js/src/jsanalyze.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/jsanalyze.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,2399 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + * vim: set ts=8 sts=4 et sw=4 tw=99:
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include "mozilla/DebugOnly.h"
    1.11 +#include "mozilla/MathAlgorithms.h"
    1.12 +#include "mozilla/PodOperations.h"
    1.13 +
    1.14 +#include "jscntxt.h"
    1.15 +#include "jscompartment.h"
    1.16 +
    1.17 +#include "vm/Opcodes.h"
    1.18 +
    1.19 +#include "jsinferinlines.h"
    1.20 +#include "jsobjinlines.h"
    1.21 +#include "jsopcodeinlines.h"
    1.22 +
    1.23 +using mozilla::DebugOnly;
    1.24 +using mozilla::PodCopy;
    1.25 +using mozilla::PodZero;
    1.26 +using mozilla::FloorLog2;
    1.27 +
    1.28 +namespace js {
    1.29 +namespace analyze {
    1.30 +class LoopAnalysis;
    1.31 +} // namespace analyze
    1.32 +} // namespace js
    1.33 +
    1.34 +namespace mozilla {
    1.35 +
    1.36 +template <> struct IsPod<js::analyze::LifetimeVariable> : TrueType {};
    1.37 +template <> struct IsPod<js::analyze::LoopAnalysis>     : TrueType {};
    1.38 +template <> struct IsPod<js::analyze::SlotValue>        : TrueType {};
    1.39 +template <> struct IsPod<js::analyze::SSAValue>         : TrueType {};
    1.40 +template <> struct IsPod<js::analyze::SSAUseChain>      : TrueType {};
    1.41 +
    1.42 +} /* namespace mozilla */
    1.43 +
    1.44 +namespace js {
    1.45 +namespace analyze {
    1.46 +
    1.47 +/*
    1.48 + * There are three analyses we can perform on a JSScript, outlined below.
    1.49 + * The results of all three are stored in ScriptAnalysis, but the analyses
    1.50 + * themselves can be performed separately. Along with type inference results,
    1.51 + * per-script analysis results are tied to the per-compartment analysis pool
    1.52 + * and are freed on every garbage collection.
    1.53 + *
    1.54 + * - Basic bytecode analysis. For each bytecode, determine the stack depth at
    1.55 + * that point and control flow information needed for compilation. Also does
    1.56 + * a defined-variables analysis to look for local variables which have uses
    1.57 + * before definitions.
    1.58 + *
    1.59 + * - Lifetime analysis. Makes a backwards pass over the script to approximate
    1.60 + * the regions where each variable is live, avoiding a full fixpointing
    1.61 + * live-variables pass. This is based on the algorithm described in:
    1.62 + *
    1.63 + *     "Quality and Speed in Linear-scan Register Allocation"
    1.64 + *     Traub et. al.
    1.65 + *     PLDI, 1998
    1.66 + *
    1.67 + * - SSA analysis of the script's variables and stack values. For each stack
    1.68 + * value popped and non-escaping local variable or argument read, determines
    1.69 + * which push(es) or write(s) produced that value.
    1.70 + *
    1.71 + * Intermediate type inference results are additionally stored here. The above
    1.72 + * analyses are independent from type inference.
    1.73 + */
    1.74 +
    1.75 +/* Information about a bytecode instruction. */
    1.76 +class Bytecode
    1.77 +{
    1.78 +    friend class ScriptAnalysis;
    1.79 +
    1.80 +  public:
    1.81 +    Bytecode() { mozilla::PodZero(this); }
    1.82 +
    1.83 +    /* --------- Bytecode analysis --------- */
    1.84 +
    1.85 +    /* Whether there are any incoming jumps to this instruction. */
    1.86 +    bool jumpTarget : 1;
    1.87 +
    1.88 +    /* Whether there is fallthrough to this instruction from a non-branching instruction. */
    1.89 +    bool fallthrough : 1;
    1.90 +
    1.91 +    /* Whether this instruction is the fall through point of a conditional jump. */
    1.92 +    bool jumpFallthrough : 1;
    1.93 +
    1.94 +    /*
    1.95 +     * Whether this instruction must always execute, unless the script throws
    1.96 +     * an exception which it does not later catch.
    1.97 +     */
    1.98 +    bool unconditional : 1;
    1.99 +
   1.100 +    /* Whether this instruction has been analyzed to get its output defines and stack. */
   1.101 +    bool analyzed : 1;
   1.102 +
   1.103 +    /* Whether this is a catch/finally entry point. */
   1.104 +    bool exceptionEntry : 1;
   1.105 +
   1.106 +    /* Stack depth before this opcode. */
   1.107 +    uint32_t stackDepth;
   1.108 +
   1.109 +  private:
   1.110 +
   1.111 +    /* If this is a JSOP_LOOPHEAD or JSOP_LOOPENTRY, information about the loop. */
   1.112 +    LoopAnalysis *loop;
   1.113 +
   1.114 +    /* --------- SSA analysis --------- */
   1.115 +
   1.116 +    /* Generated location of each value popped by this bytecode. */
   1.117 +    SSAValue *poppedValues;
   1.118 +
   1.119 +    /* Points where values pushed or written by this bytecode are popped. */
   1.120 +    SSAUseChain **pushedUses;
   1.121 +
   1.122 +    union {
   1.123 +        /*
   1.124 +         * If this is a join point (implies jumpTarget), any slots at this
   1.125 +         * point which can have a different values than at the immediate
   1.126 +         * predecessor in the bytecode. Array is terminated by an entry with
   1.127 +         * a zero slot.
   1.128 +         */
   1.129 +        SlotValue *newValues;
   1.130 +
   1.131 +        /*
   1.132 +         * Vector used during SSA analysis to store values in need of merging
   1.133 +         * at this point. If this has incoming forward jumps and we have not
   1.134 +         * yet reached this point, stores values for entries on the stack and
   1.135 +         * for variables which have changed since the branch. If this is a loop
   1.136 +         * head and we haven't reached the back edge yet, stores loop phi nodes
   1.137 +         * for variables and entries live at the head of the loop.
   1.138 +         */
   1.139 +        Vector<SlotValue> *pendingValues;
   1.140 +    };
   1.141 +};
   1.142 +
   1.143 +/*
   1.144 + * Information about the lifetime of a local or argument. These form a linked
   1.145 + * list describing successive intervals in the program where the variable's
   1.146 + * value may be live. At points in the script not in one of these segments
   1.147 + * (points in a 'lifetime hole'), the variable is dead and registers containing
   1.148 + * its type/payload can be discarded without needing to be synced.
   1.149 + */
   1.150 +struct Lifetime
   1.151 +{
   1.152 +    /*
   1.153 +     * Start and end offsets of this lifetime. The variable is live at the
   1.154 +     * beginning of every bytecode in this (inclusive) range.
   1.155 +     */
   1.156 +    uint32_t start;
   1.157 +    uint32_t end;
   1.158 +
   1.159 +    /*
   1.160 +     * In a loop body, endpoint to extend this lifetime with if the variable is
   1.161 +     * live in the next iteration.
   1.162 +     */
   1.163 +    uint32_t savedEnd;
   1.164 +
   1.165 +    /*
   1.166 +     * The start of this lifetime is a bytecode writing the variable. Each
   1.167 +     * write to a variable is associated with a lifetime.
   1.168 +     */
   1.169 +    bool write;
   1.170 +
   1.171 +    /* Next lifetime. The variable is dead from this->end to next->start. */
   1.172 +    Lifetime *next;
   1.173 +
   1.174 +    Lifetime(uint32_t offset, uint32_t savedEnd, Lifetime *next)
   1.175 +        : start(offset), end(offset), savedEnd(savedEnd),
   1.176 +          write(false), next(next)
   1.177 +    {}
   1.178 +};
   1.179 +
   1.180 +/* Basic information for a loop. */
   1.181 +class LoopAnalysis
   1.182 +{
   1.183 +  public:
   1.184 +    /* Any loop this one is nested in. */
   1.185 +    LoopAnalysis *parent;
   1.186 +
   1.187 +    /* Offset of the head of the loop. */
   1.188 +    uint32_t head;
   1.189 +
   1.190 +    /*
   1.191 +     * Offset of the unique jump going to the head of the loop. The code
   1.192 +     * between the head and the backedge forms the loop body.
   1.193 +     */
   1.194 +    uint32_t backedge;
   1.195 +};
   1.196 +
   1.197 +/* Current lifetime information for a variable. */
   1.198 +struct LifetimeVariable
   1.199 +{
   1.200 +    /* If the variable is currently live, the lifetime segment. */
   1.201 +    Lifetime *lifetime;
   1.202 +
   1.203 +    /* If the variable is currently dead, the next live segment. */
   1.204 +    Lifetime *saved;
   1.205 +
   1.206 +    /* Jump preceding the basic block which killed this variable. */
   1.207 +    uint32_t savedEnd : 31;
   1.208 +
   1.209 +    /* If the variable needs to be kept alive until lifetime->start. */
   1.210 +    bool ensured : 1;
   1.211 +
   1.212 +    /* Whether this variable is live at offset. */
   1.213 +    Lifetime * live(uint32_t offset) const {
   1.214 +        if (lifetime && lifetime->end >= offset)
   1.215 +            return lifetime;
   1.216 +        Lifetime *segment = lifetime ? lifetime : saved;
   1.217 +        while (segment && segment->start <= offset) {
   1.218 +            if (segment->end >= offset)
   1.219 +                return segment;
   1.220 +            segment = segment->next;
   1.221 +        }
   1.222 +        return nullptr;
   1.223 +    }
   1.224 +
   1.225 +    /*
   1.226 +     * Get the offset of the first write to the variable in an inclusive range,
   1.227 +     * UINT32_MAX if the variable is not written in the range.
   1.228 +     */
   1.229 +    uint32_t firstWrite(uint32_t start, uint32_t end) const {
   1.230 +        Lifetime *segment = lifetime ? lifetime : saved;
   1.231 +        while (segment && segment->start <= end) {
   1.232 +            if (segment->start >= start && segment->write)
   1.233 +                return segment->start;
   1.234 +            segment = segment->next;
   1.235 +        }
   1.236 +        return UINT32_MAX;
   1.237 +    }
   1.238 +    uint32_t firstWrite(LoopAnalysis *loop) const {
   1.239 +        return firstWrite(loop->head, loop->backedge);
   1.240 +    }
   1.241 +
   1.242 +    /*
   1.243 +     * If the variable is only written once in the body of a loop, offset of
   1.244 +     * that write. UINT32_MAX otherwise.
   1.245 +     */
   1.246 +    uint32_t onlyWrite(LoopAnalysis *loop) const {
   1.247 +        uint32_t offset = UINT32_MAX;
   1.248 +        Lifetime *segment = lifetime ? lifetime : saved;
   1.249 +        while (segment && segment->start <= loop->backedge) {
   1.250 +            if (segment->start >= loop->head && segment->write) {
   1.251 +                if (offset != UINT32_MAX)
   1.252 +                    return UINT32_MAX;
   1.253 +                offset = segment->start;
   1.254 +            }
   1.255 +            segment = segment->next;
   1.256 +        }
   1.257 +        return offset;
   1.258 +    }
   1.259 +
   1.260 +#ifdef DEBUG
   1.261 +    void print() const;
   1.262 +#endif
   1.263 +};
   1.264 +
   1.265 +struct SSAPhiNode;
   1.266 +
   1.267 +/*
   1.268 + * Representation of values on stack or in slots at each point in the script.
   1.269 + * Values are independent from the bytecode position, and mean the same thing
   1.270 + * everywhere in the script. SSA values are immutable, except for contents of
   1.271 + * the values and types in an SSAPhiNode.
   1.272 + */
   1.273 +class SSAValue
   1.274 +{
   1.275 +    friend class ScriptAnalysis;
   1.276 +
   1.277 +  public:
   1.278 +    enum Kind {
   1.279 +        EMPTY  = 0, /* Invalid entry. */
   1.280 +        PUSHED = 1, /* Value pushed by some bytecode. */
   1.281 +        VAR    = 2, /* Initial or written value to some argument or local. */
   1.282 +        PHI    = 3  /* Selector for one of several values. */
   1.283 +    };
   1.284 +
   1.285 +    Kind kind() const {
   1.286 +        JS_ASSERT(u.pushed.kind == u.var.kind && u.pushed.kind == u.phi.kind);
   1.287 +
   1.288 +        /* Use a bitmask because MSVC wants to use -1 for PHI nodes. */
   1.289 +        return (Kind) (u.pushed.kind & 0x3);
   1.290 +    }
   1.291 +
   1.292 +    bool operator==(const SSAValue &o) const {
   1.293 +        return !memcmp(this, &o, sizeof(SSAValue));
   1.294 +    }
   1.295 +
   1.296 +    /* Accessors for values pushed by a bytecode within this script. */
   1.297 +
   1.298 +    uint32_t pushedOffset() const {
   1.299 +        JS_ASSERT(kind() == PUSHED);
   1.300 +        return u.pushed.offset;
   1.301 +    }
   1.302 +
   1.303 +    uint32_t pushedIndex() const {
   1.304 +        JS_ASSERT(kind() == PUSHED);
   1.305 +        return u.pushed.index;
   1.306 +    }
   1.307 +
   1.308 +    /* Accessors for initial and written values of arguments and (undefined) locals. */
   1.309 +
   1.310 +    bool varInitial() const {
   1.311 +        JS_ASSERT(kind() == VAR);
   1.312 +        return u.var.initial;
   1.313 +    }
   1.314 +
   1.315 +    uint32_t varSlot() const {
   1.316 +        JS_ASSERT(kind() == VAR);
   1.317 +        return u.var.slot;
   1.318 +    }
   1.319 +
   1.320 +    uint32_t varOffset() const {
   1.321 +        JS_ASSERT(!varInitial());
   1.322 +        return u.var.offset;
   1.323 +    }
   1.324 +
   1.325 +    /* Accessors for phi nodes. */
   1.326 +
   1.327 +    uint32_t phiSlot() const;
   1.328 +    uint32_t phiLength() const;
   1.329 +    const SSAValue &phiValue(uint32_t i) const;
   1.330 +
   1.331 +    /* Offset at which this phi node was created. */
   1.332 +    uint32_t phiOffset() const {
   1.333 +        JS_ASSERT(kind() == PHI);
   1.334 +        return u.phi.offset;
   1.335 +    }
   1.336 +
   1.337 +    SSAPhiNode *phiNode() const {
   1.338 +        JS_ASSERT(kind() == PHI);
   1.339 +        return u.phi.node;
   1.340 +    }
   1.341 +
   1.342 +    /* Other accessors. */
   1.343 +
   1.344 +#ifdef DEBUG
   1.345 +    void print() const;
   1.346 +#endif
   1.347 +
   1.348 +    void clear() {
   1.349 +        mozilla::PodZero(this);
   1.350 +        JS_ASSERT(kind() == EMPTY);
   1.351 +    }
   1.352 +
   1.353 +    void initPushed(uint32_t offset, uint32_t index) {
   1.354 +        clear();
   1.355 +        u.pushed.kind = PUSHED;
   1.356 +        u.pushed.offset = offset;
   1.357 +        u.pushed.index = index;
   1.358 +    }
   1.359 +
   1.360 +    static SSAValue PushedValue(uint32_t offset, uint32_t index) {
   1.361 +        SSAValue v;
   1.362 +        v.initPushed(offset, index);
   1.363 +        return v;
   1.364 +    }
   1.365 +
   1.366 +    void initInitial(uint32_t slot) {
   1.367 +        clear();
   1.368 +        u.var.kind = VAR;
   1.369 +        u.var.initial = true;
   1.370 +        u.var.slot = slot;
   1.371 +    }
   1.372 +
   1.373 +    void initWritten(uint32_t slot, uint32_t offset) {
   1.374 +        clear();
   1.375 +        u.var.kind = VAR;
   1.376 +        u.var.initial = false;
   1.377 +        u.var.slot = slot;
   1.378 +        u.var.offset = offset;
   1.379 +    }
   1.380 +
   1.381 +    static SSAValue WrittenVar(uint32_t slot, uint32_t offset) {
   1.382 +        SSAValue v;
   1.383 +        v.initWritten(slot, offset);
   1.384 +        return v;
   1.385 +    }
   1.386 +
   1.387 +    void initPhi(uint32_t offset, SSAPhiNode *node) {
   1.388 +        clear();
   1.389 +        u.phi.kind = PHI;
   1.390 +        u.phi.offset = offset;
   1.391 +        u.phi.node = node;
   1.392 +    }
   1.393 +
   1.394 +    static SSAValue PhiValue(uint32_t offset, SSAPhiNode *node) {
   1.395 +        SSAValue v;
   1.396 +        v.initPhi(offset, node);
   1.397 +        return v;
   1.398 +    }
   1.399 +
   1.400 +  private:
   1.401 +    union {
   1.402 +        struct {
   1.403 +            Kind kind : 2;
   1.404 +            uint32_t offset : 30;
   1.405 +            uint32_t index;
   1.406 +        } pushed;
   1.407 +        struct {
   1.408 +            Kind kind : 2;
   1.409 +            bool initial : 1;
   1.410 +            uint32_t slot : 29;
   1.411 +            uint32_t offset;
   1.412 +        } var;
   1.413 +        struct {
   1.414 +            Kind kind : 2;
   1.415 +            uint32_t offset : 30;
   1.416 +            SSAPhiNode *node;
   1.417 +        } phi;
   1.418 +    } u;
   1.419 +};
   1.420 +
   1.421 +/*
   1.422 + * Mutable component of a phi node, with the possible values of the phi
   1.423 + * and the possible types of the node as determined by type inference.
   1.424 + * When phi nodes are copied around, any updates to the original will
   1.425 + * be seen by all copies made.
   1.426 + */
   1.427 +struct SSAPhiNode
   1.428 +{
   1.429 +    uint32_t slot;
   1.430 +    uint32_t length;
   1.431 +    SSAValue *options;
   1.432 +    SSAUseChain *uses;
   1.433 +    SSAPhiNode() { mozilla::PodZero(this); }
   1.434 +};
   1.435 +
   1.436 +inline uint32_t
   1.437 +SSAValue::phiSlot() const
   1.438 +{
   1.439 +    return u.phi.node->slot;
   1.440 +}
   1.441 +
   1.442 +inline uint32_t
   1.443 +SSAValue::phiLength() const
   1.444 +{
   1.445 +    JS_ASSERT(kind() == PHI);
   1.446 +    return u.phi.node->length;
   1.447 +}
   1.448 +
   1.449 +inline const SSAValue &
   1.450 +SSAValue::phiValue(uint32_t i) const
   1.451 +{
   1.452 +    JS_ASSERT(kind() == PHI && i < phiLength());
   1.453 +    return u.phi.node->options[i];
   1.454 +}
   1.455 +
   1.456 +class SSAUseChain
   1.457 +{
   1.458 +  public:
   1.459 +    bool popped : 1;
   1.460 +    uint32_t offset : 31;
   1.461 +    /* FIXME: Assert that only the proper arm of this union is accessed. */
   1.462 +    union {
   1.463 +        uint32_t which;
   1.464 +        SSAPhiNode *phi;
   1.465 +    } u;
   1.466 +    SSAUseChain *next;
   1.467 +
   1.468 +    SSAUseChain() { mozilla::PodZero(this); }
   1.469 +};
   1.470 +
   1.471 +class SlotValue
   1.472 +{
   1.473 +  public:
   1.474 +    uint32_t slot;
   1.475 +    SSAValue value;
   1.476 +    SlotValue(uint32_t slot, const SSAValue &value) : slot(slot), value(value) {}
   1.477 +};
   1.478 +
   1.479 +/////////////////////////////////////////////////////////////////////
   1.480 +// Bytecode
   1.481 +/////////////////////////////////////////////////////////////////////
   1.482 +
   1.483 +#ifdef DEBUG
   1.484 +void
   1.485 +PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc)
   1.486 +{
   1.487 +    fprintf(stderr, "#%u:", script->id());
   1.488 +    Sprinter sprinter(cx);
   1.489 +    if (!sprinter.init())
   1.490 +        return;
   1.491 +    js_Disassemble1(cx, script, pc, script->pcToOffset(pc), true, &sprinter);
   1.492 +    fprintf(stderr, "%s", sprinter.string());
   1.493 +}
   1.494 +#endif
   1.495 +
   1.496 +/*
   1.497 + * For opcodes which assign to a local variable or argument, track an extra def
   1.498 + * during SSA analysis for the value's use chain and assigned type.
   1.499 + */
   1.500 +static inline bool
   1.501 +ExtendedDef(jsbytecode *pc)
   1.502 +{
   1.503 +    switch ((JSOp)*pc) {
   1.504 +      case JSOP_SETARG:
   1.505 +      case JSOP_SETLOCAL:
   1.506 +        return true;
   1.507 +      default:
   1.508 +        return false;
   1.509 +    }
   1.510 +}
   1.511 +
   1.512 +/*
   1.513 + * For opcodes which access local variables or arguments, we track an extra
   1.514 + * use during SSA analysis for the value of the variable before/after the op.
   1.515 + */
   1.516 +static inline bool
   1.517 +ExtendedUse(jsbytecode *pc)
   1.518 +{
   1.519 +    if (ExtendedDef(pc))
   1.520 +        return true;
   1.521 +    switch ((JSOp)*pc) {
   1.522 +      case JSOP_GETARG:
   1.523 +      case JSOP_GETLOCAL:
   1.524 +        return true;
   1.525 +      default:
   1.526 +        return false;
   1.527 +    }
   1.528 +}
   1.529 +
   1.530 +static inline unsigned
   1.531 +FollowBranch(JSContext *cx, JSScript *script, unsigned offset)
   1.532 +{
   1.533 +    /*
   1.534 +     * Get the target offset of a branch. For GOTO opcodes implementing
   1.535 +     * 'continue' statements, short circuit any artificial backwards jump
   1.536 +     * inserted by the emitter.
   1.537 +     */
   1.538 +    jsbytecode *pc = script->offsetToPC(offset);
   1.539 +    unsigned targetOffset = offset + GET_JUMP_OFFSET(pc);
   1.540 +    if (targetOffset < offset) {
   1.541 +        jsbytecode *target = script->offsetToPC(targetOffset);
   1.542 +        JSOp nop = JSOp(*target);
   1.543 +        if (nop == JSOP_GOTO)
   1.544 +            return targetOffset + GET_JUMP_OFFSET(target);
   1.545 +    }
   1.546 +    return targetOffset;
   1.547 +}
   1.548 +
   1.549 +static inline uint32_t StackSlot(JSScript *script, uint32_t index) {
   1.550 +    return TotalSlots(script) + index;
   1.551 +}
   1.552 +
   1.553 +static inline uint32_t GetBytecodeSlot(JSScript *script, jsbytecode *pc)
   1.554 +{
   1.555 +    switch (JSOp(*pc)) {
   1.556 +
   1.557 +      case JSOP_GETARG:
   1.558 +      case JSOP_SETARG:
   1.559 +        return ArgSlot(GET_ARGNO(pc));
   1.560 +
   1.561 +      case JSOP_GETLOCAL:
   1.562 +      case JSOP_SETLOCAL:
   1.563 +        return LocalSlot(script, GET_LOCALNO(pc));
   1.564 +
   1.565 +      case JSOP_THIS:
   1.566 +        return ThisSlot();
   1.567 +
   1.568 +      default:
   1.569 +        MOZ_ASSUME_UNREACHABLE("Bad slot opcode");
   1.570 +    }
   1.571 +}
   1.572 +
   1.573 +/////////////////////////////////////////////////////////////////////
   1.574 +// Bytecode Analysis
   1.575 +/////////////////////////////////////////////////////////////////////
   1.576 +
   1.577 +inline bool
   1.578 +ScriptAnalysis::addJump(JSContext *cx, unsigned offset,
   1.579 +                        unsigned *currentOffset, unsigned *forwardJump, unsigned *forwardLoop,
   1.580 +                        unsigned stackDepth)
   1.581 +{
   1.582 +    JS_ASSERT(offset < script_->length());
   1.583 +
   1.584 +    Bytecode *&code = codeArray[offset];
   1.585 +    if (!code) {
   1.586 +        code = cx->typeLifoAlloc().new_<Bytecode>();
   1.587 +        if (!code) {
   1.588 +            js_ReportOutOfMemory(cx);
   1.589 +            return false;
   1.590 +        }
   1.591 +        code->stackDepth = stackDepth;
   1.592 +    }
   1.593 +    JS_ASSERT(code->stackDepth == stackDepth);
   1.594 +
   1.595 +    code->jumpTarget = true;
   1.596 +
   1.597 +    if (offset < *currentOffset) {
   1.598 +        if (!code->analyzed) {
   1.599 +            /*
   1.600 +             * Backedge in a while/for loop, whose body has not been analyzed
   1.601 +             * due to a lack of fallthrough at the loop head. Roll back the
   1.602 +             * offset to analyze the body.
   1.603 +             */
   1.604 +            if (*forwardJump == 0)
   1.605 +                *forwardJump = *currentOffset;
   1.606 +            if (*forwardLoop == 0)
   1.607 +                *forwardLoop = *currentOffset;
   1.608 +            *currentOffset = offset;
   1.609 +        }
   1.610 +    } else if (offset > *forwardJump) {
   1.611 +        *forwardJump = offset;
   1.612 +    }
   1.613 +
   1.614 +    return true;
   1.615 +}
   1.616 +
   1.617 +inline bool
   1.618 +ScriptAnalysis::jumpTarget(uint32_t offset)
   1.619 +{
   1.620 +    JS_ASSERT(offset < script_->length());
   1.621 +    return codeArray[offset] && codeArray[offset]->jumpTarget;
   1.622 +}
   1.623 +
   1.624 +inline bool
   1.625 +ScriptAnalysis::jumpTarget(const jsbytecode *pc)
   1.626 +{
   1.627 +    return jumpTarget(script_->pcToOffset(pc));
   1.628 +}
   1.629 +
   1.630 +inline const SSAValue &
   1.631 +ScriptAnalysis::poppedValue(uint32_t offset, uint32_t which)
   1.632 +{
   1.633 +    JS_ASSERT(which < GetUseCount(script_, offset) +
   1.634 +              (ExtendedUse(script_->offsetToPC(offset)) ? 1 : 0));
   1.635 +    return getCode(offset).poppedValues[which];
   1.636 +}
   1.637 +
   1.638 +inline const SSAValue &
   1.639 +ScriptAnalysis::poppedValue(const jsbytecode *pc, uint32_t which)
   1.640 +{
   1.641 +    return poppedValue(script_->pcToOffset(pc), which);
   1.642 +}
   1.643 +
   1.644 +inline const SlotValue *
   1.645 +ScriptAnalysis::newValues(uint32_t offset)
   1.646 +{
   1.647 +    JS_ASSERT(offset < script_->length());
   1.648 +    return getCode(offset).newValues;
   1.649 +}
   1.650 +
   1.651 +inline const SlotValue *
   1.652 +ScriptAnalysis::newValues(const jsbytecode *pc)
   1.653 +{
   1.654 +    return newValues(script_->pcToOffset(pc));
   1.655 +}
   1.656 +
   1.657 +inline bool
   1.658 +ScriptAnalysis::trackUseChain(const SSAValue &v)
   1.659 +{
   1.660 +    JS_ASSERT_IF(v.kind() == SSAValue::VAR, trackSlot(v.varSlot()));
   1.661 +    return v.kind() != SSAValue::EMPTY &&
   1.662 +        (v.kind() != SSAValue::VAR || !v.varInitial());
   1.663 +}
   1.664 +
   1.665 +/*
   1.666 + * Get the use chain for an SSA value.
   1.667 + */
   1.668 +inline SSAUseChain *&
   1.669 +ScriptAnalysis::useChain(const SSAValue &v)
   1.670 +{
   1.671 +    JS_ASSERT(trackUseChain(v));
   1.672 +    if (v.kind() == SSAValue::PUSHED)
   1.673 +        return getCode(v.pushedOffset()).pushedUses[v.pushedIndex()];
   1.674 +    if (v.kind() == SSAValue::VAR)
   1.675 +        return getCode(v.varOffset()).pushedUses[GetDefCount(script_, v.varOffset())];
   1.676 +    return v.phiNode()->uses;
   1.677 +}
   1.678 +
   1.679 +/* For a JSOP_CALL* op, get the pc of the corresponding JSOP_CALL/NEW/etc. */
   1.680 +inline jsbytecode *
   1.681 +ScriptAnalysis::getCallPC(jsbytecode *pc)
   1.682 +{
   1.683 +    SSAUseChain *uses = useChain(SSAValue::PushedValue(script_->pcToOffset(pc), 0));
   1.684 +    JS_ASSERT(uses && uses->popped);
   1.685 +    JS_ASSERT(js_CodeSpec[script_->code()[uses->offset]].format & JOF_INVOKE);
   1.686 +    return script_->offsetToPC(uses->offset);
   1.687 +}
   1.688 +
   1.689 +/* Accessors for local variable information. */
   1.690 +
   1.691 +/*
   1.692 + * Escaping slots include all slots that can be accessed in ways other than
   1.693 + * through the corresponding LOCAL/ARG opcode. This includes all closed
   1.694 + * slots in the script, all slots in scripts which use eval or are in debug
   1.695 + * mode, and slots which are aliased by NAME or similar opcodes in the
   1.696 + * containing script (which does not imply the variable is closed).
   1.697 + */
   1.698 +inline bool
   1.699 +ScriptAnalysis::slotEscapes(uint32_t slot)
   1.700 +{
   1.701 +    JS_ASSERT(script_->compartment()->activeAnalysis);
   1.702 +    if (slot >= numSlots)
   1.703 +        return true;
   1.704 +    return escapedSlots[slot];
   1.705 +}
   1.706 +
   1.707 +/*
   1.708 + * Whether we distinguish different writes of this variable while doing
   1.709 + * SSA analysis. Escaping locals can be written in other scripts, and the
   1.710 + * presence of NAME opcodes which could alias local variables or arguments
   1.711 + * keeps us from tracking variable values at each point.
   1.712 + */
   1.713 +inline bool
   1.714 +ScriptAnalysis::trackSlot(uint32_t slot)
   1.715 +{
   1.716 +    return !slotEscapes(slot) && canTrackVars && slot < 1000;
   1.717 +}
   1.718 +
   1.719 +inline const LifetimeVariable &
   1.720 +ScriptAnalysis::liveness(uint32_t slot)
   1.721 +{
   1.722 +    JS_ASSERT(script_->compartment()->activeAnalysis);
   1.723 +    JS_ASSERT(!slotEscapes(slot));
   1.724 +    return lifetimes[slot];
   1.725 +}
   1.726 +
   1.727 +bool
   1.728 +ScriptAnalysis::analyzeBytecode(JSContext *cx)
   1.729 +{
   1.730 +    JS_ASSERT(cx->compartment()->activeAnalysis);
   1.731 +    JS_ASSERT(!codeArray);
   1.732 +
   1.733 +    LifoAlloc &alloc = cx->typeLifoAlloc();
   1.734 +
   1.735 +    numSlots = TotalSlots(script_);
   1.736 +
   1.737 +    unsigned length = script_->length();
   1.738 +    codeArray = alloc.newArray<Bytecode*>(length);
   1.739 +    escapedSlots = alloc.newArray<bool>(numSlots);
   1.740 +
   1.741 +    if (!codeArray || !escapedSlots) {
   1.742 +        js_ReportOutOfMemory(cx);
   1.743 +        return false;
   1.744 +    }
   1.745 +
   1.746 +    PodZero(codeArray, length);
   1.747 +
   1.748 +    /*
   1.749 +     * Populate arg and local slots which can escape and be accessed in ways
   1.750 +     * other than through ARG* and LOCAL* opcodes (though arguments can still
   1.751 +     * be indirectly read but not written through 'arguments' properties).
   1.752 +     * All escaping locals are treated as having possible use-before-defs.
   1.753 +     * Conservatively use 'argumentsHasVarBinding' instead of 'needsArgsObj'
   1.754 +     * (needsArgsObj requires SSA which requires escapedSlots). Lastly, the
   1.755 +     * debugger can access any local at any time. Even though debugger
   1.756 +     * reads/writes are monitored by the DebugScopeProxy, this monitoring
   1.757 +     * updates the flow-insensitive type sets, so we cannot use SSA.
   1.758 +     */
   1.759 +
   1.760 +    PodZero(escapedSlots, numSlots);
   1.761 +
   1.762 +    bool allVarsAliased = script_->compartment()->debugMode();
   1.763 +    bool allArgsAliased = allVarsAliased || script_->argumentsHasVarBinding();
   1.764 +
   1.765 +    RootedScript script(cx, script_);
   1.766 +    for (BindingIter bi(script); bi; bi++) {
   1.767 +        if (bi->kind() == Binding::ARGUMENT)
   1.768 +            escapedSlots[ArgSlot(bi.frameIndex())] = allArgsAliased || bi->aliased();
   1.769 +        else
   1.770 +            escapedSlots[LocalSlot(script_, bi.frameIndex())] = allVarsAliased || bi->aliased();
   1.771 +    }
   1.772 +
   1.773 +    canTrackVars = true;
   1.774 +
   1.775 +    /*
   1.776 +     * If we are in the middle of one or more jumps, the offset of the highest
   1.777 +     * target jumping over this bytecode.  Includes implicit jumps from
   1.778 +     * try/catch/finally blocks.
   1.779 +     */
   1.780 +    unsigned forwardJump = 0;
   1.781 +
   1.782 +    /* If we are in the middle of a loop, the offset of the highest backedge. */
   1.783 +    unsigned forwardLoop = 0;
   1.784 +
   1.785 +    /*
   1.786 +     * If we are in the middle of a try block, the offset of the highest
   1.787 +     * catch/finally/enditer.
   1.788 +     */
   1.789 +    unsigned forwardCatch = 0;
   1.790 +
   1.791 +    /* Fill in stack depth and definitions at initial bytecode. */
   1.792 +    Bytecode *startcode = alloc.new_<Bytecode>();
   1.793 +    if (!startcode) {
   1.794 +        js_ReportOutOfMemory(cx);
   1.795 +        return false;
   1.796 +    }
   1.797 +
   1.798 +    startcode->stackDepth = 0;
   1.799 +    codeArray[0] = startcode;
   1.800 +
   1.801 +    unsigned offset, nextOffset = 0;
   1.802 +    while (nextOffset < length) {
   1.803 +        offset = nextOffset;
   1.804 +
   1.805 +        JS_ASSERT(forwardCatch <= forwardJump);
   1.806 +
   1.807 +        /* Check if the current forward jump/try-block has finished. */
   1.808 +        if (forwardJump && forwardJump == offset)
   1.809 +            forwardJump = 0;
   1.810 +        if (forwardCatch && forwardCatch == offset)
   1.811 +            forwardCatch = 0;
   1.812 +
   1.813 +        Bytecode *code = maybeCode(offset);
   1.814 +        jsbytecode *pc = script_->offsetToPC(offset);
   1.815 +
   1.816 +        JSOp op = (JSOp)*pc;
   1.817 +        JS_ASSERT(op < JSOP_LIMIT);
   1.818 +
   1.819 +        /* Immediate successor of this bytecode. */
   1.820 +        unsigned successorOffset = offset + GetBytecodeLength(pc);
   1.821 +
   1.822 +        /*
   1.823 +         * Next bytecode to analyze.  This is either the successor, or is an
   1.824 +         * earlier bytecode if this bytecode has a loop backedge.
   1.825 +         */
   1.826 +        nextOffset = successorOffset;
   1.827 +
   1.828 +        if (!code) {
   1.829 +            /* Haven't found a path by which this bytecode is reachable. */
   1.830 +            continue;
   1.831 +        }
   1.832 +
   1.833 +        /*
   1.834 +         * Update info about bytecodes inside loops, which may have been
   1.835 +         * analyzed before the backedge was seen.
   1.836 +         */
   1.837 +        if (forwardLoop) {
   1.838 +            if (forwardLoop <= offset)
   1.839 +                forwardLoop = 0;
   1.840 +        }
   1.841 +
   1.842 +        if (code->analyzed) {
   1.843 +            /* No need to reanalyze, see Bytecode::mergeDefines. */
   1.844 +            continue;
   1.845 +        }
   1.846 +
   1.847 +        code->analyzed = true;
   1.848 +
   1.849 +        if (script_->hasBreakpointsAt(pc))
   1.850 +            canTrackVars = false;
   1.851 +
   1.852 +        unsigned stackDepth = code->stackDepth;
   1.853 +
   1.854 +        if (!forwardJump)
   1.855 +            code->unconditional = true;
   1.856 +
   1.857 +        unsigned nuses = GetUseCount(script_, offset);
   1.858 +        unsigned ndefs = GetDefCount(script_, offset);
   1.859 +
   1.860 +        JS_ASSERT(stackDepth >= nuses);
   1.861 +        stackDepth -= nuses;
   1.862 +        stackDepth += ndefs;
   1.863 +
   1.864 +        switch (op) {
   1.865 +
   1.866 +          case JSOP_DEFFUN:
   1.867 +          case JSOP_DEFVAR:
   1.868 +          case JSOP_DEFCONST:
   1.869 +          case JSOP_SETCONST:
   1.870 +            canTrackVars = false;
   1.871 +            break;
   1.872 +
   1.873 +          case JSOP_EVAL:
   1.874 +          case JSOP_SPREADEVAL:
   1.875 +          case JSOP_ENTERWITH:
   1.876 +            canTrackVars = false;
   1.877 +            break;
   1.878 +
   1.879 +          case JSOP_TABLESWITCH: {
   1.880 +            unsigned defaultOffset = offset + GET_JUMP_OFFSET(pc);
   1.881 +            jsbytecode *pc2 = pc + JUMP_OFFSET_LEN;
   1.882 +            int32_t low = GET_JUMP_OFFSET(pc2);
   1.883 +            pc2 += JUMP_OFFSET_LEN;
   1.884 +            int32_t high = GET_JUMP_OFFSET(pc2);
   1.885 +            pc2 += JUMP_OFFSET_LEN;
   1.886 +
   1.887 +            if (!addJump(cx, defaultOffset, &nextOffset, &forwardJump, &forwardLoop, stackDepth))
   1.888 +                return false;
   1.889 +
   1.890 +            for (int32_t i = low; i <= high; i++) {
   1.891 +                unsigned targetOffset = offset + GET_JUMP_OFFSET(pc2);
   1.892 +                if (targetOffset != offset) {
   1.893 +                    if (!addJump(cx, targetOffset, &nextOffset, &forwardJump, &forwardLoop, stackDepth))
   1.894 +                        return false;
   1.895 +                }
   1.896 +                pc2 += JUMP_OFFSET_LEN;
   1.897 +            }
   1.898 +            break;
   1.899 +          }
   1.900 +
   1.901 +          case JSOP_TRY: {
   1.902 +            /*
   1.903 +             * Everything between a try and corresponding catch or finally is conditional.
   1.904 +             * Note that there is no problem with code which is skipped by a thrown
   1.905 +             * exception but is not caught by a later handler in the same function:
   1.906 +             * no more code will execute, and it does not matter what is defined.
   1.907 +             */
   1.908 +            JSTryNote *tn = script_->trynotes()->vector;
   1.909 +            JSTryNote *tnlimit = tn + script_->trynotes()->length;
   1.910 +            for (; tn < tnlimit; tn++) {
   1.911 +                unsigned startOffset = script_->mainOffset() + tn->start;
   1.912 +                if (startOffset == offset + 1) {
   1.913 +                    unsigned catchOffset = startOffset + tn->length;
   1.914 +
   1.915 +                    /* This will overestimate try block code, for multiple catch/finally. */
   1.916 +                    if (catchOffset > forwardCatch)
   1.917 +                        forwardCatch = catchOffset;
   1.918 +
   1.919 +                    if (tn->kind != JSTRY_ITER && tn->kind != JSTRY_LOOP) {
   1.920 +                        if (!addJump(cx, catchOffset, &nextOffset, &forwardJump, &forwardLoop, stackDepth))
   1.921 +                            return false;
   1.922 +                        getCode(catchOffset).exceptionEntry = true;
   1.923 +                    }
   1.924 +                }
   1.925 +            }
   1.926 +            break;
   1.927 +          }
   1.928 +
   1.929 +          case JSOP_GETLOCAL:
   1.930 +          case JSOP_SETLOCAL:
   1.931 +            JS_ASSERT(GET_LOCALNO(pc) < script_->nfixed());
   1.932 +            break;
   1.933 +
   1.934 +          default:
   1.935 +            break;
   1.936 +        }
   1.937 +
   1.938 +        bool jump = IsJumpOpcode(op);
   1.939 +
   1.940 +        /* Check basic jump opcodes, which may or may not have a fallthrough. */
   1.941 +        if (jump) {
   1.942 +            /* Case instructions do not push the lvalue back when branching. */
   1.943 +            unsigned newStackDepth = stackDepth;
   1.944 +            if (op == JSOP_CASE)
   1.945 +                newStackDepth--;
   1.946 +
   1.947 +            unsigned targetOffset = offset + GET_JUMP_OFFSET(pc);
   1.948 +            if (!addJump(cx, targetOffset, &nextOffset, &forwardJump, &forwardLoop, newStackDepth))
   1.949 +                return false;
   1.950 +        }
   1.951 +
   1.952 +        /* Handle any fallthrough from this opcode. */
   1.953 +        if (BytecodeFallsThrough(op)) {
   1.954 +            JS_ASSERT(successorOffset < script_->length());
   1.955 +
   1.956 +            Bytecode *&nextcode = codeArray[successorOffset];
   1.957 +
   1.958 +            if (!nextcode) {
   1.959 +                nextcode = alloc.new_<Bytecode>();
   1.960 +                if (!nextcode) {
   1.961 +                    js_ReportOutOfMemory(cx);
   1.962 +                    return false;
   1.963 +                }
   1.964 +                nextcode->stackDepth = stackDepth;
   1.965 +            }
   1.966 +            JS_ASSERT(nextcode->stackDepth == stackDepth);
   1.967 +
   1.968 +            if (jump)
   1.969 +                nextcode->jumpFallthrough = true;
   1.970 +
   1.971 +            /* Treat the fallthrough of a branch instruction as a jump target. */
   1.972 +            if (jump)
   1.973 +                nextcode->jumpTarget = true;
   1.974 +            else
   1.975 +                nextcode->fallthrough = true;
   1.976 +        }
   1.977 +    }
   1.978 +
   1.979 +    JS_ASSERT(forwardJump == 0 && forwardLoop == 0 && forwardCatch == 0);
   1.980 +
   1.981 +    /*
   1.982 +     * Always ensure that a script's arguments usage has been analyzed before
   1.983 +     * entering the script. This allows the functionPrologue to ensure that
   1.984 +     * arguments are always created eagerly which simplifies interp logic.
   1.985 +     */
   1.986 +    if (!script_->analyzedArgsUsage()) {
   1.987 +        if (!analyzeLifetimes(cx))
   1.988 +            return false;
   1.989 +        if (!analyzeSSA(cx))
   1.990 +            return false;
   1.991 +
   1.992 +        /*
   1.993 +         * Now that we have full SSA information for the script, analyze whether
   1.994 +         * we can avoid creating the arguments object.
   1.995 +         */
   1.996 +        script_->setNeedsArgsObj(needsArgsObj(cx));
   1.997 +    }
   1.998 +
   1.999 +    return true;
  1.1000 +}
  1.1001 +
  1.1002 +/////////////////////////////////////////////////////////////////////
  1.1003 +// Lifetime Analysis
  1.1004 +/////////////////////////////////////////////////////////////////////
  1.1005 +
  1.1006 +bool
  1.1007 +ScriptAnalysis::analyzeLifetimes(JSContext *cx)
  1.1008 +{
  1.1009 +    JS_ASSERT(cx->compartment()->activeAnalysis);
  1.1010 +    JS_ASSERT(codeArray);
  1.1011 +    JS_ASSERT(!lifetimes);
  1.1012 +
  1.1013 +    LifoAlloc &alloc = cx->typeLifoAlloc();
  1.1014 +
  1.1015 +    lifetimes = alloc.newArray<LifetimeVariable>(numSlots);
  1.1016 +    if (!lifetimes) {
  1.1017 +        js_ReportOutOfMemory(cx);
  1.1018 +        return false;
  1.1019 +    }
  1.1020 +    PodZero(lifetimes, numSlots);
  1.1021 +
  1.1022 +    /*
  1.1023 +     * Variables which are currently dead. On forward branches to locations
  1.1024 +     * where these are live, they need to be marked as live.
  1.1025 +     */
  1.1026 +    LifetimeVariable **saved = cx->pod_calloc<LifetimeVariable*>(numSlots);
  1.1027 +    if (!saved) {
  1.1028 +        js_ReportOutOfMemory(cx);
  1.1029 +        return false;
  1.1030 +    }
  1.1031 +    unsigned savedCount = 0;
  1.1032 +
  1.1033 +    LoopAnalysis *loop = nullptr;
  1.1034 +
  1.1035 +    uint32_t offset = script_->length() - 1;
  1.1036 +    while (offset < script_->length()) {
  1.1037 +        Bytecode *code = maybeCode(offset);
  1.1038 +        if (!code) {
  1.1039 +            offset--;
  1.1040 +            continue;
  1.1041 +        }
  1.1042 +
  1.1043 +        jsbytecode *pc = script_->offsetToPC(offset);
  1.1044 +
  1.1045 +        JSOp op = (JSOp) *pc;
  1.1046 +
  1.1047 +        if (op == JSOP_LOOPHEAD && code->loop) {
  1.1048 +            /*
  1.1049 +             * This is the head of a loop, we need to go and make sure that any
  1.1050 +             * variables live at the head are live at the backedge and points prior.
  1.1051 +             * For each such variable, look for the last lifetime segment in the body
  1.1052 +             * and extend it to the end of the loop.
  1.1053 +             */
  1.1054 +            JS_ASSERT(loop == code->loop);
  1.1055 +            unsigned backedge = code->loop->backedge;
  1.1056 +            for (unsigned i = 0; i < numSlots; i++) {
  1.1057 +                if (lifetimes[i].lifetime) {
  1.1058 +                    if (!extendVariable(cx, lifetimes[i], offset, backedge))
  1.1059 +                        return false;
  1.1060 +                }
  1.1061 +            }
  1.1062 +
  1.1063 +            loop = loop->parent;
  1.1064 +            JS_ASSERT_IF(loop, loop->head < offset);
  1.1065 +        }
  1.1066 +
  1.1067 +        if (code->exceptionEntry) {
  1.1068 +            DebugOnly<bool> found = false;
  1.1069 +            JSTryNote *tn = script_->trynotes()->vector;
  1.1070 +            JSTryNote *tnlimit = tn + script_->trynotes()->length;
  1.1071 +            for (; tn < tnlimit; tn++) {
  1.1072 +                unsigned startOffset = script_->mainOffset() + tn->start;
  1.1073 +                if (startOffset + tn->length == offset) {
  1.1074 +                    /*
  1.1075 +                     * Extend all live variables at exception entry to the start of
  1.1076 +                     * the try block.
  1.1077 +                     */
  1.1078 +                    for (unsigned i = 0; i < numSlots; i++) {
  1.1079 +                        if (lifetimes[i].lifetime)
  1.1080 +                            ensureVariable(lifetimes[i], startOffset - 1);
  1.1081 +                    }
  1.1082 +
  1.1083 +                    found = true;
  1.1084 +                    break;
  1.1085 +                }
  1.1086 +            }
  1.1087 +            JS_ASSERT(found);
  1.1088 +        }
  1.1089 +
  1.1090 +        switch (op) {
  1.1091 +          case JSOP_GETARG:
  1.1092 +          case JSOP_GETLOCAL:
  1.1093 +          case JSOP_THIS: {
  1.1094 +            uint32_t slot = GetBytecodeSlot(script_, pc);
  1.1095 +            if (!slotEscapes(slot)) {
  1.1096 +                if (!addVariable(cx, lifetimes[slot], offset, saved, savedCount))
  1.1097 +                    return false;
  1.1098 +            }
  1.1099 +            break;
  1.1100 +          }
  1.1101 +
  1.1102 +          case JSOP_SETARG:
  1.1103 +          case JSOP_SETLOCAL: {
  1.1104 +            uint32_t slot = GetBytecodeSlot(script_, pc);
  1.1105 +            if (!slotEscapes(slot)) {
  1.1106 +                if (!killVariable(cx, lifetimes[slot], offset, saved, savedCount))
  1.1107 +                    return false;
  1.1108 +            }
  1.1109 +            break;
  1.1110 +          }
  1.1111 +
  1.1112 +          case JSOP_TABLESWITCH:
  1.1113 +            /* Restore all saved variables. :FIXME: maybe do this precisely. */
  1.1114 +            for (unsigned i = 0; i < savedCount; i++) {
  1.1115 +                LifetimeVariable &var = *saved[i];
  1.1116 +                uint32_t savedEnd = var.savedEnd;
  1.1117 +                var.lifetime = alloc.new_<Lifetime>(offset, savedEnd, var.saved);
  1.1118 +                if (!var.lifetime) {
  1.1119 +                    js_free(saved);
  1.1120 +                    js_ReportOutOfMemory(cx);
  1.1121 +                    return false;
  1.1122 +                }
  1.1123 +                var.saved = nullptr;
  1.1124 +                saved[i--] = saved[--savedCount];
  1.1125 +            }
  1.1126 +            savedCount = 0;
  1.1127 +            break;
  1.1128 +
  1.1129 +          case JSOP_TRY:
  1.1130 +            for (unsigned i = 0; i < numSlots; i++) {
  1.1131 +                LifetimeVariable &var = lifetimes[i];
  1.1132 +                if (var.ensured) {
  1.1133 +                    JS_ASSERT(var.lifetime);
  1.1134 +                    if (var.lifetime->start == offset)
  1.1135 +                        var.ensured = false;
  1.1136 +                }
  1.1137 +            }
  1.1138 +            break;
  1.1139 +
  1.1140 +          case JSOP_LOOPENTRY:
  1.1141 +            getCode(offset).loop = loop;
  1.1142 +            break;
  1.1143 +
  1.1144 +          default:;
  1.1145 +        }
  1.1146 +
  1.1147 +        if (IsJumpOpcode(op)) {
  1.1148 +            /*
  1.1149 +             * Forward jumps need to pull in all variables which are live at
  1.1150 +             * their target offset --- the variables live before the jump are
  1.1151 +             * the union of those live at the fallthrough and at the target.
  1.1152 +             */
  1.1153 +            uint32_t targetOffset = FollowBranch(cx, script_, offset);
  1.1154 +
  1.1155 +            if (targetOffset < offset) {
  1.1156 +                /* This is a loop back edge, no lifetime to pull in yet. */
  1.1157 +
  1.1158 +#ifdef DEBUG
  1.1159 +                JSOp nop = JSOp(script_->code()[targetOffset]);
  1.1160 +                JS_ASSERT(nop == JSOP_LOOPHEAD);
  1.1161 +#endif
  1.1162 +
  1.1163 +                LoopAnalysis *nloop = alloc.new_<LoopAnalysis>();
  1.1164 +                if (!nloop) {
  1.1165 +                    js_free(saved);
  1.1166 +                    js_ReportOutOfMemory(cx);
  1.1167 +                    return false;
  1.1168 +                }
  1.1169 +                PodZero(nloop);
  1.1170 +
  1.1171 +                nloop->parent = loop;
  1.1172 +                loop = nloop;
  1.1173 +
  1.1174 +                getCode(targetOffset).loop = loop;
  1.1175 +                loop->head = targetOffset;
  1.1176 +                loop->backedge = offset;
  1.1177 +
  1.1178 +                /*
  1.1179 +                 * Find the entry jump, which will be a GOTO for 'for' or
  1.1180 +                 * 'while' loops or a fallthrough for 'do while' loops.
  1.1181 +                 */
  1.1182 +                uint32_t entry = targetOffset;
  1.1183 +                if (entry) {
  1.1184 +                    do {
  1.1185 +                        entry--;
  1.1186 +                    } while (!maybeCode(entry));
  1.1187 +
  1.1188 +                    jsbytecode *entrypc = script_->offsetToPC(entry);
  1.1189 +
  1.1190 +                    if (JSOp(*entrypc) == JSOP_GOTO)
  1.1191 +                        entry += GET_JUMP_OFFSET(entrypc);
  1.1192 +                    else
  1.1193 +                        entry = targetOffset;
  1.1194 +                } else {
  1.1195 +                    /* Do-while loop at the start of the script. */
  1.1196 +                    entry = targetOffset;
  1.1197 +                }
  1.1198 +                JS_ASSERT(script_->code()[entry] == JSOP_LOOPHEAD ||
  1.1199 +                          script_->code()[entry] == JSOP_LOOPENTRY);
  1.1200 +            } else {
  1.1201 +                for (unsigned i = 0; i < savedCount; i++) {
  1.1202 +                    LifetimeVariable &var = *saved[i];
  1.1203 +                    JS_ASSERT(!var.lifetime && var.saved);
  1.1204 +                    if (var.live(targetOffset)) {
  1.1205 +                        /*
  1.1206 +                         * Jumping to a place where this variable is live. Make a new
  1.1207 +                         * lifetime segment for the variable.
  1.1208 +                         */
  1.1209 +                        uint32_t savedEnd = var.savedEnd;
  1.1210 +                        var.lifetime = alloc.new_<Lifetime>(offset, savedEnd, var.saved);
  1.1211 +                        if (!var.lifetime) {
  1.1212 +                            js_free(saved);
  1.1213 +                            js_ReportOutOfMemory(cx);
  1.1214 +                            return false;
  1.1215 +                        }
  1.1216 +                        var.saved = nullptr;
  1.1217 +                        saved[i--] = saved[--savedCount];
  1.1218 +                    } else if (loop && !var.savedEnd) {
  1.1219 +                        /*
  1.1220 +                         * This jump precedes the basic block which killed the variable,
  1.1221 +                         * remember it and use it for the end of the next lifetime
  1.1222 +                         * segment should the variable become live again. This is needed
  1.1223 +                         * for loops, as if we wrap liveness around the loop the isLive
  1.1224 +                         * test below may have given the wrong answer.
  1.1225 +                         */
  1.1226 +                        var.savedEnd = offset;
  1.1227 +                    }
  1.1228 +                }
  1.1229 +            }
  1.1230 +        }
  1.1231 +
  1.1232 +        offset--;
  1.1233 +    }
  1.1234 +
  1.1235 +    js_free(saved);
  1.1236 +
  1.1237 +    return true;
  1.1238 +}
  1.1239 +
  1.1240 +#ifdef DEBUG
  1.1241 +void
  1.1242 +LifetimeVariable::print() const
  1.1243 +{
  1.1244 +    Lifetime *segment = lifetime ? lifetime : saved;
  1.1245 +    while (segment) {
  1.1246 +        printf(" (%u,%u)", segment->start, segment->end);
  1.1247 +        segment = segment->next;
  1.1248 +    }
  1.1249 +    printf("\n");
  1.1250 +}
  1.1251 +#endif /* DEBUG */
  1.1252 +
  1.1253 +inline bool
  1.1254 +ScriptAnalysis::addVariable(JSContext *cx, LifetimeVariable &var, unsigned offset,
  1.1255 +                            LifetimeVariable **&saved, unsigned &savedCount)
  1.1256 +{
  1.1257 +    if (var.lifetime) {
  1.1258 +        if (var.ensured)
  1.1259 +            return true;
  1.1260 +
  1.1261 +        JS_ASSERT(offset < var.lifetime->start);
  1.1262 +        var.lifetime->start = offset;
  1.1263 +    } else {
  1.1264 +        if (var.saved) {
  1.1265 +            /* Remove from the list of saved entries. */
  1.1266 +            for (unsigned i = 0; i < savedCount; i++) {
  1.1267 +                if (saved[i] == &var) {
  1.1268 +                    JS_ASSERT(savedCount);
  1.1269 +                    saved[i--] = saved[--savedCount];
  1.1270 +                    break;
  1.1271 +                }
  1.1272 +            }
  1.1273 +        }
  1.1274 +        uint32_t savedEnd = var.savedEnd;
  1.1275 +        var.lifetime = cx->typeLifoAlloc().new_<Lifetime>(offset, savedEnd, var.saved);
  1.1276 +        if (!var.lifetime) {
  1.1277 +            js_ReportOutOfMemory(cx);
  1.1278 +            return false;
  1.1279 +        }
  1.1280 +        var.saved = nullptr;
  1.1281 +    }
  1.1282 +
  1.1283 +    return true;
  1.1284 +}
  1.1285 +
  1.1286 +inline bool
  1.1287 +ScriptAnalysis::killVariable(JSContext *cx, LifetimeVariable &var, unsigned offset,
  1.1288 +                             LifetimeVariable **&saved, unsigned &savedCount)
  1.1289 +{
  1.1290 +    if (!var.lifetime) {
  1.1291 +        /* Make a point lifetime indicating the write. */
  1.1292 +        uint32_t savedEnd = var.savedEnd;
  1.1293 +        Lifetime *lifetime = cx->typeLifoAlloc().new_<Lifetime>(offset, savedEnd, var.saved);
  1.1294 +        if (!lifetime) {
  1.1295 +            js_ReportOutOfMemory(cx);
  1.1296 +            return false;
  1.1297 +        }
  1.1298 +        if (!var.saved)
  1.1299 +            saved[savedCount++] = &var;
  1.1300 +        var.saved = lifetime;
  1.1301 +        var.saved->write = true;
  1.1302 +        var.savedEnd = 0;
  1.1303 +        return true;
  1.1304 +    }
  1.1305 +
  1.1306 +    JS_ASSERT_IF(!var.ensured, offset < var.lifetime->start);
  1.1307 +    unsigned start = var.lifetime->start;
  1.1308 +
  1.1309 +    /*
  1.1310 +     * The variable is considered to be live at the bytecode which kills it
  1.1311 +     * (just not at earlier bytecodes). This behavior is needed by downstream
  1.1312 +     * register allocation (see FrameState::bestEvictReg).
  1.1313 +     */
  1.1314 +    var.lifetime->start = offset;
  1.1315 +    var.lifetime->write = true;
  1.1316 +
  1.1317 +    if (var.ensured) {
  1.1318 +        /*
  1.1319 +         * The variable is live even before the write, due to an enclosing try
  1.1320 +         * block. We need to split the lifetime to indicate there was a write.
  1.1321 +         * We set the new interval's savedEnd to 0, since it will always be
  1.1322 +         * adjacent to the old interval, so it never needs to be extended.
  1.1323 +         */
  1.1324 +        var.lifetime = cx->typeLifoAlloc().new_<Lifetime>(start, 0, var.lifetime);
  1.1325 +        if (!var.lifetime) {
  1.1326 +            js_ReportOutOfMemory(cx);
  1.1327 +            return false;
  1.1328 +        }
  1.1329 +        var.lifetime->end = offset;
  1.1330 +    } else {
  1.1331 +        var.saved = var.lifetime;
  1.1332 +        var.savedEnd = 0;
  1.1333 +        var.lifetime = nullptr;
  1.1334 +
  1.1335 +        saved[savedCount++] = &var;
  1.1336 +    }
  1.1337 +
  1.1338 +    return true;
  1.1339 +}
  1.1340 +
  1.1341 +inline bool
  1.1342 +ScriptAnalysis::extendVariable(JSContext *cx, LifetimeVariable &var,
  1.1343 +                               unsigned start, unsigned end)
  1.1344 +{
  1.1345 +    JS_ASSERT(var.lifetime);
  1.1346 +    if (var.ensured) {
  1.1347 +        /*
  1.1348 +         * If we are still ensured to be live, the try block must scope over
  1.1349 +         * the loop, in which case the variable is already guaranteed to be
  1.1350 +         * live for the entire loop.
  1.1351 +         */
  1.1352 +        JS_ASSERT(var.lifetime->start < start);
  1.1353 +        return true;
  1.1354 +    }
  1.1355 +
  1.1356 +    var.lifetime->start = start;
  1.1357 +
  1.1358 +    /*
  1.1359 +     * Consider this code:
  1.1360 +     *
  1.1361 +     *   while (...) { (#1)
  1.1362 +     *       use x;    (#2)
  1.1363 +     *       ...
  1.1364 +     *       x = ...;  (#3)
  1.1365 +     *       ...
  1.1366 +     *   }             (#4)
  1.1367 +     *
  1.1368 +     * Just before analyzing the while statement, there would be a live range
  1.1369 +     * from #1..#2 and a "point range" at #3. The job of extendVariable is to
  1.1370 +     * create a new live range from #3..#4.
  1.1371 +     *
  1.1372 +     * However, more extensions may be required if the definition of x is
  1.1373 +     * conditional. Consider the following.
  1.1374 +     *
  1.1375 +     *   while (...) {     (#1)
  1.1376 +     *       use x;        (#2)
  1.1377 +     *       ...
  1.1378 +     *       if (...)      (#5)
  1.1379 +     *           x = ...;  (#3)
  1.1380 +     *       ...
  1.1381 +     *   }                 (#4)
  1.1382 +     *
  1.1383 +     * Assume that x is not used after the loop. Then, before extendVariable is
  1.1384 +     * run, the live ranges would be the same as before (#1..#2 and #3..#3). We
  1.1385 +     * still need to create a range from #3..#4. But, since the assignment at #3
  1.1386 +     * may never run, we also need to create a range from #2..#3. This is done
  1.1387 +     * as follows.
  1.1388 +     *
  1.1389 +     * Each time we create a Lifetime, we store the start of the most recently
  1.1390 +     * seen sequence of conditional code in the Lifetime's savedEnd field. So,
  1.1391 +     * when creating the Lifetime at #2, we set the Lifetime's savedEnd to
  1.1392 +     * #5. (The start of the most recent conditional is cached in each
  1.1393 +     * variable's savedEnd field.) Consequently, extendVariable is able to
  1.1394 +     * create a new interval from #2..#5 using the savedEnd field of the
  1.1395 +     * existing #1..#2 interval.
  1.1396 +     */
  1.1397 +
  1.1398 +    Lifetime *segment = var.lifetime;
  1.1399 +    while (segment && segment->start < end) {
  1.1400 +        uint32_t savedEnd = segment->savedEnd;
  1.1401 +        if (!segment->next || segment->next->start >= end) {
  1.1402 +            /*
  1.1403 +             * savedEnd is only set for variables killed in the middle of the
  1.1404 +             * loop. Make a tail segment connecting the last use with the
  1.1405 +             * back edge.
  1.1406 +             */
  1.1407 +            if (segment->end >= end) {
  1.1408 +                /* Variable known to be live after the loop finishes. */
  1.1409 +                break;
  1.1410 +            }
  1.1411 +            savedEnd = end;
  1.1412 +        }
  1.1413 +        JS_ASSERT(savedEnd <= end);
  1.1414 +        if (savedEnd > segment->end) {
  1.1415 +            Lifetime *tail = cx->typeLifoAlloc().new_<Lifetime>(savedEnd, 0, segment->next);
  1.1416 +            if (!tail) {
  1.1417 +                js_ReportOutOfMemory(cx);
  1.1418 +                return false;
  1.1419 +            }
  1.1420 +            tail->start = segment->end;
  1.1421 +
  1.1422 +            /*
  1.1423 +             * Clear the segment's saved end, but preserve in the tail if this
  1.1424 +             * is the last segment in the loop and the variable is killed in an
  1.1425 +             * outer loop before the backedge.
  1.1426 +             */
  1.1427 +            if (segment->savedEnd > end) {
  1.1428 +                JS_ASSERT(savedEnd == end);
  1.1429 +                tail->savedEnd = segment->savedEnd;
  1.1430 +            }
  1.1431 +            segment->savedEnd = 0;
  1.1432 +
  1.1433 +            segment->next = tail;
  1.1434 +            segment = tail->next;
  1.1435 +        } else {
  1.1436 +            JS_ASSERT(segment->savedEnd == 0);
  1.1437 +            segment = segment->next;
  1.1438 +        }
  1.1439 +    }
  1.1440 +    return true;
  1.1441 +}
  1.1442 +
  1.1443 +inline void
  1.1444 +ScriptAnalysis::ensureVariable(LifetimeVariable &var, unsigned until)
  1.1445 +{
  1.1446 +    JS_ASSERT(var.lifetime);
  1.1447 +
  1.1448 +    /*
  1.1449 +     * If we are already ensured, the current range we are trying to ensure
  1.1450 +     * should already be included.
  1.1451 +     */
  1.1452 +    if (var.ensured) {
  1.1453 +        JS_ASSERT(var.lifetime->start <= until);
  1.1454 +        return;
  1.1455 +    }
  1.1456 +
  1.1457 +    JS_ASSERT(until < var.lifetime->start);
  1.1458 +    var.lifetime->start = until;
  1.1459 +    var.ensured = true;
  1.1460 +}
  1.1461 +
  1.1462 +/////////////////////////////////////////////////////////////////////
  1.1463 +// SSA Analysis
  1.1464 +/////////////////////////////////////////////////////////////////////
  1.1465 +
  1.1466 +/* Current value for a variable or stack value, as tracked during SSA. */
  1.1467 +struct SSAValueInfo
  1.1468 +{
  1.1469 +    SSAValue v;
  1.1470 +
  1.1471 +    /*
  1.1472 +     * Sizes of branchTargets the last time this slot was written. Branches less
  1.1473 +     * than this threshold do not need to be inspected if the slot is written
  1.1474 +     * again, as they will already reflect the slot's value at the branch.
  1.1475 +     */
  1.1476 +    int32_t branchSize;
  1.1477 +};
  1.1478 +
  1.1479 +bool
  1.1480 +ScriptAnalysis::analyzeSSA(JSContext *cx)
  1.1481 +{
  1.1482 +    JS_ASSERT(cx->compartment()->activeAnalysis);
  1.1483 +    JS_ASSERT(codeArray);
  1.1484 +    JS_ASSERT(lifetimes);
  1.1485 +
  1.1486 +    LifoAlloc &alloc = cx->typeLifoAlloc();
  1.1487 +    unsigned maxDepth = script_->nslots() - script_->nfixed();
  1.1488 +
  1.1489 +    /*
  1.1490 +     * Current value of each variable and stack value. Empty for missing or
  1.1491 +     * untracked entries, i.e. escaping locals and arguments.
  1.1492 +     */
  1.1493 +    SSAValueInfo *values = cx->pod_calloc<SSAValueInfo>(numSlots + maxDepth);
  1.1494 +    if (!values) {
  1.1495 +        js_ReportOutOfMemory(cx);
  1.1496 +        return false;
  1.1497 +    }
  1.1498 +    struct FreeSSAValues {
  1.1499 +        SSAValueInfo *values;
  1.1500 +        FreeSSAValues(SSAValueInfo *values) : values(values) {}
  1.1501 +        ~FreeSSAValues() { js_free(values); }
  1.1502 +    } free(values);
  1.1503 +
  1.1504 +    SSAValueInfo *stack = values + numSlots;
  1.1505 +    uint32_t stackDepth = 0;
  1.1506 +
  1.1507 +    for (uint32_t slot = ArgSlot(0); slot < numSlots; slot++) {
  1.1508 +        if (trackSlot(slot))
  1.1509 +            values[slot].v.initInitial(slot);
  1.1510 +    }
  1.1511 +
  1.1512 +    /*
  1.1513 +     * All target offsets for forward jumps we have seen (including ones whose
  1.1514 +     * target we have advanced past). We lazily add pending entries at these
  1.1515 +     * targets for the original value of variables modified before the branch
  1.1516 +     * rejoins.
  1.1517 +     */
  1.1518 +    Vector<uint32_t> branchTargets(cx);
  1.1519 +
  1.1520 +    /*
  1.1521 +     * Subset of branchTargets which are exception handlers at future offsets.
  1.1522 +     * Any new value of a variable modified before the target is reached is a
  1.1523 +     * potential value at that target, along with the lazy original value.
  1.1524 +     */
  1.1525 +    Vector<uint32_t> exceptionTargets(cx);
  1.1526 +
  1.1527 +    uint32_t offset = 0;
  1.1528 +    while (offset < script_->length()) {
  1.1529 +        jsbytecode *pc = script_->offsetToPC(offset);
  1.1530 +        JSOp op = (JSOp)*pc;
  1.1531 +
  1.1532 +        uint32_t successorOffset = offset + GetBytecodeLength(pc);
  1.1533 +
  1.1534 +        Bytecode *code = maybeCode(pc);
  1.1535 +        if (!code) {
  1.1536 +            offset = successorOffset;
  1.1537 +            continue;
  1.1538 +        }
  1.1539 +
  1.1540 +        if (code->exceptionEntry) {
  1.1541 +            /* Remove from exception targets list, which reflects only future targets. */
  1.1542 +            for (size_t i = 0; i < exceptionTargets.length(); i++) {
  1.1543 +                if (exceptionTargets[i] == offset) {
  1.1544 +                    exceptionTargets[i] = exceptionTargets.back();
  1.1545 +                    exceptionTargets.popBack();
  1.1546 +                    break;
  1.1547 +                }
  1.1548 +            }
  1.1549 +        }
  1.1550 +
  1.1551 +        if (code->stackDepth > stackDepth)
  1.1552 +            PodZero(stack + stackDepth, code->stackDepth - stackDepth);
  1.1553 +        stackDepth = code->stackDepth;
  1.1554 +
  1.1555 +        if (op == JSOP_LOOPHEAD && code->loop) {
  1.1556 +            /*
  1.1557 +             * Make sure there is a pending value array for phi nodes at the
  1.1558 +             * loop head. We won't be able to clear these until we reach the
  1.1559 +             * loop's back edge.
  1.1560 +             *
  1.1561 +             * We need phi nodes for all variables which might be modified
  1.1562 +             * during the loop. This ensures that in the loop body we have
  1.1563 +             * already updated state to reflect possible changes that happen
  1.1564 +             * before the back edge, and don't need to go back and fix things
  1.1565 +             * up when we *do* get to the back edge. This could be made lazier.
  1.1566 +             *
  1.1567 +             * We don't make phi nodes for values on the stack at the head of
  1.1568 +             * the loop. These may be popped during the loop (i.e. for ITER
  1.1569 +             * loops), but in such cases the original value is pushed back.
  1.1570 +             */
  1.1571 +            Vector<SlotValue> *&pending = code->pendingValues;
  1.1572 +            if (!pending) {
  1.1573 +                pending = cx->new_< Vector<SlotValue> >(cx);
  1.1574 +                if (!pending) {
  1.1575 +                    js_ReportOutOfMemory(cx);
  1.1576 +                    return false;
  1.1577 +                }
  1.1578 +            }
  1.1579 +
  1.1580 +            /*
  1.1581 +             * Make phi nodes and update state for slots which are already in
  1.1582 +             * pending from previous branches to the loop head, and which are
  1.1583 +             * modified in the body of the loop.
  1.1584 +             */
  1.1585 +            for (unsigned i = 0; i < pending->length(); i++) {
  1.1586 +                SlotValue &v = (*pending)[i];
  1.1587 +                if (v.slot < numSlots && liveness(v.slot).firstWrite(code->loop) != UINT32_MAX) {
  1.1588 +                    if (v.value.kind() != SSAValue::PHI || v.value.phiOffset() != offset) {
  1.1589 +                        JS_ASSERT(v.value.phiOffset() < offset);
  1.1590 +                        SSAValue ov = v.value;
  1.1591 +                        if (!makePhi(cx, v.slot, offset, &ov))
  1.1592 +                            return false;
  1.1593 +                        if (!insertPhi(cx, ov, v.value))
  1.1594 +                            return false;
  1.1595 +                        v.value = ov;
  1.1596 +                    }
  1.1597 +                }
  1.1598 +                if (code->fallthrough || code->jumpFallthrough) {
  1.1599 +                    if (!mergeValue(cx, offset, values[v.slot].v, &v))
  1.1600 +                        return false;
  1.1601 +                }
  1.1602 +                if (!mergeBranchTarget(cx, values[v.slot], v.slot, branchTargets, offset - 1))
  1.1603 +                    return false;
  1.1604 +                values[v.slot].v = v.value;
  1.1605 +            }
  1.1606 +
  1.1607 +            /*
  1.1608 +             * Make phi nodes for all other slots which might be modified
  1.1609 +             * during the loop. This ensures that in the loop body we have
  1.1610 +             * already updated state to reflect possible changes that happen
  1.1611 +             * before the back edge, and don't need to go back and fix things
  1.1612 +             * up when we *do* get to the back edge. This could be made lazier.
  1.1613 +             */
  1.1614 +            for (uint32_t slot = ArgSlot(0); slot < numSlots + stackDepth; slot++) {
  1.1615 +                if (slot >= numSlots || !trackSlot(slot))
  1.1616 +                    continue;
  1.1617 +                if (liveness(slot).firstWrite(code->loop) == UINT32_MAX)
  1.1618 +                    continue;
  1.1619 +                if (values[slot].v.kind() == SSAValue::PHI && values[slot].v.phiOffset() == offset) {
  1.1620 +                    /* There is already a pending entry for this slot. */
  1.1621 +                    continue;
  1.1622 +                }
  1.1623 +                SSAValue ov;
  1.1624 +                if (!makePhi(cx, slot, offset, &ov))
  1.1625 +                    return false;
  1.1626 +                if (code->fallthrough || code->jumpFallthrough) {
  1.1627 +                    if (!insertPhi(cx, ov, values[slot].v))
  1.1628 +                        return false;
  1.1629 +                }
  1.1630 +                if (!mergeBranchTarget(cx, values[slot], slot, branchTargets, offset - 1))
  1.1631 +                    return false;
  1.1632 +                values[slot].v = ov;
  1.1633 +                if (!pending->append(SlotValue(slot, ov))) {
  1.1634 +                    js_ReportOutOfMemory(cx);
  1.1635 +                    return false;
  1.1636 +                }
  1.1637 +            }
  1.1638 +        } else if (code->pendingValues) {
  1.1639 +            /*
  1.1640 +             * New values at this point from a previous jump to this bytecode.
  1.1641 +             * If there is fallthrough from the previous instruction, merge
  1.1642 +             * with the current state and create phi nodes where necessary,
  1.1643 +             * otherwise replace current values with the new values.
  1.1644 +             *
  1.1645 +             * Catch blocks are artifically treated as having fallthrough, so
  1.1646 +             * that values written inside the block but not subsequently
  1.1647 +             * overwritten are picked up.
  1.1648 +             */
  1.1649 +            bool exception = getCode(offset).exceptionEntry;
  1.1650 +            Vector<SlotValue> *pending = code->pendingValues;
  1.1651 +            for (unsigned i = 0; i < pending->length(); i++) {
  1.1652 +                SlotValue &v = (*pending)[i];
  1.1653 +                if (code->fallthrough || code->jumpFallthrough ||
  1.1654 +                    (exception && values[v.slot].v.kind() != SSAValue::EMPTY)) {
  1.1655 +                    if (!mergeValue(cx, offset, values[v.slot].v, &v))
  1.1656 +                        return false;
  1.1657 +                }
  1.1658 +                if (!mergeBranchTarget(cx, values[v.slot], v.slot, branchTargets, offset))
  1.1659 +                    return false;
  1.1660 +                values[v.slot].v = v.value;
  1.1661 +            }
  1.1662 +            if (!freezeNewValues(cx, offset))
  1.1663 +                return false;
  1.1664 +        }
  1.1665 +
  1.1666 +        unsigned nuses = GetUseCount(script_, offset);
  1.1667 +        unsigned ndefs = GetDefCount(script_, offset);
  1.1668 +        JS_ASSERT(stackDepth >= nuses);
  1.1669 +
  1.1670 +        unsigned xuses = ExtendedUse(pc) ? nuses + 1 : nuses;
  1.1671 +
  1.1672 +        if (xuses) {
  1.1673 +            code->poppedValues = alloc.newArray<SSAValue>(xuses);
  1.1674 +            if (!code->poppedValues) {
  1.1675 +                js_ReportOutOfMemory(cx);
  1.1676 +                return false;
  1.1677 +            }
  1.1678 +            for (unsigned i = 0; i < nuses; i++) {
  1.1679 +                SSAValue &v = stack[stackDepth - 1 - i].v;
  1.1680 +                code->poppedValues[i] = v;
  1.1681 +                v.clear();
  1.1682 +            }
  1.1683 +            if (xuses > nuses) {
  1.1684 +                /*
  1.1685 +                 * For SETLOCAL, etc. opcodes, add an extra popped value
  1.1686 +                 * holding the value of the local before the op.
  1.1687 +                 */
  1.1688 +                uint32_t slot = GetBytecodeSlot(script_, pc);
  1.1689 +                if (trackSlot(slot))
  1.1690 +                    code->poppedValues[nuses] = values[slot].v;
  1.1691 +                else
  1.1692 +                    code->poppedValues[nuses].clear();
  1.1693 +            }
  1.1694 +
  1.1695 +            if (xuses) {
  1.1696 +                SSAUseChain *useChains = alloc.newArray<SSAUseChain>(xuses);
  1.1697 +                if (!useChains) {
  1.1698 +                    js_ReportOutOfMemory(cx);
  1.1699 +                    return false;
  1.1700 +                }
  1.1701 +                PodZero(useChains, xuses);
  1.1702 +                for (unsigned i = 0; i < xuses; i++) {
  1.1703 +                    const SSAValue &v = code->poppedValues[i];
  1.1704 +                    if (trackUseChain(v)) {
  1.1705 +                        SSAUseChain *&uses = useChain(v);
  1.1706 +                        useChains[i].popped = true;
  1.1707 +                        useChains[i].offset = offset;
  1.1708 +                        useChains[i].u.which = i;
  1.1709 +                        useChains[i].next = uses;
  1.1710 +                        uses = &useChains[i];
  1.1711 +                    }
  1.1712 +                }
  1.1713 +            }
  1.1714 +        }
  1.1715 +
  1.1716 +        stackDepth -= nuses;
  1.1717 +
  1.1718 +        for (unsigned i = 0; i < ndefs; i++)
  1.1719 +            stack[stackDepth + i].v.initPushed(offset, i);
  1.1720 +
  1.1721 +        unsigned xdefs = ExtendedDef(pc) ? ndefs + 1 : ndefs;
  1.1722 +        if (xdefs) {
  1.1723 +            code->pushedUses = alloc.newArray<SSAUseChain *>(xdefs);
  1.1724 +            if (!code->pushedUses) {
  1.1725 +                js_ReportOutOfMemory(cx);
  1.1726 +                return false;
  1.1727 +            }
  1.1728 +            PodZero(code->pushedUses, xdefs);
  1.1729 +        }
  1.1730 +
  1.1731 +        stackDepth += ndefs;
  1.1732 +
  1.1733 +        if (op == JSOP_SETARG || op == JSOP_SETLOCAL) {
  1.1734 +            uint32_t slot = GetBytecodeSlot(script_, pc);
  1.1735 +            if (trackSlot(slot)) {
  1.1736 +                if (!mergeBranchTarget(cx, values[slot], slot, branchTargets, offset))
  1.1737 +                    return false;
  1.1738 +                if (!mergeExceptionTarget(cx, values[slot].v, slot, exceptionTargets))
  1.1739 +                    return false;
  1.1740 +                values[slot].v.initWritten(slot, offset);
  1.1741 +            }
  1.1742 +        }
  1.1743 +
  1.1744 +        switch (op) {
  1.1745 +          case JSOP_GETARG:
  1.1746 +          case JSOP_GETLOCAL: {
  1.1747 +            uint32_t slot = GetBytecodeSlot(script_, pc);
  1.1748 +            if (trackSlot(slot)) {
  1.1749 +                /*
  1.1750 +                 * Propagate the current value of the local to the pushed value,
  1.1751 +                 * and remember it with an extended use on the opcode.
  1.1752 +                 */
  1.1753 +                stack[stackDepth - 1].v = code->poppedValues[0] = values[slot].v;
  1.1754 +            }
  1.1755 +            break;
  1.1756 +          }
  1.1757 +
  1.1758 +          /* Short circuit ops which push back one of their operands. */
  1.1759 +
  1.1760 +          case JSOP_MOREITER:
  1.1761 +            stack[stackDepth - 2].v = code->poppedValues[0];
  1.1762 +            break;
  1.1763 +
  1.1764 +          case JSOP_MUTATEPROTO:
  1.1765 +          case JSOP_INITPROP:
  1.1766 +          case JSOP_INITPROP_GETTER:
  1.1767 +          case JSOP_INITPROP_SETTER:
  1.1768 +            stack[stackDepth - 1].v = code->poppedValues[1];
  1.1769 +            break;
  1.1770 +
  1.1771 +          case JSOP_SPREAD:
  1.1772 +          case JSOP_INITELEM_INC:
  1.1773 +            stack[stackDepth - 2].v = code->poppedValues[2];
  1.1774 +            break;
  1.1775 +
  1.1776 +          case JSOP_INITELEM_ARRAY:
  1.1777 +            stack[stackDepth - 1].v = code->poppedValues[1];
  1.1778 +            break;
  1.1779 +
  1.1780 +          case JSOP_INITELEM:
  1.1781 +          case JSOP_INITELEM_GETTER:
  1.1782 +          case JSOP_INITELEM_SETTER:
  1.1783 +            stack[stackDepth - 1].v = code->poppedValues[2];
  1.1784 +            break;
  1.1785 +
  1.1786 +          case JSOP_DUP:
  1.1787 +            stack[stackDepth - 1].v = stack[stackDepth - 2].v = code->poppedValues[0];
  1.1788 +            break;
  1.1789 +
  1.1790 +          case JSOP_DUP2:
  1.1791 +            stack[stackDepth - 1].v = stack[stackDepth - 3].v = code->poppedValues[0];
  1.1792 +            stack[stackDepth - 2].v = stack[stackDepth - 4].v = code->poppedValues[1];
  1.1793 +            break;
  1.1794 +
  1.1795 +          case JSOP_DUPAT: {
  1.1796 +            unsigned pickedDepth = GET_UINT24 (pc);
  1.1797 +            JS_ASSERT(pickedDepth < stackDepth - 1);
  1.1798 +            stack[stackDepth - 1].v = stack[stackDepth - 2 - pickedDepth].v;
  1.1799 +            break;
  1.1800 +          }
  1.1801 +
  1.1802 +          case JSOP_SWAP:
  1.1803 +            /* Swap is like pick 1. */
  1.1804 +          case JSOP_PICK: {
  1.1805 +            unsigned pickedDepth = (op == JSOP_SWAP ? 1 : pc[1]);
  1.1806 +            stack[stackDepth - 1].v = code->poppedValues[pickedDepth];
  1.1807 +            for (unsigned i = 0; i < pickedDepth; i++)
  1.1808 +                stack[stackDepth - 2 - i].v = code->poppedValues[i];
  1.1809 +            break;
  1.1810 +          }
  1.1811 +
  1.1812 +          /*
  1.1813 +           * Switch and try blocks preserve the stack between the original op
  1.1814 +           * and all case statements or exception/finally handlers.
  1.1815 +           */
  1.1816 +
  1.1817 +          case JSOP_TABLESWITCH: {
  1.1818 +            unsigned defaultOffset = offset + GET_JUMP_OFFSET(pc);
  1.1819 +            jsbytecode *pc2 = pc + JUMP_OFFSET_LEN;
  1.1820 +            int32_t low = GET_JUMP_OFFSET(pc2);
  1.1821 +            pc2 += JUMP_OFFSET_LEN;
  1.1822 +            int32_t high = GET_JUMP_OFFSET(pc2);
  1.1823 +            pc2 += JUMP_OFFSET_LEN;
  1.1824 +
  1.1825 +            for (int32_t i = low; i <= high; i++) {
  1.1826 +                unsigned targetOffset = offset + GET_JUMP_OFFSET(pc2);
  1.1827 +                if (targetOffset != offset) {
  1.1828 +                    if (!checkBranchTarget(cx, targetOffset, branchTargets, values, stackDepth))
  1.1829 +                        return false;
  1.1830 +                }
  1.1831 +                pc2 += JUMP_OFFSET_LEN;
  1.1832 +            }
  1.1833 +
  1.1834 +            if (!checkBranchTarget(cx, defaultOffset, branchTargets, values, stackDepth))
  1.1835 +                return false;
  1.1836 +            break;
  1.1837 +          }
  1.1838 +
  1.1839 +          case JSOP_TRY: {
  1.1840 +            JSTryNote *tn = script_->trynotes()->vector;
  1.1841 +            JSTryNote *tnlimit = tn + script_->trynotes()->length;
  1.1842 +            for (; tn < tnlimit; tn++) {
  1.1843 +                unsigned startOffset = script_->mainOffset() + tn->start;
  1.1844 +                if (startOffset == offset + 1) {
  1.1845 +                    unsigned catchOffset = startOffset + tn->length;
  1.1846 +
  1.1847 +                    if (tn->kind != JSTRY_ITER && tn->kind != JSTRY_LOOP) {
  1.1848 +                        if (!checkBranchTarget(cx, catchOffset, branchTargets, values, stackDepth))
  1.1849 +                            return false;
  1.1850 +                        if (!checkExceptionTarget(cx, catchOffset, exceptionTargets))
  1.1851 +                            return false;
  1.1852 +                    }
  1.1853 +                }
  1.1854 +            }
  1.1855 +            break;
  1.1856 +          }
  1.1857 +
  1.1858 +          case JSOP_THROW:
  1.1859 +          case JSOP_RETURN:
  1.1860 +          case JSOP_RETRVAL:
  1.1861 +            if (!mergeAllExceptionTargets(cx, values, exceptionTargets))
  1.1862 +                return false;
  1.1863 +            break;
  1.1864 +
  1.1865 +          default:;
  1.1866 +        }
  1.1867 +
  1.1868 +        if (IsJumpOpcode(op)) {
  1.1869 +            unsigned targetOffset = FollowBranch(cx, script_, offset);
  1.1870 +            if (!checkBranchTarget(cx, targetOffset, branchTargets, values, stackDepth))
  1.1871 +                return false;
  1.1872 +
  1.1873 +            /*
  1.1874 +             * If this is a back edge, we're done with the loop and can freeze
  1.1875 +             * the phi values at the head now.
  1.1876 +             */
  1.1877 +            if (targetOffset < offset) {
  1.1878 +                if (!freezeNewValues(cx, targetOffset))
  1.1879 +                    return false;
  1.1880 +            }
  1.1881 +        }
  1.1882 +
  1.1883 +        offset = successorOffset;
  1.1884 +    }
  1.1885 +
  1.1886 +    return true;
  1.1887 +}
  1.1888 +
  1.1889 +/* Get a phi node's capacity for a given length. */
  1.1890 +static inline unsigned
  1.1891 +PhiNodeCapacity(unsigned length)
  1.1892 +{
  1.1893 +    if (length <= 4)
  1.1894 +        return 4;
  1.1895 +
  1.1896 +    return 1 << (FloorLog2(length - 1) + 1);
  1.1897 +}
  1.1898 +
  1.1899 +bool
  1.1900 +ScriptAnalysis::makePhi(JSContext *cx, uint32_t slot, uint32_t offset, SSAValue *pv)
  1.1901 +{
  1.1902 +    SSAPhiNode *node = cx->typeLifoAlloc().new_<SSAPhiNode>();
  1.1903 +    SSAValue *options = cx->typeLifoAlloc().newArray<SSAValue>(PhiNodeCapacity(0));
  1.1904 +    if (!node || !options) {
  1.1905 +        js_ReportOutOfMemory(cx);
  1.1906 +        return false;
  1.1907 +    }
  1.1908 +    node->slot = slot;
  1.1909 +    node->options = options;
  1.1910 +    pv->initPhi(offset, node);
  1.1911 +    return true;
  1.1912 +}
  1.1913 +
  1.1914 +bool
  1.1915 +ScriptAnalysis::insertPhi(JSContext *cx, SSAValue &phi, const SSAValue &v)
  1.1916 +{
  1.1917 +    JS_ASSERT(phi.kind() == SSAValue::PHI);
  1.1918 +    SSAPhiNode *node = phi.phiNode();
  1.1919 +
  1.1920 +    /*
  1.1921 +     * Filter dupes inserted into small nodes to keep things clean and avoid
  1.1922 +     * extra type constraints, but don't bother on large phi nodes to avoid
  1.1923 +     * quadratic behavior.
  1.1924 +     */
  1.1925 +    if (node->length <= 8) {
  1.1926 +        for (unsigned i = 0; i < node->length; i++) {
  1.1927 +            if (v == node->options[i])
  1.1928 +                return true;
  1.1929 +        }
  1.1930 +    }
  1.1931 +
  1.1932 +    if (trackUseChain(v)) {
  1.1933 +        SSAUseChain *&uses = useChain(v);
  1.1934 +
  1.1935 +        SSAUseChain *use = cx->typeLifoAlloc().new_<SSAUseChain>();
  1.1936 +        if (!use) {
  1.1937 +            js_ReportOutOfMemory(cx);
  1.1938 +            return false;
  1.1939 +        }
  1.1940 +
  1.1941 +        use->popped = false;
  1.1942 +        use->offset = phi.phiOffset();
  1.1943 +        use->u.phi = node;
  1.1944 +        use->next = uses;
  1.1945 +        uses = use;
  1.1946 +    }
  1.1947 +
  1.1948 +    if (node->length < PhiNodeCapacity(node->length)) {
  1.1949 +        node->options[node->length++] = v;
  1.1950 +        return true;
  1.1951 +    }
  1.1952 +
  1.1953 +    SSAValue *newOptions =
  1.1954 +        cx->typeLifoAlloc().newArray<SSAValue>(PhiNodeCapacity(node->length + 1));
  1.1955 +    if (!newOptions) {
  1.1956 +        js_ReportOutOfMemory(cx);
  1.1957 +        return false;
  1.1958 +    }
  1.1959 +
  1.1960 +    PodCopy(newOptions, node->options, node->length);
  1.1961 +    node->options = newOptions;
  1.1962 +    node->options[node->length++] = v;
  1.1963 +
  1.1964 +    return true;
  1.1965 +}
  1.1966 +
  1.1967 +inline bool
  1.1968 +ScriptAnalysis::mergeValue(JSContext *cx, uint32_t offset, const SSAValue &v, SlotValue *pv)
  1.1969 +{
  1.1970 +    /* Make sure that v is accounted for in the pending value or phi value at pv. */
  1.1971 +    JS_ASSERT(v.kind() != SSAValue::EMPTY && pv->value.kind() != SSAValue::EMPTY);
  1.1972 +
  1.1973 +    if (v == pv->value)
  1.1974 +        return true;
  1.1975 +
  1.1976 +    if (pv->value.kind() != SSAValue::PHI || pv->value.phiOffset() < offset) {
  1.1977 +        SSAValue ov = pv->value;
  1.1978 +        return makePhi(cx, pv->slot, offset, &pv->value)
  1.1979 +            && insertPhi(cx, pv->value, v)
  1.1980 +            && insertPhi(cx, pv->value, ov);
  1.1981 +    }
  1.1982 +
  1.1983 +    JS_ASSERT(pv->value.phiOffset() == offset);
  1.1984 +    return insertPhi(cx, pv->value, v);
  1.1985 +}
  1.1986 +
  1.1987 +bool
  1.1988 +ScriptAnalysis::checkPendingValue(JSContext *cx, const SSAValue &v, uint32_t slot,
  1.1989 +                                  Vector<SlotValue> *pending)
  1.1990 +{
  1.1991 +    JS_ASSERT(v.kind() != SSAValue::EMPTY);
  1.1992 +
  1.1993 +    for (unsigned i = 0; i < pending->length(); i++) {
  1.1994 +        if ((*pending)[i].slot == slot)
  1.1995 +            return true;
  1.1996 +    }
  1.1997 +
  1.1998 +    if (!pending->append(SlotValue(slot, v))) {
  1.1999 +        js_ReportOutOfMemory(cx);
  1.2000 +        return false;
  1.2001 +    }
  1.2002 +
  1.2003 +    return true;
  1.2004 +}
  1.2005 +
  1.2006 +bool
  1.2007 +ScriptAnalysis::checkBranchTarget(JSContext *cx, uint32_t targetOffset,
  1.2008 +                                  Vector<uint32_t> &branchTargets,
  1.2009 +                                  SSAValueInfo *values, uint32_t stackDepth)
  1.2010 +{
  1.2011 +    unsigned targetDepth = getCode(targetOffset).stackDepth;
  1.2012 +    JS_ASSERT(targetDepth <= stackDepth);
  1.2013 +
  1.2014 +    /*
  1.2015 +     * If there is already an active branch to target, make sure its pending
  1.2016 +     * values reflect any changes made since the first branch. Otherwise, add a
  1.2017 +     * new pending branch and determine its pending values lazily.
  1.2018 +     */
  1.2019 +    Vector<SlotValue> *&pending = getCode(targetOffset).pendingValues;
  1.2020 +    if (pending) {
  1.2021 +        for (unsigned i = 0; i < pending->length(); i++) {
  1.2022 +            SlotValue &v = (*pending)[i];
  1.2023 +            if (!mergeValue(cx, targetOffset, values[v.slot].v, &v))
  1.2024 +                return false;
  1.2025 +        }
  1.2026 +    } else {
  1.2027 +        pending = cx->new_< Vector<SlotValue> >(cx);
  1.2028 +        if (!pending || !branchTargets.append(targetOffset)) {
  1.2029 +            js_ReportOutOfMemory(cx);
  1.2030 +            return false;
  1.2031 +        }
  1.2032 +    }
  1.2033 +
  1.2034 +    /*
  1.2035 +     * Make sure there is a pending entry for each value on the stack.
  1.2036 +     * The number of stack entries at join points is usually zero, and
  1.2037 +     * we don't want to look at the active branches while popping and
  1.2038 +     * pushing values in each opcode.
  1.2039 +     */
  1.2040 +    for (unsigned i = 0; i < targetDepth; i++) {
  1.2041 +        uint32_t slot = StackSlot(script_, i);
  1.2042 +        if (!checkPendingValue(cx, values[slot].v, slot, pending))
  1.2043 +            return false;
  1.2044 +    }
  1.2045 +
  1.2046 +    return true;
  1.2047 +}
  1.2048 +
  1.2049 +bool
  1.2050 +ScriptAnalysis::checkExceptionTarget(JSContext *cx, uint32_t catchOffset,
  1.2051 +                                     Vector<uint32_t> &exceptionTargets)
  1.2052 +{
  1.2053 +    JS_ASSERT(getCode(catchOffset).exceptionEntry);
  1.2054 +
  1.2055 +    /*
  1.2056 +     * The catch offset will already be in the branch targets, just check
  1.2057 +     * whether this is already a known exception target.
  1.2058 +     */
  1.2059 +    for (unsigned i = 0; i < exceptionTargets.length(); i++) {
  1.2060 +        if (exceptionTargets[i] == catchOffset)
  1.2061 +            return true;
  1.2062 +    }
  1.2063 +    if (!exceptionTargets.append(catchOffset)) {
  1.2064 +        js_ReportOutOfMemory(cx);
  1.2065 +        return false;
  1.2066 +    }
  1.2067 +
  1.2068 +    return true;
  1.2069 +}
  1.2070 +
  1.2071 +bool
  1.2072 +ScriptAnalysis::mergeBranchTarget(JSContext *cx, SSAValueInfo &value, uint32_t slot,
  1.2073 +                                  const Vector<uint32_t> &branchTargets, uint32_t currentOffset)
  1.2074 +{
  1.2075 +    if (slot >= numSlots) {
  1.2076 +        /*
  1.2077 +         * There is no need to lazily check that there are pending values at
  1.2078 +         * branch targets for slots on the stack, these are added to pending
  1.2079 +         * eagerly.
  1.2080 +         */
  1.2081 +        return true;
  1.2082 +    }
  1.2083 +
  1.2084 +    JS_ASSERT(trackSlot(slot));
  1.2085 +
  1.2086 +    /*
  1.2087 +     * Before changing the value of a variable, make sure the old value is
  1.2088 +     * marked at the target of any branches jumping over the current opcode.
  1.2089 +     * Only look at new branch targets which have appeared since the last time
  1.2090 +     * the variable was written.
  1.2091 +     */
  1.2092 +    for (int i = branchTargets.length() - 1; i >= value.branchSize; i--) {
  1.2093 +        if (branchTargets[i] <= currentOffset)
  1.2094 +            continue;
  1.2095 +
  1.2096 +        const Bytecode &code = getCode(branchTargets[i]);
  1.2097 +
  1.2098 +        Vector<SlotValue> *pending = code.pendingValues;
  1.2099 +        if (!checkPendingValue(cx, value.v, slot, pending))
  1.2100 +            return false;
  1.2101 +    }
  1.2102 +
  1.2103 +    value.branchSize = branchTargets.length();
  1.2104 +    return true;
  1.2105 +}
  1.2106 +
  1.2107 +bool
  1.2108 +ScriptAnalysis::mergeExceptionTarget(JSContext *cx, const SSAValue &value, uint32_t slot,
  1.2109 +                                     const Vector<uint32_t> &exceptionTargets)
  1.2110 +{
  1.2111 +    JS_ASSERT(trackSlot(slot));
  1.2112 +
  1.2113 +    /*
  1.2114 +     * Update the value at exception targets with the value of a variable
  1.2115 +     * before it is overwritten. Unlike mergeBranchTarget, this is done whether
  1.2116 +     * or not the overwritten value is the value of the variable at the
  1.2117 +     * original branch. Values for a variable which are written after the
  1.2118 +     * try block starts and overwritten before it is finished can still be
  1.2119 +     * seen at exception handlers via exception paths.
  1.2120 +     */
  1.2121 +    for (unsigned i = 0; i < exceptionTargets.length(); i++) {
  1.2122 +        unsigned offset = exceptionTargets[i];
  1.2123 +        Vector<SlotValue> *pending = getCode(offset).pendingValues;
  1.2124 +
  1.2125 +        bool duplicate = false;
  1.2126 +        for (unsigned i = 0; i < pending->length(); i++) {
  1.2127 +            if ((*pending)[i].slot == slot) {
  1.2128 +                duplicate = true;
  1.2129 +                SlotValue &v = (*pending)[i];
  1.2130 +                if (!mergeValue(cx, offset, value, &v))
  1.2131 +                    return false;
  1.2132 +                break;
  1.2133 +            }
  1.2134 +        }
  1.2135 +
  1.2136 +        if (!duplicate && !pending->append(SlotValue(slot, value))) {
  1.2137 +            js_ReportOutOfMemory(cx);
  1.2138 +            return false;
  1.2139 +        }
  1.2140 +    }
  1.2141 +
  1.2142 +    return true;
  1.2143 +}
  1.2144 +
  1.2145 +bool
  1.2146 +ScriptAnalysis::mergeAllExceptionTargets(JSContext *cx, SSAValueInfo *values,
  1.2147 +                                         const Vector<uint32_t> &exceptionTargets)
  1.2148 +{
  1.2149 +    for (unsigned i = 0; i < exceptionTargets.length(); i++) {
  1.2150 +        Vector<SlotValue> *pending = getCode(exceptionTargets[i]).pendingValues;
  1.2151 +        for (unsigned i = 0; i < pending->length(); i++) {
  1.2152 +            const SlotValue &v = (*pending)[i];
  1.2153 +            if (trackSlot(v.slot)) {
  1.2154 +                if (!mergeExceptionTarget(cx, values[v.slot].v, v.slot, exceptionTargets))
  1.2155 +                    return false;
  1.2156 +            }
  1.2157 +        }
  1.2158 +    }
  1.2159 +    return true;
  1.2160 +}
  1.2161 +
  1.2162 +bool
  1.2163 +ScriptAnalysis::freezeNewValues(JSContext *cx, uint32_t offset)
  1.2164 +{
  1.2165 +    Bytecode &code = getCode(offset);
  1.2166 +
  1.2167 +    Vector<SlotValue> *pending = code.pendingValues;
  1.2168 +    code.pendingValues = nullptr;
  1.2169 +
  1.2170 +    unsigned count = pending->length();
  1.2171 +    if (count == 0) {
  1.2172 +        js_delete(pending);
  1.2173 +        return true;
  1.2174 +    }
  1.2175 +
  1.2176 +    code.newValues = cx->typeLifoAlloc().newArray<SlotValue>(count + 1);
  1.2177 +    if (!code.newValues) {
  1.2178 +        js_ReportOutOfMemory(cx);
  1.2179 +        return false;
  1.2180 +    }
  1.2181 +
  1.2182 +    for (unsigned i = 0; i < count; i++)
  1.2183 +        code.newValues[i] = (*pending)[i];
  1.2184 +    code.newValues[count].slot = 0;
  1.2185 +    code.newValues[count].value.clear();
  1.2186 +
  1.2187 +    js_delete(pending);
  1.2188 +    return true;
  1.2189 +}
  1.2190 +
  1.2191 +bool
  1.2192 +ScriptAnalysis::needsArgsObj(JSContext *cx, SeenVector &seen, const SSAValue &v)
  1.2193 +{
  1.2194 +    /*
  1.2195 +     * trackUseChain is false for initial values of variables, which
  1.2196 +     * cannot hold the script's arguments object.
  1.2197 +     */
  1.2198 +    if (!trackUseChain(v))
  1.2199 +        return false;
  1.2200 +
  1.2201 +    for (unsigned i = 0; i < seen.length(); i++) {
  1.2202 +        if (v == seen[i])
  1.2203 +            return false;
  1.2204 +    }
  1.2205 +    if (!seen.append(v))
  1.2206 +        return true;
  1.2207 +
  1.2208 +    SSAUseChain *use = useChain(v);
  1.2209 +    while (use) {
  1.2210 +        if (needsArgsObj(cx, seen, use))
  1.2211 +            return true;
  1.2212 +        use = use->next;
  1.2213 +    }
  1.2214 +
  1.2215 +    return false;
  1.2216 +}
  1.2217 +
  1.2218 +bool
  1.2219 +ScriptAnalysis::needsArgsObj(JSContext *cx, SeenVector &seen, SSAUseChain *use)
  1.2220 +{
  1.2221 +    if (!use->popped)
  1.2222 +        return needsArgsObj(cx, seen, SSAValue::PhiValue(use->offset, use->u.phi));
  1.2223 +
  1.2224 +    jsbytecode *pc = script_->offsetToPC(use->offset);
  1.2225 +    JSOp op = JSOp(*pc);
  1.2226 +
  1.2227 +    if (op == JSOP_POP || op == JSOP_POPN)
  1.2228 +        return false;
  1.2229 +
  1.2230 +    /* We can read the frame's arguments directly for f.apply(x, arguments). */
  1.2231 +    if (op == JSOP_FUNAPPLY && GET_ARGC(pc) == 2 && use->u.which == 0) {
  1.2232 +        argumentsContentsObserved_ = true;
  1.2233 +        return false;
  1.2234 +    }
  1.2235 +
  1.2236 +    /* arguments[i] can read fp->canonicalActualArg(i) directly. */
  1.2237 +    if (op == JSOP_GETELEM && use->u.which == 1) {
  1.2238 +        argumentsContentsObserved_ = true;
  1.2239 +        return false;
  1.2240 +    }
  1.2241 +
  1.2242 +    /* arguments.length length can read fp->numActualArgs() directly. */
  1.2243 +    if (op == JSOP_LENGTH)
  1.2244 +        return false;
  1.2245 +
  1.2246 +    /* Allow assignments to non-closed locals (but not arguments). */
  1.2247 +
  1.2248 +    if (op == JSOP_SETLOCAL) {
  1.2249 +        uint32_t slot = GetBytecodeSlot(script_, pc);
  1.2250 +        if (!trackSlot(slot))
  1.2251 +            return true;
  1.2252 +        return needsArgsObj(cx, seen, SSAValue::PushedValue(use->offset, 0)) ||
  1.2253 +               needsArgsObj(cx, seen, SSAValue::WrittenVar(slot, use->offset));
  1.2254 +    }
  1.2255 +
  1.2256 +    if (op == JSOP_GETLOCAL)
  1.2257 +        return needsArgsObj(cx, seen, SSAValue::PushedValue(use->offset, 0));
  1.2258 +
  1.2259 +    return true;
  1.2260 +}
  1.2261 +
  1.2262 +bool
  1.2263 +ScriptAnalysis::needsArgsObj(JSContext *cx)
  1.2264 +{
  1.2265 +    JS_ASSERT(script_->argumentsHasVarBinding());
  1.2266 +
  1.2267 +    /*
  1.2268 +     * Always construct arguments objects when in debug mode and for generator
  1.2269 +     * scripts (generators can be suspended when speculation fails).
  1.2270 +     *
  1.2271 +     * FIXME: Don't build arguments for ES6 generator expressions.
  1.2272 +     */
  1.2273 +    if (cx->compartment()->debugMode() || script_->isGenerator())
  1.2274 +        return true;
  1.2275 +
  1.2276 +    /*
  1.2277 +     * If the script has dynamic name accesses which could reach 'arguments',
  1.2278 +     * the parser will already have checked to ensure there are no explicit
  1.2279 +     * uses of 'arguments' in the function. If there are such uses, the script
  1.2280 +     * will be marked as definitely needing an arguments object.
  1.2281 +     *
  1.2282 +     * New accesses on 'arguments' can occur through 'eval' or the debugger
  1.2283 +     * statement. In the former case, we will dynamically detect the use and
  1.2284 +     * mark the arguments optimization as having failed.
  1.2285 +     */
  1.2286 +    if (script_->bindingsAccessedDynamically())
  1.2287 +        return false;
  1.2288 +
  1.2289 +    unsigned pcOff = script_->pcToOffset(script_->argumentsBytecode());
  1.2290 +
  1.2291 +    SeenVector seen(cx);
  1.2292 +    if (needsArgsObj(cx, seen, SSAValue::PushedValue(pcOff, 0)))
  1.2293 +        return true;
  1.2294 +
  1.2295 +    /*
  1.2296 +     * If a script explicitly accesses the contents of 'arguments', and has
  1.2297 +     * formals which may be stored as part of a call object, don't use lazy
  1.2298 +     * arguments. The compiler can then assume that accesses through
  1.2299 +     * arguments[i] will be on unaliased variables.
  1.2300 +     */
  1.2301 +    if (script_->funHasAnyAliasedFormal() && argumentsContentsObserved_)
  1.2302 +        return true;
  1.2303 +
  1.2304 +    return false;
  1.2305 +}
  1.2306 +
  1.2307 +#ifdef DEBUG
  1.2308 +
  1.2309 +void
  1.2310 +ScriptAnalysis::printSSA(JSContext *cx)
  1.2311 +{
  1.2312 +    types::AutoEnterAnalysis enter(cx);
  1.2313 +
  1.2314 +    printf("\n");
  1.2315 +
  1.2316 +    RootedScript script(cx, script_);
  1.2317 +    for (unsigned offset = 0; offset < script_->length(); offset++) {
  1.2318 +        Bytecode *code = maybeCode(offset);
  1.2319 +        if (!code)
  1.2320 +            continue;
  1.2321 +
  1.2322 +        jsbytecode *pc = script_->offsetToPC(offset);
  1.2323 +
  1.2324 +        PrintBytecode(cx, script, pc);
  1.2325 +
  1.2326 +        SlotValue *newv = code->newValues;
  1.2327 +        if (newv) {
  1.2328 +            while (newv->slot) {
  1.2329 +                if (newv->value.kind() != SSAValue::PHI || newv->value.phiOffset() != offset) {
  1.2330 +                    newv++;
  1.2331 +                    continue;
  1.2332 +                }
  1.2333 +                printf("  phi ");
  1.2334 +                newv->value.print();
  1.2335 +                printf(" [");
  1.2336 +                for (unsigned i = 0; i < newv->value.phiLength(); i++) {
  1.2337 +                    if (i)
  1.2338 +                        printf(",");
  1.2339 +                    newv->value.phiValue(i).print();
  1.2340 +                }
  1.2341 +                printf("]\n");
  1.2342 +                newv++;
  1.2343 +            }
  1.2344 +        }
  1.2345 +
  1.2346 +        unsigned nuses = GetUseCount(script_, offset);
  1.2347 +        unsigned xuses = ExtendedUse(pc) ? nuses + 1 : nuses;
  1.2348 +
  1.2349 +        for (unsigned i = 0; i < xuses; i++) {
  1.2350 +            printf("  popped%d: ", i);
  1.2351 +            code->poppedValues[i].print();
  1.2352 +            printf("\n");
  1.2353 +        }
  1.2354 +    }
  1.2355 +
  1.2356 +    printf("\n");
  1.2357 +}
  1.2358 +
  1.2359 +void
  1.2360 +SSAValue::print() const
  1.2361 +{
  1.2362 +    switch (kind()) {
  1.2363 +
  1.2364 +      case EMPTY:
  1.2365 +        printf("empty");
  1.2366 +        break;
  1.2367 +
  1.2368 +      case PUSHED:
  1.2369 +        printf("pushed:%05u#%u", pushedOffset(), pushedIndex());
  1.2370 +        break;
  1.2371 +
  1.2372 +      case VAR:
  1.2373 +        if (varInitial())
  1.2374 +            printf("initial:%u", varSlot());
  1.2375 +        else
  1.2376 +            printf("write:%05u", varOffset());
  1.2377 +        break;
  1.2378 +
  1.2379 +      case PHI:
  1.2380 +        printf("phi:%05u#%u", phiOffset(), phiSlot());
  1.2381 +        break;
  1.2382 +
  1.2383 +      default:
  1.2384 +        MOZ_ASSUME_UNREACHABLE("Bad kind");
  1.2385 +    }
  1.2386 +}
  1.2387 +
  1.2388 +void
  1.2389 +ScriptAnalysis::assertMatchingDebugMode()
  1.2390 +{
  1.2391 +    JS_ASSERT(!!script_->compartment()->debugMode() == !!originalDebugMode_);
  1.2392 +}
  1.2393 +
  1.2394 +void
  1.2395 +ScriptAnalysis::assertMatchingStackDepthAtOffset(uint32_t offset, uint32_t stackDepth) {
  1.2396 +    JS_ASSERT_IF(maybeCode(offset), getCode(offset).stackDepth == stackDepth);
  1.2397 +}
  1.2398 +
  1.2399 +#endif  /* DEBUG */
  1.2400 +
  1.2401 +} // namespace analyze
  1.2402 +} // namespace js

mercurial