js/src/jit/RegisterAllocator.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jit/RegisterAllocator.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,381 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#ifndef jit_RegisterAllocator_h
    1.11 +#define jit_RegisterAllocator_h
    1.12 +
    1.13 +#include "mozilla/Attributes.h"
    1.14 +#include "mozilla/MathAlgorithms.h"
    1.15 +
    1.16 +#include "jit/LIR.h"
    1.17 +#include "jit/MIRGenerator.h"
    1.18 +#include "jit/MIRGraph.h"
    1.19 +
    1.20 +// Generic structures and functions for use by register allocators.
    1.21 +
    1.22 +namespace js {
    1.23 +namespace jit {
    1.24 +
    1.25 +class LIRGenerator;
    1.26 +
    1.27 +// Structure for running a liveness analysis on a finished register allocation.
    1.28 +// This analysis can be used for two purposes:
    1.29 +//
    1.30 +// - Check the integrity of the allocation, i.e. that the reads and writes of
    1.31 +//   physical values preserve the semantics of the original virtual registers.
    1.32 +//
    1.33 +// - Populate safepoints with live registers, GC thing and value data, to
    1.34 +//   streamline the process of prototyping new allocators.
    1.35 +struct AllocationIntegrityState
    1.36 +{
    1.37 +    explicit AllocationIntegrityState(const LIRGraph &graph)
    1.38 +      : graph(graph)
    1.39 +    {}
    1.40 +
    1.41 +    // Record all virtual registers in the graph. This must be called before
    1.42 +    // register allocation, to pick up the original LUses.
    1.43 +    bool record();
    1.44 +
    1.45 +    // Perform the liveness analysis on the graph, and assert on an invalid
    1.46 +    // allocation. This must be called after register allocation, to pick up
    1.47 +    // all assigned physical values. If populateSafepoints is specified,
    1.48 +    // safepoints will be filled in with liveness information.
    1.49 +    bool check(bool populateSafepoints);
    1.50 +
    1.51 +  private:
    1.52 +
    1.53 +    const LIRGraph &graph;
    1.54 +
    1.55 +    // For all instructions and phis in the graph, keep track of the virtual
    1.56 +    // registers for all inputs and outputs of the nodes. These are overwritten
    1.57 +    // in place during register allocation. This information is kept on the
    1.58 +    // side rather than in the instructions and phis themselves to avoid
    1.59 +    // debug-builds-only bloat in the size of the involved structures.
    1.60 +
    1.61 +    struct InstructionInfo {
    1.62 +        Vector<LAllocation, 2, SystemAllocPolicy> inputs;
    1.63 +        Vector<LDefinition, 0, SystemAllocPolicy> temps;
    1.64 +        Vector<LDefinition, 1, SystemAllocPolicy> outputs;
    1.65 +
    1.66 +        InstructionInfo()
    1.67 +        { }
    1.68 +
    1.69 +        InstructionInfo(const InstructionInfo &o)
    1.70 +        {
    1.71 +            inputs.appendAll(o.inputs);
    1.72 +            temps.appendAll(o.temps);
    1.73 +            outputs.appendAll(o.outputs);
    1.74 +        }
    1.75 +    };
    1.76 +    Vector<InstructionInfo, 0, SystemAllocPolicy> instructions;
    1.77 +
    1.78 +    struct BlockInfo {
    1.79 +        Vector<InstructionInfo, 5, SystemAllocPolicy> phis;
    1.80 +        BlockInfo() {}
    1.81 +        BlockInfo(const BlockInfo &o) {
    1.82 +            phis.appendAll(o.phis);
    1.83 +        }
    1.84 +    };
    1.85 +    Vector<BlockInfo, 0, SystemAllocPolicy> blocks;
    1.86 +
    1.87 +    Vector<LDefinition*, 20, SystemAllocPolicy> virtualRegisters;
    1.88 +
    1.89 +    // Describes a correspondence that should hold at the end of a block.
    1.90 +    // The value which was written to vreg in the original LIR should be
    1.91 +    // physically stored in alloc after the register allocation.
    1.92 +    struct IntegrityItem
    1.93 +    {
    1.94 +        LBlock *block;
    1.95 +        uint32_t vreg;
    1.96 +        LAllocation alloc;
    1.97 +
    1.98 +        // Order of insertion into seen, for sorting.
    1.99 +        uint32_t index;
   1.100 +
   1.101 +        typedef IntegrityItem Lookup;
   1.102 +        static HashNumber hash(const IntegrityItem &item) {
   1.103 +            HashNumber hash = item.alloc.hash();
   1.104 +            hash = mozilla::RotateLeft(hash, 4) ^ item.vreg;
   1.105 +            hash = mozilla::RotateLeft(hash, 4) ^ HashNumber(item.block->mir()->id());
   1.106 +            return hash;
   1.107 +        }
   1.108 +        static bool match(const IntegrityItem &one, const IntegrityItem &two) {
   1.109 +            return one.block == two.block
   1.110 +                && one.vreg == two.vreg
   1.111 +                && one.alloc == two.alloc;
   1.112 +        }
   1.113 +    };
   1.114 +
   1.115 +    // Items still to be processed.
   1.116 +    Vector<IntegrityItem, 10, SystemAllocPolicy> worklist;
   1.117 +
   1.118 +    // Set of all items that have already been processed.
   1.119 +    typedef HashSet<IntegrityItem, IntegrityItem, SystemAllocPolicy> IntegrityItemSet;
   1.120 +    IntegrityItemSet seen;
   1.121 +
   1.122 +    bool checkIntegrity(LBlock *block, LInstruction *ins, uint32_t vreg, LAllocation alloc,
   1.123 +                        bool populateSafepoints);
   1.124 +    bool checkSafepointAllocation(LInstruction *ins, uint32_t vreg, LAllocation alloc,
   1.125 +                                  bool populateSafepoints);
   1.126 +    bool addPredecessor(LBlock *block, uint32_t vreg, LAllocation alloc);
   1.127 +
   1.128 +    void dump();
   1.129 +};
   1.130 +
   1.131 +// Represents with better-than-instruction precision a position in the
   1.132 +// instruction stream.
   1.133 +//
   1.134 +// An issue comes up when performing register allocation as to how to represent
   1.135 +// information such as "this register is only needed for the input of
   1.136 +// this instruction, it can be clobbered in the output". Just having ranges
   1.137 +// of instruction IDs is insufficiently expressive to denote all possibilities.
   1.138 +// This class solves this issue by associating an extra bit with the instruction
   1.139 +// ID which indicates whether the position is the input half or output half of
   1.140 +// an instruction.
   1.141 +class CodePosition
   1.142 +{
   1.143 +  private:
   1.144 +    MOZ_CONSTEXPR CodePosition(const uint32_t &bits)
   1.145 +      : bits_(bits)
   1.146 +    { }
   1.147 +
   1.148 +    static const unsigned int INSTRUCTION_SHIFT = 1;
   1.149 +    static const unsigned int SUBPOSITION_MASK = 1;
   1.150 +    uint32_t bits_;
   1.151 +
   1.152 +  public:
   1.153 +    static const CodePosition MAX;
   1.154 +    static const CodePosition MIN;
   1.155 +
   1.156 +    // This is the half of the instruction this code position represents, as
   1.157 +    // described in the huge comment above.
   1.158 +    enum SubPosition {
   1.159 +        INPUT,
   1.160 +        OUTPUT
   1.161 +    };
   1.162 +
   1.163 +    MOZ_CONSTEXPR CodePosition() : bits_(0)
   1.164 +    { }
   1.165 +
   1.166 +    CodePosition(uint32_t instruction, SubPosition where) {
   1.167 +        JS_ASSERT(instruction < 0x80000000u);
   1.168 +        JS_ASSERT(((uint32_t)where & SUBPOSITION_MASK) == (uint32_t)where);
   1.169 +        bits_ = (instruction << INSTRUCTION_SHIFT) | (uint32_t)where;
   1.170 +    }
   1.171 +
   1.172 +    uint32_t ins() const {
   1.173 +        return bits_ >> INSTRUCTION_SHIFT;
   1.174 +    }
   1.175 +
   1.176 +    uint32_t pos() const {
   1.177 +        return bits_;
   1.178 +    }
   1.179 +
   1.180 +    SubPosition subpos() const {
   1.181 +        return (SubPosition)(bits_ & SUBPOSITION_MASK);
   1.182 +    }
   1.183 +
   1.184 +    bool operator <(const CodePosition &other) const {
   1.185 +        return bits_ < other.bits_;
   1.186 +    }
   1.187 +
   1.188 +    bool operator <=(const CodePosition &other) const {
   1.189 +        return bits_ <= other.bits_;
   1.190 +    }
   1.191 +
   1.192 +    bool operator !=(const CodePosition &other) const {
   1.193 +        return bits_ != other.bits_;
   1.194 +    }
   1.195 +
   1.196 +    bool operator ==(const CodePosition &other) const {
   1.197 +        return bits_ == other.bits_;
   1.198 +    }
   1.199 +
   1.200 +    bool operator >(const CodePosition &other) const {
   1.201 +        return bits_ > other.bits_;
   1.202 +    }
   1.203 +
   1.204 +    bool operator >=(const CodePosition &other) const {
   1.205 +        return bits_ >= other.bits_;
   1.206 +    }
   1.207 +
   1.208 +    CodePosition previous() const {
   1.209 +        JS_ASSERT(*this != MIN);
   1.210 +        return CodePosition(bits_ - 1);
   1.211 +    }
   1.212 +    CodePosition next() const {
   1.213 +        JS_ASSERT(*this != MAX);
   1.214 +        return CodePosition(bits_ + 1);
   1.215 +    }
   1.216 +};
   1.217 +
   1.218 +// Structure to track moves inserted before or after an instruction.
   1.219 +class InstructionData
   1.220 +{
   1.221 +    LInstruction *ins_;
   1.222 +    LBlock *block_;
   1.223 +    LMoveGroup *inputMoves_;
   1.224 +    LMoveGroup *movesAfter_;
   1.225 +
   1.226 +  public:
   1.227 +    void init(LInstruction *ins, LBlock *block) {
   1.228 +        JS_ASSERT(!ins_);
   1.229 +        JS_ASSERT(!block_);
   1.230 +        ins_ = ins;
   1.231 +        block_ = block;
   1.232 +    }
   1.233 +    LInstruction *ins() const {
   1.234 +        return ins_;
   1.235 +    }
   1.236 +    LBlock *block() const {
   1.237 +        return block_;
   1.238 +    }
   1.239 +    void setInputMoves(LMoveGroup *moves) {
   1.240 +        inputMoves_ = moves;
   1.241 +    }
   1.242 +    LMoveGroup *inputMoves() const {
   1.243 +        return inputMoves_;
   1.244 +    }
   1.245 +    void setMovesAfter(LMoveGroup *moves) {
   1.246 +        movesAfter_ = moves;
   1.247 +    }
   1.248 +    LMoveGroup *movesAfter() const {
   1.249 +        return movesAfter_;
   1.250 +    }
   1.251 +};
   1.252 +
   1.253 +// Structure to track all moves inserted next to instructions in a graph.
   1.254 +class InstructionDataMap
   1.255 +{
   1.256 +    InstructionData *insData_;
   1.257 +    uint32_t numIns_;
   1.258 +
   1.259 +  public:
   1.260 +    InstructionDataMap()
   1.261 +      : insData_(nullptr),
   1.262 +        numIns_(0)
   1.263 +    { }
   1.264 +
   1.265 +    bool init(MIRGenerator *gen, uint32_t numInstructions) {
   1.266 +        insData_ = gen->allocate<InstructionData>(numInstructions);
   1.267 +        numIns_ = numInstructions;
   1.268 +        if (!insData_)
   1.269 +            return false;
   1.270 +        memset(insData_, 0, sizeof(InstructionData) * numInstructions);
   1.271 +        return true;
   1.272 +    }
   1.273 +
   1.274 +    InstructionData &operator[](const CodePosition &pos) {
   1.275 +        JS_ASSERT(pos.ins() < numIns_);
   1.276 +        return insData_[pos.ins()];
   1.277 +    }
   1.278 +    InstructionData &operator[](LInstruction *ins) {
   1.279 +        JS_ASSERT(ins->id() < numIns_);
   1.280 +        return insData_[ins->id()];
   1.281 +    }
   1.282 +    InstructionData &operator[](uint32_t ins) {
   1.283 +        JS_ASSERT(ins < numIns_);
   1.284 +        return insData_[ins];
   1.285 +    }
   1.286 +};
   1.287 +
   1.288 +// Common superclass for register allocators.
   1.289 +class RegisterAllocator
   1.290 +{
   1.291 +    void operator=(const RegisterAllocator &) MOZ_DELETE;
   1.292 +    RegisterAllocator(const RegisterAllocator &) MOZ_DELETE;
   1.293 +
   1.294 +  protected:
   1.295 +    // Context
   1.296 +    MIRGenerator *mir;
   1.297 +    LIRGenerator *lir;
   1.298 +    LIRGraph &graph;
   1.299 +
   1.300 +    // Pool of all registers that should be considered allocateable
   1.301 +    RegisterSet allRegisters_;
   1.302 +
   1.303 +    // Computed data
   1.304 +    InstructionDataMap insData;
   1.305 +
   1.306 +    RegisterAllocator(MIRGenerator *mir, LIRGenerator *lir, LIRGraph &graph)
   1.307 +      : mir(mir),
   1.308 +        lir(lir),
   1.309 +        graph(graph),
   1.310 +        allRegisters_(RegisterSet::All())
   1.311 +    {
   1.312 +        if (FramePointer != InvalidReg && mir->instrumentedProfiling())
   1.313 +            allRegisters_.take(AnyRegister(FramePointer));
   1.314 +#if defined(JS_CODEGEN_X64)
   1.315 +        if (mir->compilingAsmJS())
   1.316 +            allRegisters_.take(AnyRegister(HeapReg));
   1.317 +#elif defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS)
   1.318 +        if (mir->compilingAsmJS()) {
   1.319 +            allRegisters_.take(AnyRegister(HeapReg));
   1.320 +            allRegisters_.take(AnyRegister(GlobalReg));
   1.321 +            allRegisters_.take(AnyRegister(NANReg));
   1.322 +        }
   1.323 +#endif
   1.324 +    }
   1.325 +
   1.326 +    bool init();
   1.327 +
   1.328 +    TempAllocator &alloc() const {
   1.329 +        return mir->alloc();
   1.330 +    }
   1.331 +
   1.332 +    static CodePosition outputOf(uint32_t pos) {
   1.333 +        return CodePosition(pos, CodePosition::OUTPUT);
   1.334 +    }
   1.335 +    static CodePosition outputOf(const LInstruction *ins) {
   1.336 +        return CodePosition(ins->id(), CodePosition::OUTPUT);
   1.337 +    }
   1.338 +    static CodePosition inputOf(uint32_t pos) {
   1.339 +        return CodePosition(pos, CodePosition::INPUT);
   1.340 +    }
   1.341 +    static CodePosition inputOf(const LInstruction *ins) {
   1.342 +        // Phi nodes "use" their inputs before the beginning of the block.
   1.343 +        JS_ASSERT(!ins->isPhi());
   1.344 +        return CodePosition(ins->id(), CodePosition::INPUT);
   1.345 +    }
   1.346 +
   1.347 +    LMoveGroup *getInputMoveGroup(uint32_t ins);
   1.348 +    LMoveGroup *getMoveGroupAfter(uint32_t ins);
   1.349 +
   1.350 +    LMoveGroup *getInputMoveGroup(CodePosition pos) {
   1.351 +        return getInputMoveGroup(pos.ins());
   1.352 +    }
   1.353 +    LMoveGroup *getMoveGroupAfter(CodePosition pos) {
   1.354 +        return getMoveGroupAfter(pos.ins());
   1.355 +    }
   1.356 +
   1.357 +    CodePosition minimalDefEnd(LInstruction *ins) {
   1.358 +        // Compute the shortest interval that captures vregs defined by ins.
   1.359 +        // Watch for instructions that are followed by an OSI point and/or Nop.
   1.360 +        // If moves are introduced between the instruction and the OSI point then
   1.361 +        // safepoint information for the instruction may be incorrect.
   1.362 +        while (true) {
   1.363 +            LInstruction *next = insData[outputOf(ins).next()].ins();
   1.364 +            if (!next->isNop() && !next->isOsiPoint())
   1.365 +                break;
   1.366 +            ins = next;
   1.367 +        }
   1.368 +
   1.369 +        return outputOf(ins);
   1.370 +    }
   1.371 +};
   1.372 +
   1.373 +static inline AnyRegister
   1.374 +GetFixedRegister(const LDefinition *def, const LUse *use)
   1.375 +{
   1.376 +    return def->isFloatReg()
   1.377 +           ? AnyRegister(FloatRegister::FromCode(use->registerCode()))
   1.378 +           : AnyRegister(Register::FromCode(use->registerCode()));
   1.379 +}
   1.380 +
   1.381 +} // namespace jit
   1.382 +} // namespace js
   1.383 +
   1.384 +#endif /* jit_RegisterAllocator_h */

mercurial