js/src/jit/shared/MacroAssembler-x86-shared.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jit/shared/MacroAssembler-x86-shared.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,704 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#ifndef jit_shared_MacroAssembler_x86_shared_h
    1.11 +#define jit_shared_MacroAssembler_x86_shared_h
    1.12 +
    1.13 +#include "mozilla/Casting.h"
    1.14 +#include "mozilla/DebugOnly.h"
    1.15 +
    1.16 +#if defined(JS_CODEGEN_X86)
    1.17 +# include "jit/x86/Assembler-x86.h"
    1.18 +#elif defined(JS_CODEGEN_X64)
    1.19 +# include "jit/x64/Assembler-x64.h"
    1.20 +#endif
    1.21 +
    1.22 +namespace js {
    1.23 +namespace jit {
    1.24 +
    1.25 +class MacroAssemblerX86Shared : public Assembler
    1.26 +{
    1.27 +  protected:
    1.28 +    // Bytes pushed onto the frame by the callee; includes frameDepth_. This is
    1.29 +    // needed to compute offsets to stack slots while temporary space has been
    1.30 +    // reserved for unexpected spills or C++ function calls. It is maintained
    1.31 +    // by functions which track stack alignment, which for clear distinction
    1.32 +    // use StudlyCaps (for example, Push, Pop).
    1.33 +    uint32_t framePushed_;
    1.34 +
    1.35 +  public:
    1.36 +    using Assembler::call;
    1.37 +
    1.38 +    MacroAssemblerX86Shared()
    1.39 +      : framePushed_(0)
    1.40 +    { }
    1.41 +
    1.42 +    void compareDouble(DoubleCondition cond, const FloatRegister &lhs, const FloatRegister &rhs) {
    1.43 +        if (cond & DoubleConditionBitInvert)
    1.44 +            ucomisd(rhs, lhs);
    1.45 +        else
    1.46 +            ucomisd(lhs, rhs);
    1.47 +    }
    1.48 +    void branchDouble(DoubleCondition cond, const FloatRegister &lhs,
    1.49 +                      const FloatRegister &rhs, Label *label)
    1.50 +    {
    1.51 +        compareDouble(cond, lhs, rhs);
    1.52 +
    1.53 +        if (cond == DoubleEqual) {
    1.54 +            Label unordered;
    1.55 +            j(Parity, &unordered);
    1.56 +            j(Equal, label);
    1.57 +            bind(&unordered);
    1.58 +            return;
    1.59 +        }
    1.60 +        if (cond == DoubleNotEqualOrUnordered) {
    1.61 +            j(NotEqual, label);
    1.62 +            j(Parity, label);
    1.63 +            return;
    1.64 +        }
    1.65 +
    1.66 +        JS_ASSERT(!(cond & DoubleConditionBitSpecial));
    1.67 +        j(ConditionFromDoubleCondition(cond), label);
    1.68 +    }
    1.69 +
    1.70 +    void compareFloat(DoubleCondition cond, const FloatRegister &lhs, const FloatRegister &rhs) {
    1.71 +        if (cond & DoubleConditionBitInvert)
    1.72 +            ucomiss(rhs, lhs);
    1.73 +        else
    1.74 +            ucomiss(lhs, rhs);
    1.75 +    }
    1.76 +    void branchFloat(DoubleCondition cond, const FloatRegister &lhs,
    1.77 +                      const FloatRegister &rhs, Label *label)
    1.78 +    {
    1.79 +        compareFloat(cond, lhs, rhs);
    1.80 +
    1.81 +        if (cond == DoubleEqual) {
    1.82 +            Label unordered;
    1.83 +            j(Parity, &unordered);
    1.84 +            j(Equal, label);
    1.85 +            bind(&unordered);
    1.86 +            return;
    1.87 +        }
    1.88 +        if (cond == DoubleNotEqualOrUnordered) {
    1.89 +            j(NotEqual, label);
    1.90 +            j(Parity, label);
    1.91 +            return;
    1.92 +        }
    1.93 +
    1.94 +        JS_ASSERT(!(cond & DoubleConditionBitSpecial));
    1.95 +        j(ConditionFromDoubleCondition(cond), label);
    1.96 +    }
    1.97 +
    1.98 +    void branchNegativeZero(const FloatRegister &reg, const Register &scratch, Label *label);
    1.99 +    void branchNegativeZeroFloat32(const FloatRegister &reg, const Register &scratch, Label *label);
   1.100 +
   1.101 +    void move32(const Imm32 &imm, const Register &dest) {
   1.102 +        // Use the ImmWord version of mov to register, which has special
   1.103 +        // optimizations. Casting to uint32_t here ensures that the value
   1.104 +        // is zero-extended.
   1.105 +        mov(ImmWord(uint32_t(imm.value)), dest);
   1.106 +    }
   1.107 +    void move32(const Imm32 &imm, const Operand &dest) {
   1.108 +        movl(imm, dest);
   1.109 +    }
   1.110 +    void move32(const Register &src, const Register &dest) {
   1.111 +        movl(src, dest);
   1.112 +    }
   1.113 +    void move32(const Register &src, const Operand &dest) {
   1.114 +        movl(src, dest);
   1.115 +    }
   1.116 +    void and32(const Imm32 &imm, const Register &dest) {
   1.117 +        andl(imm, dest);
   1.118 +    }
   1.119 +    void and32(const Imm32 &imm, const Address &dest) {
   1.120 +        andl(imm, Operand(dest));
   1.121 +    }
   1.122 +    void or32(const Register &src, const Register &dest) {
   1.123 +        orl(src, dest);
   1.124 +    }
   1.125 +    void or32(const Imm32 &imm, const Register &dest) {
   1.126 +        orl(imm, dest);
   1.127 +    }
   1.128 +    void or32(const Imm32 &imm, const Address &dest) {
   1.129 +        orl(imm, Operand(dest));
   1.130 +    }
   1.131 +    void neg32(const Register &reg) {
   1.132 +        negl(reg);
   1.133 +    }
   1.134 +    void test32(const Register &lhs, const Register &rhs) {
   1.135 +        testl(lhs, rhs);
   1.136 +    }
   1.137 +    void test32(const Address &addr, Imm32 imm) {
   1.138 +        testl(Operand(addr), imm);
   1.139 +    }
   1.140 +    void test32(const Register &lhs, const Imm32 &rhs) {
   1.141 +        testl(lhs, rhs);
   1.142 +    }
   1.143 +    void cmp32(const Register &lhs, const Imm32 &rhs) {
   1.144 +        cmpl(lhs, rhs);
   1.145 +    }
   1.146 +    void cmp32(Register a, Register b) {
   1.147 +        cmpl(a, b);
   1.148 +    }
   1.149 +    void cmp32(const Operand &lhs, const Imm32 &rhs) {
   1.150 +        cmpl(lhs, rhs);
   1.151 +    }
   1.152 +    void cmp32(const Operand &lhs, const Register &rhs) {
   1.153 +        cmpl(lhs, rhs);
   1.154 +    }
   1.155 +    void add32(Register src, Register dest) {
   1.156 +        addl(src, dest);
   1.157 +    }
   1.158 +    void add32(Imm32 imm, Register dest) {
   1.159 +        addl(imm, dest);
   1.160 +    }
   1.161 +    void add32(Imm32 imm, const Address &dest) {
   1.162 +        addl(imm, Operand(dest));
   1.163 +    }
   1.164 +    void sub32(Imm32 imm, Register dest) {
   1.165 +        subl(imm, dest);
   1.166 +    }
   1.167 +    void sub32(Register src, Register dest) {
   1.168 +        subl(src, dest);
   1.169 +    }
   1.170 +    template <typename T>
   1.171 +    void branchAdd32(Condition cond, T src, Register dest, Label *label) {
   1.172 +        add32(src, dest);
   1.173 +        j(cond, label);
   1.174 +    }
   1.175 +    template <typename T>
   1.176 +    void branchSub32(Condition cond, T src, Register dest, Label *label) {
   1.177 +        sub32(src, dest);
   1.178 +        j(cond, label);
   1.179 +    }
   1.180 +    void xor32(Imm32 imm, Register dest) {
   1.181 +        xorl(imm, dest);
   1.182 +    }
   1.183 +    void xor32(Register src, Register dest) {
   1.184 +        xorl(src, dest);
   1.185 +    }
   1.186 +    void not32(Register reg) {
   1.187 +        notl(reg);
   1.188 +    }
   1.189 +    void inc32(const Operand &addr) {
   1.190 +        incl(addr);
   1.191 +    }
   1.192 +    void atomic_inc32(const Operand &addr) {
   1.193 +        lock_incl(addr);
   1.194 +    }
   1.195 +    void dec32(const Operand &addr) {
   1.196 +        decl(addr);
   1.197 +    }
   1.198 +    void atomic_dec32(const Operand &addr) {
   1.199 +        lock_decl(addr);
   1.200 +    }
   1.201 +    void atomic_cmpxchg32(const Register &src, const Operand &addr, const Register &dest) {
   1.202 +        // %eax must be explicitly provided for calling clarity.
   1.203 +        MOZ_ASSERT(dest.code() == JSC::X86Registers::eax);
   1.204 +        lock_cmpxchg32(src, addr);
   1.205 +    }
   1.206 +
   1.207 +    void branch16(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
   1.208 +        cmpw(lhs, rhs);
   1.209 +        j(cond, label);
   1.210 +    }
   1.211 +    void branch32(Condition cond, const Operand &lhs, const Register &rhs, Label *label) {
   1.212 +        cmpl(lhs, rhs);
   1.213 +        j(cond, label);
   1.214 +    }
   1.215 +    void branch32(Condition cond, const Operand &lhs, Imm32 rhs, Label *label) {
   1.216 +        cmpl(lhs, rhs);
   1.217 +        j(cond, label);
   1.218 +    }
   1.219 +    void branch32(Condition cond, const Address &lhs, const Register &rhs, Label *label) {
   1.220 +        cmpl(Operand(lhs), rhs);
   1.221 +        j(cond, label);
   1.222 +    }
   1.223 +    void branch32(Condition cond, const Address &lhs, Imm32 imm, Label *label) {
   1.224 +        cmpl(Operand(lhs), imm);
   1.225 +        j(cond, label);
   1.226 +    }
   1.227 +    void branch32(Condition cond, const Register &lhs, Imm32 imm, Label *label) {
   1.228 +        cmpl(lhs, imm);
   1.229 +        j(cond, label);
   1.230 +    }
   1.231 +    void branch32(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
   1.232 +        cmpl(lhs, rhs);
   1.233 +        j(cond, label);
   1.234 +    }
   1.235 +    void branchTest16(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
   1.236 +        testw(lhs, rhs);
   1.237 +        j(cond, label);
   1.238 +    }
   1.239 +    void branchTest32(Condition cond, const Register &lhs, const Register &rhs, Label *label) {
   1.240 +        testl(lhs, rhs);
   1.241 +        j(cond, label);
   1.242 +    }
   1.243 +    void branchTest32(Condition cond, const Register &lhs, Imm32 imm, Label *label) {
   1.244 +        testl(lhs, imm);
   1.245 +        j(cond, label);
   1.246 +    }
   1.247 +    void branchTest32(Condition cond, const Address &address, Imm32 imm, Label *label) {
   1.248 +        testl(Operand(address), imm);
   1.249 +        j(cond, label);
   1.250 +    }
   1.251 +
   1.252 +    // The following functions are exposed for use in platform-shared code.
   1.253 +    template <typename T>
   1.254 +    void Push(const T &t) {
   1.255 +        push(t);
   1.256 +        framePushed_ += sizeof(intptr_t);
   1.257 +    }
   1.258 +    void Push(const FloatRegister &t) {
   1.259 +        push(t);
   1.260 +        framePushed_ += sizeof(double);
   1.261 +    }
   1.262 +    CodeOffsetLabel PushWithPatch(const ImmWord &word) {
   1.263 +        framePushed_ += sizeof(word.value);
   1.264 +        return pushWithPatch(word);
   1.265 +    }
   1.266 +    CodeOffsetLabel PushWithPatch(const ImmPtr &imm) {
   1.267 +        return PushWithPatch(ImmWord(uintptr_t(imm.value)));
   1.268 +    }
   1.269 +
   1.270 +    template <typename T>
   1.271 +    void Pop(const T &t) {
   1.272 +        pop(t);
   1.273 +        framePushed_ -= sizeof(intptr_t);
   1.274 +    }
   1.275 +    void Pop(const FloatRegister &t) {
   1.276 +        pop(t);
   1.277 +        framePushed_ -= sizeof(double);
   1.278 +    }
   1.279 +    void implicitPop(uint32_t args) {
   1.280 +        JS_ASSERT(args % sizeof(intptr_t) == 0);
   1.281 +        framePushed_ -= args;
   1.282 +    }
   1.283 +    uint32_t framePushed() const {
   1.284 +        return framePushed_;
   1.285 +    }
   1.286 +    void setFramePushed(uint32_t framePushed) {
   1.287 +        framePushed_ = framePushed;
   1.288 +    }
   1.289 +
   1.290 +    void jump(Label *label) {
   1.291 +        jmp(label);
   1.292 +    }
   1.293 +    void jump(RepatchLabel *label) {
   1.294 +        jmp(label);
   1.295 +    }
   1.296 +    void jump(Register reg) {
   1.297 +        jmp(Operand(reg));
   1.298 +    }
   1.299 +    void jump(const Address &addr) {
   1.300 +        jmp(Operand(addr));
   1.301 +    }
   1.302 +
   1.303 +    void convertInt32ToDouble(const Register &src, const FloatRegister &dest) {
   1.304 +        // cvtsi2sd and friends write only part of their output register, which
   1.305 +        // causes slowdowns on out-of-order processors. Explicitly break
   1.306 +        // dependencies with xorpd (and xorps elsewhere), which are handled
   1.307 +        // specially in modern CPUs, for this purpose. See sections 8.14, 9.8,
   1.308 +        // 10.8, 12.9, 13.16, 14.14, and 15.8 of Agner's Microarchitecture
   1.309 +        // document.
   1.310 +        zeroDouble(dest);
   1.311 +        cvtsi2sd(src, dest);
   1.312 +    }
   1.313 +    void convertInt32ToDouble(const Address &src, FloatRegister dest) {
   1.314 +        convertInt32ToDouble(Operand(src), dest);
   1.315 +    }
   1.316 +    void convertInt32ToDouble(const Operand &src, FloatRegister dest) {
   1.317 +        // Clear the output register first to break dependencies; see above;
   1.318 +        zeroDouble(dest);
   1.319 +        cvtsi2sd(Operand(src), dest);
   1.320 +    }
   1.321 +    void convertInt32ToFloat32(const Register &src, const FloatRegister &dest) {
   1.322 +        // Clear the output register first to break dependencies; see above;
   1.323 +        zeroFloat32(dest);
   1.324 +        cvtsi2ss(src, dest);
   1.325 +    }
   1.326 +    void convertInt32ToFloat32(const Address &src, FloatRegister dest) {
   1.327 +        convertInt32ToFloat32(Operand(src), dest);
   1.328 +    }
   1.329 +    void convertInt32ToFloat32(const Operand &src, FloatRegister dest) {
   1.330 +        // Clear the output register first to break dependencies; see above;
   1.331 +        zeroFloat32(dest);
   1.332 +        cvtsi2ss(src, dest);
   1.333 +    }
   1.334 +    Condition testDoubleTruthy(bool truthy, const FloatRegister &reg) {
   1.335 +        zeroDouble(ScratchFloatReg);
   1.336 +        ucomisd(ScratchFloatReg, reg);
   1.337 +        return truthy ? NonZero : Zero;
   1.338 +    }
   1.339 +    void branchTestDoubleTruthy(bool truthy, const FloatRegister &reg, Label *label) {
   1.340 +        Condition cond = testDoubleTruthy(truthy, reg);
   1.341 +        j(cond, label);
   1.342 +    }
   1.343 +    void load8ZeroExtend(const Address &src, const Register &dest) {
   1.344 +        movzbl(Operand(src), dest);
   1.345 +    }
   1.346 +    void load8ZeroExtend(const BaseIndex &src, const Register &dest) {
   1.347 +        movzbl(Operand(src), dest);
   1.348 +    }
   1.349 +    void load8SignExtend(const Address &src, const Register &dest) {
   1.350 +        movsbl(Operand(src), dest);
   1.351 +    }
   1.352 +    void load8SignExtend(const BaseIndex &src, const Register &dest) {
   1.353 +        movsbl(Operand(src), dest);
   1.354 +    }
   1.355 +    template <typename S, typename T>
   1.356 +    void store8(const S &src, const T &dest) {
   1.357 +        movb(src, Operand(dest));
   1.358 +    }
   1.359 +    void load16ZeroExtend(const Address &src, const Register &dest) {
   1.360 +        movzwl(Operand(src), dest);
   1.361 +    }
   1.362 +    void load16ZeroExtend(const BaseIndex &src, const Register &dest) {
   1.363 +        movzwl(Operand(src), dest);
   1.364 +    }
   1.365 +    template <typename S, typename T>
   1.366 +    void store16(const S &src, const T &dest) {
   1.367 +        movw(src, Operand(dest));
   1.368 +    }
   1.369 +    void load16SignExtend(const Address &src, const Register &dest) {
   1.370 +        movswl(Operand(src), dest);
   1.371 +    }
   1.372 +    void load16SignExtend(const BaseIndex &src, const Register &dest) {
   1.373 +        movswl(Operand(src), dest);
   1.374 +    }
   1.375 +    void load32(const Address &address, Register dest) {
   1.376 +        movl(Operand(address), dest);
   1.377 +    }
   1.378 +    void load32(const BaseIndex &src, Register dest) {
   1.379 +        movl(Operand(src), dest);
   1.380 +    }
   1.381 +    void load32(const Operand &src, Register dest) {
   1.382 +        movl(src, dest);
   1.383 +    }
   1.384 +    template <typename S, typename T>
   1.385 +    void store32(const S &src, const T &dest) {
   1.386 +        movl(src, Operand(dest));
   1.387 +    }
   1.388 +    void loadDouble(const Address &src, FloatRegister dest) {
   1.389 +        movsd(src, dest);
   1.390 +    }
   1.391 +    void loadDouble(const BaseIndex &src, FloatRegister dest) {
   1.392 +        movsd(src, dest);
   1.393 +    }
   1.394 +    void loadDouble(const Operand &src, FloatRegister dest) {
   1.395 +        switch (src.kind()) {
   1.396 +          case Operand::MEM_REG_DISP:
   1.397 +            loadDouble(src.toAddress(), dest);
   1.398 +            break;
   1.399 +          case Operand::MEM_SCALE:
   1.400 +            loadDouble(src.toBaseIndex(), dest);
   1.401 +            break;
   1.402 +          default:
   1.403 +            MOZ_ASSUME_UNREACHABLE("unexpected operand kind");
   1.404 +        }
   1.405 +    }
   1.406 +    void storeDouble(FloatRegister src, const Address &dest) {
   1.407 +        movsd(src, dest);
   1.408 +    }
   1.409 +    void storeDouble(FloatRegister src, const BaseIndex &dest) {
   1.410 +        movsd(src, dest);
   1.411 +    }
   1.412 +    void storeDouble(FloatRegister src, const Operand &dest) {
   1.413 +        switch (dest.kind()) {
   1.414 +          case Operand::MEM_REG_DISP:
   1.415 +            storeDouble(src, dest.toAddress());
   1.416 +            break;
   1.417 +          case Operand::MEM_SCALE:
   1.418 +            storeDouble(src, dest.toBaseIndex());
   1.419 +            break;
   1.420 +          default:
   1.421 +            MOZ_ASSUME_UNREACHABLE("unexpected operand kind");
   1.422 +        }
   1.423 +    }
   1.424 +    void moveDouble(FloatRegister src, FloatRegister dest) {
   1.425 +        // Use movapd instead of movsd to avoid dependencies.
   1.426 +        movapd(src, dest);
   1.427 +    }
   1.428 +    void zeroDouble(FloatRegister reg) {
   1.429 +        xorpd(reg, reg);
   1.430 +    }
   1.431 +    void zeroFloat32(FloatRegister reg) {
   1.432 +        xorps(reg, reg);
   1.433 +    }
   1.434 +    void negateDouble(FloatRegister reg) {
   1.435 +        // From MacroAssemblerX86Shared::maybeInlineDouble
   1.436 +        pcmpeqw(ScratchFloatReg, ScratchFloatReg);
   1.437 +        psllq(Imm32(63), ScratchFloatReg);
   1.438 +
   1.439 +        // XOR the float in a float register with -0.0.
   1.440 +        xorpd(ScratchFloatReg, reg); // s ^ 0x80000000000000
   1.441 +    }
   1.442 +    void negateFloat(FloatRegister reg) {
   1.443 +        pcmpeqw(ScratchFloatReg, ScratchFloatReg);
   1.444 +        psllq(Imm32(31), ScratchFloatReg);
   1.445 +
   1.446 +        // XOR the float in a float register with -0.0.
   1.447 +        xorps(ScratchFloatReg, reg); // s ^ 0x80000000
   1.448 +    }
   1.449 +    void addDouble(FloatRegister src, FloatRegister dest) {
   1.450 +        addsd(src, dest);
   1.451 +    }
   1.452 +    void subDouble(FloatRegister src, FloatRegister dest) {
   1.453 +        subsd(src, dest);
   1.454 +    }
   1.455 +    void mulDouble(FloatRegister src, FloatRegister dest) {
   1.456 +        mulsd(src, dest);
   1.457 +    }
   1.458 +    void divDouble(FloatRegister src, FloatRegister dest) {
   1.459 +        divsd(src, dest);
   1.460 +    }
   1.461 +    void convertFloat32ToDouble(const FloatRegister &src, const FloatRegister &dest) {
   1.462 +        cvtss2sd(src, dest);
   1.463 +    }
   1.464 +    void convertDoubleToFloat32(const FloatRegister &src, const FloatRegister &dest) {
   1.465 +        cvtsd2ss(src, dest);
   1.466 +    }
   1.467 +    void moveFloatAsDouble(const Register &src, FloatRegister dest) {
   1.468 +        movd(src, dest);
   1.469 +        cvtss2sd(dest, dest);
   1.470 +    }
   1.471 +    void loadFloatAsDouble(const Address &src, FloatRegister dest) {
   1.472 +        movss(src, dest);
   1.473 +        cvtss2sd(dest, dest);
   1.474 +    }
   1.475 +    void loadFloatAsDouble(const BaseIndex &src, FloatRegister dest) {
   1.476 +        movss(src, dest);
   1.477 +        cvtss2sd(dest, dest);
   1.478 +    }
   1.479 +    void loadFloatAsDouble(const Operand &src, FloatRegister dest) {
   1.480 +        loadFloat32(src, dest);
   1.481 +        cvtss2sd(dest, dest);
   1.482 +    }
   1.483 +    void loadFloat32(const Address &src, FloatRegister dest) {
   1.484 +        movss(src, dest);
   1.485 +    }
   1.486 +    void loadFloat32(const BaseIndex &src, FloatRegister dest) {
   1.487 +        movss(src, dest);
   1.488 +    }
   1.489 +    void loadFloat32(const Operand &src, FloatRegister dest) {
   1.490 +        switch (src.kind()) {
   1.491 +          case Operand::MEM_REG_DISP:
   1.492 +            loadFloat32(src.toAddress(), dest);
   1.493 +            break;
   1.494 +          case Operand::MEM_SCALE:
   1.495 +            loadFloat32(src.toBaseIndex(), dest);
   1.496 +            break;
   1.497 +          default:
   1.498 +            MOZ_ASSUME_UNREACHABLE("unexpected operand kind");
   1.499 +        }
   1.500 +    }
   1.501 +    void storeFloat32(FloatRegister src, const Address &dest) {
   1.502 +        movss(src, dest);
   1.503 +    }
   1.504 +    void storeFloat32(FloatRegister src, const BaseIndex &dest) {
   1.505 +        movss(src, dest);
   1.506 +    }
   1.507 +    void storeFloat32(FloatRegister src, const Operand &dest) {
   1.508 +        switch (dest.kind()) {
   1.509 +          case Operand::MEM_REG_DISP:
   1.510 +            storeFloat32(src, dest.toAddress());
   1.511 +            break;
   1.512 +          case Operand::MEM_SCALE:
   1.513 +            storeFloat32(src, dest.toBaseIndex());
   1.514 +            break;
   1.515 +          default:
   1.516 +            MOZ_ASSUME_UNREACHABLE("unexpected operand kind");
   1.517 +        }
   1.518 +    }
   1.519 +    void moveFloat32(FloatRegister src, FloatRegister dest) {
   1.520 +        // Use movaps instead of movss to avoid dependencies.
   1.521 +        movaps(src, dest);
   1.522 +    }
   1.523 +
   1.524 +    // Checks whether a double is representable as a 32-bit integer. If so, the
   1.525 +    // integer is written to the output register. Otherwise, a bailout is taken to
   1.526 +    // the given snapshot. This function overwrites the scratch float register.
   1.527 +    void convertDoubleToInt32(FloatRegister src, Register dest, Label *fail,
   1.528 +                              bool negativeZeroCheck = true)
   1.529 +    {
   1.530 +        // Check for -0.0
   1.531 +        if (negativeZeroCheck)
   1.532 +            branchNegativeZero(src, dest, fail);
   1.533 +
   1.534 +        cvttsd2si(src, dest);
   1.535 +        cvtsi2sd(dest, ScratchFloatReg);
   1.536 +        ucomisd(src, ScratchFloatReg);
   1.537 +        j(Assembler::Parity, fail);
   1.538 +        j(Assembler::NotEqual, fail);
   1.539 +
   1.540 +    }
   1.541 +
   1.542 +    // Checks whether a float32 is representable as a 32-bit integer. If so, the
   1.543 +    // integer is written to the output register. Otherwise, a bailout is taken to
   1.544 +    // the given snapshot. This function overwrites the scratch float register.
   1.545 +    void convertFloat32ToInt32(FloatRegister src, Register dest, Label *fail,
   1.546 +                               bool negativeZeroCheck = true)
   1.547 +    {
   1.548 +        // Check for -0.0
   1.549 +        if (negativeZeroCheck)
   1.550 +            branchNegativeZeroFloat32(src, dest, fail);
   1.551 +
   1.552 +        cvttss2si(src, dest);
   1.553 +        convertInt32ToFloat32(dest, ScratchFloatReg);
   1.554 +        ucomiss(src, ScratchFloatReg);
   1.555 +        j(Assembler::Parity, fail);
   1.556 +        j(Assembler::NotEqual, fail);
   1.557 +    }
   1.558 +
   1.559 +    void clampIntToUint8(Register reg) {
   1.560 +        Label inRange;
   1.561 +        branchTest32(Assembler::Zero, reg, Imm32(0xffffff00), &inRange);
   1.562 +        {
   1.563 +            sarl(Imm32(31), reg);
   1.564 +            notl(reg);
   1.565 +            andl(Imm32(255), reg);
   1.566 +        }
   1.567 +        bind(&inRange);
   1.568 +    }
   1.569 +
   1.570 +    bool maybeInlineDouble(double d, const FloatRegister &dest) {
   1.571 +        uint64_t u = mozilla::BitwiseCast<uint64_t>(d);
   1.572 +
   1.573 +        // Loading zero with xor is specially optimized in hardware.
   1.574 +        if (u == 0) {
   1.575 +            xorpd(dest, dest);
   1.576 +            return true;
   1.577 +        }
   1.578 +
   1.579 +        // It is also possible to load several common constants using pcmpeqw
   1.580 +        // to get all ones and then psllq and psrlq to get zeros at the ends,
   1.581 +        // as described in "13.4 Generating constants" of
   1.582 +        // "2. Optimizing subroutines in assembly language" by Agner Fog, and as
   1.583 +        // previously implemented here. However, with x86 and x64 both using
   1.584 +        // constant pool loads for double constants, this is probably only
   1.585 +        // worthwhile in cases where a load is likely to be delayed.
   1.586 +
   1.587 +        return false;
   1.588 +    }
   1.589 +
   1.590 +    bool maybeInlineFloat(float f, const FloatRegister &dest) {
   1.591 +        uint32_t u = mozilla::BitwiseCast<uint32_t>(f);
   1.592 +
   1.593 +        // See comment above
   1.594 +        if (u == 0) {
   1.595 +            xorps(dest, dest);
   1.596 +            return true;
   1.597 +        }
   1.598 +        return false;
   1.599 +    }
   1.600 +
   1.601 +    void convertBoolToInt32(Register source, Register dest) {
   1.602 +        // Note that C++ bool is only 1 byte, so zero extend it to clear the
   1.603 +        // higher-order bits.
   1.604 +        movzbl(source, dest);
   1.605 +    }
   1.606 +
   1.607 +    void emitSet(Assembler::Condition cond, const Register &dest,
   1.608 +                 Assembler::NaNCond ifNaN = Assembler::NaN_HandledByCond) {
   1.609 +        if (GeneralRegisterSet(Registers::SingleByteRegs).has(dest)) {
   1.610 +            // If the register we're defining is a single byte register,
   1.611 +            // take advantage of the setCC instruction
   1.612 +            setCC(cond, dest);
   1.613 +            movzbl(dest, dest);
   1.614 +
   1.615 +            if (ifNaN != Assembler::NaN_HandledByCond) {
   1.616 +                Label noNaN;
   1.617 +                j(Assembler::NoParity, &noNaN);
   1.618 +                mov(ImmWord(ifNaN == Assembler::NaN_IsTrue), dest);
   1.619 +                bind(&noNaN);
   1.620 +            }
   1.621 +        } else {
   1.622 +            Label end;
   1.623 +            Label ifFalse;
   1.624 +
   1.625 +            if (ifNaN == Assembler::NaN_IsFalse)
   1.626 +                j(Assembler::Parity, &ifFalse);
   1.627 +            // Note a subtlety here: FLAGS is live at this point, and the
   1.628 +            // mov interface doesn't guarantee to preserve FLAGS. Use
   1.629 +            // movl instead of mov, because the movl instruction
   1.630 +            // preserves FLAGS.
   1.631 +            movl(Imm32(1), dest);
   1.632 +            j(cond, &end);
   1.633 +            if (ifNaN == Assembler::NaN_IsTrue)
   1.634 +                j(Assembler::Parity, &end);
   1.635 +            bind(&ifFalse);
   1.636 +            mov(ImmWord(0), dest);
   1.637 +
   1.638 +            bind(&end);
   1.639 +        }
   1.640 +    }
   1.641 +
   1.642 +    template <typename T1, typename T2>
   1.643 +    void cmp32Set(Assembler::Condition cond, T1 lhs, T2 rhs, const Register &dest)
   1.644 +    {
   1.645 +        cmp32(lhs, rhs);
   1.646 +        emitSet(cond, dest);
   1.647 +    }
   1.648 +
   1.649 +    // Emit a JMP that can be toggled to a CMP. See ToggleToJmp(), ToggleToCmp().
   1.650 +    CodeOffsetLabel toggledJump(Label *label) {
   1.651 +        CodeOffsetLabel offset(size());
   1.652 +        jump(label);
   1.653 +        return offset;
   1.654 +    }
   1.655 +
   1.656 +    template <typename T>
   1.657 +    void computeEffectiveAddress(const T &address, Register dest) {
   1.658 +        lea(Operand(address), dest);
   1.659 +    }
   1.660 +
   1.661 +    // Builds an exit frame on the stack, with a return address to an internal
   1.662 +    // non-function. Returns offset to be passed to markSafepointAt().
   1.663 +    bool buildFakeExitFrame(const Register &scratch, uint32_t *offset);
   1.664 +    void callWithExitFrame(JitCode *target);
   1.665 +
   1.666 +    void callIon(const Register &callee) {
   1.667 +        call(callee);
   1.668 +    }
   1.669 +
   1.670 +    void appendCallSite(const CallSiteDesc &desc) {
   1.671 +        // Add an extra sizeof(void*) to include the return address that was
   1.672 +        // pushed by the call instruction (see CallSite::stackDepth).
   1.673 +        enoughMemory_ &= append(CallSite(desc, currentOffset(), framePushed_ + sizeof(void*)));
   1.674 +    }
   1.675 +
   1.676 +    void call(const CallSiteDesc &desc, Label *label) {
   1.677 +        call(label);
   1.678 +        appendCallSite(desc);
   1.679 +    }
   1.680 +    void call(const CallSiteDesc &desc, const Register &reg) {
   1.681 +        call(reg);
   1.682 +        appendCallSite(desc);
   1.683 +    }
   1.684 +    void callIonFromAsmJS(const Register &reg) {
   1.685 +        call(CallSiteDesc::Exit(), reg);
   1.686 +    }
   1.687 +
   1.688 +    void checkStackAlignment() {
   1.689 +        // Exists for ARM compatibility.
   1.690 +    }
   1.691 +
   1.692 +    CodeOffsetLabel labelForPatch() {
   1.693 +        return CodeOffsetLabel(size());
   1.694 +    }
   1.695 +
   1.696 +    void abiret() {
   1.697 +        ret();
   1.698 +    }
   1.699 +
   1.700 +  protected:
   1.701 +    bool buildOOLFakeExitFrame(void *fakeReturnAddr);
   1.702 +};
   1.703 +
   1.704 +} // namespace jit
   1.705 +} // namespace js
   1.706 +
   1.707 +#endif /* jit_shared_MacroAssembler_x86_shared_h */

mercurial