1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libjpeg/jdarith.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,761 @@ 1.4 +/* 1.5 + * jdarith.c 1.6 + * 1.7 + * Developed 1997-2009 by Guido Vollbeding. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains portable arithmetic entropy decoding routines for JPEG 1.12 + * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). 1.13 + * 1.14 + * Both sequential and progressive modes are supported in this single module. 1.15 + * 1.16 + * Suspension is not currently supported in this module. 1.17 + */ 1.18 + 1.19 +#define JPEG_INTERNALS 1.20 +#include "jinclude.h" 1.21 +#include "jpeglib.h" 1.22 + 1.23 + 1.24 +/* Expanded entropy decoder object for arithmetic decoding. */ 1.25 + 1.26 +typedef struct { 1.27 + struct jpeg_entropy_decoder pub; /* public fields */ 1.28 + 1.29 + INT32 c; /* C register, base of coding interval + input bit buffer */ 1.30 + INT32 a; /* A register, normalized size of coding interval */ 1.31 + int ct; /* bit shift counter, # of bits left in bit buffer part of C */ 1.32 + /* init: ct = -16 */ 1.33 + /* run: ct = 0..7 */ 1.34 + /* error: ct = -1 */ 1.35 + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 1.36 + int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ 1.37 + 1.38 + unsigned int restarts_to_go; /* MCUs left in this restart interval */ 1.39 + 1.40 + /* Pointers to statistics areas (these workspaces have image lifespan) */ 1.41 + unsigned char * dc_stats[NUM_ARITH_TBLS]; 1.42 + unsigned char * ac_stats[NUM_ARITH_TBLS]; 1.43 + 1.44 + /* Statistics bin for coding with fixed probability 0.5 */ 1.45 + unsigned char fixed_bin[4]; 1.46 +} arith_entropy_decoder; 1.47 + 1.48 +typedef arith_entropy_decoder * arith_entropy_ptr; 1.49 + 1.50 +/* The following two definitions specify the allocation chunk size 1.51 + * for the statistics area. 1.52 + * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least 1.53 + * 49 statistics bins for DC, and 245 statistics bins for AC coding. 1.54 + * 1.55 + * We use a compact representation with 1 byte per statistics bin, 1.56 + * thus the numbers directly represent byte sizes. 1.57 + * This 1 byte per statistics bin contains the meaning of the MPS 1.58 + * (more probable symbol) in the highest bit (mask 0x80), and the 1.59 + * index into the probability estimation state machine table 1.60 + * in the lower bits (mask 0x7F). 1.61 + */ 1.62 + 1.63 +#define DC_STAT_BINS 64 1.64 +#define AC_STAT_BINS 256 1.65 + 1.66 + 1.67 +LOCAL(int) 1.68 +get_byte (j_decompress_ptr cinfo) 1.69 +/* Read next input byte; we do not support suspension in this module. */ 1.70 +{ 1.71 + struct jpeg_source_mgr * src = cinfo->src; 1.72 + 1.73 + if (src->bytes_in_buffer == 0) 1.74 + if (! (*src->fill_input_buffer) (cinfo)) 1.75 + ERREXIT(cinfo, JERR_CANT_SUSPEND); 1.76 + src->bytes_in_buffer--; 1.77 + return GETJOCTET(*src->next_input_byte++); 1.78 +} 1.79 + 1.80 + 1.81 +/* 1.82 + * The core arithmetic decoding routine (common in JPEG and JBIG). 1.83 + * This needs to go as fast as possible. 1.84 + * Machine-dependent optimization facilities 1.85 + * are not utilized in this portable implementation. 1.86 + * However, this code should be fairly efficient and 1.87 + * may be a good base for further optimizations anyway. 1.88 + * 1.89 + * Return value is 0 or 1 (binary decision). 1.90 + * 1.91 + * Note: I've changed the handling of the code base & bit 1.92 + * buffer register C compared to other implementations 1.93 + * based on the standards layout & procedures. 1.94 + * While it also contains both the actual base of the 1.95 + * coding interval (16 bits) and the next-bits buffer, 1.96 + * the cut-point between these two parts is floating 1.97 + * (instead of fixed) with the bit shift counter CT. 1.98 + * Thus, we also need only one (variable instead of 1.99 + * fixed size) shift for the LPS/MPS decision, and 1.100 + * we can get away with any renormalization update 1.101 + * of C (except for new data insertion, of course). 1.102 + * 1.103 + * I've also introduced a new scheme for accessing 1.104 + * the probability estimation state machine table, 1.105 + * derived from Markus Kuhn's JBIG implementation. 1.106 + */ 1.107 + 1.108 +LOCAL(int) 1.109 +arith_decode (j_decompress_ptr cinfo, unsigned char *st) 1.110 +{ 1.111 + register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; 1.112 + register unsigned char nl, nm; 1.113 + register INT32 qe, temp; 1.114 + register int sv, data; 1.115 + 1.116 + /* Renormalization & data input per section D.2.6 */ 1.117 + while (e->a < 0x8000L) { 1.118 + if (--e->ct < 0) { 1.119 + /* Need to fetch next data byte */ 1.120 + if (cinfo->unread_marker) 1.121 + data = 0; /* stuff zero data */ 1.122 + else { 1.123 + data = get_byte(cinfo); /* read next input byte */ 1.124 + if (data == 0xFF) { /* zero stuff or marker code */ 1.125 + do data = get_byte(cinfo); 1.126 + while (data == 0xFF); /* swallow extra 0xFF bytes */ 1.127 + if (data == 0) 1.128 + data = 0xFF; /* discard stuffed zero byte */ 1.129 + else { 1.130 + /* Note: Different from the Huffman decoder, hitting 1.131 + * a marker while processing the compressed data 1.132 + * segment is legal in arithmetic coding. 1.133 + * The convention is to supply zero data 1.134 + * then until decoding is complete. 1.135 + */ 1.136 + cinfo->unread_marker = data; 1.137 + data = 0; 1.138 + } 1.139 + } 1.140 + } 1.141 + e->c = (e->c << 8) | data; /* insert data into C register */ 1.142 + if ((e->ct += 8) < 0) /* update bit shift counter */ 1.143 + /* Need more initial bytes */ 1.144 + if (++e->ct == 0) 1.145 + /* Got 2 initial bytes -> re-init A and exit loop */ 1.146 + e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ 1.147 + } 1.148 + e->a <<= 1; 1.149 + } 1.150 + 1.151 + /* Fetch values from our compact representation of Table D.2: 1.152 + * Qe values and probability estimation state machine 1.153 + */ 1.154 + sv = *st; 1.155 + qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ 1.156 + nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ 1.157 + nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ 1.158 + 1.159 + /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ 1.160 + temp = e->a - qe; 1.161 + e->a = temp; 1.162 + temp <<= e->ct; 1.163 + if (e->c >= temp) { 1.164 + e->c -= temp; 1.165 + /* Conditional LPS (less probable symbol) exchange */ 1.166 + if (e->a < qe) { 1.167 + e->a = qe; 1.168 + *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ 1.169 + } else { 1.170 + e->a = qe; 1.171 + *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ 1.172 + sv ^= 0x80; /* Exchange LPS/MPS */ 1.173 + } 1.174 + } else if (e->a < 0x8000L) { 1.175 + /* Conditional MPS (more probable symbol) exchange */ 1.176 + if (e->a < qe) { 1.177 + *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ 1.178 + sv ^= 0x80; /* Exchange LPS/MPS */ 1.179 + } else { 1.180 + *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ 1.181 + } 1.182 + } 1.183 + 1.184 + return sv >> 7; 1.185 +} 1.186 + 1.187 + 1.188 +/* 1.189 + * Check for a restart marker & resynchronize decoder. 1.190 + */ 1.191 + 1.192 +LOCAL(void) 1.193 +process_restart (j_decompress_ptr cinfo) 1.194 +{ 1.195 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.196 + int ci; 1.197 + jpeg_component_info * compptr; 1.198 + 1.199 + /* Advance past the RSTn marker */ 1.200 + if (! (*cinfo->marker->read_restart_marker) (cinfo)) 1.201 + ERREXIT(cinfo, JERR_CANT_SUSPEND); 1.202 + 1.203 + /* Re-initialize statistics areas */ 1.204 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.205 + compptr = cinfo->cur_comp_info[ci]; 1.206 + if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 1.207 + MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); 1.208 + /* Reset DC predictions to 0 */ 1.209 + entropy->last_dc_val[ci] = 0; 1.210 + entropy->dc_context[ci] = 0; 1.211 + } 1.212 + if (! cinfo->progressive_mode || cinfo->Ss) { 1.213 + MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); 1.214 + } 1.215 + } 1.216 + 1.217 + /* Reset arithmetic decoding variables */ 1.218 + entropy->c = 0; 1.219 + entropy->a = 0; 1.220 + entropy->ct = -16; /* force reading 2 initial bytes to fill C */ 1.221 + 1.222 + /* Reset restart counter */ 1.223 + entropy->restarts_to_go = cinfo->restart_interval; 1.224 +} 1.225 + 1.226 + 1.227 +/* 1.228 + * Arithmetic MCU decoding. 1.229 + * Each of these routines decodes and returns one MCU's worth of 1.230 + * arithmetic-compressed coefficients. 1.231 + * The coefficients are reordered from zigzag order into natural array order, 1.232 + * but are not dequantized. 1.233 + * 1.234 + * The i'th block of the MCU is stored into the block pointed to by 1.235 + * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. 1.236 + */ 1.237 + 1.238 +/* 1.239 + * MCU decoding for DC initial scan (either spectral selection, 1.240 + * or first pass of successive approximation). 1.241 + */ 1.242 + 1.243 +METHODDEF(boolean) 1.244 +decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.245 +{ 1.246 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.247 + JBLOCKROW block; 1.248 + unsigned char *st; 1.249 + int blkn, ci, tbl, sign; 1.250 + int v, m; 1.251 + 1.252 + /* Process restart marker if needed */ 1.253 + if (cinfo->restart_interval) { 1.254 + if (entropy->restarts_to_go == 0) 1.255 + process_restart(cinfo); 1.256 + entropy->restarts_to_go--; 1.257 + } 1.258 + 1.259 + if (entropy->ct == -1) return TRUE; /* if error do nothing */ 1.260 + 1.261 + /* Outer loop handles each block in the MCU */ 1.262 + 1.263 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.264 + block = MCU_data[blkn]; 1.265 + ci = cinfo->MCU_membership[blkn]; 1.266 + tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; 1.267 + 1.268 + /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 1.269 + 1.270 + /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 1.271 + st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 1.272 + 1.273 + /* Figure F.19: Decode_DC_DIFF */ 1.274 + if (arith_decode(cinfo, st) == 0) 1.275 + entropy->dc_context[ci] = 0; 1.276 + else { 1.277 + /* Figure F.21: Decoding nonzero value v */ 1.278 + /* Figure F.22: Decoding the sign of v */ 1.279 + sign = arith_decode(cinfo, st + 1); 1.280 + st += 2; st += sign; 1.281 + /* Figure F.23: Decoding the magnitude category of v */ 1.282 + if ((m = arith_decode(cinfo, st)) != 0) { 1.283 + st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ 1.284 + while (arith_decode(cinfo, st)) { 1.285 + if ((m <<= 1) == 0x8000) { 1.286 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.287 + entropy->ct = -1; /* magnitude overflow */ 1.288 + return TRUE; 1.289 + } 1.290 + st += 1; 1.291 + } 1.292 + } 1.293 + /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 1.294 + if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 1.295 + entropy->dc_context[ci] = 0; /* zero diff category */ 1.296 + else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 1.297 + entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 1.298 + else 1.299 + entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 1.300 + v = m; 1.301 + /* Figure F.24: Decoding the magnitude bit pattern of v */ 1.302 + st += 14; 1.303 + while (m >>= 1) 1.304 + if (arith_decode(cinfo, st)) v |= m; 1.305 + v += 1; if (sign) v = -v; 1.306 + entropy->last_dc_val[ci] += v; 1.307 + } 1.308 + 1.309 + /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ 1.310 + (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); 1.311 + } 1.312 + 1.313 + return TRUE; 1.314 +} 1.315 + 1.316 + 1.317 +/* 1.318 + * MCU decoding for AC initial scan (either spectral selection, 1.319 + * or first pass of successive approximation). 1.320 + */ 1.321 + 1.322 +METHODDEF(boolean) 1.323 +decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.324 +{ 1.325 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.326 + JBLOCKROW block; 1.327 + unsigned char *st; 1.328 + int tbl, sign, k; 1.329 + int v, m; 1.330 + 1.331 + /* Process restart marker if needed */ 1.332 + if (cinfo->restart_interval) { 1.333 + if (entropy->restarts_to_go == 0) 1.334 + process_restart(cinfo); 1.335 + entropy->restarts_to_go--; 1.336 + } 1.337 + 1.338 + if (entropy->ct == -1) return TRUE; /* if error do nothing */ 1.339 + 1.340 + /* There is always only one block per MCU */ 1.341 + block = MCU_data[0]; 1.342 + tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 1.343 + 1.344 + /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 1.345 + 1.346 + /* Figure F.20: Decode_AC_coefficients */ 1.347 + for (k = cinfo->Ss; k <= cinfo->Se; k++) { 1.348 + st = entropy->ac_stats[tbl] + 3 * (k - 1); 1.349 + if (arith_decode(cinfo, st)) break; /* EOB flag */ 1.350 + while (arith_decode(cinfo, st + 1) == 0) { 1.351 + st += 3; k++; 1.352 + if (k > cinfo->Se) { 1.353 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.354 + entropy->ct = -1; /* spectral overflow */ 1.355 + return TRUE; 1.356 + } 1.357 + } 1.358 + /* Figure F.21: Decoding nonzero value v */ 1.359 + /* Figure F.22: Decoding the sign of v */ 1.360 + sign = arith_decode(cinfo, entropy->fixed_bin); 1.361 + st += 2; 1.362 + /* Figure F.23: Decoding the magnitude category of v */ 1.363 + if ((m = arith_decode(cinfo, st)) != 0) { 1.364 + if (arith_decode(cinfo, st)) { 1.365 + m <<= 1; 1.366 + st = entropy->ac_stats[tbl] + 1.367 + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 1.368 + while (arith_decode(cinfo, st)) { 1.369 + if ((m <<= 1) == 0x8000) { 1.370 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.371 + entropy->ct = -1; /* magnitude overflow */ 1.372 + return TRUE; 1.373 + } 1.374 + st += 1; 1.375 + } 1.376 + } 1.377 + } 1.378 + v = m; 1.379 + /* Figure F.24: Decoding the magnitude bit pattern of v */ 1.380 + st += 14; 1.381 + while (m >>= 1) 1.382 + if (arith_decode(cinfo, st)) v |= m; 1.383 + v += 1; if (sign) v = -v; 1.384 + /* Scale and output coefficient in natural (dezigzagged) order */ 1.385 + (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al); 1.386 + } 1.387 + 1.388 + return TRUE; 1.389 +} 1.390 + 1.391 + 1.392 +/* 1.393 + * MCU decoding for DC successive approximation refinement scan. 1.394 + */ 1.395 + 1.396 +METHODDEF(boolean) 1.397 +decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.398 +{ 1.399 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.400 + unsigned char *st; 1.401 + int p1, blkn; 1.402 + 1.403 + /* Process restart marker if needed */ 1.404 + if (cinfo->restart_interval) { 1.405 + if (entropy->restarts_to_go == 0) 1.406 + process_restart(cinfo); 1.407 + entropy->restarts_to_go--; 1.408 + } 1.409 + 1.410 + st = entropy->fixed_bin; /* use fixed probability estimation */ 1.411 + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 1.412 + 1.413 + /* Outer loop handles each block in the MCU */ 1.414 + 1.415 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.416 + /* Encoded data is simply the next bit of the two's-complement DC value */ 1.417 + if (arith_decode(cinfo, st)) 1.418 + MCU_data[blkn][0][0] |= p1; 1.419 + } 1.420 + 1.421 + return TRUE; 1.422 +} 1.423 + 1.424 + 1.425 +/* 1.426 + * MCU decoding for AC successive approximation refinement scan. 1.427 + */ 1.428 + 1.429 +METHODDEF(boolean) 1.430 +decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.431 +{ 1.432 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.433 + JBLOCKROW block; 1.434 + JCOEFPTR thiscoef; 1.435 + unsigned char *st; 1.436 + int tbl, k, kex; 1.437 + int p1, m1; 1.438 + 1.439 + /* Process restart marker if needed */ 1.440 + if (cinfo->restart_interval) { 1.441 + if (entropy->restarts_to_go == 0) 1.442 + process_restart(cinfo); 1.443 + entropy->restarts_to_go--; 1.444 + } 1.445 + 1.446 + if (entropy->ct == -1) return TRUE; /* if error do nothing */ 1.447 + 1.448 + /* There is always only one block per MCU */ 1.449 + block = MCU_data[0]; 1.450 + tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 1.451 + 1.452 + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 1.453 + m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ 1.454 + 1.455 + /* Establish EOBx (previous stage end-of-block) index */ 1.456 + for (kex = cinfo->Se; kex > 0; kex--) 1.457 + if ((*block)[jpeg_natural_order[kex]]) break; 1.458 + 1.459 + for (k = cinfo->Ss; k <= cinfo->Se; k++) { 1.460 + st = entropy->ac_stats[tbl] + 3 * (k - 1); 1.461 + if (k > kex) 1.462 + if (arith_decode(cinfo, st)) break; /* EOB flag */ 1.463 + for (;;) { 1.464 + thiscoef = *block + jpeg_natural_order[k]; 1.465 + if (*thiscoef) { /* previously nonzero coef */ 1.466 + if (arith_decode(cinfo, st + 2)) { 1.467 + if (*thiscoef < 0) 1.468 + *thiscoef += m1; 1.469 + else 1.470 + *thiscoef += p1; 1.471 + } 1.472 + break; 1.473 + } 1.474 + if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ 1.475 + if (arith_decode(cinfo, entropy->fixed_bin)) 1.476 + *thiscoef = m1; 1.477 + else 1.478 + *thiscoef = p1; 1.479 + break; 1.480 + } 1.481 + st += 3; k++; 1.482 + if (k > cinfo->Se) { 1.483 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.484 + entropy->ct = -1; /* spectral overflow */ 1.485 + return TRUE; 1.486 + } 1.487 + } 1.488 + } 1.489 + 1.490 + return TRUE; 1.491 +} 1.492 + 1.493 + 1.494 +/* 1.495 + * Decode one MCU's worth of arithmetic-compressed coefficients. 1.496 + */ 1.497 + 1.498 +METHODDEF(boolean) 1.499 +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1.500 +{ 1.501 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.502 + jpeg_component_info * compptr; 1.503 + JBLOCKROW block; 1.504 + unsigned char *st; 1.505 + int blkn, ci, tbl, sign, k; 1.506 + int v, m; 1.507 + 1.508 + /* Process restart marker if needed */ 1.509 + if (cinfo->restart_interval) { 1.510 + if (entropy->restarts_to_go == 0) 1.511 + process_restart(cinfo); 1.512 + entropy->restarts_to_go--; 1.513 + } 1.514 + 1.515 + if (entropy->ct == -1) return TRUE; /* if error do nothing */ 1.516 + 1.517 + /* Outer loop handles each block in the MCU */ 1.518 + 1.519 + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1.520 + block = MCU_data[blkn]; 1.521 + ci = cinfo->MCU_membership[blkn]; 1.522 + compptr = cinfo->cur_comp_info[ci]; 1.523 + 1.524 + /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 1.525 + 1.526 + tbl = compptr->dc_tbl_no; 1.527 + 1.528 + /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 1.529 + st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 1.530 + 1.531 + /* Figure F.19: Decode_DC_DIFF */ 1.532 + if (arith_decode(cinfo, st) == 0) 1.533 + entropy->dc_context[ci] = 0; 1.534 + else { 1.535 + /* Figure F.21: Decoding nonzero value v */ 1.536 + /* Figure F.22: Decoding the sign of v */ 1.537 + sign = arith_decode(cinfo, st + 1); 1.538 + st += 2; st += sign; 1.539 + /* Figure F.23: Decoding the magnitude category of v */ 1.540 + if ((m = arith_decode(cinfo, st)) != 0) { 1.541 + st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ 1.542 + while (arith_decode(cinfo, st)) { 1.543 + if ((m <<= 1) == 0x8000) { 1.544 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.545 + entropy->ct = -1; /* magnitude overflow */ 1.546 + return TRUE; 1.547 + } 1.548 + st += 1; 1.549 + } 1.550 + } 1.551 + /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 1.552 + if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 1.553 + entropy->dc_context[ci] = 0; /* zero diff category */ 1.554 + else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 1.555 + entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 1.556 + else 1.557 + entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 1.558 + v = m; 1.559 + /* Figure F.24: Decoding the magnitude bit pattern of v */ 1.560 + st += 14; 1.561 + while (m >>= 1) 1.562 + if (arith_decode(cinfo, st)) v |= m; 1.563 + v += 1; if (sign) v = -v; 1.564 + entropy->last_dc_val[ci] += v; 1.565 + } 1.566 + 1.567 + (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; 1.568 + 1.569 + /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 1.570 + 1.571 + tbl = compptr->ac_tbl_no; 1.572 + 1.573 + /* Figure F.20: Decode_AC_coefficients */ 1.574 + for (k = 1; k <= DCTSIZE2 - 1; k++) { 1.575 + st = entropy->ac_stats[tbl] + 3 * (k - 1); 1.576 + if (arith_decode(cinfo, st)) break; /* EOB flag */ 1.577 + while (arith_decode(cinfo, st + 1) == 0) { 1.578 + st += 3; k++; 1.579 + if (k > DCTSIZE2 - 1) { 1.580 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.581 + entropy->ct = -1; /* spectral overflow */ 1.582 + return TRUE; 1.583 + } 1.584 + } 1.585 + /* Figure F.21: Decoding nonzero value v */ 1.586 + /* Figure F.22: Decoding the sign of v */ 1.587 + sign = arith_decode(cinfo, entropy->fixed_bin); 1.588 + st += 2; 1.589 + /* Figure F.23: Decoding the magnitude category of v */ 1.590 + if ((m = arith_decode(cinfo, st)) != 0) { 1.591 + if (arith_decode(cinfo, st)) { 1.592 + m <<= 1; 1.593 + st = entropy->ac_stats[tbl] + 1.594 + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 1.595 + while (arith_decode(cinfo, st)) { 1.596 + if ((m <<= 1) == 0x8000) { 1.597 + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 1.598 + entropy->ct = -1; /* magnitude overflow */ 1.599 + return TRUE; 1.600 + } 1.601 + st += 1; 1.602 + } 1.603 + } 1.604 + } 1.605 + v = m; 1.606 + /* Figure F.24: Decoding the magnitude bit pattern of v */ 1.607 + st += 14; 1.608 + while (m >>= 1) 1.609 + if (arith_decode(cinfo, st)) v |= m; 1.610 + v += 1; if (sign) v = -v; 1.611 + (*block)[jpeg_natural_order[k]] = (JCOEF) v; 1.612 + } 1.613 + } 1.614 + 1.615 + return TRUE; 1.616 +} 1.617 + 1.618 + 1.619 +/* 1.620 + * Initialize for an arithmetic-compressed scan. 1.621 + */ 1.622 + 1.623 +METHODDEF(void) 1.624 +start_pass (j_decompress_ptr cinfo) 1.625 +{ 1.626 + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 1.627 + int ci, tbl; 1.628 + jpeg_component_info * compptr; 1.629 + 1.630 + if (cinfo->progressive_mode) { 1.631 + /* Validate progressive scan parameters */ 1.632 + if (cinfo->Ss == 0) { 1.633 + if (cinfo->Se != 0) 1.634 + goto bad; 1.635 + } else { 1.636 + /* need not check Ss/Se < 0 since they came from unsigned bytes */ 1.637 + if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) 1.638 + goto bad; 1.639 + /* AC scans may have only one component */ 1.640 + if (cinfo->comps_in_scan != 1) 1.641 + goto bad; 1.642 + } 1.643 + if (cinfo->Ah != 0) { 1.644 + /* Successive approximation refinement scan: must have Al = Ah-1. */ 1.645 + if (cinfo->Ah-1 != cinfo->Al) 1.646 + goto bad; 1.647 + } 1.648 + if (cinfo->Al > 13) { /* need not check for < 0 */ 1.649 + bad: 1.650 + ERREXIT4(cinfo, JERR_BAD_PROGRESSION, 1.651 + cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); 1.652 + } 1.653 + /* Update progression status, and verify that scan order is legal. 1.654 + * Note that inter-scan inconsistencies are treated as warnings 1.655 + * not fatal errors ... not clear if this is right way to behave. 1.656 + */ 1.657 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.658 + int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; 1.659 + int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; 1.660 + if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ 1.661 + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); 1.662 + for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { 1.663 + int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; 1.664 + if (cinfo->Ah != expected) 1.665 + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); 1.666 + coef_bit_ptr[coefi] = cinfo->Al; 1.667 + } 1.668 + } 1.669 + /* Select MCU decoding routine */ 1.670 + if (cinfo->Ah == 0) { 1.671 + if (cinfo->Ss == 0) 1.672 + entropy->pub.decode_mcu = decode_mcu_DC_first; 1.673 + else 1.674 + entropy->pub.decode_mcu = decode_mcu_AC_first; 1.675 + } else { 1.676 + if (cinfo->Ss == 0) 1.677 + entropy->pub.decode_mcu = decode_mcu_DC_refine; 1.678 + else 1.679 + entropy->pub.decode_mcu = decode_mcu_AC_refine; 1.680 + } 1.681 + } else { 1.682 + /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 1.683 + * This ought to be an error condition, but we make it a warning. 1.684 + */ 1.685 + if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || 1.686 + (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) 1.687 + WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 1.688 + /* Select MCU decoding routine */ 1.689 + entropy->pub.decode_mcu = decode_mcu; 1.690 + } 1.691 + 1.692 + /* Allocate & initialize requested statistics areas */ 1.693 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.694 + compptr = cinfo->cur_comp_info[ci]; 1.695 + if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 1.696 + tbl = compptr->dc_tbl_no; 1.697 + if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 1.698 + ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 1.699 + if (entropy->dc_stats[tbl] == NULL) 1.700 + entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 1.701 + ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); 1.702 + MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); 1.703 + /* Initialize DC predictions to 0 */ 1.704 + entropy->last_dc_val[ci] = 0; 1.705 + entropy->dc_context[ci] = 0; 1.706 + } 1.707 + if (! cinfo->progressive_mode || cinfo->Ss) { 1.708 + tbl = compptr->ac_tbl_no; 1.709 + if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 1.710 + ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 1.711 + if (entropy->ac_stats[tbl] == NULL) 1.712 + entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 1.713 + ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); 1.714 + MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); 1.715 + } 1.716 + } 1.717 + 1.718 + /* Initialize arithmetic decoding variables */ 1.719 + entropy->c = 0; 1.720 + entropy->a = 0; 1.721 + entropy->ct = -16; /* force reading 2 initial bytes to fill C */ 1.722 + 1.723 + /* Initialize restart counter */ 1.724 + entropy->restarts_to_go = cinfo->restart_interval; 1.725 +} 1.726 + 1.727 + 1.728 +/* 1.729 + * Module initialization routine for arithmetic entropy decoding. 1.730 + */ 1.731 + 1.732 +GLOBAL(void) 1.733 +jinit_arith_decoder (j_decompress_ptr cinfo) 1.734 +{ 1.735 + arith_entropy_ptr entropy; 1.736 + int i; 1.737 + 1.738 + entropy = (arith_entropy_ptr) 1.739 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.740 + SIZEOF(arith_entropy_decoder)); 1.741 + cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; 1.742 + entropy->pub.start_pass = start_pass; 1.743 + 1.744 + /* Mark tables unallocated */ 1.745 + for (i = 0; i < NUM_ARITH_TBLS; i++) { 1.746 + entropy->dc_stats[i] = NULL; 1.747 + entropy->ac_stats[i] = NULL; 1.748 + } 1.749 + 1.750 + /* Initialize index for fixed probability estimation */ 1.751 + entropy->fixed_bin[0] = 113; 1.752 + 1.753 + if (cinfo->progressive_mode) { 1.754 + /* Create progression status table */ 1.755 + int *coef_bit_ptr, ci; 1.756 + cinfo->coef_bits = (int (*)[DCTSIZE2]) 1.757 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.758 + cinfo->num_components*DCTSIZE2*SIZEOF(int)); 1.759 + coef_bit_ptr = & cinfo->coef_bits[0][0]; 1.760 + for (ci = 0; ci < cinfo->num_components; ci++) 1.761 + for (i = 0; i < DCTSIZE2; i++) 1.762 + *coef_bit_ptr++ = -1; 1.763 + } 1.764 +}