js/src/jit/ValueNumbering.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jit/ValueNumbering.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,576 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include "jit/ValueNumbering.h"
    1.11 +
    1.12 +#include "jit/IonSpewer.h"
    1.13 +#include "jit/MIRGenerator.h"
    1.14 +#include "jit/MIRGraph.h"
    1.15 +
    1.16 +using namespace js;
    1.17 +using namespace js::jit;
    1.18 +
    1.19 +ValueNumberer::ValueNumberer(MIRGenerator *mir, MIRGraph &graph, bool optimistic)
    1.20 +  : mir(mir),
    1.21 +    graph_(graph),
    1.22 +    values(graph.alloc()),
    1.23 +    pessimisticPass_(!optimistic),
    1.24 +    count_(0)
    1.25 +{ }
    1.26 +
    1.27 +TempAllocator &
    1.28 +ValueNumberer::alloc() const
    1.29 +{
    1.30 +    return graph_.alloc();
    1.31 +}
    1.32 +
    1.33 +uint32_t
    1.34 +ValueNumberer::lookupValue(MDefinition *ins)
    1.35 +{
    1.36 +    ValueMap::AddPtr p = values.lookupForAdd(ins);
    1.37 +    if (p) {
    1.38 +        // make sure this is in the correct group
    1.39 +        setClass(ins, p->key());
    1.40 +        return p->value();
    1.41 +    }
    1.42 +
    1.43 +    if (!values.add(p, ins, ins->id()))
    1.44 +        return 0;
    1.45 +    breakClass(ins);
    1.46 +
    1.47 +    return ins->id();
    1.48 +}
    1.49 +
    1.50 +MDefinition *
    1.51 +ValueNumberer::simplify(MDefinition *def, bool useValueNumbers)
    1.52 +{
    1.53 +    if (def->isEffectful())
    1.54 +        return def;
    1.55 +
    1.56 +    MDefinition *ins = def->foldsTo(alloc(), useValueNumbers);
    1.57 +    if (ins == def)
    1.58 +        return def;
    1.59 +
    1.60 +    // Ensure this instruction has a value number.
    1.61 +    if (!ins->valueNumberData())
    1.62 +        ins->setValueNumberData(new(alloc()) ValueNumberData);
    1.63 +
    1.64 +    if (!ins->block()) {
    1.65 +        // In this case, we made a new def by constant folding, for
    1.66 +        // example, we replaced add(#3,#4) with a new const(#7) node.
    1.67 +
    1.68 +        // We will only fold a phi into one of its operands.
    1.69 +        JS_ASSERT(!def->isPhi());
    1.70 +
    1.71 +        def->block()->insertAfter(def->toInstruction(), ins->toInstruction());
    1.72 +        ins->setValueNumber(lookupValue(ins));
    1.73 +    }
    1.74 +
    1.75 +    JS_ASSERT(ins->id() != 0);
    1.76 +
    1.77 +    def->replaceAllUsesWith(ins);
    1.78 +
    1.79 +    IonSpew(IonSpew_GVN, "Folding %d to be %d", def->id(), ins->id());
    1.80 +    return ins;
    1.81 +}
    1.82 +
    1.83 +MControlInstruction *
    1.84 +ValueNumberer::simplifyControlInstruction(MControlInstruction *def)
    1.85 +{
    1.86 +    if (def->isEffectful())
    1.87 +        return def;
    1.88 +
    1.89 +    MDefinition *repl = def->foldsTo(alloc(), false);
    1.90 +    if (repl == def)
    1.91 +        return def;
    1.92 +
    1.93 +    // Ensure this instruction has a value number.
    1.94 +    if (!repl->valueNumberData())
    1.95 +        repl->setValueNumberData(new(alloc()) ValueNumberData);
    1.96 +
    1.97 +    MBasicBlock *block = def->block();
    1.98 +
    1.99 +    // MControlInstructions should not have consumers.
   1.100 +    JS_ASSERT(repl->isControlInstruction());
   1.101 +    JS_ASSERT(!def->hasUses());
   1.102 +
   1.103 +    if (def->isInWorklist())
   1.104 +        repl->setInWorklist();
   1.105 +
   1.106 +    block->discardLastIns();
   1.107 +    block->end((MControlInstruction *)repl);
   1.108 +    return (MControlInstruction *)repl;
   1.109 +}
   1.110 +
   1.111 +void
   1.112 +ValueNumberer::markDefinition(MDefinition *def)
   1.113 +{
   1.114 +    if (isMarked(def))
   1.115 +        return;
   1.116 +
   1.117 +    IonSpew(IonSpew_GVN, "marked %d", def->id());
   1.118 +    def->setInWorklist();
   1.119 +    count_++;
   1.120 +}
   1.121 +
   1.122 +void
   1.123 +ValueNumberer::unmarkDefinition(MDefinition *def)
   1.124 +{
   1.125 +    if (pessimisticPass_)
   1.126 +        return;
   1.127 +
   1.128 +    JS_ASSERT(count_ > 0);
   1.129 +    IonSpew(IonSpew_GVN, "unmarked %d", def->id());
   1.130 +    def->setNotInWorklist();
   1.131 +    count_--;
   1.132 +}
   1.133 +
   1.134 +void
   1.135 +ValueNumberer::markBlock(MBasicBlock *block)
   1.136 +{
   1.137 +    for (MDefinitionIterator iter(block); iter; iter++)
   1.138 +        markDefinition(*iter);
   1.139 +    markDefinition(block->lastIns());
   1.140 +}
   1.141 +
   1.142 +void
   1.143 +ValueNumberer::markConsumers(MDefinition *def)
   1.144 +{
   1.145 +    if (pessimisticPass_)
   1.146 +        return;
   1.147 +
   1.148 +    JS_ASSERT(!def->isInWorklist());
   1.149 +    JS_ASSERT(!def->isControlInstruction());
   1.150 +    for (MUseDefIterator use(def); use; use++)
   1.151 +        markDefinition(use.def());
   1.152 +}
   1.153 +
   1.154 +bool
   1.155 +ValueNumberer::computeValueNumbers()
   1.156 +{
   1.157 +    // At the end of this function, we will have the value numbering stored in
   1.158 +    // each instruction.
   1.159 +    //
   1.160 +    // We also need an "optimistic" value number, for temporary use, which is
   1.161 +    // stored in a hashtable.
   1.162 +    //
   1.163 +    // For the instruction x := y op z, we map (op, VN[y], VN[z]) to a value
   1.164 +    // number, say v. If it is not in the map, we use the instruction id.
   1.165 +    //
   1.166 +    // If the instruction in question's value number is not already
   1.167 +    // v, we break the congruence and set it to v. We repeat until saturation.
   1.168 +    // This will take at worst O(d) time, where d is the loop connectedness
   1.169 +    // of the SSA def/use graph.
   1.170 +    //
   1.171 +    // The algorithm is the simple RPO-based algorithm from
   1.172 +    // "SCC-Based Value Numbering" by Cooper and Simpson.
   1.173 +    //
   1.174 +    // If we are performing a pessimistic pass, then we assume that every
   1.175 +    // definition is in its own congruence class, since we know nothing about
   1.176 +    // values that enter Phi nodes through back edges. We then make one pass
   1.177 +    // through the graph, ignoring back edges. This yields less congruences on
   1.178 +    // any graph with back-edges, but is much faster to perform.
   1.179 +
   1.180 +    IonSpew(IonSpew_GVN, "Numbering instructions");
   1.181 +
   1.182 +    if (!values.init())
   1.183 +        return false;
   1.184 +    // Stick a VN object onto every mdefinition
   1.185 +    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.186 +        if (mir->shouldCancel("Value Numbering (preparation loop"))
   1.187 +            return false;
   1.188 +        for (MDefinitionIterator iter(*block); iter; iter++)
   1.189 +            iter->setValueNumberData(new(alloc()) ValueNumberData);
   1.190 +        MControlInstruction *jump = block->lastIns();
   1.191 +        jump->setValueNumberData(new(alloc()) ValueNumberData);
   1.192 +    }
   1.193 +
   1.194 +    // Assign unique value numbers if pessimistic.
   1.195 +    // It might be productive to do this in the MDefinition constructor or
   1.196 +    // possibly in a previous pass, if it seems reasonable.
   1.197 +    if (pessimisticPass_) {
   1.198 +        for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.199 +            for (MDefinitionIterator iter(*block); iter; iter++)
   1.200 +                iter->setValueNumber(iter->id());
   1.201 +        }
   1.202 +    } else {
   1.203 +        // For each root block, add all of its instructions to the worklist.
   1.204 +        markBlock(*(graph_.begin()));
   1.205 +        if (graph_.osrBlock())
   1.206 +            markBlock(graph_.osrBlock());
   1.207 +    }
   1.208 +
   1.209 +    while (count_ > 0) {
   1.210 +#ifdef DEBUG
   1.211 +        if (!pessimisticPass_) {
   1.212 +            size_t debugCount = 0;
   1.213 +            IonSpew(IonSpew_GVN, "The following instructions require processing:");
   1.214 +            for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.215 +                for (MDefinitionIterator iter(*block); iter; iter++) {
   1.216 +                    if (iter->isInWorklist()) {
   1.217 +                        IonSpew(IonSpew_GVN, "\t%d", iter->id());
   1.218 +                        debugCount++;
   1.219 +                    }
   1.220 +                }
   1.221 +                if (block->lastIns()->isInWorklist()) {
   1.222 +                    IonSpew(IonSpew_GVN, "\t%d", block->lastIns()->id());
   1.223 +                    debugCount++;
   1.224 +                }
   1.225 +            }
   1.226 +            if (!debugCount)
   1.227 +                IonSpew(IonSpew_GVN, "\tNone");
   1.228 +            JS_ASSERT(debugCount == count_);
   1.229 +        }
   1.230 +#endif
   1.231 +        for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.232 +            if (mir->shouldCancel("Value Numbering (main loop)"))
   1.233 +                return false;
   1.234 +            for (MDefinitionIterator iter(*block); iter; ) {
   1.235 +
   1.236 +                if (!isMarked(*iter)) {
   1.237 +                    iter++;
   1.238 +                    continue;
   1.239 +                }
   1.240 +
   1.241 +                JS_ASSERT_IF(!pessimisticPass_, count_ > 0);
   1.242 +                unmarkDefinition(*iter);
   1.243 +
   1.244 +                MDefinition *ins = simplify(*iter, false);
   1.245 +
   1.246 +                if (ins != *iter) {
   1.247 +                    iter = block->discardDefAt(iter);
   1.248 +                    continue;
   1.249 +                }
   1.250 +
   1.251 +                // Don't bother storing this instruction in the HashMap if
   1.252 +                // (a) eliminateRedundancies will never eliminate it (because
   1.253 +                // it's non-movable or effectful) and (b) no other instruction's
   1.254 +                // value number depends on it.
   1.255 +                if (!ins->hasDefUses() && (!ins->isMovable() || ins->isEffectful())) {
   1.256 +                    iter++;
   1.257 +                    continue;
   1.258 +                }
   1.259 +
   1.260 +                uint32_t value = lookupValue(ins);
   1.261 +
   1.262 +                if (!value)
   1.263 +                    return false; // Hashtable insertion failed
   1.264 +
   1.265 +                if (ins->valueNumber() != value) {
   1.266 +                    IonSpew(IonSpew_GVN,
   1.267 +                            "Broke congruence for instruction %d (%p) with VN %d (now using %d)",
   1.268 +                            ins->id(), (void *) ins, ins->valueNumber(), value);
   1.269 +                    ins->setValueNumber(value);
   1.270 +                    markConsumers(ins);
   1.271 +                }
   1.272 +
   1.273 +                iter++;
   1.274 +            }
   1.275 +            // Process control flow instruction:
   1.276 +            MControlInstruction *jump = block->lastIns();
   1.277 +            jump = simplifyControlInstruction(jump);
   1.278 +
   1.279 +            // If we are pessimistic, then this will never get set.
   1.280 +            if (!jump->isInWorklist())
   1.281 +                continue;
   1.282 +            unmarkDefinition(jump);
   1.283 +            if (jump->valueNumber() == 0) {
   1.284 +                jump->setValueNumber(jump->id());
   1.285 +                for (size_t i = 0; i < jump->numSuccessors(); i++)
   1.286 +                    markBlock(jump->getSuccessor(i));
   1.287 +            }
   1.288 +
   1.289 +        }
   1.290 +
   1.291 +        // If we are doing a pessimistic pass, we only go once through the
   1.292 +        // instruction list.
   1.293 +        if (pessimisticPass_)
   1.294 +            break;
   1.295 +    }
   1.296 +#ifdef DEBUG
   1.297 +    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.298 +        for (MDefinitionIterator iter(*block); iter; iter++) {
   1.299 +            JS_ASSERT(!iter->isInWorklist());
   1.300 +            JS_ASSERT_IF(iter->valueNumber() == 0,
   1.301 +                         !iter->hasDefUses() && (!iter->isMovable() || iter->isEffectful()));
   1.302 +        }
   1.303 +    }
   1.304 +#endif
   1.305 +    return true;
   1.306 +}
   1.307 +
   1.308 +MDefinition *
   1.309 +ValueNumberer::findDominatingDef(InstructionMap &defs, MDefinition *ins, size_t index)
   1.310 +{
   1.311 +    JS_ASSERT(ins->valueNumber() != 0);
   1.312 +    InstructionMap::Ptr p = defs.lookup(ins->valueNumber());
   1.313 +    MDefinition *dom;
   1.314 +    if (!p || index > p->value().validUntil) {
   1.315 +        DominatingValue value;
   1.316 +        value.def = ins;
   1.317 +        // Since we are traversing the dominator tree in pre-order, when we
   1.318 +        // are looking at the |index|-th block, the next numDominated() blocks
   1.319 +        // we traverse are precisely the set of blocks that are dominated.
   1.320 +        //
   1.321 +        // So, this value is visible in all blocks if:
   1.322 +        // index <= index + ins->block->numDominated()
   1.323 +        // and becomes invalid after that.
   1.324 +        value.validUntil = index + ins->block()->numDominated();
   1.325 +
   1.326 +        if(!defs.put(ins->valueNumber(), value))
   1.327 +            return nullptr;
   1.328 +
   1.329 +        dom = ins;
   1.330 +    } else {
   1.331 +        dom = p->value().def;
   1.332 +    }
   1.333 +
   1.334 +    return dom;
   1.335 +}
   1.336 +
   1.337 +bool
   1.338 +ValueNumberer::eliminateRedundancies()
   1.339 +{
   1.340 +    // A definition is 'redundant' iff it is dominated by another definition
   1.341 +    // with the same value number.
   1.342 +    //
   1.343 +    // So, we traverse the dominator tree in pre-order, maintaining a hashmap
   1.344 +    // from value numbers to instructions.
   1.345 +    //
   1.346 +    // For each definition d with value number v, we look up v in the hashmap.
   1.347 +    //
   1.348 +    // If there is a definition d' in the hashmap, and the current traversal
   1.349 +    // index is within that instruction's dominated range, then we eliminate d,
   1.350 +    // replacing all uses of d with uses of d'.
   1.351 +    //
   1.352 +    // If there is no valid definition in the hashtable (the current definition
   1.353 +    // is not in dominated scope), then we insert the current instruction,
   1.354 +    // since it is the most dominant instruction with the given value number.
   1.355 +
   1.356 +    InstructionMap defs(alloc());
   1.357 +
   1.358 +    if (!defs.init())
   1.359 +        return false;
   1.360 +
   1.361 +    IonSpew(IonSpew_GVN, "Eliminating redundant instructions");
   1.362 +
   1.363 +    // Stack for pre-order CFG traversal.
   1.364 +    Vector<MBasicBlock *, 1, IonAllocPolicy> worklist(alloc());
   1.365 +
   1.366 +    // The index of the current block in the CFG traversal.
   1.367 +    size_t index = 0;
   1.368 +
   1.369 +    // Add all self-dominating blocks to the worklist.
   1.370 +    // This includes all roots. Order does not matter.
   1.371 +    for (MBasicBlockIterator i(graph_.begin()); i != graph_.end(); i++) {
   1.372 +        MBasicBlock *block = *i;
   1.373 +        if (block->immediateDominator() == block) {
   1.374 +            if (!worklist.append(block))
   1.375 +                return false;
   1.376 +        }
   1.377 +    }
   1.378 +
   1.379 +    // Starting from each self-dominating block, traverse the CFG in pre-order.
   1.380 +    while (!worklist.empty()) {
   1.381 +        if (mir->shouldCancel("Value Numbering (eliminate loop)"))
   1.382 +            return false;
   1.383 +        MBasicBlock *block = worklist.popCopy();
   1.384 +
   1.385 +        IonSpew(IonSpew_GVN, "Looking at block %d", block->id());
   1.386 +
   1.387 +        // Add all immediate dominators to the front of the worklist.
   1.388 +        if (!worklist.append(block->immediatelyDominatedBlocksBegin(),
   1.389 +                             block->immediatelyDominatedBlocksEnd())) {
   1.390 +            return false;
   1.391 +        }
   1.392 +
   1.393 +        // For each instruction, attempt to look up a dominating definition.
   1.394 +        for (MDefinitionIterator iter(block); iter; ) {
   1.395 +            MDefinition *ins = simplify(*iter, true);
   1.396 +
   1.397 +            // Instruction was replaced, and all uses have already been fixed.
   1.398 +            if (ins != *iter) {
   1.399 +                iter = block->discardDefAt(iter);
   1.400 +                continue;
   1.401 +            }
   1.402 +
   1.403 +            // Instruction has side-effects and cannot be folded.
   1.404 +            if (!ins->isMovable() || ins->isEffectful()) {
   1.405 +                iter++;
   1.406 +                continue;
   1.407 +            }
   1.408 +
   1.409 +            MDefinition *dom = findDominatingDef(defs, ins, index);
   1.410 +            if (!dom)
   1.411 +                return false; // Insertion failed.
   1.412 +
   1.413 +            if (dom == ins || !dom->updateForReplacement(ins)) {
   1.414 +                iter++;
   1.415 +                continue;
   1.416 +            }
   1.417 +
   1.418 +            IonSpew(IonSpew_GVN, "instruction %d is dominated by instruction %d (from block %d)",
   1.419 +                    ins->id(), dom->id(), dom->block()->id());
   1.420 +
   1.421 +            ins->replaceAllUsesWith(dom);
   1.422 +
   1.423 +            JS_ASSERT(!ins->hasUses());
   1.424 +            JS_ASSERT(ins->block() == block);
   1.425 +            JS_ASSERT(!ins->isEffectful());
   1.426 +            JS_ASSERT(ins->isMovable());
   1.427 +
   1.428 +            iter = ins->block()->discardDefAt(iter);
   1.429 +        }
   1.430 +        index++;
   1.431 +    }
   1.432 +
   1.433 +    JS_ASSERT(index == graph_.numBlocks());
   1.434 +    return true;
   1.435 +}
   1.436 +
   1.437 +// Exported method, called by the compiler.
   1.438 +bool
   1.439 +ValueNumberer::analyze()
   1.440 +{
   1.441 +    return computeValueNumbers() && eliminateRedundancies();
   1.442 +}
   1.443 +
   1.444 +// Called by the compiler if we need to re-run GVN.
   1.445 +bool
   1.446 +ValueNumberer::clear()
   1.447 +{
   1.448 +    IonSpew(IonSpew_GVN, "Clearing value numbers");
   1.449 +
   1.450 +    // Clear the VN of every MDefinition
   1.451 +    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
   1.452 +        if (mir->shouldCancel("Value Numbering (clearing)"))
   1.453 +            return false;
   1.454 +        for (MDefinitionIterator iter(*block); iter; iter++)
   1.455 +            iter->clearValueNumberData();
   1.456 +        block->lastIns()->clearValueNumberData();
   1.457 +    }
   1.458 +
   1.459 +    return true;
   1.460 +}
   1.461 +
   1.462 +uint32_t
   1.463 +MDefinition::valueNumber() const
   1.464 +{
   1.465 +    JS_ASSERT(block_);
   1.466 +    if (valueNumber_ == nullptr)
   1.467 +        return 0;
   1.468 +    return valueNumber_->valueNumber();
   1.469 +}
   1.470 +void
   1.471 +MDefinition::setValueNumber(uint32_t vn)
   1.472 +{
   1.473 +    valueNumber_->setValueNumber(vn);
   1.474 +}
   1.475 +// Set the class of this to the given representative value.
   1.476 +void
   1.477 +ValueNumberer::setClass(MDefinition *def, MDefinition *rep)
   1.478 +{
   1.479 +    def->valueNumberData()->setClass(def, rep);
   1.480 +}
   1.481 +
   1.482 +MDefinition *
   1.483 +ValueNumberer::findSplit(MDefinition *def)
   1.484 +{
   1.485 +    for (MDefinition *vncheck = def->valueNumberData()->classNext;
   1.486 +         vncheck != nullptr;
   1.487 +         vncheck = vncheck->valueNumberData()->classNext) {
   1.488 +        if (!def->congruentTo(vncheck)) {
   1.489 +            IonSpew(IonSpew_GVN, "Proceeding with split because %d is not congruent to %d",
   1.490 +                    def->id(), vncheck->id());
   1.491 +            return vncheck;
   1.492 +        }
   1.493 +    }
   1.494 +    return nullptr;
   1.495 +}
   1.496 +
   1.497 +void
   1.498 +ValueNumberer::breakClass(MDefinition *def)
   1.499 +{
   1.500 +    if (def->valueNumber() == def->id()) {
   1.501 +        IonSpew(IonSpew_GVN, "Breaking congruence with itself: %d", def->id());
   1.502 +        ValueNumberData *defdata = def->valueNumberData();
   1.503 +        JS_ASSERT(defdata->classPrev == nullptr);
   1.504 +        // If the def was the only member of the class, then there is nothing to do.
   1.505 +        if (defdata->classNext == nullptr)
   1.506 +            return;
   1.507 +        // If upon closer inspection, we are still equivalent to this class
   1.508 +        // then there isn't anything for us to do.
   1.509 +        MDefinition *newRep = findSplit(def);
   1.510 +        if (!newRep)
   1.511 +            return;
   1.512 +        markConsumers(def);
   1.513 +        ValueNumberData *newdata = newRep->valueNumberData();
   1.514 +
   1.515 +        // Right now, |defdata| is at the front of the list, and |newdata| is
   1.516 +        // somewhere in the middle.
   1.517 +        //
   1.518 +        // We want to move |defdata| and everything up to but excluding
   1.519 +        // |newdata| to a new list, with |defdata| still as the canonical
   1.520 +        // element.
   1.521 +        //
   1.522 +        // We then want to take |newdata| and everything after, and
   1.523 +        // mark them for processing (since |newdata| is now a new canonical
   1.524 +        // element).
   1.525 +        //
   1.526 +        MDefinition *lastOld = newdata->classPrev;
   1.527 +
   1.528 +        JS_ASSERT(lastOld); // newRep is NOT the first element of the list.
   1.529 +        JS_ASSERT(lastOld->valueNumberData()->classNext == newRep);
   1.530 +
   1.531 +        //lastOld is now the last element of the old list (congruent to
   1.532 +        //|def|)
   1.533 +        lastOld->valueNumberData()->classNext = nullptr;
   1.534 +
   1.535 +#ifdef DEBUG
   1.536 +        for (MDefinition *tmp = def; tmp != nullptr; tmp = tmp->valueNumberData()->classNext) {
   1.537 +            JS_ASSERT(tmp->valueNumber() == def->valueNumber());
   1.538 +            JS_ASSERT(tmp->congruentTo(def));
   1.539 +            JS_ASSERT(tmp != newRep);
   1.540 +        }
   1.541 +#endif
   1.542 +        //|newRep| is now the first element of a new list, therefore it is the
   1.543 +        //new canonical element. Mark the remaining elements in the list
   1.544 +        //(including |newRep|)
   1.545 +        newdata->classPrev = nullptr;
   1.546 +        IonSpew(IonSpew_GVN, "Choosing a new representative: %d", newRep->id());
   1.547 +
   1.548 +        // make the VN of every member in the class the VN of the new representative number.
   1.549 +        for (MDefinition *tmp = newRep; tmp != nullptr; tmp = tmp->valueNumberData()->classNext) {
   1.550 +            // if this instruction is already scheduled to be processed, don't do anything.
   1.551 +            if (tmp->isInWorklist()) {
   1.552 +                IonSpew(IonSpew_GVN, "Defer  to a new congruence class: %d", tmp->id());
   1.553 +                continue;
   1.554 +            }
   1.555 +            IonSpew(IonSpew_GVN, "Moving to a new congruence class: %d", tmp->id());
   1.556 +            tmp->setValueNumber(newRep->id());
   1.557 +            markConsumers(tmp);
   1.558 +            markDefinition(tmp);
   1.559 +        }
   1.560 +
   1.561 +        // Insert the new representative => number mapping into the table
   1.562 +        // Logically, there should not be anything in the table currently, but
   1.563 +        // old values are never removed, so there's a good chance something will
   1.564 +        // already be there.
   1.565 +        values.put(newRep, newRep->id());
   1.566 +    } else {
   1.567 +        // The element that is breaking from the list isn't the representative element
   1.568 +        // just strip it from the list
   1.569 +        ValueNumberData *defdata = def->valueNumberData();
   1.570 +        if (defdata->classPrev)
   1.571 +            defdata->classPrev->valueNumberData()->classNext = defdata->classNext;
   1.572 +        if (defdata->classNext)
   1.573 +            defdata->classNext->valueNumberData()->classPrev = defdata->classPrev;
   1.574 +
   1.575 +        // Make sure there is no nastinees accidentally linking elements into the old list later.
   1.576 +        defdata->classPrev = nullptr;
   1.577 +        defdata->classNext = nullptr;
   1.578 +    }
   1.579 +}

mercurial