js/src/tests/ecma/Expressions/11.5.3.js

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/tests/ecma/Expressions/11.5.3.js	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,127 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +
    1.10 +/**
    1.11 +   File Name:          11.5.3.js
    1.12 +   ECMA Section:       11.5.3 Applying the % operator
    1.13 +   Description:
    1.14 +
    1.15 +   The binary % operator is said to yield the remainder of its operands from
    1.16 +   an implied division; the left operand is the dividend and the right operand
    1.17 +   is the divisor. In C and C++, the remainder operator accepts only integral
    1.18 +   operands, but in ECMAScript, it also accepts floating-point operands.
    1.19 +
    1.20 +   The result of a floating-point remainder operation as computed by the %
    1.21 +   operator is not the same as the "remainder" operation defined by IEEE 754.
    1.22 +   The IEEE 754 "remainder" operation computes the remainder from a rounding
    1.23 +   division, not a truncating division, and so its behavior is not analogous
    1.24 +   to that of the usual integer remainder operator. Instead the ECMAScript
    1.25 +   language defines % on floating-point operations to behave in a manner
    1.26 +   analogous to that of the Java integer remainder operator; this may be
    1.27 +   compared with the C library function fmod.
    1.28 +
    1.29 +   The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
    1.30 +
    1.31 +   If either operand is NaN, the result is NaN.
    1.32 +   The sign of the result equals the sign of the dividend.
    1.33 +   If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
    1.34 +   If the dividend is finite and the divisor is an infinity, the result equals the dividend.
    1.35 +   If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
    1.36 +   In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
    1.37 +   from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
    1.38 +   is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
    1.39 +   possible without exceeding the magnitude of the true mathematical quotient of n and d.
    1.40 +
    1.41 +   Author:             christine@netscape.com
    1.42 +   Date:               12 november 1997
    1.43 +*/
    1.44 +var SECTION = "11.5.3";
    1.45 +var VERSION = "ECMA_1";
    1.46 +var BUGNUMBER="111202";
    1.47 +startTest();
    1.48 +
    1.49 +
    1.50 +writeHeaderToLog( SECTION + " Applying the % operator");
    1.51 +
    1.52 +// if either operand is NaN, the result is NaN.
    1.53 +
    1.54 +new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
    1.55 +new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
    1.56 +new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );
    1.57 +
    1.58 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
    1.59 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );
    1.60 +
    1.61 +//  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
    1.62 +//  dividend is an infinity
    1.63 +
    1.64 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
    1.65 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
    1.66 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
    1.67 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
    1.68 +
    1.69 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
    1.70 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
    1.71 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
    1.72 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );
    1.73 +
    1.74 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
    1.75 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
    1.76 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
    1.77 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );
    1.78 +
    1.79 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
    1.80 +new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
    1.81 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
    1.82 +new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
    1.83 +
    1.84 +// divisor is 0
    1.85 +new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
    1.86 +new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
    1.87 +new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
    1.88 +new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );
    1.89 +
    1.90 +new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
    1.91 +new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
    1.92 +new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
    1.93 +new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );
    1.94 +
    1.95 +new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
    1.96 +new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
    1.97 +new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
    1.98 +new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );
    1.99 +
   1.100 +// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
   1.101 +
   1.102 +new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
   1.103 +new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
   1.104 +new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
   1.105 +new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );
   1.106 +
   1.107 +new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
   1.108 +new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
   1.109 +new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
   1.110 +new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
   1.111 +
   1.112 +new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
   1.113 +new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
   1.114 +new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
   1.115 +new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );
   1.116 +
   1.117 +// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
   1.118 +
   1.119 +new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
   1.120 +new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
   1.121 +new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
   1.122 +new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );
   1.123 +
   1.124 +//        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
   1.125 +//      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
   1.126 +//      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
   1.127 +//      possible without exceeding the magnitude of the true mathematical quotient of n and d.
   1.128 +
   1.129 +test();
   1.130 +

mercurial