js/src/tests/ecma/Math/15.8.2.18.js

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/js/src/tests/ecma/Math/15.8.2.18.js	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,131 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +
    1.10 +/**
    1.11 +   File Name:          15.8.2.18.js
    1.12 +   ECMA Section:       15.8.2.18 tan( x )
    1.13 +   Description:        return an approximation to the tan of the
    1.14 +   argument.  argument is expressed in radians
    1.15 +   special cases:
    1.16 +   - if x is NaN           result is NaN
    1.17 +   - if x is 0             result is 0
    1.18 +   - if x is -0            result is -0
    1.19 +   - if x is Infinity or -Infinity result is NaN
    1.20 +   Author:             christine@netscape.com
    1.21 +   Date:               7 july 1997
    1.22 +*/
    1.23 +
    1.24 +var SECTION = "15.8.2.18";
    1.25 +var VERSION = "ECMA_1";
    1.26 +startTest();
    1.27 +var TITLE   = "Math.tan(x)";
    1.28 +var EXCLUDE = "true";
    1.29 +
    1.30 +writeHeaderToLog( SECTION + " "+ TITLE);
    1.31 +
    1.32 +new TestCase( SECTION,
    1.33 +	      "Math.tan.length",
    1.34 +	      1,
    1.35 +	      Math.tan.length );
    1.36 +
    1.37 +new TestCase( SECTION,
    1.38 +	      "Math.tan()",
    1.39 +	      Number.NaN,
    1.40 +	      Math.tan() );
    1.41 +
    1.42 +new TestCase( SECTION,
    1.43 +	      "Math.tan(void 0)",
    1.44 +	      Number.NaN,
    1.45 +	      Math.tan(void 0));
    1.46 +
    1.47 +new TestCase( SECTION,
    1.48 +	      "Math.tan(null)",
    1.49 +	      0,
    1.50 +	      Math.tan(null) );
    1.51 +
    1.52 +new TestCase( SECTION,
    1.53 +	      "Math.tan(false)",
    1.54 +	      0,
    1.55 +	      Math.tan(false) );
    1.56 +
    1.57 +new TestCase( SECTION,
    1.58 +	      "Math.tan(NaN)",
    1.59 +	      Number.NaN,
    1.60 +	      Math.tan(Number.NaN) );
    1.61 +
    1.62 +new TestCase( SECTION,
    1.63 +	      "Math.tan(0)",
    1.64 +	      0,
    1.65 +	      Math.tan(0));
    1.66 +
    1.67 +new TestCase( SECTION,
    1.68 +	      "Math.tan(-0)",
    1.69 +	      -0,
    1.70 +	      Math.tan(-0));
    1.71 +
    1.72 +new TestCase( SECTION,
    1.73 +	      "Math.tan(Infinity)",
    1.74 +	      Number.NaN,
    1.75 +	      Math.tan(Number.POSITIVE_INFINITY));
    1.76 +
    1.77 +new TestCase( SECTION,
    1.78 +	      "Math.tan(-Infinity)",
    1.79 +	      Number.NaN,
    1.80 +	      Math.tan(Number.NEGATIVE_INFINITY));
    1.81 +
    1.82 +new TestCase( SECTION,
    1.83 +	      "Math.tan(Math.PI/4)",
    1.84 +	      1,
    1.85 +	      Math.tan(Math.PI/4));
    1.86 +
    1.87 +new TestCase( SECTION,
    1.88 +	      "Math.tan(3*Math.PI/4)",
    1.89 +	      -1,
    1.90 +	      Math.tan(3*Math.PI/4));
    1.91 +
    1.92 +new TestCase( SECTION,
    1.93 +	      "Math.tan(Math.PI)",
    1.94 +	      -0,
    1.95 +	      Math.tan(Math.PI));
    1.96 +
    1.97 +new TestCase( SECTION,
    1.98 +	      "Math.tan(5*Math.PI/4)",
    1.99 +	      1,
   1.100 +	      Math.tan(5*Math.PI/4));
   1.101 +
   1.102 +new TestCase( SECTION,
   1.103 +	      "Math.tan(7*Math.PI/4)",
   1.104 +	      -1,
   1.105 +	      Math.tan(7*Math.PI/4));
   1.106 +
   1.107 +new TestCase( SECTION,
   1.108 +	      "Infinity/Math.tan(-0)",
   1.109 +	      -Infinity,
   1.110 +	      Infinity/Math.tan(-0) );
   1.111 +
   1.112 +/*
   1.113 +  Arctan (x) ~ PI/2 - 1/x   for large x.  For x = 1.6x10^16, 1/x is about the last binary digit of double precision PI/2.
   1.114 +  That is to say, perturbing PI/2 by this much is about the smallest rounding error possible.
   1.115 +
   1.116 +  This suggests that the answer Christine is getting and a real Infinity are "adjacent" results from the tangent function.  I
   1.117 +  suspect that tan (PI/2 + one ulp) is a negative result about the same size as tan (PI/2) and that this pair are the closest
   1.118 +  results to infinity that the algorithm can deliver.
   1.119 +
   1.120 +  In any case, my call is that the answer we're seeing is "right".  I suggest the test pass on any result this size or larger.
   1.121 +  = C =
   1.122 +*/
   1.123 +
   1.124 +new TestCase( SECTION,
   1.125 +	      "Math.tan(3*Math.PI/2) >= 5443000000000000",
   1.126 +	      true,
   1.127 +	      Math.tan(3*Math.PI/2) >= 5443000000000000 );
   1.128 +
   1.129 +new TestCase( SECTION,
   1.130 +	      "Math.tan(Math.PI/2) >= 5443000000000000",
   1.131 +	      true,
   1.132 +	      Math.tan(Math.PI/2) >= 5443000000000000 );
   1.133 +
   1.134 +test();

mercurial