1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/js/src/v8/crypto.js Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,1698 @@ 1.4 +/* 1.5 + * Copyright (c) 2003-2005 Tom Wu 1.6 + * All Rights Reserved. 1.7 + * 1.8 + * Permission is hereby granted, free of charge, to any person obtaining 1.9 + * a copy of this software and associated documentation files (the 1.10 + * "Software"), to deal in the Software without restriction, including 1.11 + * without limitation the rights to use, copy, modify, merge, publish, 1.12 + * distribute, sublicense, and/or sell copies of the Software, and to 1.13 + * permit persons to whom the Software is furnished to do so, subject to 1.14 + * the following conditions: 1.15 + * 1.16 + * The above copyright notice and this permission notice shall be 1.17 + * included in all copies or substantial portions of the Software. 1.18 + * 1.19 + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, 1.20 + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 1.21 + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 1.22 + * 1.23 + * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, 1.24 + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER 1.25 + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF 1.26 + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT 1.27 + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 1.28 + * 1.29 + * In addition, the following condition applies: 1.30 + * 1.31 + * All redistributions must retain an intact copy of this copyright notice 1.32 + * and disclaimer. 1.33 + */ 1.34 + 1.35 + 1.36 +// The code has been adapted for use as a benchmark by Google. 1.37 +var Crypto = new BenchmarkSuite('Crypto', 266181, [ 1.38 + new Benchmark("Encrypt", encrypt), 1.39 + new Benchmark("Decrypt", decrypt) 1.40 +]); 1.41 + 1.42 + 1.43 +// Basic JavaScript BN library - subset useful for RSA encryption. 1.44 + 1.45 +// Bits per digit 1.46 +var dbits; 1.47 +var BI_DB; 1.48 +var BI_DM; 1.49 +var BI_DV; 1.50 + 1.51 +var BI_FP; 1.52 +var BI_FV; 1.53 +var BI_F1; 1.54 +var BI_F2; 1.55 + 1.56 +// JavaScript engine analysis 1.57 +var canary = 0xdeadbeefcafe; 1.58 +var j_lm = ((canary&0xffffff)==0xefcafe); 1.59 + 1.60 +// (public) Constructor 1.61 +function BigInteger(a,b,c) { 1.62 + this.array = new Array(); 1.63 + if(a != null) 1.64 + if("number" == typeof a) this.fromNumber(a,b,c); 1.65 + else if(b == null && "string" != typeof a) this.fromString(a,256); 1.66 + else this.fromString(a,b); 1.67 +} 1.68 + 1.69 +// return new, unset BigInteger 1.70 +function nbi() { return new BigInteger(null); } 1.71 + 1.72 +// am: Compute w_j += (x*this_i), propagate carries, 1.73 +// c is initial carry, returns final carry. 1.74 +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue 1.75 +// We need to select the fastest one that works in this environment. 1.76 + 1.77 +// am1: use a single mult and divide to get the high bits, 1.78 +// max digit bits should be 26 because 1.79 +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) 1.80 +function am1(i,x,w,j,c,n) { 1.81 + var this_array = this.array; 1.82 + var w_array = w.array; 1.83 + while(--n >= 0) { 1.84 + var v = x*this_array[i++]+w_array[j]+c; 1.85 + c = Math.floor(v/0x4000000); 1.86 + w_array[j++] = v&0x3ffffff; 1.87 + } 1.88 + return c; 1.89 +} 1.90 + 1.91 +// am2 avoids a big mult-and-extract completely. 1.92 +// Max digit bits should be <= 30 because we do bitwise ops 1.93 +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) 1.94 +function am2(i,x,w,j,c,n) { 1.95 + var this_array = this.array; 1.96 + var w_array = w.array; 1.97 + var xl = x&0x7fff, xh = x>>15; 1.98 + while(--n >= 0) { 1.99 + var l = this_array[i]&0x7fff; 1.100 + var h = this_array[i++]>>15; 1.101 + var m = xh*l+h*xl; 1.102 + l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); 1.103 + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); 1.104 + w_array[j++] = l&0x3fffffff; 1.105 + } 1.106 + return c; 1.107 +} 1.108 + 1.109 +// Alternately, set max digit bits to 28 since some 1.110 +// browsers slow down when dealing with 32-bit numbers. 1.111 +function am3(i,x,w,j,c,n) { 1.112 + var this_array = this.array; 1.113 + var w_array = w.array; 1.114 + 1.115 + var xl = x&0x3fff, xh = x>>14; 1.116 + while(--n >= 0) { 1.117 + var l = this_array[i]&0x3fff; 1.118 + var h = this_array[i++]>>14; 1.119 + var m = xh*l+h*xl; 1.120 + l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; 1.121 + c = (l>>28)+(m>>14)+xh*h; 1.122 + w_array[j++] = l&0xfffffff; 1.123 + } 1.124 + return c; 1.125 +} 1.126 + 1.127 +// This is tailored to VMs with 2-bit tagging. It makes sure 1.128 +// that all the computations stay within the 29 bits available. 1.129 +function am4(i,x,w,j,c,n) { 1.130 + var this_array = this.array; 1.131 + var w_array = w.array; 1.132 + 1.133 + var xl = x&0x1fff, xh = x>>13; 1.134 + while(--n >= 0) { 1.135 + var l = this_array[i]&0x1fff; 1.136 + var h = this_array[i++]>>13; 1.137 + var m = xh*l+h*xl; 1.138 + l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; 1.139 + c = (l>>26)+(m>>13)+xh*h; 1.140 + w_array[j++] = l&0x3ffffff; 1.141 + } 1.142 + return c; 1.143 +} 1.144 + 1.145 +// am3/28 is best for SM, Rhino, but am4/26 is best for v8. 1.146 +// Kestrel (Opera 9.5) gets its best result with am4/26. 1.147 +// IE7 does 9% better with am3/28 than with am4/26. 1.148 +// Firefox (SM) gets 10% faster with am3/28 than with am4/26. 1.149 + 1.150 +setupEngine = function(fn, bits) { 1.151 + BigInteger.prototype.am = fn; 1.152 + dbits = bits; 1.153 + 1.154 + BI_DB = dbits; 1.155 + BI_DM = ((1<<dbits)-1); 1.156 + BI_DV = (1<<dbits); 1.157 + 1.158 + BI_FP = 52; 1.159 + BI_FV = Math.pow(2,BI_FP); 1.160 + BI_F1 = BI_FP-dbits; 1.161 + BI_F2 = 2*dbits-BI_FP; 1.162 +} 1.163 + 1.164 + 1.165 +// Digit conversions 1.166 +var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; 1.167 +var BI_RC = new Array(); 1.168 +var rr,vv; 1.169 +rr = "0".charCodeAt(0); 1.170 +for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; 1.171 +rr = "a".charCodeAt(0); 1.172 +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 1.173 +rr = "A".charCodeAt(0); 1.174 +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 1.175 + 1.176 +function int2char(n) { return BI_RM.charAt(n); } 1.177 +function intAt(s,i) { 1.178 + var c = BI_RC[s.charCodeAt(i)]; 1.179 + return (c==null)?-1:c; 1.180 +} 1.181 + 1.182 +// (protected) copy this to r 1.183 +function bnpCopyTo(r) { 1.184 + var this_array = this.array; 1.185 + var r_array = r.array; 1.186 + 1.187 + for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; 1.188 + r.t = this.t; 1.189 + r.s = this.s; 1.190 +} 1.191 + 1.192 +// (protected) set from integer value x, -DV <= x < DV 1.193 +function bnpFromInt(x) { 1.194 + var this_array = this.array; 1.195 + this.t = 1; 1.196 + this.s = (x<0)?-1:0; 1.197 + if(x > 0) this_array[0] = x; 1.198 + else if(x < -1) this_array[0] = x+DV; 1.199 + else this.t = 0; 1.200 +} 1.201 + 1.202 +// return bigint initialized to value 1.203 +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } 1.204 + 1.205 +// (protected) set from string and radix 1.206 +function bnpFromString(s,b) { 1.207 + var this_array = this.array; 1.208 + var k; 1.209 + if(b == 16) k = 4; 1.210 + else if(b == 8) k = 3; 1.211 + else if(b == 256) k = 8; // byte array 1.212 + else if(b == 2) k = 1; 1.213 + else if(b == 32) k = 5; 1.214 + else if(b == 4) k = 2; 1.215 + else { this.fromRadix(s,b); return; } 1.216 + this.t = 0; 1.217 + this.s = 0; 1.218 + var i = s.length, mi = false, sh = 0; 1.219 + while(--i >= 0) { 1.220 + var x = (k==8)?s[i]&0xff:intAt(s,i); 1.221 + if(x < 0) { 1.222 + if(s.charAt(i) == "-") mi = true; 1.223 + continue; 1.224 + } 1.225 + mi = false; 1.226 + if(sh == 0) 1.227 + this_array[this.t++] = x; 1.228 + else if(sh+k > BI_DB) { 1.229 + this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; 1.230 + this_array[this.t++] = (x>>(BI_DB-sh)); 1.231 + } 1.232 + else 1.233 + this_array[this.t-1] |= x<<sh; 1.234 + sh += k; 1.235 + if(sh >= BI_DB) sh -= BI_DB; 1.236 + } 1.237 + if(k == 8 && (s[0]&0x80) != 0) { 1.238 + this.s = -1; 1.239 + if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; 1.240 + } 1.241 + this.clamp(); 1.242 + if(mi) BigInteger.ZERO.subTo(this,this); 1.243 +} 1.244 + 1.245 +// (protected) clamp off excess high words 1.246 +function bnpClamp() { 1.247 + var this_array = this.array; 1.248 + var c = this.s&BI_DM; 1.249 + while(this.t > 0 && this_array[this.t-1] == c) --this.t; 1.250 +} 1.251 + 1.252 +// (public) return string representation in given radix 1.253 +function bnToString(b) { 1.254 + var this_array = this.array; 1.255 + if(this.s < 0) return "-"+this.negate().toString(b); 1.256 + var k; 1.257 + if(b == 16) k = 4; 1.258 + else if(b == 8) k = 3; 1.259 + else if(b == 2) k = 1; 1.260 + else if(b == 32) k = 5; 1.261 + else if(b == 4) k = 2; 1.262 + else return this.toRadix(b); 1.263 + var km = (1<<k)-1, d, m = false, r = "", i = this.t; 1.264 + var p = BI_DB-(i*BI_DB)%k; 1.265 + if(i-- > 0) { 1.266 + if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } 1.267 + while(i >= 0) { 1.268 + if(p < k) { 1.269 + d = (this_array[i]&((1<<p)-1))<<(k-p); 1.270 + d |= this_array[--i]>>(p+=BI_DB-k); 1.271 + } 1.272 + else { 1.273 + d = (this_array[i]>>(p-=k))&km; 1.274 + if(p <= 0) { p += BI_DB; --i; } 1.275 + } 1.276 + if(d > 0) m = true; 1.277 + if(m) r += int2char(d); 1.278 + } 1.279 + } 1.280 + return m?r:"0"; 1.281 +} 1.282 + 1.283 +// (public) -this 1.284 +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } 1.285 + 1.286 +// (public) |this| 1.287 +function bnAbs() { return (this.s<0)?this.negate():this; } 1.288 + 1.289 +// (public) return + if this > a, - if this < a, 0 if equal 1.290 +function bnCompareTo(a) { 1.291 + var this_array = this.array; 1.292 + var a_array = a.array; 1.293 + 1.294 + var r = this.s-a.s; 1.295 + if(r != 0) return r; 1.296 + var i = this.t; 1.297 + r = i-a.t; 1.298 + if(r != 0) return r; 1.299 + while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; 1.300 + return 0; 1.301 +} 1.302 + 1.303 +// returns bit length of the integer x 1.304 +function nbits(x) { 1.305 + var r = 1, t; 1.306 + if((t=x>>>16) != 0) { x = t; r += 16; } 1.307 + if((t=x>>8) != 0) { x = t; r += 8; } 1.308 + if((t=x>>4) != 0) { x = t; r += 4; } 1.309 + if((t=x>>2) != 0) { x = t; r += 2; } 1.310 + if((t=x>>1) != 0) { x = t; r += 1; } 1.311 + return r; 1.312 +} 1.313 + 1.314 +// (public) return the number of bits in "this" 1.315 +function bnBitLength() { 1.316 + var this_array = this.array; 1.317 + if(this.t <= 0) return 0; 1.318 + return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); 1.319 +} 1.320 + 1.321 +// (protected) r = this << n*DB 1.322 +function bnpDLShiftTo(n,r) { 1.323 + var this_array = this.array; 1.324 + var r_array = r.array; 1.325 + var i; 1.326 + for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; 1.327 + for(i = n-1; i >= 0; --i) r_array[i] = 0; 1.328 + r.t = this.t+n; 1.329 + r.s = this.s; 1.330 +} 1.331 + 1.332 +// (protected) r = this >> n*DB 1.333 +function bnpDRShiftTo(n,r) { 1.334 + var this_array = this.array; 1.335 + var r_array = r.array; 1.336 + for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; 1.337 + r.t = Math.max(this.t-n,0); 1.338 + r.s = this.s; 1.339 +} 1.340 + 1.341 +// (protected) r = this << n 1.342 +function bnpLShiftTo(n,r) { 1.343 + var this_array = this.array; 1.344 + var r_array = r.array; 1.345 + var bs = n%BI_DB; 1.346 + var cbs = BI_DB-bs; 1.347 + var bm = (1<<cbs)-1; 1.348 + var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; 1.349 + for(i = this.t-1; i >= 0; --i) { 1.350 + r_array[i+ds+1] = (this_array[i]>>cbs)|c; 1.351 + c = (this_array[i]&bm)<<bs; 1.352 + } 1.353 + for(i = ds-1; i >= 0; --i) r_array[i] = 0; 1.354 + r_array[ds] = c; 1.355 + r.t = this.t+ds+1; 1.356 + r.s = this.s; 1.357 + r.clamp(); 1.358 +} 1.359 + 1.360 +// (protected) r = this >> n 1.361 +function bnpRShiftTo(n,r) { 1.362 + var this_array = this.array; 1.363 + var r_array = r.array; 1.364 + r.s = this.s; 1.365 + var ds = Math.floor(n/BI_DB); 1.366 + if(ds >= this.t) { r.t = 0; return; } 1.367 + var bs = n%BI_DB; 1.368 + var cbs = BI_DB-bs; 1.369 + var bm = (1<<bs)-1; 1.370 + r_array[0] = this_array[ds]>>bs; 1.371 + for(var i = ds+1; i < this.t; ++i) { 1.372 + r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; 1.373 + r_array[i-ds] = this_array[i]>>bs; 1.374 + } 1.375 + if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; 1.376 + r.t = this.t-ds; 1.377 + r.clamp(); 1.378 +} 1.379 + 1.380 +// (protected) r = this - a 1.381 +function bnpSubTo(a,r) { 1.382 + var this_array = this.array; 1.383 + var r_array = r.array; 1.384 + var a_array = a.array; 1.385 + var i = 0, c = 0, m = Math.min(a.t,this.t); 1.386 + while(i < m) { 1.387 + c += this_array[i]-a_array[i]; 1.388 + r_array[i++] = c&BI_DM; 1.389 + c >>= BI_DB; 1.390 + } 1.391 + if(a.t < this.t) { 1.392 + c -= a.s; 1.393 + while(i < this.t) { 1.394 + c += this_array[i]; 1.395 + r_array[i++] = c&BI_DM; 1.396 + c >>= BI_DB; 1.397 + } 1.398 + c += this.s; 1.399 + } 1.400 + else { 1.401 + c += this.s; 1.402 + while(i < a.t) { 1.403 + c -= a_array[i]; 1.404 + r_array[i++] = c&BI_DM; 1.405 + c >>= BI_DB; 1.406 + } 1.407 + c -= a.s; 1.408 + } 1.409 + r.s = (c<0)?-1:0; 1.410 + if(c < -1) r_array[i++] = BI_DV+c; 1.411 + else if(c > 0) r_array[i++] = c; 1.412 + r.t = i; 1.413 + r.clamp(); 1.414 +} 1.415 + 1.416 +// (protected) r = this * a, r != this,a (HAC 14.12) 1.417 +// "this" should be the larger one if appropriate. 1.418 +function bnpMultiplyTo(a,r) { 1.419 + var this_array = this.array; 1.420 + var r_array = r.array; 1.421 + var x = this.abs(), y = a.abs(); 1.422 + var y_array = y.array; 1.423 + 1.424 + var i = x.t; 1.425 + r.t = i+y.t; 1.426 + while(--i >= 0) r_array[i] = 0; 1.427 + for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); 1.428 + r.s = 0; 1.429 + r.clamp(); 1.430 + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); 1.431 +} 1.432 + 1.433 +// (protected) r = this^2, r != this (HAC 14.16) 1.434 +function bnpSquareTo(r) { 1.435 + var x = this.abs(); 1.436 + var x_array = x.array; 1.437 + var r_array = r.array; 1.438 + 1.439 + var i = r.t = 2*x.t; 1.440 + while(--i >= 0) r_array[i] = 0; 1.441 + for(i = 0; i < x.t-1; ++i) { 1.442 + var c = x.am(i,x_array[i],r,2*i,0,1); 1.443 + if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { 1.444 + r_array[i+x.t] -= BI_DV; 1.445 + r_array[i+x.t+1] = 1; 1.446 + } 1.447 + } 1.448 + if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); 1.449 + r.s = 0; 1.450 + r.clamp(); 1.451 +} 1.452 + 1.453 +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) 1.454 +// r != q, this != m. q or r may be null. 1.455 +function bnpDivRemTo(m,q,r) { 1.456 + var pm = m.abs(); 1.457 + if(pm.t <= 0) return; 1.458 + var pt = this.abs(); 1.459 + if(pt.t < pm.t) { 1.460 + if(q != null) q.fromInt(0); 1.461 + if(r != null) this.copyTo(r); 1.462 + return; 1.463 + } 1.464 + if(r == null) r = nbi(); 1.465 + var y = nbi(), ts = this.s, ms = m.s; 1.466 + var pm_array = pm.array; 1.467 + var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus 1.468 + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } 1.469 + else { pm.copyTo(y); pt.copyTo(r); } 1.470 + var ys = y.t; 1.471 + 1.472 + var y_array = y.array; 1.473 + var y0 = y_array[ys-1]; 1.474 + if(y0 == 0) return; 1.475 + var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); 1.476 + var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; 1.477 + var i = r.t, j = i-ys, t = (q==null)?nbi():q; 1.478 + y.dlShiftTo(j,t); 1.479 + 1.480 + var r_array = r.array; 1.481 + if(r.compareTo(t) >= 0) { 1.482 + r_array[r.t++] = 1; 1.483 + r.subTo(t,r); 1.484 + } 1.485 + BigInteger.ONE.dlShiftTo(ys,t); 1.486 + t.subTo(y,y); // "negative" y so we can replace sub with am later 1.487 + while(y.t < ys) y_array[y.t++] = 0; 1.488 + while(--j >= 0) { 1.489 + // Estimate quotient digit 1.490 + var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); 1.491 + if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out 1.492 + y.dlShiftTo(j,t); 1.493 + r.subTo(t,r); 1.494 + while(r_array[i] < --qd) r.subTo(t,r); 1.495 + } 1.496 + } 1.497 + if(q != null) { 1.498 + r.drShiftTo(ys,q); 1.499 + if(ts != ms) BigInteger.ZERO.subTo(q,q); 1.500 + } 1.501 + r.t = ys; 1.502 + r.clamp(); 1.503 + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder 1.504 + if(ts < 0) BigInteger.ZERO.subTo(r,r); 1.505 +} 1.506 + 1.507 +// (public) this mod a 1.508 +function bnMod(a) { 1.509 + var r = nbi(); 1.510 + this.abs().divRemTo(a,null,r); 1.511 + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); 1.512 + return r; 1.513 +} 1.514 + 1.515 +// Modular reduction using "classic" algorithm 1.516 +function Classic(m) { this.m = m; } 1.517 +function cConvert(x) { 1.518 + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); 1.519 + else return x; 1.520 +} 1.521 +function cRevert(x) { return x; } 1.522 +function cReduce(x) { x.divRemTo(this.m,null,x); } 1.523 +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.524 +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.525 + 1.526 +Classic.prototype.convert = cConvert; 1.527 +Classic.prototype.revert = cRevert; 1.528 +Classic.prototype.reduce = cReduce; 1.529 +Classic.prototype.mulTo = cMulTo; 1.530 +Classic.prototype.sqrTo = cSqrTo; 1.531 + 1.532 +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction 1.533 +// justification: 1.534 +// xy == 1 (mod m) 1.535 +// xy = 1+km 1.536 +// xy(2-xy) = (1+km)(1-km) 1.537 +// x[y(2-xy)] = 1-k^2m^2 1.538 +// x[y(2-xy)] == 1 (mod m^2) 1.539 +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 1.540 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. 1.541 +// JS multiply "overflows" differently from C/C++, so care is needed here. 1.542 +function bnpInvDigit() { 1.543 + var this_array = this.array; 1.544 + if(this.t < 1) return 0; 1.545 + var x = this_array[0]; 1.546 + if((x&1) == 0) return 0; 1.547 + var y = x&3; // y == 1/x mod 2^2 1.548 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 1.549 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 1.550 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 1.551 + // last step - calculate inverse mod DV directly; 1.552 + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints 1.553 + y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits 1.554 + // we really want the negative inverse, and -DV < y < DV 1.555 + return (y>0)?BI_DV-y:-y; 1.556 +} 1.557 + 1.558 +// Montgomery reduction 1.559 +function Montgomery(m) { 1.560 + this.m = m; 1.561 + this.mp = m.invDigit(); 1.562 + this.mpl = this.mp&0x7fff; 1.563 + this.mph = this.mp>>15; 1.564 + this.um = (1<<(BI_DB-15))-1; 1.565 + this.mt2 = 2*m.t; 1.566 +} 1.567 + 1.568 +// xR mod m 1.569 +function montConvert(x) { 1.570 + var r = nbi(); 1.571 + x.abs().dlShiftTo(this.m.t,r); 1.572 + r.divRemTo(this.m,null,r); 1.573 + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); 1.574 + return r; 1.575 +} 1.576 + 1.577 +// x/R mod m 1.578 +function montRevert(x) { 1.579 + var r = nbi(); 1.580 + x.copyTo(r); 1.581 + this.reduce(r); 1.582 + return r; 1.583 +} 1.584 + 1.585 +// x = x/R mod m (HAC 14.32) 1.586 +function montReduce(x) { 1.587 + var x_array = x.array; 1.588 + while(x.t <= this.mt2) // pad x so am has enough room later 1.589 + x_array[x.t++] = 0; 1.590 + for(var i = 0; i < this.m.t; ++i) { 1.591 + // faster way of calculating u0 = x[i]*mp mod DV 1.592 + var j = x_array[i]&0x7fff; 1.593 + var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; 1.594 + // use am to combine the multiply-shift-add into one call 1.595 + j = i+this.m.t; 1.596 + x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); 1.597 + // propagate carry 1.598 + while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } 1.599 + } 1.600 + x.clamp(); 1.601 + x.drShiftTo(this.m.t,x); 1.602 + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 1.603 +} 1.604 + 1.605 +// r = "x^2/R mod m"; x != r 1.606 +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.607 + 1.608 +// r = "xy/R mod m"; x,y != r 1.609 +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.610 + 1.611 +Montgomery.prototype.convert = montConvert; 1.612 +Montgomery.prototype.revert = montRevert; 1.613 +Montgomery.prototype.reduce = montReduce; 1.614 +Montgomery.prototype.mulTo = montMulTo; 1.615 +Montgomery.prototype.sqrTo = montSqrTo; 1.616 + 1.617 +// (protected) true iff this is even 1.618 +function bnpIsEven() { 1.619 + var this_array = this.array; 1.620 + return ((this.t>0)?(this_array[0]&1):this.s) == 0; 1.621 +} 1.622 + 1.623 +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) 1.624 +function bnpExp(e,z) { 1.625 + if(e > 0xffffffff || e < 1) return BigInteger.ONE; 1.626 + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; 1.627 + g.copyTo(r); 1.628 + while(--i >= 0) { 1.629 + z.sqrTo(r,r2); 1.630 + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); 1.631 + else { var t = r; r = r2; r2 = t; } 1.632 + } 1.633 + return z.revert(r); 1.634 +} 1.635 + 1.636 +// (public) this^e % m, 0 <= e < 2^32 1.637 +function bnModPowInt(e,m) { 1.638 + var z; 1.639 + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 1.640 + return this.exp(e,z); 1.641 +} 1.642 + 1.643 +// protected 1.644 +BigInteger.prototype.copyTo = bnpCopyTo; 1.645 +BigInteger.prototype.fromInt = bnpFromInt; 1.646 +BigInteger.prototype.fromString = bnpFromString; 1.647 +BigInteger.prototype.clamp = bnpClamp; 1.648 +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; 1.649 +BigInteger.prototype.drShiftTo = bnpDRShiftTo; 1.650 +BigInteger.prototype.lShiftTo = bnpLShiftTo; 1.651 +BigInteger.prototype.rShiftTo = bnpRShiftTo; 1.652 +BigInteger.prototype.subTo = bnpSubTo; 1.653 +BigInteger.prototype.multiplyTo = bnpMultiplyTo; 1.654 +BigInteger.prototype.squareTo = bnpSquareTo; 1.655 +BigInteger.prototype.divRemTo = bnpDivRemTo; 1.656 +BigInteger.prototype.invDigit = bnpInvDigit; 1.657 +BigInteger.prototype.isEven = bnpIsEven; 1.658 +BigInteger.prototype.exp = bnpExp; 1.659 + 1.660 +// public 1.661 +BigInteger.prototype.toString = bnToString; 1.662 +BigInteger.prototype.negate = bnNegate; 1.663 +BigInteger.prototype.abs = bnAbs; 1.664 +BigInteger.prototype.compareTo = bnCompareTo; 1.665 +BigInteger.prototype.bitLength = bnBitLength; 1.666 +BigInteger.prototype.mod = bnMod; 1.667 +BigInteger.prototype.modPowInt = bnModPowInt; 1.668 + 1.669 +// "constants" 1.670 +BigInteger.ZERO = nbv(0); 1.671 +BigInteger.ONE = nbv(1); 1.672 +// Copyright (c) 2005 Tom Wu 1.673 +// All Rights Reserved. 1.674 +// See "LICENSE" for details. 1.675 + 1.676 +// Extended JavaScript BN functions, required for RSA private ops. 1.677 + 1.678 +// (public) 1.679 +function bnClone() { var r = nbi(); this.copyTo(r); return r; } 1.680 + 1.681 +// (public) return value as integer 1.682 +function bnIntValue() { 1.683 + var this_array = this.array; 1.684 + if(this.s < 0) { 1.685 + if(this.t == 1) return this_array[0]-BI_DV; 1.686 + else if(this.t == 0) return -1; 1.687 + } 1.688 + else if(this.t == 1) return this_array[0]; 1.689 + else if(this.t == 0) return 0; 1.690 + // assumes 16 < DB < 32 1.691 + return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; 1.692 +} 1.693 + 1.694 +// (public) return value as byte 1.695 +function bnByteValue() { 1.696 + var this_array = this.array; 1.697 + return (this.t==0)?this.s:(this_array[0]<<24)>>24; 1.698 +} 1.699 + 1.700 +// (public) return value as short (assumes DB>=16) 1.701 +function bnShortValue() { 1.702 + var this_array = this.array; 1.703 + return (this.t==0)?this.s:(this_array[0]<<16)>>16; 1.704 +} 1.705 + 1.706 +// (protected) return x s.t. r^x < DV 1.707 +function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } 1.708 + 1.709 +// (public) 0 if this == 0, 1 if this > 0 1.710 +function bnSigNum() { 1.711 + var this_array = this.array; 1.712 + if(this.s < 0) return -1; 1.713 + else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; 1.714 + else return 1; 1.715 +} 1.716 + 1.717 +// (protected) convert to radix string 1.718 +function bnpToRadix(b) { 1.719 + if(b == null) b = 10; 1.720 + if(this.signum() == 0 || b < 2 || b > 36) return "0"; 1.721 + var cs = this.chunkSize(b); 1.722 + var a = Math.pow(b,cs); 1.723 + var d = nbv(a), y = nbi(), z = nbi(), r = ""; 1.724 + this.divRemTo(d,y,z); 1.725 + while(y.signum() > 0) { 1.726 + r = (a+z.intValue()).toString(b).substr(1) + r; 1.727 + y.divRemTo(d,y,z); 1.728 + } 1.729 + return z.intValue().toString(b) + r; 1.730 +} 1.731 + 1.732 +// (protected) convert from radix string 1.733 +function bnpFromRadix(s,b) { 1.734 + this.fromInt(0); 1.735 + if(b == null) b = 10; 1.736 + var cs = this.chunkSize(b); 1.737 + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; 1.738 + for(var i = 0; i < s.length; ++i) { 1.739 + var x = intAt(s,i); 1.740 + if(x < 0) { 1.741 + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; 1.742 + continue; 1.743 + } 1.744 + w = b*w+x; 1.745 + if(++j >= cs) { 1.746 + this.dMultiply(d); 1.747 + this.dAddOffset(w,0); 1.748 + j = 0; 1.749 + w = 0; 1.750 + } 1.751 + } 1.752 + if(j > 0) { 1.753 + this.dMultiply(Math.pow(b,j)); 1.754 + this.dAddOffset(w,0); 1.755 + } 1.756 + if(mi) BigInteger.ZERO.subTo(this,this); 1.757 +} 1.758 + 1.759 +// (protected) alternate constructor 1.760 +function bnpFromNumber(a,b,c) { 1.761 + if("number" == typeof b) { 1.762 + // new BigInteger(int,int,RNG) 1.763 + if(a < 2) this.fromInt(1); 1.764 + else { 1.765 + this.fromNumber(a,c); 1.766 + if(!this.testBit(a-1)) // force MSB set 1.767 + this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); 1.768 + if(this.isEven()) this.dAddOffset(1,0); // force odd 1.769 + while(!this.isProbablePrime(b)) { 1.770 + this.dAddOffset(2,0); 1.771 + if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); 1.772 + } 1.773 + } 1.774 + } 1.775 + else { 1.776 + // new BigInteger(int,RNG) 1.777 + var x = new Array(), t = a&7; 1.778 + x.length = (a>>3)+1; 1.779 + b.nextBytes(x); 1.780 + if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; 1.781 + this.fromString(x,256); 1.782 + } 1.783 +} 1.784 + 1.785 +// (public) convert to bigendian byte array 1.786 +function bnToByteArray() { 1.787 + var this_array = this.array; 1.788 + var i = this.t, r = new Array(); 1.789 + r[0] = this.s; 1.790 + var p = BI_DB-(i*BI_DB)%8, d, k = 0; 1.791 + if(i-- > 0) { 1.792 + if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) 1.793 + r[k++] = d|(this.s<<(BI_DB-p)); 1.794 + while(i >= 0) { 1.795 + if(p < 8) { 1.796 + d = (this_array[i]&((1<<p)-1))<<(8-p); 1.797 + d |= this_array[--i]>>(p+=BI_DB-8); 1.798 + } 1.799 + else { 1.800 + d = (this_array[i]>>(p-=8))&0xff; 1.801 + if(p <= 0) { p += BI_DB; --i; } 1.802 + } 1.803 + if((d&0x80) != 0) d |= -256; 1.804 + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; 1.805 + if(k > 0 || d != this.s) r[k++] = d; 1.806 + } 1.807 + } 1.808 + return r; 1.809 +} 1.810 + 1.811 +function bnEquals(a) { return(this.compareTo(a)==0); } 1.812 +function bnMin(a) { return(this.compareTo(a)<0)?this:a; } 1.813 +function bnMax(a) { return(this.compareTo(a)>0)?this:a; } 1.814 + 1.815 +// (protected) r = this op a (bitwise) 1.816 +function bnpBitwiseTo(a,op,r) { 1.817 + var this_array = this.array; 1.818 + var a_array = a.array; 1.819 + var r_array = r.array; 1.820 + var i, f, m = Math.min(a.t,this.t); 1.821 + for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); 1.822 + if(a.t < this.t) { 1.823 + f = a.s&BI_DM; 1.824 + for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); 1.825 + r.t = this.t; 1.826 + } 1.827 + else { 1.828 + f = this.s&BI_DM; 1.829 + for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); 1.830 + r.t = a.t; 1.831 + } 1.832 + r.s = op(this.s,a.s); 1.833 + r.clamp(); 1.834 +} 1.835 + 1.836 +// (public) this & a 1.837 +function op_and(x,y) { return x&y; } 1.838 +function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } 1.839 + 1.840 +// (public) this | a 1.841 +function op_or(x,y) { return x|y; } 1.842 +function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } 1.843 + 1.844 +// (public) this ^ a 1.845 +function op_xor(x,y) { return x^y; } 1.846 +function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } 1.847 + 1.848 +// (public) this & ~a 1.849 +function op_andnot(x,y) { return x&~y; } 1.850 +function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } 1.851 + 1.852 +// (public) ~this 1.853 +function bnNot() { 1.854 + var this_array = this.array; 1.855 + var r = nbi(); 1.856 + var r_array = r.array; 1.857 + 1.858 + for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; 1.859 + r.t = this.t; 1.860 + r.s = ~this.s; 1.861 + return r; 1.862 +} 1.863 + 1.864 +// (public) this << n 1.865 +function bnShiftLeft(n) { 1.866 + var r = nbi(); 1.867 + if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); 1.868 + return r; 1.869 +} 1.870 + 1.871 +// (public) this >> n 1.872 +function bnShiftRight(n) { 1.873 + var r = nbi(); 1.874 + if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); 1.875 + return r; 1.876 +} 1.877 + 1.878 +// return index of lowest 1-bit in x, x < 2^31 1.879 +function lbit(x) { 1.880 + if(x == 0) return -1; 1.881 + var r = 0; 1.882 + if((x&0xffff) == 0) { x >>= 16; r += 16; } 1.883 + if((x&0xff) == 0) { x >>= 8; r += 8; } 1.884 + if((x&0xf) == 0) { x >>= 4; r += 4; } 1.885 + if((x&3) == 0) { x >>= 2; r += 2; } 1.886 + if((x&1) == 0) ++r; 1.887 + return r; 1.888 +} 1.889 + 1.890 +// (public) returns index of lowest 1-bit (or -1 if none) 1.891 +function bnGetLowestSetBit() { 1.892 + var this_array = this.array; 1.893 + for(var i = 0; i < this.t; ++i) 1.894 + if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); 1.895 + if(this.s < 0) return this.t*BI_DB; 1.896 + return -1; 1.897 +} 1.898 + 1.899 +// return number of 1 bits in x 1.900 +function cbit(x) { 1.901 + var r = 0; 1.902 + while(x != 0) { x &= x-1; ++r; } 1.903 + return r; 1.904 +} 1.905 + 1.906 +// (public) return number of set bits 1.907 +function bnBitCount() { 1.908 + var r = 0, x = this.s&BI_DM; 1.909 + for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); 1.910 + return r; 1.911 +} 1.912 + 1.913 +// (public) true iff nth bit is set 1.914 +function bnTestBit(n) { 1.915 + var this_array = this.array; 1.916 + var j = Math.floor(n/BI_DB); 1.917 + if(j >= this.t) return(this.s!=0); 1.918 + return((this_array[j]&(1<<(n%BI_DB)))!=0); 1.919 +} 1.920 + 1.921 +// (protected) this op (1<<n) 1.922 +function bnpChangeBit(n,op) { 1.923 + var r = BigInteger.ONE.shiftLeft(n); 1.924 + this.bitwiseTo(r,op,r); 1.925 + return r; 1.926 +} 1.927 + 1.928 +// (public) this | (1<<n) 1.929 +function bnSetBit(n) { return this.changeBit(n,op_or); } 1.930 + 1.931 +// (public) this & ~(1<<n) 1.932 +function bnClearBit(n) { return this.changeBit(n,op_andnot); } 1.933 + 1.934 +// (public) this ^ (1<<n) 1.935 +function bnFlipBit(n) { return this.changeBit(n,op_xor); } 1.936 + 1.937 +// (protected) r = this + a 1.938 +function bnpAddTo(a,r) { 1.939 + var this_array = this.array; 1.940 + var a_array = a.array; 1.941 + var r_array = r.array; 1.942 + var i = 0, c = 0, m = Math.min(a.t,this.t); 1.943 + while(i < m) { 1.944 + c += this_array[i]+a_array[i]; 1.945 + r_array[i++] = c&BI_DM; 1.946 + c >>= BI_DB; 1.947 + } 1.948 + if(a.t < this.t) { 1.949 + c += a.s; 1.950 + while(i < this.t) { 1.951 + c += this_array[i]; 1.952 + r_array[i++] = c&BI_DM; 1.953 + c >>= BI_DB; 1.954 + } 1.955 + c += this.s; 1.956 + } 1.957 + else { 1.958 + c += this.s; 1.959 + while(i < a.t) { 1.960 + c += a_array[i]; 1.961 + r_array[i++] = c&BI_DM; 1.962 + c >>= BI_DB; 1.963 + } 1.964 + c += a.s; 1.965 + } 1.966 + r.s = (c<0)?-1:0; 1.967 + if(c > 0) r_array[i++] = c; 1.968 + else if(c < -1) r_array[i++] = BI_DV+c; 1.969 + r.t = i; 1.970 + r.clamp(); 1.971 +} 1.972 + 1.973 +// (public) this + a 1.974 +function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } 1.975 + 1.976 +// (public) this - a 1.977 +function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } 1.978 + 1.979 +// (public) this * a 1.980 +function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } 1.981 + 1.982 +// (public) this / a 1.983 +function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } 1.984 + 1.985 +// (public) this % a 1.986 +function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } 1.987 + 1.988 +// (public) [this/a,this%a] 1.989 +function bnDivideAndRemainder(a) { 1.990 + var q = nbi(), r = nbi(); 1.991 + this.divRemTo(a,q,r); 1.992 + return new Array(q,r); 1.993 +} 1.994 + 1.995 +// (protected) this *= n, this >= 0, 1 < n < DV 1.996 +function bnpDMultiply(n) { 1.997 + var this_array = this.array; 1.998 + this_array[this.t] = this.am(0,n-1,this,0,0,this.t); 1.999 + ++this.t; 1.1000 + this.clamp(); 1.1001 +} 1.1002 + 1.1003 +// (protected) this += n << w words, this >= 0 1.1004 +function bnpDAddOffset(n,w) { 1.1005 + var this_array = this.array; 1.1006 + while(this.t <= w) this_array[this.t++] = 0; 1.1007 + this_array[w] += n; 1.1008 + while(this_array[w] >= BI_DV) { 1.1009 + this_array[w] -= BI_DV; 1.1010 + if(++w >= this.t) this_array[this.t++] = 0; 1.1011 + ++this_array[w]; 1.1012 + } 1.1013 +} 1.1014 + 1.1015 +// A "null" reducer 1.1016 +function NullExp() {} 1.1017 +function nNop(x) { return x; } 1.1018 +function nMulTo(x,y,r) { x.multiplyTo(y,r); } 1.1019 +function nSqrTo(x,r) { x.squareTo(r); } 1.1020 + 1.1021 +NullExp.prototype.convert = nNop; 1.1022 +NullExp.prototype.revert = nNop; 1.1023 +NullExp.prototype.mulTo = nMulTo; 1.1024 +NullExp.prototype.sqrTo = nSqrTo; 1.1025 + 1.1026 +// (public) this^e 1.1027 +function bnPow(e) { return this.exp(e,new NullExp()); } 1.1028 + 1.1029 +// (protected) r = lower n words of "this * a", a.t <= n 1.1030 +// "this" should be the larger one if appropriate. 1.1031 +function bnpMultiplyLowerTo(a,n,r) { 1.1032 + var r_array = r.array; 1.1033 + var a_array = a.array; 1.1034 + var i = Math.min(this.t+a.t,n); 1.1035 + r.s = 0; // assumes a,this >= 0 1.1036 + r.t = i; 1.1037 + while(i > 0) r_array[--i] = 0; 1.1038 + var j; 1.1039 + for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); 1.1040 + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); 1.1041 + r.clamp(); 1.1042 +} 1.1043 + 1.1044 +// (protected) r = "this * a" without lower n words, n > 0 1.1045 +// "this" should be the larger one if appropriate. 1.1046 +function bnpMultiplyUpperTo(a,n,r) { 1.1047 + var r_array = r.array; 1.1048 + var a_array = a.array; 1.1049 + --n; 1.1050 + var i = r.t = this.t+a.t-n; 1.1051 + r.s = 0; // assumes a,this >= 0 1.1052 + while(--i >= 0) r_array[i] = 0; 1.1053 + for(i = Math.max(n-this.t,0); i < a.t; ++i) 1.1054 + r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); 1.1055 + r.clamp(); 1.1056 + r.drShiftTo(1,r); 1.1057 +} 1.1058 + 1.1059 +// Barrett modular reduction 1.1060 +function Barrett(m) { 1.1061 + // setup Barrett 1.1062 + this.r2 = nbi(); 1.1063 + this.q3 = nbi(); 1.1064 + BigInteger.ONE.dlShiftTo(2*m.t,this.r2); 1.1065 + this.mu = this.r2.divide(m); 1.1066 + this.m = m; 1.1067 +} 1.1068 + 1.1069 +function barrettConvert(x) { 1.1070 + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); 1.1071 + else if(x.compareTo(this.m) < 0) return x; 1.1072 + else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } 1.1073 +} 1.1074 + 1.1075 +function barrettRevert(x) { return x; } 1.1076 + 1.1077 +// x = x mod m (HAC 14.42) 1.1078 +function barrettReduce(x) { 1.1079 + x.drShiftTo(this.m.t-1,this.r2); 1.1080 + if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } 1.1081 + this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); 1.1082 + this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); 1.1083 + while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); 1.1084 + x.subTo(this.r2,x); 1.1085 + while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 1.1086 +} 1.1087 + 1.1088 +// r = x^2 mod m; x != r 1.1089 +function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 1.1090 + 1.1091 +// r = x*y mod m; x,y != r 1.1092 +function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 1.1093 + 1.1094 +Barrett.prototype.convert = barrettConvert; 1.1095 +Barrett.prototype.revert = barrettRevert; 1.1096 +Barrett.prototype.reduce = barrettReduce; 1.1097 +Barrett.prototype.mulTo = barrettMulTo; 1.1098 +Barrett.prototype.sqrTo = barrettSqrTo; 1.1099 + 1.1100 +// (public) this^e % m (HAC 14.85) 1.1101 +function bnModPow(e,m) { 1.1102 + var e_array = e.array; 1.1103 + var i = e.bitLength(), k, r = nbv(1), z; 1.1104 + if(i <= 0) return r; 1.1105 + else if(i < 18) k = 1; 1.1106 + else if(i < 48) k = 3; 1.1107 + else if(i < 144) k = 4; 1.1108 + else if(i < 768) k = 5; 1.1109 + else k = 6; 1.1110 + if(i < 8) 1.1111 + z = new Classic(m); 1.1112 + else if(m.isEven()) 1.1113 + z = new Barrett(m); 1.1114 + else 1.1115 + z = new Montgomery(m); 1.1116 + 1.1117 + // precomputation 1.1118 + var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; 1.1119 + g[1] = z.convert(this); 1.1120 + if(k > 1) { 1.1121 + var g2 = nbi(); 1.1122 + z.sqrTo(g[1],g2); 1.1123 + while(n <= km) { 1.1124 + g[n] = nbi(); 1.1125 + z.mulTo(g2,g[n-2],g[n]); 1.1126 + n += 2; 1.1127 + } 1.1128 + } 1.1129 + 1.1130 + var j = e.t-1, w, is1 = true, r2 = nbi(), t; 1.1131 + i = nbits(e_array[j])-1; 1.1132 + while(j >= 0) { 1.1133 + if(i >= k1) w = (e_array[j]>>(i-k1))&km; 1.1134 + else { 1.1135 + w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); 1.1136 + if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); 1.1137 + } 1.1138 + 1.1139 + n = k; 1.1140 + while((w&1) == 0) { w >>= 1; --n; } 1.1141 + if((i -= n) < 0) { i += BI_DB; --j; } 1.1142 + if(is1) { // ret == 1, don't bother squaring or multiplying it 1.1143 + g[w].copyTo(r); 1.1144 + is1 = false; 1.1145 + } 1.1146 + else { 1.1147 + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } 1.1148 + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } 1.1149 + z.mulTo(r2,g[w],r); 1.1150 + } 1.1151 + 1.1152 + while(j >= 0 && (e_array[j]&(1<<i)) == 0) { 1.1153 + z.sqrTo(r,r2); t = r; r = r2; r2 = t; 1.1154 + if(--i < 0) { i = BI_DB-1; --j; } 1.1155 + } 1.1156 + } 1.1157 + return z.revert(r); 1.1158 +} 1.1159 + 1.1160 +// (public) gcd(this,a) (HAC 14.54) 1.1161 +function bnGCD(a) { 1.1162 + var x = (this.s<0)?this.negate():this.clone(); 1.1163 + var y = (a.s<0)?a.negate():a.clone(); 1.1164 + if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } 1.1165 + var i = x.getLowestSetBit(), g = y.getLowestSetBit(); 1.1166 + if(g < 0) return x; 1.1167 + if(i < g) g = i; 1.1168 + if(g > 0) { 1.1169 + x.rShiftTo(g,x); 1.1170 + y.rShiftTo(g,y); 1.1171 + } 1.1172 + while(x.signum() > 0) { 1.1173 + if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); 1.1174 + if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); 1.1175 + if(x.compareTo(y) >= 0) { 1.1176 + x.subTo(y,x); 1.1177 + x.rShiftTo(1,x); 1.1178 + } 1.1179 + else { 1.1180 + y.subTo(x,y); 1.1181 + y.rShiftTo(1,y); 1.1182 + } 1.1183 + } 1.1184 + if(g > 0) y.lShiftTo(g,y); 1.1185 + return y; 1.1186 +} 1.1187 + 1.1188 +// (protected) this % n, n < 2^26 1.1189 +function bnpModInt(n) { 1.1190 + var this_array = this.array; 1.1191 + if(n <= 0) return 0; 1.1192 + var d = BI_DV%n, r = (this.s<0)?n-1:0; 1.1193 + if(this.t > 0) 1.1194 + if(d == 0) r = this_array[0]%n; 1.1195 + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; 1.1196 + return r; 1.1197 +} 1.1198 + 1.1199 +// (public) 1/this % m (HAC 14.61) 1.1200 +function bnModInverse(m) { 1.1201 + var ac = m.isEven(); 1.1202 + if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; 1.1203 + var u = m.clone(), v = this.clone(); 1.1204 + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); 1.1205 + while(u.signum() != 0) { 1.1206 + while(u.isEven()) { 1.1207 + u.rShiftTo(1,u); 1.1208 + if(ac) { 1.1209 + if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } 1.1210 + a.rShiftTo(1,a); 1.1211 + } 1.1212 + else if(!b.isEven()) b.subTo(m,b); 1.1213 + b.rShiftTo(1,b); 1.1214 + } 1.1215 + while(v.isEven()) { 1.1216 + v.rShiftTo(1,v); 1.1217 + if(ac) { 1.1218 + if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } 1.1219 + c.rShiftTo(1,c); 1.1220 + } 1.1221 + else if(!d.isEven()) d.subTo(m,d); 1.1222 + d.rShiftTo(1,d); 1.1223 + } 1.1224 + if(u.compareTo(v) >= 0) { 1.1225 + u.subTo(v,u); 1.1226 + if(ac) a.subTo(c,a); 1.1227 + b.subTo(d,b); 1.1228 + } 1.1229 + else { 1.1230 + v.subTo(u,v); 1.1231 + if(ac) c.subTo(a,c); 1.1232 + d.subTo(b,d); 1.1233 + } 1.1234 + } 1.1235 + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; 1.1236 + if(d.compareTo(m) >= 0) return d.subtract(m); 1.1237 + if(d.signum() < 0) d.addTo(m,d); else return d; 1.1238 + if(d.signum() < 0) return d.add(m); else return d; 1.1239 +} 1.1240 + 1.1241 +var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; 1.1242 +var lplim = (1<<26)/lowprimes[lowprimes.length-1]; 1.1243 + 1.1244 +// (public) test primality with certainty >= 1-.5^t 1.1245 +function bnIsProbablePrime(t) { 1.1246 + var i, x = this.abs(); 1.1247 + var x_array = x.array; 1.1248 + if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { 1.1249 + for(i = 0; i < lowprimes.length; ++i) 1.1250 + if(x_array[0] == lowprimes[i]) return true; 1.1251 + return false; 1.1252 + } 1.1253 + if(x.isEven()) return false; 1.1254 + i = 1; 1.1255 + while(i < lowprimes.length) { 1.1256 + var m = lowprimes[i], j = i+1; 1.1257 + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; 1.1258 + m = x.modInt(m); 1.1259 + while(i < j) if(m%lowprimes[i++] == 0) return false; 1.1260 + } 1.1261 + return x.millerRabin(t); 1.1262 +} 1.1263 + 1.1264 +// (protected) true if probably prime (HAC 4.24, Miller-Rabin) 1.1265 +function bnpMillerRabin(t) { 1.1266 + var n1 = this.subtract(BigInteger.ONE); 1.1267 + var k = n1.getLowestSetBit(); 1.1268 + if(k <= 0) return false; 1.1269 + var r = n1.shiftRight(k); 1.1270 + t = (t+1)>>1; 1.1271 + if(t > lowprimes.length) t = lowprimes.length; 1.1272 + var a = nbi(); 1.1273 + for(var i = 0; i < t; ++i) { 1.1274 + a.fromInt(lowprimes[i]); 1.1275 + var y = a.modPow(r,this); 1.1276 + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { 1.1277 + var j = 1; 1.1278 + while(j++ < k && y.compareTo(n1) != 0) { 1.1279 + y = y.modPowInt(2,this); 1.1280 + if(y.compareTo(BigInteger.ONE) == 0) return false; 1.1281 + } 1.1282 + if(y.compareTo(n1) != 0) return false; 1.1283 + } 1.1284 + } 1.1285 + return true; 1.1286 +} 1.1287 + 1.1288 +// protected 1.1289 +BigInteger.prototype.chunkSize = bnpChunkSize; 1.1290 +BigInteger.prototype.toRadix = bnpToRadix; 1.1291 +BigInteger.prototype.fromRadix = bnpFromRadix; 1.1292 +BigInteger.prototype.fromNumber = bnpFromNumber; 1.1293 +BigInteger.prototype.bitwiseTo = bnpBitwiseTo; 1.1294 +BigInteger.prototype.changeBit = bnpChangeBit; 1.1295 +BigInteger.prototype.addTo = bnpAddTo; 1.1296 +BigInteger.prototype.dMultiply = bnpDMultiply; 1.1297 +BigInteger.prototype.dAddOffset = bnpDAddOffset; 1.1298 +BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; 1.1299 +BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; 1.1300 +BigInteger.prototype.modInt = bnpModInt; 1.1301 +BigInteger.prototype.millerRabin = bnpMillerRabin; 1.1302 + 1.1303 +// public 1.1304 +BigInteger.prototype.clone = bnClone; 1.1305 +BigInteger.prototype.intValue = bnIntValue; 1.1306 +BigInteger.prototype.byteValue = bnByteValue; 1.1307 +BigInteger.prototype.shortValue = bnShortValue; 1.1308 +BigInteger.prototype.signum = bnSigNum; 1.1309 +BigInteger.prototype.toByteArray = bnToByteArray; 1.1310 +BigInteger.prototype.equals = bnEquals; 1.1311 +BigInteger.prototype.min = bnMin; 1.1312 +BigInteger.prototype.max = bnMax; 1.1313 +BigInteger.prototype.and = bnAnd; 1.1314 +BigInteger.prototype.or = bnOr; 1.1315 +BigInteger.prototype.xor = bnXor; 1.1316 +BigInteger.prototype.andNot = bnAndNot; 1.1317 +BigInteger.prototype.not = bnNot; 1.1318 +BigInteger.prototype.shiftLeft = bnShiftLeft; 1.1319 +BigInteger.prototype.shiftRight = bnShiftRight; 1.1320 +BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; 1.1321 +BigInteger.prototype.bitCount = bnBitCount; 1.1322 +BigInteger.prototype.testBit = bnTestBit; 1.1323 +BigInteger.prototype.setBit = bnSetBit; 1.1324 +BigInteger.prototype.clearBit = bnClearBit; 1.1325 +BigInteger.prototype.flipBit = bnFlipBit; 1.1326 +BigInteger.prototype.add = bnAdd; 1.1327 +BigInteger.prototype.subtract = bnSubtract; 1.1328 +BigInteger.prototype.multiply = bnMultiply; 1.1329 +BigInteger.prototype.divide = bnDivide; 1.1330 +BigInteger.prototype.remainder = bnRemainder; 1.1331 +BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; 1.1332 +BigInteger.prototype.modPow = bnModPow; 1.1333 +BigInteger.prototype.modInverse = bnModInverse; 1.1334 +BigInteger.prototype.pow = bnPow; 1.1335 +BigInteger.prototype.gcd = bnGCD; 1.1336 +BigInteger.prototype.isProbablePrime = bnIsProbablePrime; 1.1337 + 1.1338 +// BigInteger interfaces not implemented in jsbn: 1.1339 + 1.1340 +// BigInteger(int signum, byte[] magnitude) 1.1341 +// double doubleValue() 1.1342 +// float floatValue() 1.1343 +// int hashCode() 1.1344 +// long longValue() 1.1345 +// static BigInteger valueOf(long val) 1.1346 +// prng4.js - uses Arcfour as a PRNG 1.1347 + 1.1348 +function Arcfour() { 1.1349 + this.i = 0; 1.1350 + this.j = 0; 1.1351 + this.S = new Array(); 1.1352 +} 1.1353 + 1.1354 +// Initialize arcfour context from key, an array of ints, each from [0..255] 1.1355 +function ARC4init(key) { 1.1356 + var i, j, t; 1.1357 + for(i = 0; i < 256; ++i) 1.1358 + this.S[i] = i; 1.1359 + j = 0; 1.1360 + for(i = 0; i < 256; ++i) { 1.1361 + j = (j + this.S[i] + key[i % key.length]) & 255; 1.1362 + t = this.S[i]; 1.1363 + this.S[i] = this.S[j]; 1.1364 + this.S[j] = t; 1.1365 + } 1.1366 + this.i = 0; 1.1367 + this.j = 0; 1.1368 +} 1.1369 + 1.1370 +function ARC4next() { 1.1371 + var t; 1.1372 + this.i = (this.i + 1) & 255; 1.1373 + this.j = (this.j + this.S[this.i]) & 255; 1.1374 + t = this.S[this.i]; 1.1375 + this.S[this.i] = this.S[this.j]; 1.1376 + this.S[this.j] = t; 1.1377 + return this.S[(t + this.S[this.i]) & 255]; 1.1378 +} 1.1379 + 1.1380 +Arcfour.prototype.init = ARC4init; 1.1381 +Arcfour.prototype.next = ARC4next; 1.1382 + 1.1383 +// Plug in your RNG constructor here 1.1384 +function prng_newstate() { 1.1385 + return new Arcfour(); 1.1386 +} 1.1387 + 1.1388 +// Pool size must be a multiple of 4 and greater than 32. 1.1389 +// An array of bytes the size of the pool will be passed to init() 1.1390 +var rng_psize = 256; 1.1391 +// Random number generator - requires a PRNG backend, e.g. prng4.js 1.1392 + 1.1393 +// For best results, put code like 1.1394 +// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> 1.1395 +// in your main HTML document. 1.1396 + 1.1397 +var rng_state; 1.1398 +var rng_pool; 1.1399 +var rng_pptr; 1.1400 + 1.1401 +// Mix in a 32-bit integer into the pool 1.1402 +function rng_seed_int(x) { 1.1403 + rng_pool[rng_pptr++] ^= x & 255; 1.1404 + rng_pool[rng_pptr++] ^= (x >> 8) & 255; 1.1405 + rng_pool[rng_pptr++] ^= (x >> 16) & 255; 1.1406 + rng_pool[rng_pptr++] ^= (x >> 24) & 255; 1.1407 + if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; 1.1408 +} 1.1409 + 1.1410 +// Mix in the current time (w/milliseconds) into the pool 1.1411 +function rng_seed_time() { 1.1412 + // Use pre-computed date to avoid making the benchmark 1.1413 + // results dependent on the current date. 1.1414 + rng_seed_int(1122926989487); 1.1415 +} 1.1416 + 1.1417 +// Initialize the pool with junk if needed. 1.1418 +if(rng_pool == null) { 1.1419 + rng_pool = new Array(); 1.1420 + rng_pptr = 0; 1.1421 + var t; 1.1422 + while(rng_pptr < rng_psize) { // extract some randomness from Math.random() 1.1423 + t = Math.floor(65536 * Math.random()); 1.1424 + rng_pool[rng_pptr++] = t >>> 8; 1.1425 + rng_pool[rng_pptr++] = t & 255; 1.1426 + } 1.1427 + rng_pptr = 0; 1.1428 + rng_seed_time(); 1.1429 + //rng_seed_int(window.screenX); 1.1430 + //rng_seed_int(window.screenY); 1.1431 +} 1.1432 + 1.1433 +function rng_get_byte() { 1.1434 + if(rng_state == null) { 1.1435 + rng_seed_time(); 1.1436 + rng_state = prng_newstate(); 1.1437 + rng_state.init(rng_pool); 1.1438 + for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) 1.1439 + rng_pool[rng_pptr] = 0; 1.1440 + rng_pptr = 0; 1.1441 + //rng_pool = null; 1.1442 + } 1.1443 + // TODO: allow reseeding after first request 1.1444 + return rng_state.next(); 1.1445 +} 1.1446 + 1.1447 +function rng_get_bytes(ba) { 1.1448 + var i; 1.1449 + for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); 1.1450 +} 1.1451 + 1.1452 +function SecureRandom() {} 1.1453 + 1.1454 +SecureRandom.prototype.nextBytes = rng_get_bytes; 1.1455 +// Depends on jsbn.js and rng.js 1.1456 + 1.1457 +// convert a (hex) string to a bignum object 1.1458 +function parseBigInt(str,r) { 1.1459 + return new BigInteger(str,r); 1.1460 +} 1.1461 + 1.1462 +function linebrk(s,n) { 1.1463 + var ret = ""; 1.1464 + var i = 0; 1.1465 + while(i + n < s.length) { 1.1466 + ret += s.substring(i,i+n) + "\n"; 1.1467 + i += n; 1.1468 + } 1.1469 + return ret + s.substring(i,s.length); 1.1470 +} 1.1471 + 1.1472 +function byte2Hex(b) { 1.1473 + if(b < 0x10) 1.1474 + return "0" + b.toString(16); 1.1475 + else 1.1476 + return b.toString(16); 1.1477 +} 1.1478 + 1.1479 +// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint 1.1480 +function pkcs1pad2(s,n) { 1.1481 + if(n < s.length + 11) { 1.1482 + alert("Message too long for RSA"); 1.1483 + return null; 1.1484 + } 1.1485 + var ba = new Array(); 1.1486 + var i = s.length - 1; 1.1487 + while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); 1.1488 + ba[--n] = 0; 1.1489 + var rng = new SecureRandom(); 1.1490 + var x = new Array(); 1.1491 + while(n > 2) { // random non-zero pad 1.1492 + x[0] = 0; 1.1493 + while(x[0] == 0) rng.nextBytes(x); 1.1494 + ba[--n] = x[0]; 1.1495 + } 1.1496 + ba[--n] = 2; 1.1497 + ba[--n] = 0; 1.1498 + return new BigInteger(ba); 1.1499 +} 1.1500 + 1.1501 +// "empty" RSA key constructor 1.1502 +function RSAKey() { 1.1503 + this.n = null; 1.1504 + this.e = 0; 1.1505 + this.d = null; 1.1506 + this.p = null; 1.1507 + this.q = null; 1.1508 + this.dmp1 = null; 1.1509 + this.dmq1 = null; 1.1510 + this.coeff = null; 1.1511 +} 1.1512 + 1.1513 +// Set the public key fields N and e from hex strings 1.1514 +function RSASetPublic(N,E) { 1.1515 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.1516 + this.n = parseBigInt(N,16); 1.1517 + this.e = parseInt(E,16); 1.1518 + } 1.1519 + else 1.1520 + alert("Invalid RSA public key"); 1.1521 +} 1.1522 + 1.1523 +// Perform raw public operation on "x": return x^e (mod n) 1.1524 +function RSADoPublic(x) { 1.1525 + return x.modPowInt(this.e, this.n); 1.1526 +} 1.1527 + 1.1528 +// Return the PKCS#1 RSA encryption of "text" as an even-length hex string 1.1529 +function RSAEncrypt(text) { 1.1530 + var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); 1.1531 + if(m == null) return null; 1.1532 + var c = this.doPublic(m); 1.1533 + if(c == null) return null; 1.1534 + var h = c.toString(16); 1.1535 + if((h.length & 1) == 0) return h; else return "0" + h; 1.1536 +} 1.1537 + 1.1538 +// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string 1.1539 +//function RSAEncryptB64(text) { 1.1540 +// var h = this.encrypt(text); 1.1541 +// if(h) return hex2b64(h); else return null; 1.1542 +//} 1.1543 + 1.1544 +// protected 1.1545 +RSAKey.prototype.doPublic = RSADoPublic; 1.1546 + 1.1547 +// public 1.1548 +RSAKey.prototype.setPublic = RSASetPublic; 1.1549 +RSAKey.prototype.encrypt = RSAEncrypt; 1.1550 +//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; 1.1551 +// Depends on rsa.js and jsbn2.js 1.1552 + 1.1553 +// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext 1.1554 +function pkcs1unpad2(d,n) { 1.1555 + var b = d.toByteArray(); 1.1556 + var i = 0; 1.1557 + while(i < b.length && b[i] == 0) ++i; 1.1558 + if(b.length-i != n-1 || b[i] != 2) 1.1559 + return null; 1.1560 + ++i; 1.1561 + while(b[i] != 0) 1.1562 + if(++i >= b.length) return null; 1.1563 + var ret = ""; 1.1564 + while(++i < b.length) 1.1565 + ret += String.fromCharCode(b[i]); 1.1566 + return ret; 1.1567 +} 1.1568 + 1.1569 +// Set the private key fields N, e, and d from hex strings 1.1570 +function RSASetPrivate(N,E,D) { 1.1571 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.1572 + this.n = parseBigInt(N,16); 1.1573 + this.e = parseInt(E,16); 1.1574 + this.d = parseBigInt(D,16); 1.1575 + } 1.1576 + else 1.1577 + alert("Invalid RSA private key"); 1.1578 +} 1.1579 + 1.1580 +// Set the private key fields N, e, d and CRT params from hex strings 1.1581 +function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { 1.1582 + if(N != null && E != null && N.length > 0 && E.length > 0) { 1.1583 + this.n = parseBigInt(N,16); 1.1584 + this.e = parseInt(E,16); 1.1585 + this.d = parseBigInt(D,16); 1.1586 + this.p = parseBigInt(P,16); 1.1587 + this.q = parseBigInt(Q,16); 1.1588 + this.dmp1 = parseBigInt(DP,16); 1.1589 + this.dmq1 = parseBigInt(DQ,16); 1.1590 + this.coeff = parseBigInt(C,16); 1.1591 + } 1.1592 + else 1.1593 + alert("Invalid RSA private key"); 1.1594 +} 1.1595 + 1.1596 +// Generate a new random private key B bits long, using public expt E 1.1597 +function RSAGenerate(B,E) { 1.1598 + var rng = new SecureRandom(); 1.1599 + var qs = B>>1; 1.1600 + this.e = parseInt(E,16); 1.1601 + var ee = new BigInteger(E,16); 1.1602 + for(;;) { 1.1603 + for(;;) { 1.1604 + this.p = new BigInteger(B-qs,1,rng); 1.1605 + if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; 1.1606 + } 1.1607 + for(;;) { 1.1608 + this.q = new BigInteger(qs,1,rng); 1.1609 + if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; 1.1610 + } 1.1611 + if(this.p.compareTo(this.q) <= 0) { 1.1612 + var t = this.p; 1.1613 + this.p = this.q; 1.1614 + this.q = t; 1.1615 + } 1.1616 + var p1 = this.p.subtract(BigInteger.ONE); 1.1617 + var q1 = this.q.subtract(BigInteger.ONE); 1.1618 + var phi = p1.multiply(q1); 1.1619 + if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { 1.1620 + this.n = this.p.multiply(this.q); 1.1621 + this.d = ee.modInverse(phi); 1.1622 + this.dmp1 = this.d.mod(p1); 1.1623 + this.dmq1 = this.d.mod(q1); 1.1624 + this.coeff = this.q.modInverse(this.p); 1.1625 + break; 1.1626 + } 1.1627 + } 1.1628 +} 1.1629 + 1.1630 +// Perform raw private operation on "x": return x^d (mod n) 1.1631 +function RSADoPrivate(x) { 1.1632 + if(this.p == null || this.q == null) 1.1633 + return x.modPow(this.d, this.n); 1.1634 + 1.1635 + // TODO: re-calculate any missing CRT params 1.1636 + var xp = x.mod(this.p).modPow(this.dmp1, this.p); 1.1637 + var xq = x.mod(this.q).modPow(this.dmq1, this.q); 1.1638 + 1.1639 + while(xp.compareTo(xq) < 0) 1.1640 + xp = xp.add(this.p); 1.1641 + return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); 1.1642 +} 1.1643 + 1.1644 +// Return the PKCS#1 RSA decryption of "ctext". 1.1645 +// "ctext" is an even-length hex string and the output is a plain string. 1.1646 +function RSADecrypt(ctext) { 1.1647 + var c = parseBigInt(ctext, 16); 1.1648 + var m = this.doPrivate(c); 1.1649 + if(m == null) return null; 1.1650 + return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); 1.1651 +} 1.1652 + 1.1653 +// Return the PKCS#1 RSA decryption of "ctext". 1.1654 +// "ctext" is a Base64-encoded string and the output is a plain string. 1.1655 +//function RSAB64Decrypt(ctext) { 1.1656 +// var h = b64tohex(ctext); 1.1657 +// if(h) return this.decrypt(h); else return null; 1.1658 +//} 1.1659 + 1.1660 +// protected 1.1661 +RSAKey.prototype.doPrivate = RSADoPrivate; 1.1662 + 1.1663 +// public 1.1664 +RSAKey.prototype.setPrivate = RSASetPrivate; 1.1665 +RSAKey.prototype.setPrivateEx = RSASetPrivateEx; 1.1666 +RSAKey.prototype.generate = RSAGenerate; 1.1667 +RSAKey.prototype.decrypt = RSADecrypt; 1.1668 +//RSAKey.prototype.b64_decrypt = RSAB64Decrypt; 1.1669 + 1.1670 + 1.1671 +nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; 1.1672 +eValue="10001"; 1.1673 +dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; 1.1674 +pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; 1.1675 +qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; 1.1676 +dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; 1.1677 +dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; 1.1678 +coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; 1.1679 + 1.1680 +setupEngine(am3, 28); 1.1681 + 1.1682 +var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + 1.1683 + "Now is the time for all good men to come to the party."; 1.1684 +var encrypted; 1.1685 + 1.1686 +function encrypt() { 1.1687 + var RSA = new RSAKey(); 1.1688 + RSA.setPublic(nValue, eValue); 1.1689 + RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); 1.1690 + encrypted = RSA.encrypt(TEXT); 1.1691 +} 1.1692 + 1.1693 +function decrypt() { 1.1694 + var RSA = new RSAKey(); 1.1695 + RSA.setPublic(nValue, eValue); 1.1696 + RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); 1.1697 + var decrypted = RSA.decrypt(encrypted); 1.1698 + if (decrypted != TEXT) { 1.1699 + throw new Error("Crypto operation failed"); 1.1700 + } 1.1701 +}