1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libjpeg/jchuff.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,1018 @@ 1.4 +/* 1.5 + * jchuff.c 1.6 + * 1.7 + * This file was part of the Independent JPEG Group's software: 1.8 + * Copyright (C) 1991-1997, Thomas G. Lane. 1.9 + * libjpeg-turbo Modifications: 1.10 + * Copyright (C) 2009-2011, D. R. Commander. 1.11 + * For conditions of distribution and use, see the accompanying README file. 1.12 + * 1.13 + * This file contains Huffman entropy encoding routines. 1.14 + * 1.15 + * Much of the complexity here has to do with supporting output suspension. 1.16 + * If the data destination module demands suspension, we want to be able to 1.17 + * back up to the start of the current MCU. To do this, we copy state 1.18 + * variables into local working storage, and update them back to the 1.19 + * permanent JPEG objects only upon successful completion of an MCU. 1.20 + */ 1.21 + 1.22 +#define JPEG_INTERNALS 1.23 +#include "jinclude.h" 1.24 +#include "jpeglib.h" 1.25 +#include "jchuff.h" /* Declarations shared with jcphuff.c */ 1.26 +#include <limits.h> 1.27 + 1.28 +static const unsigned char jpeg_nbits_table[65536] = { 1.29 +/* Number i needs jpeg_nbits_table[i] bits to be represented. */ 1.30 +#include "jpeg_nbits_table.h" 1.31 +}; 1.32 + 1.33 +#ifndef min 1.34 + #define min(a,b) ((a)<(b)?(a):(b)) 1.35 +#endif 1.36 + 1.37 + 1.38 +/* Expanded entropy encoder object for Huffman encoding. 1.39 + * 1.40 + * The savable_state subrecord contains fields that change within an MCU, 1.41 + * but must not be updated permanently until we complete the MCU. 1.42 + */ 1.43 + 1.44 +typedef struct { 1.45 + size_t put_buffer; /* current bit-accumulation buffer */ 1.46 + int put_bits; /* # of bits now in it */ 1.47 + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 1.48 +} savable_state; 1.49 + 1.50 +/* This macro is to work around compilers with missing or broken 1.51 + * structure assignment. You'll need to fix this code if you have 1.52 + * such a compiler and you change MAX_COMPS_IN_SCAN. 1.53 + */ 1.54 + 1.55 +#ifndef NO_STRUCT_ASSIGN 1.56 +#define ASSIGN_STATE(dest,src) ((dest) = (src)) 1.57 +#else 1.58 +#if MAX_COMPS_IN_SCAN == 4 1.59 +#define ASSIGN_STATE(dest,src) \ 1.60 + ((dest).put_buffer = (src).put_buffer, \ 1.61 + (dest).put_bits = (src).put_bits, \ 1.62 + (dest).last_dc_val[0] = (src).last_dc_val[0], \ 1.63 + (dest).last_dc_val[1] = (src).last_dc_val[1], \ 1.64 + (dest).last_dc_val[2] = (src).last_dc_val[2], \ 1.65 + (dest).last_dc_val[3] = (src).last_dc_val[3]) 1.66 +#endif 1.67 +#endif 1.68 + 1.69 + 1.70 +typedef struct { 1.71 + struct jpeg_entropy_encoder pub; /* public fields */ 1.72 + 1.73 + savable_state saved; /* Bit buffer & DC state at start of MCU */ 1.74 + 1.75 + /* These fields are NOT loaded into local working state. */ 1.76 + unsigned int restarts_to_go; /* MCUs left in this restart interval */ 1.77 + int next_restart_num; /* next restart number to write (0-7) */ 1.78 + 1.79 + /* Pointers to derived tables (these workspaces have image lifespan) */ 1.80 + c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; 1.81 + c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; 1.82 + 1.83 +#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ 1.84 + long * dc_count_ptrs[NUM_HUFF_TBLS]; 1.85 + long * ac_count_ptrs[NUM_HUFF_TBLS]; 1.86 +#endif 1.87 +} huff_entropy_encoder; 1.88 + 1.89 +typedef huff_entropy_encoder * huff_entropy_ptr; 1.90 + 1.91 +/* Working state while writing an MCU. 1.92 + * This struct contains all the fields that are needed by subroutines. 1.93 + */ 1.94 + 1.95 +typedef struct { 1.96 + JOCTET * next_output_byte; /* => next byte to write in buffer */ 1.97 + size_t free_in_buffer; /* # of byte spaces remaining in buffer */ 1.98 + savable_state cur; /* Current bit buffer & DC state */ 1.99 + j_compress_ptr cinfo; /* dump_buffer needs access to this */ 1.100 +} working_state; 1.101 + 1.102 + 1.103 +/* Forward declarations */ 1.104 +METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, 1.105 + JBLOCKROW *MCU_data)); 1.106 +METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); 1.107 +#ifdef ENTROPY_OPT_SUPPORTED 1.108 +METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, 1.109 + JBLOCKROW *MCU_data)); 1.110 +METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); 1.111 +#endif 1.112 + 1.113 + 1.114 +/* 1.115 + * Initialize for a Huffman-compressed scan. 1.116 + * If gather_statistics is TRUE, we do not output anything during the scan, 1.117 + * just count the Huffman symbols used and generate Huffman code tables. 1.118 + */ 1.119 + 1.120 +METHODDEF(void) 1.121 +start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) 1.122 +{ 1.123 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.124 + int ci, dctbl, actbl; 1.125 + jpeg_component_info * compptr; 1.126 + 1.127 + if (gather_statistics) { 1.128 +#ifdef ENTROPY_OPT_SUPPORTED 1.129 + entropy->pub.encode_mcu = encode_mcu_gather; 1.130 + entropy->pub.finish_pass = finish_pass_gather; 1.131 +#else 1.132 + ERREXIT(cinfo, JERR_NOT_COMPILED); 1.133 +#endif 1.134 + } else { 1.135 + entropy->pub.encode_mcu = encode_mcu_huff; 1.136 + entropy->pub.finish_pass = finish_pass_huff; 1.137 + } 1.138 + 1.139 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.140 + compptr = cinfo->cur_comp_info[ci]; 1.141 + dctbl = compptr->dc_tbl_no; 1.142 + actbl = compptr->ac_tbl_no; 1.143 + if (gather_statistics) { 1.144 +#ifdef ENTROPY_OPT_SUPPORTED 1.145 + /* Check for invalid table indexes */ 1.146 + /* (make_c_derived_tbl does this in the other path) */ 1.147 + if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) 1.148 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); 1.149 + if (actbl < 0 || actbl >= NUM_HUFF_TBLS) 1.150 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); 1.151 + /* Allocate and zero the statistics tables */ 1.152 + /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ 1.153 + if (entropy->dc_count_ptrs[dctbl] == NULL) 1.154 + entropy->dc_count_ptrs[dctbl] = (long *) 1.155 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.156 + 257 * SIZEOF(long)); 1.157 + MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); 1.158 + if (entropy->ac_count_ptrs[actbl] == NULL) 1.159 + entropy->ac_count_ptrs[actbl] = (long *) 1.160 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.161 + 257 * SIZEOF(long)); 1.162 + MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); 1.163 +#endif 1.164 + } else { 1.165 + /* Compute derived values for Huffman tables */ 1.166 + /* We may do this more than once for a table, but it's not expensive */ 1.167 + jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, 1.168 + & entropy->dc_derived_tbls[dctbl]); 1.169 + jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, 1.170 + & entropy->ac_derived_tbls[actbl]); 1.171 + } 1.172 + /* Initialize DC predictions to 0 */ 1.173 + entropy->saved.last_dc_val[ci] = 0; 1.174 + } 1.175 + 1.176 + /* Initialize bit buffer to empty */ 1.177 + entropy->saved.put_buffer = 0; 1.178 + entropy->saved.put_bits = 0; 1.179 + 1.180 + /* Initialize restart stuff */ 1.181 + entropy->restarts_to_go = cinfo->restart_interval; 1.182 + entropy->next_restart_num = 0; 1.183 +} 1.184 + 1.185 + 1.186 +/* 1.187 + * Compute the derived values for a Huffman table. 1.188 + * This routine also performs some validation checks on the table. 1.189 + * 1.190 + * Note this is also used by jcphuff.c. 1.191 + */ 1.192 + 1.193 +GLOBAL(void) 1.194 +jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, 1.195 + c_derived_tbl ** pdtbl) 1.196 +{ 1.197 + JHUFF_TBL *htbl; 1.198 + c_derived_tbl *dtbl; 1.199 + int p, i, l, lastp, si, maxsymbol; 1.200 + char huffsize[257]; 1.201 + unsigned int huffcode[257]; 1.202 + unsigned int code; 1.203 + 1.204 + /* Note that huffsize[] and huffcode[] are filled in code-length order, 1.205 + * paralleling the order of the symbols themselves in htbl->huffval[]. 1.206 + */ 1.207 + 1.208 + /* Find the input Huffman table */ 1.209 + if (tblno < 0 || tblno >= NUM_HUFF_TBLS) 1.210 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 1.211 + htbl = 1.212 + isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; 1.213 + if (htbl == NULL) 1.214 + ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 1.215 + 1.216 + /* Allocate a workspace if we haven't already done so. */ 1.217 + if (*pdtbl == NULL) 1.218 + *pdtbl = (c_derived_tbl *) 1.219 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.220 + SIZEOF(c_derived_tbl)); 1.221 + dtbl = *pdtbl; 1.222 + 1.223 + /* Figure C.1: make table of Huffman code length for each symbol */ 1.224 + 1.225 + p = 0; 1.226 + for (l = 1; l <= 16; l++) { 1.227 + i = (int) htbl->bits[l]; 1.228 + if (i < 0 || p + i > 256) /* protect against table overrun */ 1.229 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.230 + while (i--) 1.231 + huffsize[p++] = (char) l; 1.232 + } 1.233 + huffsize[p] = 0; 1.234 + lastp = p; 1.235 + 1.236 + /* Figure C.2: generate the codes themselves */ 1.237 + /* We also validate that the counts represent a legal Huffman code tree. */ 1.238 + 1.239 + code = 0; 1.240 + si = huffsize[0]; 1.241 + p = 0; 1.242 + while (huffsize[p]) { 1.243 + while (((int) huffsize[p]) == si) { 1.244 + huffcode[p++] = code; 1.245 + code++; 1.246 + } 1.247 + /* code is now 1 more than the last code used for codelength si; but 1.248 + * it must still fit in si bits, since no code is allowed to be all ones. 1.249 + */ 1.250 + if (((INT32) code) >= (((INT32) 1) << si)) 1.251 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.252 + code <<= 1; 1.253 + si++; 1.254 + } 1.255 + 1.256 + /* Figure C.3: generate encoding tables */ 1.257 + /* These are code and size indexed by symbol value */ 1.258 + 1.259 + /* Set all codeless symbols to have code length 0; 1.260 + * this lets us detect duplicate VAL entries here, and later 1.261 + * allows emit_bits to detect any attempt to emit such symbols. 1.262 + */ 1.263 + MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); 1.264 + 1.265 + /* This is also a convenient place to check for out-of-range 1.266 + * and duplicated VAL entries. We allow 0..255 for AC symbols 1.267 + * but only 0..15 for DC. (We could constrain them further 1.268 + * based on data depth and mode, but this seems enough.) 1.269 + */ 1.270 + maxsymbol = isDC ? 15 : 255; 1.271 + 1.272 + for (p = 0; p < lastp; p++) { 1.273 + i = htbl->huffval[p]; 1.274 + if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) 1.275 + ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 1.276 + dtbl->ehufco[i] = huffcode[p]; 1.277 + dtbl->ehufsi[i] = huffsize[p]; 1.278 + } 1.279 +} 1.280 + 1.281 + 1.282 +/* Outputting bytes to the file */ 1.283 + 1.284 +/* Emit a byte, taking 'action' if must suspend. */ 1.285 +#define emit_byte(state,val,action) \ 1.286 + { *(state)->next_output_byte++ = (JOCTET) (val); \ 1.287 + if (--(state)->free_in_buffer == 0) \ 1.288 + if (! dump_buffer(state)) \ 1.289 + { action; } } 1.290 + 1.291 + 1.292 +LOCAL(boolean) 1.293 +dump_buffer (working_state * state) 1.294 +/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ 1.295 +{ 1.296 + struct jpeg_destination_mgr * dest = state->cinfo->dest; 1.297 + 1.298 + if (! (*dest->empty_output_buffer) (state->cinfo)) 1.299 + return FALSE; 1.300 + /* After a successful buffer dump, must reset buffer pointers */ 1.301 + state->next_output_byte = dest->next_output_byte; 1.302 + state->free_in_buffer = dest->free_in_buffer; 1.303 + return TRUE; 1.304 +} 1.305 + 1.306 + 1.307 +/* Outputting bits to the file */ 1.308 + 1.309 +/* These macros perform the same task as the emit_bits() function in the 1.310 + * original libjpeg code. In addition to reducing overhead by explicitly 1.311 + * inlining the code, additional performance is achieved by taking into 1.312 + * account the size of the bit buffer and waiting until it is almost full 1.313 + * before emptying it. This mostly benefits 64-bit platforms, since 6 1.314 + * bytes can be stored in a 64-bit bit buffer before it has to be emptied. 1.315 + */ 1.316 + 1.317 +#define EMIT_BYTE() { \ 1.318 + JOCTET c; \ 1.319 + put_bits -= 8; \ 1.320 + c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \ 1.321 + *buffer++ = c; \ 1.322 + if (c == 0xFF) /* need to stuff a zero byte? */ \ 1.323 + *buffer++ = 0; \ 1.324 + } 1.325 + 1.326 +#define PUT_BITS(code, size) { \ 1.327 + put_bits += size; \ 1.328 + put_buffer = (put_buffer << size) | code; \ 1.329 +} 1.330 + 1.331 +#define CHECKBUF15() { \ 1.332 + if (put_bits > 15) { \ 1.333 + EMIT_BYTE() \ 1.334 + EMIT_BYTE() \ 1.335 + } \ 1.336 +} 1.337 + 1.338 +#define CHECKBUF31() { \ 1.339 + if (put_bits > 31) { \ 1.340 + EMIT_BYTE() \ 1.341 + EMIT_BYTE() \ 1.342 + EMIT_BYTE() \ 1.343 + EMIT_BYTE() \ 1.344 + } \ 1.345 +} 1.346 + 1.347 +#define CHECKBUF47() { \ 1.348 + if (put_bits > 47) { \ 1.349 + EMIT_BYTE() \ 1.350 + EMIT_BYTE() \ 1.351 + EMIT_BYTE() \ 1.352 + EMIT_BYTE() \ 1.353 + EMIT_BYTE() \ 1.354 + EMIT_BYTE() \ 1.355 + } \ 1.356 +} 1.357 + 1.358 +#if __WORDSIZE==64 || defined(_WIN64) 1.359 + 1.360 +#define EMIT_BITS(code, size) { \ 1.361 + CHECKBUF47() \ 1.362 + PUT_BITS(code, size) \ 1.363 +} 1.364 + 1.365 +#define EMIT_CODE(code, size) { \ 1.366 + temp2 &= (((INT32) 1)<<nbits) - 1; \ 1.367 + CHECKBUF31() \ 1.368 + PUT_BITS(code, size) \ 1.369 + PUT_BITS(temp2, nbits) \ 1.370 + } 1.371 + 1.372 +#else 1.373 + 1.374 +#define EMIT_BITS(code, size) { \ 1.375 + PUT_BITS(code, size) \ 1.376 + CHECKBUF15() \ 1.377 +} 1.378 + 1.379 +#define EMIT_CODE(code, size) { \ 1.380 + temp2 &= (((INT32) 1)<<nbits) - 1; \ 1.381 + PUT_BITS(code, size) \ 1.382 + CHECKBUF15() \ 1.383 + PUT_BITS(temp2, nbits) \ 1.384 + CHECKBUF15() \ 1.385 + } 1.386 + 1.387 +#endif 1.388 + 1.389 + 1.390 +#define BUFSIZE (DCTSIZE2 * 2) 1.391 + 1.392 +#define LOAD_BUFFER() { \ 1.393 + if (state->free_in_buffer < BUFSIZE) { \ 1.394 + localbuf = 1; \ 1.395 + buffer = _buffer; \ 1.396 + } \ 1.397 + else buffer = state->next_output_byte; \ 1.398 + } 1.399 + 1.400 +#define STORE_BUFFER() { \ 1.401 + if (localbuf) { \ 1.402 + bytes = buffer - _buffer; \ 1.403 + buffer = _buffer; \ 1.404 + while (bytes > 0) { \ 1.405 + bytestocopy = min(bytes, state->free_in_buffer); \ 1.406 + MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ 1.407 + state->next_output_byte += bytestocopy; \ 1.408 + buffer += bytestocopy; \ 1.409 + state->free_in_buffer -= bytestocopy; \ 1.410 + if (state->free_in_buffer == 0) \ 1.411 + if (! dump_buffer(state)) return FALSE; \ 1.412 + bytes -= bytestocopy; \ 1.413 + } \ 1.414 + } \ 1.415 + else { \ 1.416 + state->free_in_buffer -= (buffer - state->next_output_byte); \ 1.417 + state->next_output_byte = buffer; \ 1.418 + } \ 1.419 + } 1.420 + 1.421 + 1.422 +LOCAL(boolean) 1.423 +flush_bits (working_state * state) 1.424 +{ 1.425 + JOCTET _buffer[BUFSIZE], *buffer; 1.426 + size_t put_buffer; int put_bits; 1.427 + size_t bytes, bytestocopy; int localbuf = 0; 1.428 + 1.429 + put_buffer = state->cur.put_buffer; 1.430 + put_bits = state->cur.put_bits; 1.431 + LOAD_BUFFER() 1.432 + 1.433 + /* fill any partial byte with ones */ 1.434 + PUT_BITS(0x7F, 7) 1.435 + while (put_bits >= 8) EMIT_BYTE() 1.436 + 1.437 + state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ 1.438 + state->cur.put_bits = 0; 1.439 + STORE_BUFFER() 1.440 + 1.441 + return TRUE; 1.442 +} 1.443 + 1.444 + 1.445 +/* Encode a single block's worth of coefficients */ 1.446 + 1.447 +LOCAL(boolean) 1.448 +encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, 1.449 + c_derived_tbl *dctbl, c_derived_tbl *actbl) 1.450 +{ 1.451 + int temp, temp2, temp3; 1.452 + int nbits; 1.453 + int r, code, size; 1.454 + JOCTET _buffer[BUFSIZE], *buffer; 1.455 + size_t put_buffer; int put_bits; 1.456 + int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; 1.457 + size_t bytes, bytestocopy; int localbuf = 0; 1.458 + 1.459 + put_buffer = state->cur.put_buffer; 1.460 + put_bits = state->cur.put_bits; 1.461 + LOAD_BUFFER() 1.462 + 1.463 + /* Encode the DC coefficient difference per section F.1.2.1 */ 1.464 + 1.465 + temp = temp2 = block[0] - last_dc_val; 1.466 + 1.467 + /* This is a well-known technique for obtaining the absolute value without a 1.468 + * branch. It is derived from an assembly language technique presented in 1.469 + * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by 1.470 + * Agner Fog. 1.471 + */ 1.472 + temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); 1.473 + temp ^= temp3; 1.474 + temp -= temp3; 1.475 + 1.476 + /* For a negative input, want temp2 = bitwise complement of abs(input) */ 1.477 + /* This code assumes we are on a two's complement machine */ 1.478 + temp2 += temp3; 1.479 + 1.480 + /* Find the number of bits needed for the magnitude of the coefficient */ 1.481 + nbits = jpeg_nbits_table[temp]; 1.482 + 1.483 + /* Emit the Huffman-coded symbol for the number of bits */ 1.484 + code = dctbl->ehufco[nbits]; 1.485 + size = dctbl->ehufsi[nbits]; 1.486 + PUT_BITS(code, size) 1.487 + CHECKBUF15() 1.488 + 1.489 + /* Mask off any extra bits in code */ 1.490 + temp2 &= (((INT32) 1)<<nbits) - 1; 1.491 + 1.492 + /* Emit that number of bits of the value, if positive, */ 1.493 + /* or the complement of its magnitude, if negative. */ 1.494 + PUT_BITS(temp2, nbits) 1.495 + CHECKBUF15() 1.496 + 1.497 + /* Encode the AC coefficients per section F.1.2.2 */ 1.498 + 1.499 + r = 0; /* r = run length of zeros */ 1.500 + 1.501 +/* Manually unroll the k loop to eliminate the counter variable. This 1.502 + * improves performance greatly on systems with a limited number of 1.503 + * registers (such as x86.) 1.504 + */ 1.505 +#define kloop(jpeg_natural_order_of_k) { \ 1.506 + if ((temp = block[jpeg_natural_order_of_k]) == 0) { \ 1.507 + r++; \ 1.508 + } else { \ 1.509 + temp2 = temp; \ 1.510 + /* Branch-less absolute value, bitwise complement, etc., same as above */ \ 1.511 + temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \ 1.512 + temp ^= temp3; \ 1.513 + temp -= temp3; \ 1.514 + temp2 += temp3; \ 1.515 + nbits = jpeg_nbits_table[temp]; \ 1.516 + /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ 1.517 + while (r > 15) { \ 1.518 + EMIT_BITS(code_0xf0, size_0xf0) \ 1.519 + r -= 16; \ 1.520 + } \ 1.521 + /* Emit Huffman symbol for run length / number of bits */ \ 1.522 + temp3 = (r << 4) + nbits; \ 1.523 + code = actbl->ehufco[temp3]; \ 1.524 + size = actbl->ehufsi[temp3]; \ 1.525 + EMIT_CODE(code, size) \ 1.526 + r = 0; \ 1.527 + } \ 1.528 +} 1.529 + 1.530 + /* One iteration for each value in jpeg_natural_order[] */ 1.531 + kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3); 1.532 + kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18); 1.533 + kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26); 1.534 + kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27); 1.535 + kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21); 1.536 + kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57); 1.537 + kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15); 1.538 + kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58); 1.539 + kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39); 1.540 + kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47); 1.541 + kloop(55); kloop(62); kloop(63); 1.542 + 1.543 + /* If the last coef(s) were zero, emit an end-of-block code */ 1.544 + if (r > 0) { 1.545 + code = actbl->ehufco[0]; 1.546 + size = actbl->ehufsi[0]; 1.547 + EMIT_BITS(code, size) 1.548 + } 1.549 + 1.550 + state->cur.put_buffer = put_buffer; 1.551 + state->cur.put_bits = put_bits; 1.552 + STORE_BUFFER() 1.553 + 1.554 + return TRUE; 1.555 +} 1.556 + 1.557 + 1.558 +/* 1.559 + * Emit a restart marker & resynchronize predictions. 1.560 + */ 1.561 + 1.562 +LOCAL(boolean) 1.563 +emit_restart (working_state * state, int restart_num) 1.564 +{ 1.565 + int ci; 1.566 + 1.567 + if (! flush_bits(state)) 1.568 + return FALSE; 1.569 + 1.570 + emit_byte(state, 0xFF, return FALSE); 1.571 + emit_byte(state, JPEG_RST0 + restart_num, return FALSE); 1.572 + 1.573 + /* Re-initialize DC predictions to 0 */ 1.574 + for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) 1.575 + state->cur.last_dc_val[ci] = 0; 1.576 + 1.577 + /* The restart counter is not updated until we successfully write the MCU. */ 1.578 + 1.579 + return TRUE; 1.580 +} 1.581 + 1.582 + 1.583 +/* 1.584 + * Encode and output one MCU's worth of Huffman-compressed coefficients. 1.585 + */ 1.586 + 1.587 +METHODDEF(boolean) 1.588 +encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 1.589 +{ 1.590 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.591 + working_state state; 1.592 + int blkn, ci; 1.593 + jpeg_component_info * compptr; 1.594 + 1.595 + /* Load up working state */ 1.596 + state.next_output_byte = cinfo->dest->next_output_byte; 1.597 + state.free_in_buffer = cinfo->dest->free_in_buffer; 1.598 + ASSIGN_STATE(state.cur, entropy->saved); 1.599 + state.cinfo = cinfo; 1.600 + 1.601 + /* Emit restart marker if needed */ 1.602 + if (cinfo->restart_interval) { 1.603 + if (entropy->restarts_to_go == 0) 1.604 + if (! emit_restart(&state, entropy->next_restart_num)) 1.605 + return FALSE; 1.606 + } 1.607 + 1.608 + /* Encode the MCU data blocks */ 1.609 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.610 + ci = cinfo->MCU_membership[blkn]; 1.611 + compptr = cinfo->cur_comp_info[ci]; 1.612 + if (! encode_one_block(&state, 1.613 + MCU_data[blkn][0], state.cur.last_dc_val[ci], 1.614 + entropy->dc_derived_tbls[compptr->dc_tbl_no], 1.615 + entropy->ac_derived_tbls[compptr->ac_tbl_no])) 1.616 + return FALSE; 1.617 + /* Update last_dc_val */ 1.618 + state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; 1.619 + } 1.620 + 1.621 + /* Completed MCU, so update state */ 1.622 + cinfo->dest->next_output_byte = state.next_output_byte; 1.623 + cinfo->dest->free_in_buffer = state.free_in_buffer; 1.624 + ASSIGN_STATE(entropy->saved, state.cur); 1.625 + 1.626 + /* Update restart-interval state too */ 1.627 + if (cinfo->restart_interval) { 1.628 + if (entropy->restarts_to_go == 0) { 1.629 + entropy->restarts_to_go = cinfo->restart_interval; 1.630 + entropy->next_restart_num++; 1.631 + entropy->next_restart_num &= 7; 1.632 + } 1.633 + entropy->restarts_to_go--; 1.634 + } 1.635 + 1.636 + return TRUE; 1.637 +} 1.638 + 1.639 + 1.640 +/* 1.641 + * Finish up at the end of a Huffman-compressed scan. 1.642 + */ 1.643 + 1.644 +METHODDEF(void) 1.645 +finish_pass_huff (j_compress_ptr cinfo) 1.646 +{ 1.647 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.648 + working_state state; 1.649 + 1.650 + /* Load up working state ... flush_bits needs it */ 1.651 + state.next_output_byte = cinfo->dest->next_output_byte; 1.652 + state.free_in_buffer = cinfo->dest->free_in_buffer; 1.653 + ASSIGN_STATE(state.cur, entropy->saved); 1.654 + state.cinfo = cinfo; 1.655 + 1.656 + /* Flush out the last data */ 1.657 + if (! flush_bits(&state)) 1.658 + ERREXIT(cinfo, JERR_CANT_SUSPEND); 1.659 + 1.660 + /* Update state */ 1.661 + cinfo->dest->next_output_byte = state.next_output_byte; 1.662 + cinfo->dest->free_in_buffer = state.free_in_buffer; 1.663 + ASSIGN_STATE(entropy->saved, state.cur); 1.664 +} 1.665 + 1.666 + 1.667 +/* 1.668 + * Huffman coding optimization. 1.669 + * 1.670 + * We first scan the supplied data and count the number of uses of each symbol 1.671 + * that is to be Huffman-coded. (This process MUST agree with the code above.) 1.672 + * Then we build a Huffman coding tree for the observed counts. 1.673 + * Symbols which are not needed at all for the particular image are not 1.674 + * assigned any code, which saves space in the DHT marker as well as in 1.675 + * the compressed data. 1.676 + */ 1.677 + 1.678 +#ifdef ENTROPY_OPT_SUPPORTED 1.679 + 1.680 + 1.681 +/* Process a single block's worth of coefficients */ 1.682 + 1.683 +LOCAL(void) 1.684 +htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, 1.685 + long dc_counts[], long ac_counts[]) 1.686 +{ 1.687 + register int temp; 1.688 + register int nbits; 1.689 + register int k, r; 1.690 + 1.691 + /* Encode the DC coefficient difference per section F.1.2.1 */ 1.692 + 1.693 + temp = block[0] - last_dc_val; 1.694 + if (temp < 0) 1.695 + temp = -temp; 1.696 + 1.697 + /* Find the number of bits needed for the magnitude of the coefficient */ 1.698 + nbits = 0; 1.699 + while (temp) { 1.700 + nbits++; 1.701 + temp >>= 1; 1.702 + } 1.703 + /* Check for out-of-range coefficient values. 1.704 + * Since we're encoding a difference, the range limit is twice as much. 1.705 + */ 1.706 + if (nbits > MAX_COEF_BITS+1) 1.707 + ERREXIT(cinfo, JERR_BAD_DCT_COEF); 1.708 + 1.709 + /* Count the Huffman symbol for the number of bits */ 1.710 + dc_counts[nbits]++; 1.711 + 1.712 + /* Encode the AC coefficients per section F.1.2.2 */ 1.713 + 1.714 + r = 0; /* r = run length of zeros */ 1.715 + 1.716 + for (k = 1; k < DCTSIZE2; k++) { 1.717 + if ((temp = block[jpeg_natural_order[k]]) == 0) { 1.718 + r++; 1.719 + } else { 1.720 + /* if run length > 15, must emit special run-length-16 codes (0xF0) */ 1.721 + while (r > 15) { 1.722 + ac_counts[0xF0]++; 1.723 + r -= 16; 1.724 + } 1.725 + 1.726 + /* Find the number of bits needed for the magnitude of the coefficient */ 1.727 + if (temp < 0) 1.728 + temp = -temp; 1.729 + 1.730 + /* Find the number of bits needed for the magnitude of the coefficient */ 1.731 + nbits = 1; /* there must be at least one 1 bit */ 1.732 + while ((temp >>= 1)) 1.733 + nbits++; 1.734 + /* Check for out-of-range coefficient values */ 1.735 + if (nbits > MAX_COEF_BITS) 1.736 + ERREXIT(cinfo, JERR_BAD_DCT_COEF); 1.737 + 1.738 + /* Count Huffman symbol for run length / number of bits */ 1.739 + ac_counts[(r << 4) + nbits]++; 1.740 + 1.741 + r = 0; 1.742 + } 1.743 + } 1.744 + 1.745 + /* If the last coef(s) were zero, emit an end-of-block code */ 1.746 + if (r > 0) 1.747 + ac_counts[0]++; 1.748 +} 1.749 + 1.750 + 1.751 +/* 1.752 + * Trial-encode one MCU's worth of Huffman-compressed coefficients. 1.753 + * No data is actually output, so no suspension return is possible. 1.754 + */ 1.755 + 1.756 +METHODDEF(boolean) 1.757 +encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 1.758 +{ 1.759 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.760 + int blkn, ci; 1.761 + jpeg_component_info * compptr; 1.762 + 1.763 + /* Take care of restart intervals if needed */ 1.764 + if (cinfo->restart_interval) { 1.765 + if (entropy->restarts_to_go == 0) { 1.766 + /* Re-initialize DC predictions to 0 */ 1.767 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) 1.768 + entropy->saved.last_dc_val[ci] = 0; 1.769 + /* Update restart state */ 1.770 + entropy->restarts_to_go = cinfo->restart_interval; 1.771 + } 1.772 + entropy->restarts_to_go--; 1.773 + } 1.774 + 1.775 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.776 + ci = cinfo->MCU_membership[blkn]; 1.777 + compptr = cinfo->cur_comp_info[ci]; 1.778 + htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], 1.779 + entropy->dc_count_ptrs[compptr->dc_tbl_no], 1.780 + entropy->ac_count_ptrs[compptr->ac_tbl_no]); 1.781 + entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; 1.782 + } 1.783 + 1.784 + return TRUE; 1.785 +} 1.786 + 1.787 + 1.788 +/* 1.789 + * Generate the best Huffman code table for the given counts, fill htbl. 1.790 + * Note this is also used by jcphuff.c. 1.791 + * 1.792 + * The JPEG standard requires that no symbol be assigned a codeword of all 1.793 + * one bits (so that padding bits added at the end of a compressed segment 1.794 + * can't look like a valid code). Because of the canonical ordering of 1.795 + * codewords, this just means that there must be an unused slot in the 1.796 + * longest codeword length category. Section K.2 of the JPEG spec suggests 1.797 + * reserving such a slot by pretending that symbol 256 is a valid symbol 1.798 + * with count 1. In theory that's not optimal; giving it count zero but 1.799 + * including it in the symbol set anyway should give a better Huffman code. 1.800 + * But the theoretically better code actually seems to come out worse in 1.801 + * practice, because it produces more all-ones bytes (which incur stuffed 1.802 + * zero bytes in the final file). In any case the difference is tiny. 1.803 + * 1.804 + * The JPEG standard requires Huffman codes to be no more than 16 bits long. 1.805 + * If some symbols have a very small but nonzero probability, the Huffman tree 1.806 + * must be adjusted to meet the code length restriction. We currently use 1.807 + * the adjustment method suggested in JPEG section K.2. This method is *not* 1.808 + * optimal; it may not choose the best possible limited-length code. But 1.809 + * typically only very-low-frequency symbols will be given less-than-optimal 1.810 + * lengths, so the code is almost optimal. Experimental comparisons against 1.811 + * an optimal limited-length-code algorithm indicate that the difference is 1.812 + * microscopic --- usually less than a hundredth of a percent of total size. 1.813 + * So the extra complexity of an optimal algorithm doesn't seem worthwhile. 1.814 + */ 1.815 + 1.816 +GLOBAL(void) 1.817 +jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) 1.818 +{ 1.819 +#define MAX_CLEN 32 /* assumed maximum initial code length */ 1.820 + UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ 1.821 + int codesize[257]; /* codesize[k] = code length of symbol k */ 1.822 + int others[257]; /* next symbol in current branch of tree */ 1.823 + int c1, c2; 1.824 + int p, i, j; 1.825 + long v; 1.826 + 1.827 + /* This algorithm is explained in section K.2 of the JPEG standard */ 1.828 + 1.829 + MEMZERO(bits, SIZEOF(bits)); 1.830 + MEMZERO(codesize, SIZEOF(codesize)); 1.831 + for (i = 0; i < 257; i++) 1.832 + others[i] = -1; /* init links to empty */ 1.833 + 1.834 + freq[256] = 1; /* make sure 256 has a nonzero count */ 1.835 + /* Including the pseudo-symbol 256 in the Huffman procedure guarantees 1.836 + * that no real symbol is given code-value of all ones, because 256 1.837 + * will be placed last in the largest codeword category. 1.838 + */ 1.839 + 1.840 + /* Huffman's basic algorithm to assign optimal code lengths to symbols */ 1.841 + 1.842 + for (;;) { 1.843 + /* Find the smallest nonzero frequency, set c1 = its symbol */ 1.844 + /* In case of ties, take the larger symbol number */ 1.845 + c1 = -1; 1.846 + v = 1000000000L; 1.847 + for (i = 0; i <= 256; i++) { 1.848 + if (freq[i] && freq[i] <= v) { 1.849 + v = freq[i]; 1.850 + c1 = i; 1.851 + } 1.852 + } 1.853 + 1.854 + /* Find the next smallest nonzero frequency, set c2 = its symbol */ 1.855 + /* In case of ties, take the larger symbol number */ 1.856 + c2 = -1; 1.857 + v = 1000000000L; 1.858 + for (i = 0; i <= 256; i++) { 1.859 + if (freq[i] && freq[i] <= v && i != c1) { 1.860 + v = freq[i]; 1.861 + c2 = i; 1.862 + } 1.863 + } 1.864 + 1.865 + /* Done if we've merged everything into one frequency */ 1.866 + if (c2 < 0) 1.867 + break; 1.868 + 1.869 + /* Else merge the two counts/trees */ 1.870 + freq[c1] += freq[c2]; 1.871 + freq[c2] = 0; 1.872 + 1.873 + /* Increment the codesize of everything in c1's tree branch */ 1.874 + codesize[c1]++; 1.875 + while (others[c1] >= 0) { 1.876 + c1 = others[c1]; 1.877 + codesize[c1]++; 1.878 + } 1.879 + 1.880 + others[c1] = c2; /* chain c2 onto c1's tree branch */ 1.881 + 1.882 + /* Increment the codesize of everything in c2's tree branch */ 1.883 + codesize[c2]++; 1.884 + while (others[c2] >= 0) { 1.885 + c2 = others[c2]; 1.886 + codesize[c2]++; 1.887 + } 1.888 + } 1.889 + 1.890 + /* Now count the number of symbols of each code length */ 1.891 + for (i = 0; i <= 256; i++) { 1.892 + if (codesize[i]) { 1.893 + /* The JPEG standard seems to think that this can't happen, */ 1.894 + /* but I'm paranoid... */ 1.895 + if (codesize[i] > MAX_CLEN) 1.896 + ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); 1.897 + 1.898 + bits[codesize[i]]++; 1.899 + } 1.900 + } 1.901 + 1.902 + /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure 1.903 + * Huffman procedure assigned any such lengths, we must adjust the coding. 1.904 + * Here is what the JPEG spec says about how this next bit works: 1.905 + * Since symbols are paired for the longest Huffman code, the symbols are 1.906 + * removed from this length category two at a time. The prefix for the pair 1.907 + * (which is one bit shorter) is allocated to one of the pair; then, 1.908 + * skipping the BITS entry for that prefix length, a code word from the next 1.909 + * shortest nonzero BITS entry is converted into a prefix for two code words 1.910 + * one bit longer. 1.911 + */ 1.912 + 1.913 + for (i = MAX_CLEN; i > 16; i--) { 1.914 + while (bits[i] > 0) { 1.915 + j = i - 2; /* find length of new prefix to be used */ 1.916 + while (bits[j] == 0) 1.917 + j--; 1.918 + 1.919 + bits[i] -= 2; /* remove two symbols */ 1.920 + bits[i-1]++; /* one goes in this length */ 1.921 + bits[j+1] += 2; /* two new symbols in this length */ 1.922 + bits[j]--; /* symbol of this length is now a prefix */ 1.923 + } 1.924 + } 1.925 + 1.926 + /* Remove the count for the pseudo-symbol 256 from the largest codelength */ 1.927 + while (bits[i] == 0) /* find largest codelength still in use */ 1.928 + i--; 1.929 + bits[i]--; 1.930 + 1.931 + /* Return final symbol counts (only for lengths 0..16) */ 1.932 + MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); 1.933 + 1.934 + /* Return a list of the symbols sorted by code length */ 1.935 + /* It's not real clear to me why we don't need to consider the codelength 1.936 + * changes made above, but the JPEG spec seems to think this works. 1.937 + */ 1.938 + p = 0; 1.939 + for (i = 1; i <= MAX_CLEN; i++) { 1.940 + for (j = 0; j <= 255; j++) { 1.941 + if (codesize[j] == i) { 1.942 + htbl->huffval[p] = (UINT8) j; 1.943 + p++; 1.944 + } 1.945 + } 1.946 + } 1.947 + 1.948 + /* Set sent_table FALSE so updated table will be written to JPEG file. */ 1.949 + htbl->sent_table = FALSE; 1.950 +} 1.951 + 1.952 + 1.953 +/* 1.954 + * Finish up a statistics-gathering pass and create the new Huffman tables. 1.955 + */ 1.956 + 1.957 +METHODDEF(void) 1.958 +finish_pass_gather (j_compress_ptr cinfo) 1.959 +{ 1.960 + huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1.961 + int ci, dctbl, actbl; 1.962 + jpeg_component_info * compptr; 1.963 + JHUFF_TBL **htblptr; 1.964 + boolean did_dc[NUM_HUFF_TBLS]; 1.965 + boolean did_ac[NUM_HUFF_TBLS]; 1.966 + 1.967 + /* It's important not to apply jpeg_gen_optimal_table more than once 1.968 + * per table, because it clobbers the input frequency counts! 1.969 + */ 1.970 + MEMZERO(did_dc, SIZEOF(did_dc)); 1.971 + MEMZERO(did_ac, SIZEOF(did_ac)); 1.972 + 1.973 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.974 + compptr = cinfo->cur_comp_info[ci]; 1.975 + dctbl = compptr->dc_tbl_no; 1.976 + actbl = compptr->ac_tbl_no; 1.977 + if (! did_dc[dctbl]) { 1.978 + htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; 1.979 + if (*htblptr == NULL) 1.980 + *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); 1.981 + jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); 1.982 + did_dc[dctbl] = TRUE; 1.983 + } 1.984 + if (! did_ac[actbl]) { 1.985 + htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; 1.986 + if (*htblptr == NULL) 1.987 + *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); 1.988 + jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); 1.989 + did_ac[actbl] = TRUE; 1.990 + } 1.991 + } 1.992 +} 1.993 + 1.994 + 1.995 +#endif /* ENTROPY_OPT_SUPPORTED */ 1.996 + 1.997 + 1.998 +/* 1.999 + * Module initialization routine for Huffman entropy encoding. 1.1000 + */ 1.1001 + 1.1002 +GLOBAL(void) 1.1003 +jinit_huff_encoder (j_compress_ptr cinfo) 1.1004 +{ 1.1005 + huff_entropy_ptr entropy; 1.1006 + int i; 1.1007 + 1.1008 + entropy = (huff_entropy_ptr) 1.1009 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.1010 + SIZEOF(huff_entropy_encoder)); 1.1011 + cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; 1.1012 + entropy->pub.start_pass = start_pass_huff; 1.1013 + 1.1014 + /* Mark tables unallocated */ 1.1015 + for (i = 0; i < NUM_HUFF_TBLS; i++) { 1.1016 + entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; 1.1017 +#ifdef ENTROPY_OPT_SUPPORTED 1.1018 + entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; 1.1019 +#endif 1.1020 + } 1.1021 +}