 + first = second; 1.1339 + second = temp; 1.1340 + } 1.1341 + 1.1342 + if (def == first) { 1.1343 + // Negative zero checks can be removed on the first executed 1.1344 + // operand only if it is guaranteed the second executed operand 1.1345 + // will produce a value other than -0. While the second is 1.1346 + // typed as an int32, a bailout taken between execution of the 1.1347 + // operands may change that type and cause a -0 to flow to the 1.1348 + // second. 1.1349 + // 1.1350 + // There is no way to test whether there are any bailouts 1.1351 + // between execution of the operands, so remove negative 1.1352 + // zero checks from the first only if the second's type is 1.1353 + // independent from type changes that may occur after bailing. 1.1354 + switch (second->op()) { 1.1355 + case MDefinition::Op_Constant: 1.1356 + case MDefinition::Op_BitAnd: 1.1357 + case MDefinition::Op_BitOr: 1.1358 + case MDefinition::Op_BitXor: 1.1359 + case MDefinition::Op_BitNot: 1.1360 + case MDefinition::Op_Lsh: 1.1361 + case MDefinition::Op_Rsh: 1.1362 + break; 1.1363 + default: 1.1364 + return true; 1.1365 + } 1.1366 + } 1.1367 + 1.1368 + // The negative zero check can always be removed on the second 1.1369 + // executed operand; by the time this executes the first will have 1.1370 + // been evaluated as int32 and the addition's result cannot be -0. 1.1371 + break; 1.1372 + } 1.1373 + case MDefinition::Op_Sub: 1.1374 + // If sub is truncating -0 and 0 are observed as the same 1.1375 + if (use_def->toSub()->isTruncated()) 1.1376 + break; 1.1377 + /* Fall through... */ 1.1378 + case MDefinition::Op_StoreElement: 1.1379 + case MDefinition::Op_StoreElementHole: 1.1380 + case MDefinition::Op_LoadElement: 1.1381 + case MDefinition::Op_LoadElementHole: 1.1382 + case MDefinition::Op_LoadTypedArrayElement: 1.1383 + case MDefinition::Op_LoadTypedArrayElementHole: 1.1384 + case MDefinition::Op_CharCodeAt: 1.1385 + case MDefinition::Op_Mod: 1.1386 + // Only allowed to remove check when definition is the second operand 1.1387 + if (use_def->getOperand(0) == def) 1.1388 + return true; 1.1389 + for (size_t i = 2, e = use_def->numOperands(); i < e; i++) { 1.1390 + if (use_def->getOperand(i) == def) 1.1391 + return true; 1.1392 + } 1.1393 + break; 1.1394 + case MDefinition::Op_BoundsCheck: 1.1395 + // Only allowed to remove check when definition is the first operand 1.1396 + if (use_def->toBoundsCheck()->getOperand(1) == def) 1.1397 + return true; 1.1398 + break; 1.1399 + case MDefinition::Op_ToString: 1.1400 + case MDefinition::Op_FromCharCode: 1.1401 + case MDefinition::Op_TableSwitch: 1.1402 + case MDefinition::Op_Compare: 1.1403 + case MDefinition::Op_BitAnd: 1.1404 + case MDefinition::Op_BitOr: 1.1405 + case MDefinition::Op_BitXor: 1.1406 + case MDefinition::Op_Abs: 1.1407 + case MDefinition::Op_TruncateToInt32: 1.1408 + // Always allowed to remove check. No matter which operand. 1.1409 + break; 1.1410 + default: 1.1411 + return true; 1.1412 + } 1.1413 + } 1.1414 + return false; 1.1415 +} 1.1416 + 1.1417 +MDefinition * 1.1418 +MBinaryArithInstruction::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.1419 +{ 1.1420 + if (specialization_ == MIRType_None) 1.1421 + return this; 1.1422 + 1.1423 + MDefinition *lhs = getOperand(0); 1.1424 + MDefinition *rhs = getOperand(1); 1.1425 + if (MDefinition *folded = EvaluateConstantOperands(alloc, this)) 1.1426 + return folded; 1.1427 + 1.1428 + // 0 + -0 = 0. So we can't remove addition 1.1429 + if (isAdd() && specialization_ != MIRType_Int32) 1.1430 + return this; 1.1431 + 1.1432 + if (IsConstant(rhs, getIdentity())) 1.1433 + return lhs; 1.1434 + 1.1435 + // subtraction isn't commutative. So we can't remove subtraction when lhs equals 0 1.1436 + if (isSub()) 1.1437 + return this; 1.1438 + 1.1439 + if (IsConstant(lhs, getIdentity())) 1.1440 + return rhs; // x op id => x 1.1441 + 1.1442 + return this; 1.1443 +} 1.1444 + 1.1445 +void 1.1446 +MBinaryArithInstruction::trySpecializeFloat32(TempAllocator &alloc) 1.1447 +{ 1.1448 + MDefinition *left = lhs(); 1.1449 + MDefinition *right = rhs(); 1.1450 + 1.1451 + if (!left->canProduceFloat32() || !right->canProduceFloat32() 1.1452 + || !CheckUsesAreFloat32Consumers(this)) 1.1453 + { 1.1454 + if (left->type() == MIRType_Float32) 1.1455 + ConvertDefinitionToDouble<0>(alloc, left, this); 1.1456 + if (right->type() == MIRType_Float32) 1.1457 + ConvertDefinitionToDouble<1>(alloc, right, this); 1.1458 + return; 1.1459 + } 1.1460 + 1.1461 + specialization_ = MIRType_Float32; 1.1462 + setResultType(MIRType_Float32); 1.1463 +} 1.1464 + 1.1465 +bool 1.1466 +MAbs::fallible() const 1.1467 +{ 1.1468 + return !implicitTruncate_ && (!range() || !range()->hasInt32Bounds()); 1.1469 +} 1.1470 + 1.1471 +void 1.1472 +MAbs::trySpecializeFloat32(TempAllocator &alloc) 1.1473 +{ 1.1474 + if (!input()->canProduceFloat32() || !CheckUsesAreFloat32Consumers(this)) { 1.1475 + if (input()->type() == MIRType_Float32) 1.1476 + ConvertDefinitionToDouble<0>(alloc, input(), this); 1.1477 + return; 1.1478 + } 1.1479 + 1.1480 + setResultType(MIRType_Float32); 1.1481 + specialization_ = MIRType_Float32; 1.1482 +} 1.1483 + 1.1484 +MDefinition * 1.1485 +MDiv::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.1486 +{ 1.1487 + if (specialization_ == MIRType_None) 1.1488 + return this; 1.1489 + 1.1490 + if (MDefinition *folded = EvaluateConstantOperands(alloc, this)) 1.1491 + return folded; 1.1492 + 1.1493 + return this; 1.1494 +} 1.1495 + 1.1496 +void 1.1497 +MDiv::analyzeEdgeCasesForward() 1.1498 +{ 1.1499 + // This is only meaningful when doing integer division. 1.1500 + if (specialization_ != MIRType_Int32) 1.1501 + return; 1.1502 + 1.1503 + // Try removing divide by zero check 1.1504 + if (rhs()->isConstant() && !rhs()->toConstant()->value().isInt32(0)) 1.1505 + canBeDivideByZero_ = false; 1.1506 + 1.1507 + // If lhs is a constant int != INT32_MIN, then 1.1508 + // negative overflow check can be skipped. 1.1509 + if (lhs()->isConstant() && !lhs()->toConstant()->value().isInt32(INT32_MIN)) 1.1510 + canBeNegativeOverflow_ = false; 1.1511 + 1.1512 + // If rhs is a constant int != -1, likewise. 1.1513 + if (rhs()->isConstant() && !rhs()->toConstant()->value().isInt32(-1)) 1.1514 + canBeNegativeOverflow_ = false; 1.1515 + 1.1516 + // If lhs is != 0, then negative zero check can be skipped. 1.1517 + if (lhs()->isConstant() && !lhs()->toConstant()->value().isInt32(0)) 1.1518 + setCanBeNegativeZero(false); 1.1519 + 1.1520 + // If rhs is >= 0, likewise. 1.1521 + if (rhs()->isConstant()) { 1.1522 + const js::Value &val = rhs()->toConstant()->value(); 1.1523 + if (val.isInt32() && val.toInt32() >= 0) 1.1524 + setCanBeNegativeZero(false); 1.1525 + } 1.1526 +} 1.1527 + 1.1528 +void 1.1529 +MDiv::analyzeEdgeCasesBackward() 1.1530 +{ 1.1531 + if (canBeNegativeZero() && !NeedNegativeZeroCheck(this)) 1.1532 + setCanBeNegativeZero(false); 1.1533 +} 1.1534 + 1.1535 +bool 1.1536 +MDiv::fallible() const 1.1537 +{ 1.1538 + return !isTruncated(); 1.1539 +} 1.1540 + 1.1541 +bool 1.1542 +MMod::canBeDivideByZero() const 1.1543 +{ 1.1544 + JS_ASSERT(specialization_ == MIRType_Int32); 1.1545 + return !rhs()->isConstant() || rhs()->toConstant()->value().toInt32() == 0; 1.1546 +} 1.1547 + 1.1548 +bool 1.1549 +MMod::canBePowerOfTwoDivisor() const 1.1550 +{ 1.1551 + JS_ASSERT(specialization_ == MIRType_Int32); 1.1552 + 1.1553 + if (!rhs()->isConstant()) 1.1554 + return true; 1.1555 + 1.1556 + int32_t i = rhs()->toConstant()->value().toInt32(); 1.1557 + if (i <= 0 || !IsPowerOfTwo(i)) 1.1558 + return false; 1.1559 + 1.1560 + return true; 1.1561 +} 1.1562 + 1.1563 +MDefinition * 1.1564 +MMod::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.1565 +{ 1.1566 + if (specialization_ == MIRType_None) 1.1567 + return this; 1.1568 + 1.1569 + if (MDefinition *folded = EvaluateConstantOperands(alloc, this)) 1.1570 + return folded; 1.1571 + 1.1572 + return this; 1.1573 +} 1.1574 + 1.1575 +bool 1.1576 +MMod::fallible() const 1.1577 +{ 1.1578 + return !isTruncated() && 1.1579 + (isUnsigned() || canBeDivideByZero() || canBeNegativeDividend()); 1.1580 +} 1.1581 + 1.1582 +void 1.1583 +MMathFunction::trySpecializeFloat32(TempAllocator &alloc) 1.1584 +{ 1.1585 + if (!input()->canProduceFloat32() || !CheckUsesAreFloat32Consumers(this)) { 1.1586 + if (input()->type() == MIRType_Float32) 1.1587 + ConvertDefinitionToDouble<0>(alloc, input(), this); 1.1588 + return; 1.1589 + } 1.1590 + 1.1591 + setResultType(MIRType_Float32); 1.1592 + setPolicyType(MIRType_Float32); 1.1593 +} 1.1594 + 1.1595 +bool 1.1596 +MAdd::fallible() const 1.1597 +{ 1.1598 + // the add is fallible if range analysis does not say that it is finite, AND 1.1599 + // either the truncation analysis shows that there are non-truncated uses. 1.1600 + if (isTruncated()) 1.1601 + return false; 1.1602 + if (range() && range()->hasInt32Bounds()) 1.1603 + return false; 1.1604 + return true; 1.1605 +} 1.1606 + 1.1607 +bool 1.1608 +MSub::fallible() const 1.1609 +{ 1.1610 + // see comment in MAdd::fallible() 1.1611 + if (isTruncated()) 1.1612 + return false; 1.1613 + if (range() && range()->hasInt32Bounds()) 1.1614 + return false; 1.1615 + return true; 1.1616 +} 1.1617 + 1.1618 +MDefinition * 1.1619 +MMul::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.1620 +{ 1.1621 + MDefinition *out = MBinaryArithInstruction::foldsTo(alloc, useValueNumbers); 1.1622 + if (out != this) 1.1623 + return out; 1.1624 + 1.1625 + if (specialization() != MIRType_Int32) 1.1626 + return this; 1.1627 + 1.1628 + if (EqualValues(useValueNumbers, lhs(), rhs())) 1.1629 + setCanBeNegativeZero(false); 1.1630 + 1.1631 + return this; 1.1632 +} 1.1633 + 1.1634 +void 1.1635 +MMul::analyzeEdgeCasesForward() 1.1636 +{ 1.1637 + // Try to remove the check for negative zero 1.1638 + // This only makes sense when using the integer multiplication 1.1639 + if (specialization() != MIRType_Int32) 1.1640 + return; 1.1641 + 1.1642 + // If lhs is > 0, no need for negative zero check. 1.1643 + if (lhs()->isConstant()) { 1.1644 + const js::Value &val = lhs()->toConstant()->value(); 1.1645 + if (val.isInt32() && val.toInt32() > 0) 1.1646 + setCanBeNegativeZero(false); 1.1647 + } 1.1648 + 1.1649 + // If rhs is > 0, likewise. 1.1650 + if (rhs()->isConstant()) { 1.1651 + const js::Value &val = rhs()->toConstant()->value(); 1.1652 + if (val.isInt32() && val.toInt32() > 0) 1.1653 + setCanBeNegativeZero(false); 1.1654 + } 1.1655 +} 1.1656 + 1.1657 +void 1.1658 +MMul::analyzeEdgeCasesBackward() 1.1659 +{ 1.1660 + if (canBeNegativeZero() && !NeedNegativeZeroCheck(this)) 1.1661 + setCanBeNegativeZero(false); 1.1662 +} 1.1663 + 1.1664 +bool 1.1665 +MMul::updateForReplacement(MDefinition *ins_) 1.1666 +{ 1.1667 + MMul *ins = ins_->toMul(); 1.1668 + bool negativeZero = canBeNegativeZero() || ins->canBeNegativeZero(); 1.1669 + setCanBeNegativeZero(negativeZero); 1.1670 + // Remove the imul annotation when merging imul and normal multiplication. 1.1671 + if (mode_ == Integer && ins->mode() != Integer) 1.1672 + mode_ = Normal; 1.1673 + return true; 1.1674 +} 1.1675 + 1.1676 +bool 1.1677 +MMul::canOverflow() const 1.1678 +{ 1.1679 + if (isTruncated()) 1.1680 + return false; 1.1681 + return !range() || !range()->hasInt32Bounds(); 1.1682 +} 1.1683 + 1.1684 +bool 1.1685 +MUrsh::fallible() const 1.1686 +{ 1.1687 + if (bailoutsDisabled()) 1.1688 + return false; 1.1689 + return !range() || !range()->hasInt32Bounds(); 1.1690 +} 1.1691 + 1.1692 +static inline bool 1.1693 +KnownNonStringPrimitive(MDefinition *op) 1.1694 +{ 1.1695 + return !op->mightBeType(MIRType_Object) 1.1696 + && !op->mightBeType(MIRType_String) 1.1697 + && !op->mightBeType(MIRType_MagicOptimizedArguments) 1.1698 + && !op->mightBeType(MIRType_MagicHole) 1.1699 + && !op->mightBeType(MIRType_MagicIsConstructing); 1.1700 +} 1.1701 + 1.1702 +void 1.1703 +MBinaryArithInstruction::infer(TempAllocator &alloc, BaselineInspector *inspector, jsbytecode *pc) 1.1704 +{ 1.1705 + JS_ASSERT(this->type() == MIRType_Value); 1.1706 + 1.1707 + specialization_ = MIRType_None; 1.1708 + 1.1709 + // Don't specialize if one operand could be an object. If we specialize 1.1710 + // as int32 or double based on baseline feedback, we could DCE this 1.1711 + // instruction and fail to invoke any valueOf methods. 1.1712 + if (getOperand(0)->mightBeType(MIRType_Object) || getOperand(1)->mightBeType(MIRType_Object)) 1.1713 + return; 1.1714 + 1.1715 + // Anything complex - strings and objects - are not specialized 1.1716 + // unless baseline type hints suggest it might be profitable 1.1717 + if (!KnownNonStringPrimitive(getOperand(0)) || !KnownNonStringPrimitive(getOperand(1))) 1.1718 + return inferFallback(inspector, pc); 1.1719 + 1.1720 + // Retrieve type information of lhs and rhs. 1.1721 + MIRType lhs = getOperand(0)->type(); 1.1722 + MIRType rhs = getOperand(1)->type(); 1.1723 + 1.1724 + // Guess a result type based on the inputs. 1.1725 + // Don't specialize for neither-integer-nor-double results. 1.1726 + if (lhs == MIRType_Int32 && rhs == MIRType_Int32) 1.1727 + setResultType(MIRType_Int32); 1.1728 + // Double operations are prioritary over float32 operations (i.e. if any operand needs 1.1729 + // a double as an input, convert all operands to doubles) 1.1730 + else if (IsFloatingPointType(lhs) || IsFloatingPointType(rhs)) 1.1731 + setResultType(MIRType_Double); 1.1732 + else 1.1733 + return inferFallback(inspector, pc); 1.1734 + 1.1735 + // If the operation has ever overflowed, use a double specialization. 1.1736 + if (inspector->hasSeenDoubleResult(pc)) 1.1737 + setResultType(MIRType_Double); 1.1738 + 1.1739 + // If the operation will always overflow on its constant operands, use a 1.1740 + // double specialization so that it can be constant folded later. 1.1741 + if ((isMul() || isDiv()) && lhs == MIRType_Int32 && rhs == MIRType_Int32) { 1.1742 + bool typeChange = false; 1.1743 + EvaluateConstantOperands(alloc, this, &typeChange); 1.1744 + if (typeChange) 1.1745 + setResultType(MIRType_Double); 1.1746 + } 1.1747 + 1.1748 + JS_ASSERT(lhs < MIRType_String || lhs == MIRType_Value); 1.1749 + JS_ASSERT(rhs < MIRType_String || rhs == MIRType_Value); 1.1750 + 1.1751 + MIRType rval = this->type(); 1.1752 + 1.1753 + // Don't specialize values when result isn't double 1.1754 + if (lhs == MIRType_Value || rhs == MIRType_Value) { 1.1755 + if (!IsFloatingPointType(rval)) { 1.1756 + specialization_ = MIRType_None; 1.1757 + return; 1.1758 + } 1.1759 + } 1.1760 + 1.1761 + // Don't specialize as int32 if one of the operands is undefined, 1.1762 + // since ToNumber(undefined) is NaN. 1.1763 + if (rval == MIRType_Int32 && (lhs == MIRType_Undefined || rhs == MIRType_Undefined)) { 1.1764 + specialization_ = MIRType_None; 1.1765 + return; 1.1766 + } 1.1767 + 1.1768 + specialization_ = rval; 1.1769 + 1.1770 + if (isAdd() || isMul()) 1.1771 + setCommutative(); 1.1772 + setResultType(rval); 1.1773 +} 1.1774 + 1.1775 +void 1.1776 +MBinaryArithInstruction::inferFallback(BaselineInspector *inspector, 1.1777 + jsbytecode *pc) 1.1778 +{ 1.1779 + // Try to specialize based on what baseline observed in practice. 1.1780 + specialization_ = inspector->expectedBinaryArithSpecialization(pc); 1.1781 + if (specialization_ != MIRType_None) { 1.1782 + setResultType(specialization_); 1.1783 + return; 1.1784 + } 1.1785 + 1.1786 + // In parallel execution, for now anyhow, we *only* support adding 1.1787 + // and manipulating numbers (not strings or objects). So no 1.1788 + // matter what we can specialize to double...if the result ought 1.1789 + // to have been something else, we'll fail in the various type 1.1790 + // guards that get inserted later. 1.1791 + if (block()->info().executionMode() == ParallelExecution) { 1.1792 + specialization_ = MIRType_Double; 1.1793 + setResultType(MIRType_Double); 1.1794 + return; 1.1795 + } 1.1796 + 1.1797 + // If we can't specialize because we have no type information at all for 1.1798 + // the lhs or rhs, mark the binary instruction as having no possible types 1.1799 + // either to avoid degrading subsequent analysis. 1.1800 + if (getOperand(0)->emptyResultTypeSet() || getOperand(1)->emptyResultTypeSet()) { 1.1801 + LifoAlloc *alloc = GetIonContext()->temp->lifoAlloc(); 1.1802 + types::TemporaryTypeSet *types = alloc->new_<types::TemporaryTypeSet>(); 1.1803 + if (types) 1.1804 + setResultTypeSet(types); 1.1805 + } 1.1806 +} 1.1807 + 1.1808 +static bool 1.1809 +SafelyCoercesToDouble(MDefinition *op) 1.1810 +{ 1.1811 + // Strings are unhandled -- visitToDouble() doesn't support them yet. 1.1812 + // Null is unhandled -- ToDouble(null) == 0, but (0 == null) is false. 1.1813 + return KnownNonStringPrimitive(op) && !op->mightBeType(MIRType_Null); 1.1814 +} 1.1815 + 1.1816 +static bool 1.1817 +ObjectOrSimplePrimitive(MDefinition *op) 1.1818 +{ 1.1819 + // Return true if op is either undefined/null/boolean/int32 or an object. 1.1820 + return !op->mightBeType(MIRType_String) 1.1821 + && !op->mightBeType(MIRType_Double) 1.1822 + && !op->mightBeType(MIRType_Float32) 1.1823 + && !op->mightBeType(MIRType_MagicOptimizedArguments) 1.1824 + && !op->mightBeType(MIRType_MagicHole) 1.1825 + && !op->mightBeType(MIRType_MagicIsConstructing); 1.1826 +} 1.1827 + 1.1828 +static bool 1.1829 +CanDoValueBitwiseCmp(MDefinition *lhs, MDefinition *rhs, bool looseEq) 1.1830 +{ 1.1831 + // Only primitive (not double/string) or objects are supported. 1.1832 + // I.e. Undefined/Null/Boolean/Int32 and Object 1.1833 + if (!ObjectOrSimplePrimitive(lhs) || !ObjectOrSimplePrimitive(rhs)) 1.1834 + return false; 1.1835 + 1.1836 + // Objects that emulate undefined are not supported. 1.1837 + if (MaybeEmulatesUndefined(lhs) || MaybeEmulatesUndefined(rhs)) 1.1838 + return false; 1.1839 + 1.1840 + // In the loose comparison more values could be the same, 1.1841 + // but value comparison reporting otherwise. 1.1842 + if (looseEq) { 1.1843 + 1.1844 + // Undefined compared loosy to Null is not supported, 1.1845 + // because tag is different, but value can be the same (undefined == null). 1.1846 + if ((lhs->mightBeType(MIRType_Undefined) && rhs->mightBeType(MIRType_Null)) || 1.1847 + (lhs->mightBeType(MIRType_Null) && rhs->mightBeType(MIRType_Undefined))) 1.1848 + { 1.1849 + return false; 1.1850 + } 1.1851 + 1.1852 + // Int32 compared loosy to Boolean is not supported, 1.1853 + // because tag is different, but value can be the same (1 == true). 1.1854 + if ((lhs->mightBeType(MIRType_Int32) && rhs->mightBeType(MIRType_Boolean)) || 1.1855 + (lhs->mightBeType(MIRType_Boolean) && rhs->mightBeType(MIRType_Int32))) 1.1856 + { 1.1857 + return false; 1.1858 + } 1.1859 + 1.1860 + // For loosy comparison of an object with a Boolean/Number/String 1.1861 + // the valueOf the object is taken. Therefore not supported. 1.1862 + bool simpleLHS = lhs->mightBeType(MIRType_Boolean) || lhs->mightBeType(MIRType_Int32); 1.1863 + bool simpleRHS = rhs->mightBeType(MIRType_Boolean) || rhs->mightBeType(MIRType_Int32); 1.1864 + if ((lhs->mightBeType(MIRType_Object) && simpleRHS) || 1.1865 + (rhs->mightBeType(MIRType_Object) && simpleLHS)) 1.1866 + { 1.1867 + return false; 1.1868 + } 1.1869 + } 1.1870 + 1.1871 + return true; 1.1872 +} 1.1873 + 1.1874 +MIRType 1.1875 +MCompare::inputType() 1.1876 +{ 1.1877 + switch(compareType_) { 1.1878 + case Compare_Undefined: 1.1879 + return MIRType_Undefined; 1.1880 + case Compare_Null: 1.1881 + return MIRType_Null; 1.1882 + case Compare_Boolean: 1.1883 + return MIRType_Boolean; 1.1884 + case Compare_UInt32: 1.1885 + case Compare_Int32: 1.1886 + case Compare_Int32MaybeCoerceBoth: 1.1887 + case Compare_Int32MaybeCoerceLHS: 1.1888 + case Compare_Int32MaybeCoerceRHS: 1.1889 + return MIRType_Int32; 1.1890 + case Compare_Double: 1.1891 + case Compare_DoubleMaybeCoerceLHS: 1.1892 + case Compare_DoubleMaybeCoerceRHS: 1.1893 + return MIRType_Double; 1.1894 + case Compare_Float32: 1.1895 + return MIRType_Float32; 1.1896 + case Compare_String: 1.1897 + case Compare_StrictString: 1.1898 + return MIRType_String; 1.1899 + case Compare_Object: 1.1900 + return MIRType_Object; 1.1901 + case Compare_Unknown: 1.1902 + case Compare_Value: 1.1903 + return MIRType_Value; 1.1904 + default: 1.1905 + MOZ_ASSUME_UNREACHABLE("No known conversion"); 1.1906 + } 1.1907 +} 1.1908 + 1.1909 +static inline bool 1.1910 +MustBeUInt32(MDefinition *def, MDefinition **pwrapped) 1.1911 +{ 1.1912 + if (def->isUrsh()) { 1.1913 + *pwrapped = def->toUrsh()->getOperand(0); 1.1914 + MDefinition *rhs = def->toUrsh()->getOperand(1); 1.1915 + return !def->toUrsh()->bailoutsDisabled() 1.1916 + && rhs->isConstant() 1.1917 + && rhs->toConstant()->value().isInt32() 1.1918 + && rhs->toConstant()->value().toInt32() == 0; 1.1919 + } 1.1920 + 1.1921 + if (def->isConstant()) { 1.1922 + *pwrapped = def; 1.1923 + return def->toConstant()->value().isInt32() 1.1924 + && def->toConstant()->value().toInt32() >= 0; 1.1925 + } 1.1926 + 1.1927 + return false; 1.1928 +} 1.1929 + 1.1930 +bool 1.1931 +MBinaryInstruction::tryUseUnsignedOperands() 1.1932 +{ 1.1933 + MDefinition *newlhs, *newrhs; 1.1934 + if (MustBeUInt32(getOperand(0), &newlhs) && MustBeUInt32(getOperand(1), &newrhs)) { 1.1935 + if (newlhs->type() != MIRType_Int32 || newrhs->type() != MIRType_Int32) 1.1936 + return false; 1.1937 + if (newlhs != getOperand(0)) { 1.1938 + getOperand(0)->setImplicitlyUsedUnchecked(); 1.1939 + replaceOperand(0, newlhs); 1.1940 + } 1.1941 + if (newrhs != getOperand(1)) { 1.1942 + getOperand(1)->setImplicitlyUsedUnchecked(); 1.1943 + replaceOperand(1, newrhs); 1.1944 + } 1.1945 + return true; 1.1946 + } 1.1947 + return false; 1.1948 +} 1.1949 + 1.1950 +void 1.1951 +MCompare::infer(BaselineInspector *inspector, jsbytecode *pc) 1.1952 +{ 1.1953 + JS_ASSERT(operandMightEmulateUndefined()); 1.1954 + 1.1955 + if (!MaybeEmulatesUndefined(getOperand(0)) && !MaybeEmulatesUndefined(getOperand(1))) 1.1956 + markNoOperandEmulatesUndefined(); 1.1957 + 1.1958 + MIRType lhs = getOperand(0)->type(); 1.1959 + MIRType rhs = getOperand(1)->type(); 1.1960 + 1.1961 + bool looseEq = jsop() == JSOP_EQ || jsop() == JSOP_NE; 1.1962 + bool strictEq = jsop() == JSOP_STRICTEQ || jsop() == JSOP_STRICTNE; 1.1963 + bool relationalEq = !(looseEq || strictEq); 1.1964 + 1.1965 + // Comparisons on unsigned integers may be treated as UInt32. 1.1966 + if (tryUseUnsignedOperands()) { 1.1967 + compareType_ = Compare_UInt32; 1.1968 + return; 1.1969 + } 1.1970 + 1.1971 + // Integer to integer or boolean to boolean comparisons may be treated as Int32. 1.1972 + if ((lhs == MIRType_Int32 && rhs == MIRType_Int32) || 1.1973 + (lhs == MIRType_Boolean && rhs == MIRType_Boolean)) 1.1974 + { 1.1975 + compareType_ = Compare_Int32MaybeCoerceBoth; 1.1976 + return; 1.1977 + } 1.1978 + 1.1979 + // Loose/relational cross-integer/boolean comparisons may be treated as Int32. 1.1980 + if (!strictEq && 1.1981 + (lhs == MIRType_Int32 || lhs == MIRType_Boolean) && 1.1982 + (rhs == MIRType_Int32 || rhs == MIRType_Boolean)) 1.1983 + { 1.1984 + compareType_ = Compare_Int32MaybeCoerceBoth; 1.1985 + return; 1.1986 + } 1.1987 + 1.1988 + // Numeric comparisons against a double coerce to double. 1.1989 + if (IsNumberType(lhs) && IsNumberType(rhs)) { 1.1990 + compareType_ = Compare_Double; 1.1991 + return; 1.1992 + } 1.1993 + 1.1994 + // Any comparison is allowed except strict eq. 1.1995 + if (!strictEq && IsFloatingPointType(lhs) && SafelyCoercesToDouble(getOperand(1))) { 1.1996 + compareType_ = Compare_DoubleMaybeCoerceRHS; 1.1997 + return; 1.1998 + } 1.1999 + if (!strictEq && IsFloatingPointType(rhs) && SafelyCoercesToDouble(getOperand(0))) { 1.2000 + compareType_ = Compare_DoubleMaybeCoerceLHS; 1.2001 + return; 1.2002 + } 1.2003 + 1.2004 + // Handle object comparison. 1.2005 + if (!relationalEq && lhs == MIRType_Object && rhs == MIRType_Object) { 1.2006 + compareType_ = Compare_Object; 1.2007 + return; 1.2008 + } 1.2009 + 1.2010 + // Handle string comparisons. (Relational string compares are still unsupported). 1.2011 + if (!relationalEq && lhs == MIRType_String && rhs == MIRType_String) { 1.2012 + compareType_ = Compare_String; 1.2013 + return; 1.2014 + } 1.2015 + 1.2016 + if (strictEq && lhs == MIRType_String) { 1.2017 + // Lowering expects the rhs to be definitly string. 1.2018 + compareType_ = Compare_StrictString; 1.2019 + swapOperands(); 1.2020 + return; 1.2021 + } 1.2022 + 1.2023 + if (strictEq && rhs == MIRType_String) { 1.2024 + compareType_ = Compare_StrictString; 1.2025 + return; 1.2026 + } 1.2027 + 1.2028 + // Handle compare with lhs being Undefined or Null. 1.2029 + if (!relationalEq && IsNullOrUndefined(lhs)) { 1.2030 + // Lowering expects the rhs to be null/undefined, so we have to 1.2031 + // swap the operands. This is necessary since we may not know which 1.2032 + // operand was null/undefined during lowering (both operands may have 1.2033 + // MIRType_Value). 1.2034 + compareType_ = (lhs == MIRType_Null) ? Compare_Null : Compare_Undefined; 1.2035 + swapOperands(); 1.2036 + return; 1.2037 + } 1.2038 + 1.2039 + // Handle compare with rhs being Undefined or Null. 1.2040 + if (!relationalEq && IsNullOrUndefined(rhs)) { 1.2041 + compareType_ = (rhs == MIRType_Null) ? Compare_Null : Compare_Undefined; 1.2042 + return; 1.2043 + } 1.2044 + 1.2045 + // Handle strict comparison with lhs/rhs being typed Boolean. 1.2046 + if (strictEq && (lhs == MIRType_Boolean || rhs == MIRType_Boolean)) { 1.2047 + // bool/bool case got an int32 specialization earlier. 1.2048 + JS_ASSERT(!(lhs == MIRType_Boolean && rhs == MIRType_Boolean)); 1.2049 + 1.2050 + // Ensure the boolean is on the right so that the type policy knows 1.2051 + // which side to unbox. 1.2052 + if (lhs == MIRType_Boolean) 1.2053 + swapOperands(); 1.2054 + 1.2055 + compareType_ = Compare_Boolean; 1.2056 + return; 1.2057 + } 1.2058 + 1.2059 + // Determine if we can do the compare based on a quick value check. 1.2060 + if (!relationalEq && CanDoValueBitwiseCmp(getOperand(0), getOperand(1), looseEq)) { 1.2061 + compareType_ = Compare_Value; 1.2062 + return; 1.2063 + } 1.2064 + 1.2065 + // Type information is not good enough to pick out a particular type of 1.2066 + // comparison we can do here. Try to specialize based on any baseline 1.2067 + // caches that have been generated for the opcode. These will cause the 1.2068 + // instruction's type policy to insert fallible unboxes to the appropriate 1.2069 + // input types. 1.2070 + 1.2071 + if (!strictEq) 1.2072 + compareType_ = inspector->expectedCompareType(pc); 1.2073 +} 1.2074 + 1.2075 +MBitNot * 1.2076 +MBitNot::New(TempAllocator &alloc, MDefinition *input) 1.2077 +{ 1.2078 + return new(alloc) MBitNot(input); 1.2079 +} 1.2080 + 1.2081 +MBitNot * 1.2082 +MBitNot::NewAsmJS(TempAllocator &alloc, MDefinition *input) 1.2083 +{ 1.2084 + MBitNot *ins = new(alloc) MBitNot(input); 1.2085 + ins->specialization_ = MIRType_Int32; 1.2086 + JS_ASSERT(ins->type() == MIRType_Int32); 1.2087 + return ins; 1.2088 +} 1.2089 + 1.2090 +MDefinition * 1.2091 +MBitNot::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2092 +{ 1.2093 + if (specialization_ != MIRType_Int32) 1.2094 + return this; 1.2095 + 1.2096 + MDefinition *input = getOperand(0); 1.2097 + 1.2098 + if (input->isConstant()) { 1.2099 + js::Value v = Int32Value(~(input->toConstant()->value().toInt32())); 1.2100 + return MConstant::New(alloc, v); 1.2101 + } 1.2102 + 1.2103 + if (input->isBitNot() && input->toBitNot()->specialization_ == MIRType_Int32) { 1.2104 + JS_ASSERT(input->toBitNot()->getOperand(0)->type() == MIRType_Int32); 1.2105 + return input->toBitNot()->getOperand(0); // ~~x => x 1.2106 + } 1.2107 + 1.2108 + return this; 1.2109 +} 1.2110 + 1.2111 +MDefinition * 1.2112 +MTypeOf::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2113 +{ 1.2114 + // Note: we can't use input->type() here, type analysis has 1.2115 + // boxed the input. 1.2116 + JS_ASSERT(input()->type() == MIRType_Value); 1.2117 + 1.2118 + JSType type; 1.2119 + 1.2120 + switch (inputType()) { 1.2121 + case MIRType_Double: 1.2122 + case MIRType_Int32: 1.2123 + type = JSTYPE_NUMBER; 1.2124 + break; 1.2125 + case MIRType_String: 1.2126 + type = JSTYPE_STRING; 1.2127 + break; 1.2128 + case MIRType_Null: 1.2129 + type = JSTYPE_OBJECT; 1.2130 + break; 1.2131 + case MIRType_Undefined: 1.2132 + type = JSTYPE_VOID; 1.2133 + break; 1.2134 + case MIRType_Boolean: 1.2135 + type = JSTYPE_BOOLEAN; 1.2136 + break; 1.2137 + case MIRType_Object: 1.2138 + if (!inputMaybeCallableOrEmulatesUndefined()) { 1.2139 + // Object is not callable and does not emulate undefined, so it's 1.2140 + // safe to fold to "object". 1.2141 + type = JSTYPE_OBJECT; 1.2142 + break; 1.2143 + } 1.2144 + // FALL THROUGH 1.2145 + default: 1.2146 + return this; 1.2147 + } 1.2148 + 1.2149 + return MConstant::New(alloc, StringValue(TypeName(type, GetIonContext()->runtime->names()))); 1.2150 +} 1.2151 + 1.2152 +void 1.2153 +MTypeOf::infer() 1.2154 +{ 1.2155 + JS_ASSERT(inputMaybeCallableOrEmulatesUndefined()); 1.2156 + 1.2157 + if (!MaybeEmulatesUndefined(input()) && !MaybeCallable(input())) 1.2158 + markInputNotCallableOrEmulatesUndefined(); 1.2159 +} 1.2160 + 1.2161 +MBitAnd * 1.2162 +MBitAnd::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2163 +{ 1.2164 + return new(alloc) MBitAnd(left, right); 1.2165 +} 1.2166 + 1.2167 +MBitAnd * 1.2168 +MBitAnd::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2169 +{ 1.2170 + MBitAnd *ins = new(alloc) MBitAnd(left, right); 1.2171 + ins->specializeAsInt32(); 1.2172 + return ins; 1.2173 +} 1.2174 + 1.2175 +MBitOr * 1.2176 +MBitOr::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2177 +{ 1.2178 + return new(alloc) MBitOr(left, right); 1.2179 +} 1.2180 + 1.2181 +MBitOr * 1.2182 +MBitOr::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2183 +{ 1.2184 + MBitOr *ins = new(alloc) MBitOr(left, right); 1.2185 + ins->specializeAsInt32(); 1.2186 + return ins; 1.2187 +} 1.2188 + 1.2189 +MBitXor * 1.2190 +MBitXor::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2191 +{ 1.2192 + return new(alloc) MBitXor(left, right); 1.2193 +} 1.2194 + 1.2195 +MBitXor * 1.2196 +MBitXor::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2197 +{ 1.2198 + MBitXor *ins = new(alloc) MBitXor(left, right); 1.2199 + ins->specializeAsInt32(); 1.2200 + return ins; 1.2201 +} 1.2202 + 1.2203 +MLsh * 1.2204 +MLsh::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2205 +{ 1.2206 + return new(alloc) MLsh(left, right); 1.2207 +} 1.2208 + 1.2209 +MLsh * 1.2210 +MLsh::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2211 +{ 1.2212 + MLsh *ins = new(alloc) MLsh(left, right); 1.2213 + ins->specializeAsInt32(); 1.2214 + return ins; 1.2215 +} 1.2216 + 1.2217 +MRsh * 1.2218 +MRsh::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2219 +{ 1.2220 + return new(alloc) MRsh(left, right); 1.2221 +} 1.2222 + 1.2223 +MRsh * 1.2224 +MRsh::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2225 +{ 1.2226 + MRsh *ins = new(alloc) MRsh(left, right); 1.2227 + ins->specializeAsInt32(); 1.2228 + return ins; 1.2229 +} 1.2230 + 1.2231 +MUrsh * 1.2232 +MUrsh::New(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2233 +{ 1.2234 + return new(alloc) MUrsh(left, right); 1.2235 +} 1.2236 + 1.2237 +MUrsh * 1.2238 +MUrsh::NewAsmJS(TempAllocator &alloc, MDefinition *left, MDefinition *right) 1.2239 +{ 1.2240 + MUrsh *ins = new(alloc) MUrsh(left, right); 1.2241 + ins->specializeAsInt32(); 1.2242 + 1.2243 + // Since Ion has no UInt32 type, we use Int32 and we have a special 1.2244 + // exception to the type rules: we can return values in 1.2245 + // (INT32_MIN,UINT32_MAX] and still claim that we have an Int32 type 1.2246 + // without bailing out. This is necessary because Ion has no UInt32 1.2247 + // type and we can't have bailouts in asm.js code. 1.2248 + ins->bailoutsDisabled_ = true; 1.2249 + 1.2250 + return ins; 1.2251 +} 1.2252 + 1.2253 +MResumePoint * 1.2254 +MResumePoint::New(TempAllocator &alloc, MBasicBlock *block, jsbytecode *pc, MResumePoint *parent, 1.2255 + Mode mode) 1.2256 +{ 1.2257 + MResumePoint *resume = new(alloc) MResumePoint(block, pc, parent, mode); 1.2258 + if (!resume->init(alloc)) 1.2259 + return nullptr; 1.2260 + resume->inherit(block); 1.2261 + return resume; 1.2262 +} 1.2263 + 1.2264 +MResumePoint::MResumePoint(MBasicBlock *block, jsbytecode *pc, MResumePoint *caller, 1.2265 + Mode mode) 1.2266 + : MNode(block), 1.2267 + stackDepth_(block->stackDepth()), 1.2268 + pc_(pc), 1.2269 + caller_(caller), 1.2270 + instruction_(nullptr), 1.2271 + mode_(mode) 1.2272 +{ 1.2273 + block->addResumePoint(this); 1.2274 +} 1.2275 + 1.2276 +void 1.2277 +MResumePoint::inherit(MBasicBlock *block) 1.2278 +{ 1.2279 + for (size_t i = 0; i < stackDepth(); i++) { 1.2280 + MDefinition *def = block->getSlot(i); 1.2281 + setOperand(i, def); 1.2282 + } 1.2283 +} 1.2284 + 1.2285 +MDefinition * 1.2286 +MToInt32::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2287 +{ 1.2288 + MDefinition *input = getOperand(0); 1.2289 + if (input->type() == MIRType_Int32) 1.2290 + return input; 1.2291 + return this; 1.2292 +} 1.2293 + 1.2294 +void 1.2295 +MToInt32::analyzeEdgeCasesBackward() 1.2296 +{ 1.2297 + if (!NeedNegativeZeroCheck(this)) 1.2298 + setCanBeNegativeZero(false); 1.2299 +} 1.2300 + 1.2301 +MDefinition * 1.2302 +MTruncateToInt32::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2303 +{ 1.2304 + MDefinition *input = getOperand(0); 1.2305 + if (input->type() == MIRType_Int32) 1.2306 + return input; 1.2307 + 1.2308 + if (input->type() == MIRType_Double && input->isConstant()) { 1.2309 + const Value &v = input->toConstant()->value(); 1.2310 + int32_t ret = ToInt32(v.toDouble()); 1.2311 + return MConstant::New(alloc, Int32Value(ret)); 1.2312 + } 1.2313 + 1.2314 + return this; 1.2315 +} 1.2316 + 1.2317 +MDefinition * 1.2318 +MToDouble::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2319 +{ 1.2320 + MDefinition *in = input(); 1.2321 + if (in->type() == MIRType_Double) 1.2322 + return in; 1.2323 + 1.2324 + if (in->isConstant()) { 1.2325 + const Value &v = in->toConstant()->value(); 1.2326 + if (v.isNumber()) { 1.2327 + double out = v.toNumber(); 1.2328 + return MConstant::New(alloc, DoubleValue(out)); 1.2329 + } 1.2330 + } 1.2331 + 1.2332 + return this; 1.2333 +} 1.2334 + 1.2335 +MDefinition * 1.2336 +MToFloat32::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2337 +{ 1.2338 + if (input()->type() == MIRType_Float32) 1.2339 + return input(); 1.2340 + 1.2341 + // If x is a Float32, Float32(Double(x)) == x 1.2342 + if (input()->isToDouble() && input()->toToDouble()->input()->type() == MIRType_Float32) 1.2343 + return input()->toToDouble()->input(); 1.2344 + 1.2345 + if (input()->isConstant()) { 1.2346 + const Value &v = input()->toConstant()->value(); 1.2347 + if (v.isNumber()) { 1.2348 + float out = v.toNumber(); 1.2349 + MConstant *c = MConstant::New(alloc, DoubleValue(out)); 1.2350 + c->setResultType(MIRType_Float32); 1.2351 + return c; 1.2352 + } 1.2353 + } 1.2354 + return this; 1.2355 +} 1.2356 + 1.2357 +MDefinition * 1.2358 +MToString::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2359 +{ 1.2360 + MDefinition *in = input(); 1.2361 + if (in->type() == MIRType_String) 1.2362 + return in; 1.2363 + return this; 1.2364 +} 1.2365 + 1.2366 +MDefinition * 1.2367 +MClampToUint8::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2368 +{ 1.2369 + if (input()->isConstant()) { 1.2370 + const Value &v = input()->toConstant()->value(); 1.2371 + if (v.isDouble()) { 1.2372 + int32_t clamped = ClampDoubleToUint8(v.toDouble()); 1.2373 + return MConstant::New(alloc, Int32Value(clamped)); 1.2374 + } 1.2375 + if (v.isInt32()) { 1.2376 + int32_t clamped = ClampIntForUint8Array(v.toInt32()); 1.2377 + return MConstant::New(alloc, Int32Value(clamped)); 1.2378 + } 1.2379 + } 1.2380 + return this; 1.2381 +} 1.2382 + 1.2383 +bool 1.2384 +MCompare::tryFold(bool *result) 1.2385 +{ 1.2386 + JSOp op = jsop(); 1.2387 + 1.2388 + if (compareType_ == Compare_Null || compareType_ == Compare_Undefined) { 1.2389 + JS_ASSERT(op == JSOP_EQ || op == JSOP_STRICTEQ || 1.2390 + op == JSOP_NE || op == JSOP_STRICTNE); 1.2391 + 1.2392 + // The LHS is the value we want to test against null or undefined. 1.2393 + switch (lhs()->type()) { 1.2394 + case MIRType_Value: 1.2395 + return false; 1.2396 + case MIRType_Undefined: 1.2397 + case MIRType_Null: 1.2398 + if (lhs()->type() == inputType()) { 1.2399 + // Both sides have the same type, null or undefined. 1.2400 + *result = (op == JSOP_EQ || op == JSOP_STRICTEQ); 1.2401 + } else { 1.2402 + // One side is null, the other side is undefined. The result is only 1.2403 + // true for loose equality. 1.2404 + *result = (op == JSOP_EQ || op == JSOP_STRICTNE); 1.2405 + } 1.2406 + return true; 1.2407 + case MIRType_Object: 1.2408 + if ((op == JSOP_EQ || op == JSOP_NE) && operandMightEmulateUndefined()) 1.2409 + return false; 1.2410 + /* FALL THROUGH */ 1.2411 + case MIRType_Int32: 1.2412 + case MIRType_Double: 1.2413 + case MIRType_Float32: 1.2414 + case MIRType_String: 1.2415 + case MIRType_Boolean: 1.2416 + *result = (op == JSOP_NE || op == JSOP_STRICTNE); 1.2417 + return true; 1.2418 + default: 1.2419 + MOZ_ASSUME_UNREACHABLE("Unexpected type"); 1.2420 + } 1.2421 + } 1.2422 + 1.2423 + if (compareType_ == Compare_Boolean) { 1.2424 + JS_ASSERT(op == JSOP_STRICTEQ || op == JSOP_STRICTNE); 1.2425 + JS_ASSERT(rhs()->type() == MIRType_Boolean); 1.2426 + 1.2427 + switch (lhs()->type()) { 1.2428 + case MIRType_Value: 1.2429 + return false; 1.2430 + case MIRType_Int32: 1.2431 + case MIRType_Double: 1.2432 + case MIRType_Float32: 1.2433 + case MIRType_String: 1.2434 + case MIRType_Object: 1.2435 + case MIRType_Null: 1.2436 + case MIRType_Undefined: 1.2437 + *result = (op == JSOP_STRICTNE); 1.2438 + return true; 1.2439 + case MIRType_Boolean: 1.2440 + // Int32 specialization should handle this. 1.2441 + MOZ_ASSUME_UNREACHABLE("Wrong specialization"); 1.2442 + default: 1.2443 + MOZ_ASSUME_UNREACHABLE("Unexpected type"); 1.2444 + } 1.2445 + } 1.2446 + 1.2447 + if (compareType_ == Compare_StrictString) { 1.2448 + JS_ASSERT(op == JSOP_STRICTEQ || op == JSOP_STRICTNE); 1.2449 + JS_ASSERT(rhs()->type() == MIRType_String); 1.2450 + 1.2451 + switch (lhs()->type()) { 1.2452 + case MIRType_Value: 1.2453 + return false; 1.2454 + case MIRType_Boolean: 1.2455 + case MIRType_Int32: 1.2456 + case MIRType_Double: 1.2457 + case MIRType_Float32: 1.2458 + case MIRType_Object: 1.2459 + case MIRType_Null: 1.2460 + case MIRType_Undefined: 1.2461 + *result = (op == JSOP_STRICTNE); 1.2462 + return true; 1.2463 + case MIRType_String: 1.2464 + // Compare_String specialization should handle this. 1.2465 + MOZ_ASSUME_UNREACHABLE("Wrong specialization"); 1.2466 + default: 1.2467 + MOZ_ASSUME_UNREACHABLE("Unexpected type"); 1.2468 + } 1.2469 + } 1.2470 + 1.2471 + return false; 1.2472 +} 1.2473 + 1.2474 +bool 1.2475 +MCompare::evaluateConstantOperands(bool *result) 1.2476 +{ 1.2477 + if (type() != MIRType_Boolean && type() != MIRType_Int32) 1.2478 + return false; 1.2479 + 1.2480 + MDefinition *left = getOperand(0); 1.2481 + MDefinition *right = getOperand(1); 1.2482 + 1.2483 + if (!left->isConstant() || !right->isConstant()) 1.2484 + return false; 1.2485 + 1.2486 + Value lhs = left->toConstant()->value(); 1.2487 + Value rhs = right->toConstant()->value(); 1.2488 + 1.2489 + // Fold away some String equality comparisons. 1.2490 + if (lhs.isString() && rhs.isString()) { 1.2491 + int32_t comp = 0; // Default to equal. 1.2492 + if (left != right) 1.2493 + comp = CompareAtoms(&lhs.toString()->asAtom(), &rhs.toString()->asAtom()); 1.2494 + 1.2495 + switch (jsop_) { 1.2496 + case JSOP_LT: 1.2497 + *result = (comp < 0); 1.2498 + break; 1.2499 + case JSOP_LE: 1.2500 + *result = (comp <= 0); 1.2501 + break; 1.2502 + case JSOP_GT: 1.2503 + *result = (comp > 0); 1.2504 + break; 1.2505 + case JSOP_GE: 1.2506 + *result = (comp >= 0); 1.2507 + break; 1.2508 + case JSOP_STRICTEQ: // Fall through. 1.2509 + case JSOP_EQ: 1.2510 + *result = (comp == 0); 1.2511 + break; 1.2512 + case JSOP_STRICTNE: // Fall through. 1.2513 + case JSOP_NE: 1.2514 + *result = (comp != 0); 1.2515 + break; 1.2516 + default: 1.2517 + MOZ_ASSUME_UNREACHABLE("Unexpected op."); 1.2518 + } 1.2519 + 1.2520 + return true; 1.2521 + } 1.2522 + 1.2523 + if (compareType_ == Compare_UInt32) { 1.2524 + uint32_t lhsUint = uint32_t(lhs.toInt32()); 1.2525 + uint32_t rhsUint = uint32_t(rhs.toInt32()); 1.2526 + 1.2527 + switch (jsop_) { 1.2528 + case JSOP_LT: 1.2529 + *result = (lhsUint < rhsUint); 1.2530 + break; 1.2531 + case JSOP_LE: 1.2532 + *result = (lhsUint <= rhsUint); 1.2533 + break; 1.2534 + case JSOP_GT: 1.2535 + *result = (lhsUint > rhsUint); 1.2536 + break; 1.2537 + case JSOP_GE: 1.2538 + *result = (lhsUint >= rhsUint); 1.2539 + break; 1.2540 + case JSOP_EQ: 1.2541 + case JSOP_STRICTEQ: 1.2542 + *result = (lhsUint == rhsUint); 1.2543 + break; 1.2544 + case JSOP_NE: 1.2545 + case JSOP_STRICTNE: 1.2546 + *result = (lhsUint != rhsUint); 1.2547 + break; 1.2548 + default: 1.2549 + MOZ_ASSUME_UNREACHABLE("Unexpected op."); 1.2550 + } 1.2551 + 1.2552 + return true; 1.2553 + } 1.2554 + 1.2555 + if (!lhs.isNumber() || !rhs.isNumber()) 1.2556 + return false; 1.2557 + 1.2558 + switch (jsop_) { 1.2559 + case JSOP_LT: 1.2560 + *result = (lhs.toNumber() < rhs.toNumber()); 1.2561 + break; 1.2562 + case JSOP_LE: 1.2563 + *result = (lhs.toNumber() <= rhs.toNumber()); 1.2564 + break; 1.2565 + case JSOP_GT: 1.2566 + *result = (lhs.toNumber() > rhs.toNumber()); 1.2567 + break; 1.2568 + case JSOP_GE: 1.2569 + *result = (lhs.toNumber() >= rhs.toNumber()); 1.2570 + break; 1.2571 + case JSOP_EQ: 1.2572 + *result = (lhs.toNumber() == rhs.toNumber()); 1.2573 + break; 1.2574 + case JSOP_NE: 1.2575 + *result = (lhs.toNumber() != rhs.toNumber()); 1.2576 + break; 1.2577 + default: 1.2578 + return false; 1.2579 + } 1.2580 + 1.2581 + return true; 1.2582 +} 1.2583 + 1.2584 +MDefinition * 1.2585 +MCompare::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2586 +{ 1.2587 + bool result; 1.2588 + 1.2589 + if (tryFold(&result) || evaluateConstantOperands(&result)) { 1.2590 + if (type() == MIRType_Int32) 1.2591 + return MConstant::New(alloc, Int32Value(result)); 1.2592 + 1.2593 + JS_ASSERT(type() == MIRType_Boolean); 1.2594 + return MConstant::New(alloc, BooleanValue(result)); 1.2595 + } 1.2596 + 1.2597 + return this; 1.2598 +} 1.2599 + 1.2600 +void 1.2601 +MCompare::trySpecializeFloat32(TempAllocator &alloc) 1.2602 +{ 1.2603 + MDefinition *lhs = getOperand(0); 1.2604 + MDefinition *rhs = getOperand(1); 1.2605 + 1.2606 + if (lhs->canProduceFloat32() && rhs->canProduceFloat32() && compareType_ == Compare_Double) { 1.2607 + compareType_ = Compare_Float32; 1.2608 + } else { 1.2609 + if (lhs->type() == MIRType_Float32) 1.2610 + ConvertDefinitionToDouble<0>(alloc, lhs, this); 1.2611 + if (rhs->type() == MIRType_Float32) 1.2612 + ConvertDefinitionToDouble<1>(alloc, rhs, this); 1.2613 + } 1.2614 +} 1.2615 + 1.2616 +void 1.2617 +MCompare::filtersUndefinedOrNull(bool trueBranch, MDefinition **subject, bool *filtersUndefined, 1.2618 + bool *filtersNull) 1.2619 +{ 1.2620 + *filtersNull = *filtersUndefined = false; 1.2621 + *subject = nullptr; 1.2622 + 1.2623 + if (compareType() != Compare_Undefined && compareType() != Compare_Null) 1.2624 + return; 1.2625 + 1.2626 + JS_ASSERT(jsop() == JSOP_STRICTNE || jsop() == JSOP_NE || 1.2627 + jsop() == JSOP_STRICTEQ || jsop() == JSOP_EQ); 1.2628 + 1.2629 + // JSOP_*NE only removes undefined/null from if/true branch 1.2630 + if (!trueBranch && (jsop() == JSOP_STRICTNE || jsop() == JSOP_NE)) 1.2631 + return; 1.2632 + 1.2633 + // JSOP_*EQ only removes undefined/null from else/false branch 1.2634 + if (trueBranch && (jsop() == JSOP_STRICTEQ || jsop() == JSOP_EQ)) 1.2635 + return; 1.2636 + 1.2637 + if (jsop() == JSOP_STRICTEQ || jsop() == JSOP_STRICTNE) { 1.2638 + *filtersUndefined = compareType() == Compare_Undefined; 1.2639 + *filtersNull = compareType() == Compare_Null; 1.2640 + } else { 1.2641 + *filtersUndefined = *filtersNull = true; 1.2642 + } 1.2643 + 1.2644 + *subject = lhs(); 1.2645 +} 1.2646 + 1.2647 +void 1.2648 +MNot::infer() 1.2649 +{ 1.2650 + JS_ASSERT(operandMightEmulateUndefined()); 1.2651 + 1.2652 + if (!MaybeEmulatesUndefined(getOperand(0))) 1.2653 + markOperandCantEmulateUndefined(); 1.2654 +} 1.2655 + 1.2656 +MDefinition * 1.2657 +MNot::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2658 +{ 1.2659 + // Fold if the input is constant 1.2660 + if (operand()->isConstant()) { 1.2661 + bool result = operand()->toConstant()->valueToBoolean(); 1.2662 + if (type() == MIRType_Int32) 1.2663 + return MConstant::New(alloc, Int32Value(!result)); 1.2664 + 1.2665 + // ToBoolean can't cause side effects, so this is safe. 1.2666 + return MConstant::New(alloc, BooleanValue(!result)); 1.2667 + } 1.2668 + 1.2669 + // NOT of an undefined or null value is always true 1.2670 + if (operand()->type() == MIRType_Undefined || operand()->type() == MIRType_Null) 1.2671 + return MConstant::New(alloc, BooleanValue(true)); 1.2672 + 1.2673 + // NOT of an object that can't emulate undefined is always false. 1.2674 + if (operand()->type() == MIRType_Object && !operandMightEmulateUndefined()) 1.2675 + return MConstant::New(alloc, BooleanValue(false)); 1.2676 + 1.2677 + return this; 1.2678 +} 1.2679 + 1.2680 +void 1.2681 +MNot::trySpecializeFloat32(TempAllocator &alloc) 1.2682 +{ 1.2683 + MDefinition *in = input(); 1.2684 + if (!in->canProduceFloat32() && in->type() == MIRType_Float32) 1.2685 + ConvertDefinitionToDouble<0>(alloc, in, this); 1.2686 +} 1.2687 + 1.2688 +void 1.2689 +MBeta::printOpcode(FILE *fp) const 1.2690 +{ 1.2691 + MDefinition::printOpcode(fp); 1.2692 + 1.2693 + Sprinter sp(GetIonContext()->cx); 1.2694 + sp.init(); 1.2695 + comparison_->print(sp); 1.2696 + fprintf(fp, " %s", sp.string()); 1.2697 +} 1.2698 + 1.2699 +bool 1.2700 +MNewObject::shouldUseVM() const 1.2701 +{ 1.2702 + return templateObject()->hasSingletonType() || 1.2703 + templateObject()->hasDynamicSlots(); 1.2704 +} 1.2705 + 1.2706 +bool 1.2707 +MNewArray::shouldUseVM() const 1.2708 +{ 1.2709 + JS_ASSERT(count() < JSObject::NELEMENTS_LIMIT); 1.2710 + 1.2711 + size_t arraySlots = 1.2712 + gc::GetGCKindSlots(templateObject()->tenuredGetAllocKind()) - ObjectElements::VALUES_PER_HEADER; 1.2713 + 1.2714 + // Allocate space using the VMCall 1.2715 + // when mir hints it needs to get allocated immediately, 1.2716 + // but only when data doesn't fit the available array slots. 1.2717 + bool allocating = isAllocating() && count() > arraySlots; 1.2718 + 1.2719 + return templateObject()->hasSingletonType() || allocating; 1.2720 +} 1.2721 + 1.2722 +bool 1.2723 +MLoadFixedSlot::mightAlias(const MDefinition *store) const 1.2724 +{ 1.2725 + if (store->isStoreFixedSlot() && store->toStoreFixedSlot()->slot() != slot()) 1.2726 + return false; 1.2727 + return true; 1.2728 +} 1.2729 + 1.2730 +bool 1.2731 +MAsmJSLoadHeap::mightAlias(const MDefinition *def) const 1.2732 +{ 1.2733 + if (def->isAsmJSStoreHeap()) { 1.2734 + const MAsmJSStoreHeap *store = def->toAsmJSStoreHeap(); 1.2735 + if (store->viewType() != viewType()) 1.2736 + return true; 1.2737 + if (!ptr()->isConstant() || !store->ptr()->isConstant()) 1.2738 + return true; 1.2739 + const MConstant *otherPtr = store->ptr()->toConstant(); 1.2740 + return ptr()->toConstant()->value() == otherPtr->value(); 1.2741 + } 1.2742 + return true; 1.2743 +} 1.2744 + 1.2745 +bool 1.2746 +MAsmJSLoadHeap::congruentTo(const MDefinition *ins) const 1.2747 +{ 1.2748 + if (!ins->isAsmJSLoadHeap()) 1.2749 + return false; 1.2750 + const MAsmJSLoadHeap *load = ins->toAsmJSLoadHeap(); 1.2751 + return load->viewType() == viewType() && congruentIfOperandsEqual(load); 1.2752 +} 1.2753 + 1.2754 +bool 1.2755 +MAsmJSLoadGlobalVar::mightAlias(const MDefinition *def) const 1.2756 +{ 1.2757 + if (def->isAsmJSStoreGlobalVar()) { 1.2758 + const MAsmJSStoreGlobalVar *store = def->toAsmJSStoreGlobalVar(); 1.2759 + return store->globalDataOffset() == globalDataOffset_; 1.2760 + } 1.2761 + return true; 1.2762 +} 1.2763 + 1.2764 +bool 1.2765 +MAsmJSLoadGlobalVar::congruentTo(const MDefinition *ins) const 1.2766 +{ 1.2767 + if (ins->isAsmJSLoadGlobalVar()) { 1.2768 + const MAsmJSLoadGlobalVar *load = ins->toAsmJSLoadGlobalVar(); 1.2769 + return globalDataOffset_ == load->globalDataOffset_; 1.2770 + } 1.2771 + return false; 1.2772 +} 1.2773 + 1.2774 +bool 1.2775 +MLoadSlot::mightAlias(const MDefinition *store) const 1.2776 +{ 1.2777 + if (store->isStoreSlot() && store->toStoreSlot()->slot() != slot()) 1.2778 + return false; 1.2779 + return true; 1.2780 +} 1.2781 + 1.2782 +void 1.2783 +InlinePropertyTable::trimTo(ObjectVector &targets, BoolVector &choiceSet) 1.2784 +{ 1.2785 + for (size_t i = 0; i < targets.length(); i++) { 1.2786 + // If the target was inlined, don't erase the entry. 1.2787 + if (choiceSet[i]) 1.2788 + continue; 1.2789 + 1.2790 + JSFunction *target = &targets[i]->as<JSFunction>(); 1.2791 + 1.2792 + // Eliminate all entries containing the vetoed function from the map. 1.2793 + size_t j = 0; 1.2794 + while (j < numEntries()) { 1.2795 + if (entries_[j]->func == target) 1.2796 + entries_.erase(&entries_[j]); 1.2797 + else 1.2798 + j++; 1.2799 + } 1.2800 + } 1.2801 +} 1.2802 + 1.2803 +void 1.2804 +InlinePropertyTable::trimToTargets(ObjectVector &targets) 1.2805 +{ 1.2806 + IonSpew(IonSpew_Inlining, "Got inlineable property cache with %d cases", 1.2807 + (int)numEntries()); 1.2808 + 1.2809 + size_t i = 0; 1.2810 + while (i < numEntries()) { 1.2811 + bool foundFunc = false; 1.2812 + for (size_t j = 0; j < targets.length(); j++) { 1.2813 + if (entries_[i]->func == targets[j]) { 1.2814 + foundFunc = true; 1.2815 + break; 1.2816 + } 1.2817 + } 1.2818 + if (!foundFunc) 1.2819 + entries_.erase(&(entries_[i])); 1.2820 + else 1.2821 + i++; 1.2822 + } 1.2823 + 1.2824 + IonSpew(IonSpew_Inlining, "%d inlineable cases left after trimming to %d targets", 1.2825 + (int)numEntries(), (int)targets.length()); 1.2826 +} 1.2827 + 1.2828 +bool 1.2829 +InlinePropertyTable::hasFunction(JSFunction *func) const 1.2830 +{ 1.2831 + for (size_t i = 0; i < numEntries(); i++) { 1.2832 + if (entries_[i]->func == func) 1.2833 + return true; 1.2834 + } 1.2835 + return false; 1.2836 +} 1.2837 + 1.2838 +types::TemporaryTypeSet * 1.2839 +InlinePropertyTable::buildTypeSetForFunction(JSFunction *func) const 1.2840 +{ 1.2841 + LifoAlloc *alloc = GetIonContext()->temp->lifoAlloc(); 1.2842 + types::TemporaryTypeSet *types = alloc->new_<types::TemporaryTypeSet>(); 1.2843 + if (!types) 1.2844 + return nullptr; 1.2845 + for (size_t i = 0; i < numEntries(); i++) { 1.2846 + if (entries_[i]->func == func) 1.2847 + types->addType(types::Type::ObjectType(entries_[i]->typeObj), alloc); 1.2848 + } 1.2849 + return types; 1.2850 +} 1.2851 + 1.2852 +void * 1.2853 +MLoadTypedArrayElementStatic::base() const 1.2854 +{ 1.2855 + return typedArray_->viewData(); 1.2856 +} 1.2857 + 1.2858 +size_t 1.2859 +MLoadTypedArrayElementStatic::length() const 1.2860 +{ 1.2861 + return typedArray_->byteLength(); 1.2862 +} 1.2863 + 1.2864 +void * 1.2865 +MStoreTypedArrayElementStatic::base() const 1.2866 +{ 1.2867 + return typedArray_->viewData(); 1.2868 +} 1.2869 + 1.2870 +bool 1.2871 +MGetElementCache::allowDoubleResult() const 1.2872 +{ 1.2873 + if (!resultTypeSet()) 1.2874 + return true; 1.2875 + 1.2876 + return resultTypeSet()->hasType(types::Type::DoubleType()); 1.2877 +} 1.2878 + 1.2879 +size_t 1.2880 +MStoreTypedArrayElementStatic::length() const 1.2881 +{ 1.2882 + return typedArray_->byteLength(); 1.2883 +} 1.2884 + 1.2885 +bool 1.2886 +MGetPropertyPolymorphic::mightAlias(const MDefinition *store) const 1.2887 +{ 1.2888 + // Allow hoisting this instruction if the store does not write to a 1.2889 + // slot read by this instruction. 1.2890 + 1.2891 + if (!store->isStoreFixedSlot() && !store->isStoreSlot()) 1.2892 + return true; 1.2893 + 1.2894 + for (size_t i = 0; i < numShapes(); i++) { 1.2895 + const Shape *shape = this->shape(i); 1.2896 + if (shape->slot() < shape->numFixedSlots()) { 1.2897 + // Fixed slot. 1.2898 + uint32_t slot = shape->slot(); 1.2899 + if (store->isStoreFixedSlot() && store->toStoreFixedSlot()->slot() != slot) 1.2900 + continue; 1.2901 + if (store->isStoreSlot()) 1.2902 + continue; 1.2903 + } else { 1.2904 + // Dynamic slot. 1.2905 + uint32_t slot = shape->slot() - shape->numFixedSlots(); 1.2906 + if (store->isStoreSlot() && store->toStoreSlot()->slot() != slot) 1.2907 + continue; 1.2908 + if (store->isStoreFixedSlot()) 1.2909 + continue; 1.2910 + } 1.2911 + 1.2912 + return true; 1.2913 + } 1.2914 + 1.2915 + return false; 1.2916 +} 1.2917 + 1.2918 +void 1.2919 +MGetPropertyCache::setBlock(MBasicBlock *block) 1.2920 +{ 1.2921 + MDefinition::setBlock(block); 1.2922 + // Track where we started. 1.2923 + if (!location_.pc) { 1.2924 + location_.pc = block->trackedPc(); 1.2925 + location_.script = block->info().script(); 1.2926 + } 1.2927 +} 1.2928 + 1.2929 +bool 1.2930 +MGetPropertyCache::updateForReplacement(MDefinition *ins) { 1.2931 + MGetPropertyCache *other = ins->toGetPropertyCache(); 1.2932 + location_.append(&other->location_); 1.2933 + return true; 1.2934 +} 1.2935 + 1.2936 +MDefinition * 1.2937 +MAsmJSUnsignedToDouble::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2938 +{ 1.2939 + if (input()->isConstant()) { 1.2940 + const Value &v = input()->toConstant()->value(); 1.2941 + if (v.isInt32()) 1.2942 + return MConstant::New(alloc, DoubleValue(uint32_t(v.toInt32()))); 1.2943 + } 1.2944 + 1.2945 + return this; 1.2946 +} 1.2947 + 1.2948 +MDefinition * 1.2949 +MAsmJSUnsignedToFloat32::foldsTo(TempAllocator &alloc, bool useValueNumbers) 1.2950 +{ 1.2951 + if (input()->isConstant()) { 1.2952 + const Value &v = input()->toConstant()->value(); 1.2953 + if (v.isInt32()) { 1.2954 + double dval = double(uint32_t(v.toInt32())); 1.2955 + if (IsFloat32Representable(dval)) 1.2956 + return MConstant::NewAsmJS(alloc, JS::Float32Value(float(dval)), MIRType_Float32); 1.2957 + } 1.2958 + } 1.2959 + 1.2960 + return this; 1.2961 +} 1.2962 + 1.2963 +MAsmJSCall * 1.2964 +MAsmJSCall::New(TempAllocator &alloc, const CallSiteDesc &desc, Callee callee, 1.2965 + const Args &args, MIRType resultType, size_t spIncrement) 1.2966 +{ 1.2967 + MAsmJSCall *call = new(alloc) MAsmJSCall(desc, callee, spIncrement); 1.2968 + call->setResultType(resultType); 1.2969 + 1.2970 + if (!call->argRegs_.init(alloc, args.length())) 1.2971 + return nullptr; 1.2972 + for (size_t i = 0; i < call->argRegs_.length(); i++) 1.2973 + call->argRegs_[i] = args[i].reg; 1.2974 + 1.2975 + if (!call->operands_.init(alloc, call->argRegs_.length() + (callee.which() == Callee::Dynamic ? 1 : 0))) 1.2976 + return nullptr; 1.2977 + for (size_t i = 0; i < call->argRegs_.length(); i++) 1.2978 + call->setOperand(i, args[i].def); 1.2979 + if (callee.which() == Callee::Dynamic) 1.2980 + call->setOperand(call->argRegs_.length(), callee.dynamic()); 1.2981 + 1.2982 + return call; 1.2983 +} 1.2984 + 1.2985 +void 1.2986 +MSqrt::trySpecializeFloat32(TempAllocator &alloc) { 1.2987 + if (!input()->canProduceFloat32() || !CheckUsesAreFloat32Consumers(this)) { 1.2988 + if (input()->type() == MIRType_Float32) 1.2989 + ConvertDefinitionToDouble<0>(alloc, input(), this); 1.2990 + return; 1.2991 + } 1.2992 + 1.2993 + setResultType(MIRType_Float32); 1.2994 + setPolicyType(MIRType_Float32); 1.2995 +} 1.2996 + 1.2997 +bool 1.2998 +jit::ElementAccessIsDenseNative(MDefinition *obj, MDefinition *id) 1.2999 +{ 1.3000 + if (obj->mightBeType(MIRType_String)) 1.3001 + return false; 1.3002 + 1.3003 + if (id->type() != MIRType_Int32 && id->type() != MIRType_Double) 1.3004 + return false; 1.3005 + 1.3006 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3007 + if (!types) 1.3008 + return false; 1.3009 + 1.3010 + // Typed arrays are native classes but do not have dense elements. 1.3011 + const Class *clasp = types->getKnownClass(); 1.3012 + return clasp && clasp->isNative() && !IsTypedArrayClass(clasp); 1.3013 +} 1.3014 + 1.3015 +bool 1.3016 +jit::ElementAccessIsTypedArray(MDefinition *obj, MDefinition *id, 1.3017 + ScalarTypeDescr::Type *arrayType) 1.3018 +{ 1.3019 + if (obj->mightBeType(MIRType_String)) 1.3020 + return false; 1.3021 + 1.3022 + if (id->type() != MIRType_Int32 && id->type() != MIRType_Double) 1.3023 + return false; 1.3024 + 1.3025 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3026 + if (!types) 1.3027 + return false; 1.3028 + 1.3029 + *arrayType = (ScalarTypeDescr::Type) types->getTypedArrayType(); 1.3030 + return *arrayType != ScalarTypeDescr::TYPE_MAX; 1.3031 +} 1.3032 + 1.3033 +bool 1.3034 +jit::ElementAccessIsPacked(types::CompilerConstraintList *constraints, MDefinition *obj) 1.3035 +{ 1.3036 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3037 + return types && !types->hasObjectFlags(constraints, types::OBJECT_FLAG_NON_PACKED); 1.3038 +} 1.3039 + 1.3040 +bool 1.3041 +jit::ElementAccessHasExtraIndexedProperty(types::CompilerConstraintList *constraints, 1.3042 + MDefinition *obj) 1.3043 +{ 1.3044 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3045 + 1.3046 + if (!types || types->hasObjectFlags(constraints, types::OBJECT_FLAG_LENGTH_OVERFLOW)) 1.3047 + return true; 1.3048 + 1.3049 + return types::TypeCanHaveExtraIndexedProperties(constraints, types); 1.3050 +} 1.3051 + 1.3052 +MIRType 1.3053 +jit::DenseNativeElementType(types::CompilerConstraintList *constraints, MDefinition *obj) 1.3054 +{ 1.3055 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3056 + MIRType elementType = MIRType_None; 1.3057 + unsigned count = types->getObjectCount(); 1.3058 + 1.3059 + for (unsigned i = 0; i < count; i++) { 1.3060 + types::TypeObjectKey *object = types->getObject(i); 1.3061 + if (!object) 1.3062 + continue; 1.3063 + 1.3064 + if (object->unknownProperties()) 1.3065 + return MIRType_None; 1.3066 + 1.3067 + types::HeapTypeSetKey elementTypes = object->property(JSID_VOID); 1.3068 + 1.3069 + MIRType type = elementTypes.knownMIRType(constraints); 1.3070 + if (type == MIRType_None) 1.3071 + return MIRType_None; 1.3072 + 1.3073 + if (elementType == MIRType_None) 1.3074 + elementType = type; 1.3075 + else if (elementType != type) 1.3076 + return MIRType_None; 1.3077 + } 1.3078 + 1.3079 + return elementType; 1.3080 +} 1.3081 + 1.3082 +static bool 1.3083 +PropertyReadNeedsTypeBarrier(types::CompilerConstraintList *constraints, 1.3084 + types::TypeObjectKey *object, PropertyName *name, 1.3085 + types::TypeSet *observed) 1.3086 +{ 1.3087 + // If the object being read from has types for the property which haven't 1.3088 + // been observed at this access site, the read could produce a new type and 1.3089 + // a barrier is needed. Note that this only covers reads from properties 1.3090 + // which are accounted for by type information, i.e. native data properties 1.3091 + // and elements. 1.3092 + // 1.3093 + // We also need a barrier if the object is a proxy, because then all bets 1.3094 + // are off, just as if it has unknown properties. 1.3095 + if (object->unknownProperties() || observed->empty() || 1.3096 + object->clasp()->isProxy()) 1.3097 + { 1.3098 + return true; 1.3099 + } 1.3100 + 1.3101 + jsid id = name ? NameToId(name) : JSID_VOID; 1.3102 + types::HeapTypeSetKey property = object->property(id); 1.3103 + if (property.maybeTypes() && !TypeSetIncludes(observed, MIRType_Value, property.maybeTypes())) 1.3104 + return true; 1.3105 + 1.3106 + // Type information for global objects is not required to reflect the 1.3107 + // initial 'undefined' value for properties, in particular global 1.3108 + // variables declared with 'var'. Until the property is assigned a value 1.3109 + // other than undefined, a barrier is required. 1.3110 + if (JSObject *obj = object->singleton()) { 1.3111 + if (name && types::CanHaveEmptyPropertyTypesForOwnProperty(obj) && 1.3112 + (!property.maybeTypes() || property.maybeTypes()->empty())) 1.3113 + { 1.3114 + return true; 1.3115 + } 1.3116 + } 1.3117 + 1.3118 + property.freeze(constraints); 1.3119 + return false; 1.3120 +} 1.3121 + 1.3122 +bool 1.3123 +jit::PropertyReadNeedsTypeBarrier(JSContext *propertycx, 1.3124 + types::CompilerConstraintList *constraints, 1.3125 + types::TypeObjectKey *object, PropertyName *name, 1.3126 + types::TemporaryTypeSet *observed, bool updateObserved) 1.3127 +{ 1.3128 + // If this access has never executed, try to add types to the observed set 1.3129 + // according to any property which exists on the object or its prototype. 1.3130 + if (updateObserved && observed->empty() && name) { 1.3131 + JSObject *obj; 1.3132 + if (object->singleton()) 1.3133 + obj = object->singleton(); 1.3134 + else if (object->hasTenuredProto()) 1.3135 + obj = object->proto().toObjectOrNull(); 1.3136 + else 1.3137 + obj = nullptr; 1.3138 + 1.3139 + while (obj) { 1.3140 + if (!obj->getClass()->isNative()) 1.3141 + break; 1.3142 + 1.3143 + types::TypeObjectKey *typeObj = types::TypeObjectKey::get(obj); 1.3144 + if (propertycx) 1.3145 + typeObj->ensureTrackedProperty(propertycx, NameToId(name)); 1.3146 + 1.3147 + if (!typeObj->unknownProperties()) { 1.3148 + types::HeapTypeSetKey property = typeObj->property(NameToId(name)); 1.3149 + if (property.maybeTypes()) { 1.3150 + types::TypeSet::TypeList types; 1.3151 + if (!property.maybeTypes()->enumerateTypes(&types)) 1.3152 + break; 1.3153 + if (types.length()) { 1.3154 + // Note: the return value here is ignored. 1.3155 + observed->addType(types[0], GetIonContext()->temp->lifoAlloc()); 1.3156 + break; 1.3157 + } 1.3158 + } 1.3159 + } 1.3160 + 1.3161 + if (!obj->hasTenuredProto()) 1.3162 + break; 1.3163 + obj = obj->getProto(); 1.3164 + } 1.3165 + } 1.3166 + 1.3167 + return PropertyReadNeedsTypeBarrier(constraints, object, name, observed); 1.3168 +} 1.3169 + 1.3170 +bool 1.3171 +jit::PropertyReadNeedsTypeBarrier(JSContext *propertycx, 1.3172 + types::CompilerConstraintList *constraints, 1.3173 + MDefinition *obj, PropertyName *name, 1.3174 + types::TemporaryTypeSet *observed) 1.3175 +{ 1.3176 + if (observed->unknown()) 1.3177 + return false; 1.3178 + 1.3179 + types::TypeSet *types = obj->resultTypeSet(); 1.3180 + if (!types || types->unknownObject()) 1.3181 + return true; 1.3182 + 1.3183 + bool updateObserved = types->getObjectCount() == 1; 1.3184 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3185 + types::TypeObjectKey *object = types->getObject(i); 1.3186 + if (object) { 1.3187 + if (PropertyReadNeedsTypeBarrier(propertycx, constraints, object, name, 1.3188 + observed, updateObserved)) 1.3189 + { 1.3190 + return true; 1.3191 + } 1.3192 + } 1.3193 + } 1.3194 + 1.3195 + return false; 1.3196 +} 1.3197 + 1.3198 +bool 1.3199 +jit::PropertyReadOnPrototypeNeedsTypeBarrier(types::CompilerConstraintList *constraints, 1.3200 + MDefinition *obj, PropertyName *name, 1.3201 + types::TemporaryTypeSet *observed) 1.3202 +{ 1.3203 + if (observed->unknown()) 1.3204 + return false; 1.3205 + 1.3206 + types::TypeSet *types = obj->resultTypeSet(); 1.3207 + if (!types || types->unknownObject()) 1.3208 + return true; 1.3209 + 1.3210 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3211 + types::TypeObjectKey *object = types->getObject(i); 1.3212 + if (!object) 1.3213 + continue; 1.3214 + while (true) { 1.3215 + if (!object->hasTenuredProto()) 1.3216 + return true; 1.3217 + if (!object->proto().isObject()) 1.3218 + break; 1.3219 + object = types::TypeObjectKey::get(object->proto().toObject()); 1.3220 + if (PropertyReadNeedsTypeBarrier(constraints, object, name, observed)) 1.3221 + return true; 1.3222 + } 1.3223 + } 1.3224 + 1.3225 + return false; 1.3226 +} 1.3227 + 1.3228 +bool 1.3229 +jit::PropertyReadIsIdempotent(types::CompilerConstraintList *constraints, 1.3230 + MDefinition *obj, PropertyName *name) 1.3231 +{ 1.3232 + // Determine if reading a property from obj is likely to be idempotent. 1.3233 + 1.3234 + types::TypeSet *types = obj->resultTypeSet(); 1.3235 + if (!types || types->unknownObject()) 1.3236 + return false; 1.3237 + 1.3238 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3239 + types::TypeObjectKey *object = types->getObject(i); 1.3240 + if (object) { 1.3241 + if (object->unknownProperties()) 1.3242 + return false; 1.3243 + 1.3244 + // Check if the property has been reconfigured or is a getter. 1.3245 + types::HeapTypeSetKey property = object->property(NameToId(name)); 1.3246 + if (property.nonData(constraints)) 1.3247 + return false; 1.3248 + } 1.3249 + } 1.3250 + 1.3251 + return true; 1.3252 +} 1.3253 + 1.3254 +void 1.3255 +jit::AddObjectsForPropertyRead(MDefinition *obj, PropertyName *name, 1.3256 + types::TemporaryTypeSet *observed) 1.3257 +{ 1.3258 + // Add objects to observed which *could* be observed by reading name from obj, 1.3259 + // to hopefully avoid unnecessary type barriers and code invalidations. 1.3260 + 1.3261 + LifoAlloc *alloc = GetIonContext()->temp->lifoAlloc(); 1.3262 + 1.3263 + types::TemporaryTypeSet *types = obj->resultTypeSet(); 1.3264 + if (!types || types->unknownObject()) { 1.3265 + observed->addType(types::Type::AnyObjectType(), alloc); 1.3266 + return; 1.3267 + } 1.3268 + 1.3269 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3270 + types::TypeObjectKey *object = types->getObject(i); 1.3271 + if (!object) 1.3272 + continue; 1.3273 + 1.3274 + if (object->unknownProperties()) { 1.3275 + observed->addType(types::Type::AnyObjectType(), alloc); 1.3276 + return; 1.3277 + } 1.3278 + 1.3279 + jsid id = name ? NameToId(name) : JSID_VOID; 1.3280 + types::HeapTypeSetKey property = object->property(id); 1.3281 + types::HeapTypeSet *types = property.maybeTypes(); 1.3282 + if (!types) 1.3283 + continue; 1.3284 + 1.3285 + if (types->unknownObject()) { 1.3286 + observed->addType(types::Type::AnyObjectType(), alloc); 1.3287 + return; 1.3288 + } 1.3289 + 1.3290 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3291 + types::TypeObjectKey *object = types->getObject(i); 1.3292 + if (object) 1.3293 + observed->addType(types::Type::ObjectType(object), alloc); 1.3294 + } 1.3295 + } 1.3296 +} 1.3297 + 1.3298 +static bool 1.3299 +TryAddTypeBarrierForWrite(TempAllocator &alloc, types::CompilerConstraintList *constraints, 1.3300 + MBasicBlock *current, types::TemporaryTypeSet *objTypes, 1.3301 + PropertyName *name, MDefinition **pvalue) 1.3302 +{ 1.3303 + // Return whether pvalue was modified to include a type barrier ensuring 1.3304 + // that writing the value to objTypes/id will not require changing type 1.3305 + // information. 1.3306 + 1.3307 + // All objects in the set must have the same types for name. Otherwise, we 1.3308 + // could bail out without subsequently triggering a type change that 1.3309 + // invalidates the compiled code. 1.3310 + Maybe<types::HeapTypeSetKey> aggregateProperty; 1.3311 + 1.3312 + for (size_t i = 0; i < objTypes->getObjectCount(); i++) { 1.3313 + types::TypeObjectKey *object = objTypes->getObject(i); 1.3314 + if (!object) 1.3315 + continue; 1.3316 + 1.3317 + if (object->unknownProperties()) 1.3318 + return false; 1.3319 + 1.3320 + jsid id = name ? NameToId(name) : JSID_VOID; 1.3321 + types::HeapTypeSetKey property = object->property(id); 1.3322 + if (!property.maybeTypes()) 1.3323 + return false; 1.3324 + 1.3325 + if (TypeSetIncludes(property.maybeTypes(), (*pvalue)->type(), (*pvalue)->resultTypeSet())) 1.3326 + return false; 1.3327 + 1.3328 + // This freeze is not required for correctness, but ensures that we 1.3329 + // will recompile if the property types change and the barrier can 1.3330 + // potentially be removed. 1.3331 + property.freeze(constraints); 1.3332 + 1.3333 + if (aggregateProperty.empty()) { 1.3334 + aggregateProperty.construct(property); 1.3335 + } else { 1.3336 + if (!aggregateProperty.ref().maybeTypes()->isSubset(property.maybeTypes()) || 1.3337 + !property.maybeTypes()->isSubset(aggregateProperty.ref().maybeTypes())) 1.3338 + { 1.3339 + return false; 1.3340 + } 1.3341 + } 1.3342 + } 1.3343 + 1.3344 + JS_ASSERT(!aggregateProperty.empty()); 1.3345 + 1.3346 + MIRType propertyType = aggregateProperty.ref().knownMIRType(constraints); 1.3347 + switch (propertyType) { 1.3348 + case MIRType_Boolean: 1.3349 + case MIRType_Int32: 1.3350 + case MIRType_Double: 1.3351 + case MIRType_String: { 1.3352 + // The property is a particular primitive type, guard by unboxing the 1.3353 + // value before the write. 1.3354 + if (!(*pvalue)->mightBeType(propertyType)) { 1.3355 + // The value's type does not match the property type. Just do a VM 1.3356 + // call as it will always trigger invalidation of the compiled code. 1.3357 + JS_ASSERT_IF((*pvalue)->type() != MIRType_Value, (*pvalue)->type() != propertyType); 1.3358 + return false; 1.3359 + } 1.3360 + MInstruction *ins = MUnbox::New(alloc, *pvalue, propertyType, MUnbox::Fallible); 1.3361 + current->add(ins); 1.3362 + *pvalue = ins; 1.3363 + return true; 1.3364 + } 1.3365 + default:; 1.3366 + } 1.3367 + 1.3368 + if ((*pvalue)->type() != MIRType_Value) 1.3369 + return false; 1.3370 + 1.3371 + types::TemporaryTypeSet *types = aggregateProperty.ref().maybeTypes()->clone(alloc.lifoAlloc()); 1.3372 + if (!types) 1.3373 + return false; 1.3374 + 1.3375 + MInstruction *ins = MMonitorTypes::New(alloc, *pvalue, types); 1.3376 + current->add(ins); 1.3377 + return true; 1.3378 +} 1.3379 + 1.3380 +static MInstruction * 1.3381 +AddTypeGuard(TempAllocator &alloc, MBasicBlock *current, MDefinition *obj, 1.3382 + types::TypeObjectKey *type, bool bailOnEquality) 1.3383 +{ 1.3384 + MInstruction *guard; 1.3385 + 1.3386 + if (type->isTypeObject()) 1.3387 + guard = MGuardObjectType::New(alloc, obj, type->asTypeObject(), bailOnEquality); 1.3388 + else 1.3389 + guard = MGuardObjectIdentity::New(alloc, obj, type->asSingleObject(), bailOnEquality); 1.3390 + 1.3391 + current->add(guard); 1.3392 + 1.3393 + // For now, never move type object guards. 1.3394 + guard->setNotMovable(); 1.3395 + 1.3396 + return guard; 1.3397 +} 1.3398 + 1.3399 +bool 1.3400 +jit::PropertyWriteNeedsTypeBarrier(TempAllocator &alloc, types::CompilerConstraintList *constraints, 1.3401 + MBasicBlock *current, MDefinition **pobj, 1.3402 + PropertyName *name, MDefinition **pvalue, bool canModify) 1.3403 +{ 1.3404 + // If any value being written is not reflected in the type information for 1.3405 + // objects which obj could represent, a type barrier is needed when writing 1.3406 + // the value. As for propertyReadNeedsTypeBarrier, this only applies for 1.3407 + // properties that are accounted for by type information, i.e. normal data 1.3408 + // properties and elements. 1.3409 + 1.3410 + types::TemporaryTypeSet *types = (*pobj)->resultTypeSet(); 1.3411 + if (!types || types->unknownObject()) 1.3412 + return true; 1.3413 + 1.3414 + // If all of the objects being written to have property types which already 1.3415 + // reflect the value, no barrier at all is needed. Additionally, if all 1.3416 + // objects being written to have the same types for the property, and those 1.3417 + // types do *not* reflect the value, add a type barrier for the value. 1.3418 + 1.3419 + bool success = true; 1.3420 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3421 + types::TypeObjectKey *object = types->getObject(i); 1.3422 + if (!object || object->unknownProperties()) 1.3423 + continue; 1.3424 + 1.3425 + // TI doesn't track TypedArray objects and should never insert a type 1.3426 + // barrier for them. 1.3427 + if (!name && IsTypedArrayClass(object->clasp())) 1.3428 + continue; 1.3429 + 1.3430 + jsid id = name ? NameToId(name) : JSID_VOID; 1.3431 + types::HeapTypeSetKey property = object->property(id); 1.3432 + if (!TypeSetIncludes(property.maybeTypes(), (*pvalue)->type(), (*pvalue)->resultTypeSet())) { 1.3433 + // Either pobj or pvalue needs to be modified to filter out the 1.3434 + // types which the value could have but are not in the property, 1.3435 + // or a VM call is required. A VM call is always required if pobj 1.3436 + // and pvalue cannot be modified. 1.3437 + if (!canModify) 1.3438 + return true; 1.3439 + success = TryAddTypeBarrierForWrite(alloc, constraints, current, types, name, pvalue); 1.3440 + break; 1.3441 + } 1.3442 + } 1.3443 + 1.3444 + if (success) 1.3445 + return false; 1.3446 + 1.3447 + // If all of the objects except one have property types which reflect the 1.3448 + // value, and the remaining object has no types at all for the property, 1.3449 + // add a guard that the object does not have that remaining object's type. 1.3450 + 1.3451 + if (types->getObjectCount() <= 1) 1.3452 + return true; 1.3453 + 1.3454 + types::TypeObjectKey *excluded = nullptr; 1.3455 + for (size_t i = 0; i < types->getObjectCount(); i++) { 1.3456 + types::TypeObjectKey *object = types->getObject(i); 1.3457 + if (!object || object->unknownProperties()) 1.3458 + continue; 1.3459 + if (!name && IsTypedArrayClass(object->clasp())) 1.3460 + continue; 1.3461 + 1.3462 + jsid id = name ? NameToId(name) : JSID_VOID; 1.3463 + types::HeapTypeSetKey property = object->property(id); 1.3464 + if (TypeSetIncludes(property.maybeTypes(), (*pvalue)->type(), (*pvalue)->resultTypeSet())) 1.3465 + continue; 1.3466 + 1.3467 + if ((property.maybeTypes() && !property.maybeTypes()->empty()) || excluded) 1.3468 + return true; 1.3469 + excluded = object; 1.3470 + } 1.3471 + 1.3472 + JS_ASSERT(excluded); 1.3473 + 1.3474 + *pobj = AddTypeGuard(alloc, current, *pobj, excluded, /* bailOnEquality = */ true); 1.3475 + return false; 1.3476 +}