media/libopus/celt/celt_decoder.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/celt/celt_decoder.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1195 @@
     1.4 +/* Copyright (c) 2007-2008 CSIRO
     1.5 +   Copyright (c) 2007-2010 Xiph.Org Foundation
     1.6 +   Copyright (c) 2008 Gregory Maxwell
     1.7 +   Written by Jean-Marc Valin and Gregory Maxwell */
     1.8 +/*
     1.9 +   Redistribution and use in source and binary forms, with or without
    1.10 +   modification, are permitted provided that the following conditions
    1.11 +   are met:
    1.12 +
    1.13 +   - Redistributions of source code must retain the above copyright
    1.14 +   notice, this list of conditions and the following disclaimer.
    1.15 +
    1.16 +   - Redistributions in binary form must reproduce the above copyright
    1.17 +   notice, this list of conditions and the following disclaimer in the
    1.18 +   documentation and/or other materials provided with the distribution.
    1.19 +
    1.20 +   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    1.21 +   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    1.22 +   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.23 +   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
    1.24 +   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    1.25 +   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    1.26 +   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
    1.27 +   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
    1.28 +   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    1.29 +   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    1.30 +   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.31 +*/
    1.32 +
    1.33 +#ifdef HAVE_CONFIG_H
    1.34 +#include "config.h"
    1.35 +#endif
    1.36 +
    1.37 +#define CELT_DECODER_C
    1.38 +
    1.39 +#include "cpu_support.h"
    1.40 +#include "os_support.h"
    1.41 +#include "mdct.h"
    1.42 +#include <math.h>
    1.43 +#include "celt.h"
    1.44 +#include "pitch.h"
    1.45 +#include "bands.h"
    1.46 +#include "modes.h"
    1.47 +#include "entcode.h"
    1.48 +#include "quant_bands.h"
    1.49 +#include "rate.h"
    1.50 +#include "stack_alloc.h"
    1.51 +#include "mathops.h"
    1.52 +#include "float_cast.h"
    1.53 +#include <stdarg.h>
    1.54 +#include "celt_lpc.h"
    1.55 +#include "vq.h"
    1.56 +
    1.57 +/**********************************************************************/
    1.58 +/*                                                                    */
    1.59 +/*                             DECODER                                */
    1.60 +/*                                                                    */
    1.61 +/**********************************************************************/
    1.62 +#define DECODE_BUFFER_SIZE 2048
    1.63 +
    1.64 +/** Decoder state
    1.65 + @brief Decoder state
    1.66 + */
    1.67 +struct OpusCustomDecoder {
    1.68 +   const OpusCustomMode *mode;
    1.69 +   int overlap;
    1.70 +   int channels;
    1.71 +   int stream_channels;
    1.72 +
    1.73 +   int downsample;
    1.74 +   int start, end;
    1.75 +   int signalling;
    1.76 +   int arch;
    1.77 +
    1.78 +   /* Everything beyond this point gets cleared on a reset */
    1.79 +#define DECODER_RESET_START rng
    1.80 +
    1.81 +   opus_uint32 rng;
    1.82 +   int error;
    1.83 +   int last_pitch_index;
    1.84 +   int loss_count;
    1.85 +   int postfilter_period;
    1.86 +   int postfilter_period_old;
    1.87 +   opus_val16 postfilter_gain;
    1.88 +   opus_val16 postfilter_gain_old;
    1.89 +   int postfilter_tapset;
    1.90 +   int postfilter_tapset_old;
    1.91 +
    1.92 +   celt_sig preemph_memD[2];
    1.93 +
    1.94 +   celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
    1.95 +   /* opus_val16 lpc[],  Size = channels*LPC_ORDER */
    1.96 +   /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
    1.97 +   /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
    1.98 +   /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
    1.99 +   /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
   1.100 +};
   1.101 +
   1.102 +int celt_decoder_get_size(int channels)
   1.103 +{
   1.104 +   const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
   1.105 +   return opus_custom_decoder_get_size(mode, channels);
   1.106 +}
   1.107 +
   1.108 +OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
   1.109 +{
   1.110 +   int size = sizeof(struct CELTDecoder)
   1.111 +            + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
   1.112 +            + channels*LPC_ORDER*sizeof(opus_val16)
   1.113 +            + 4*2*mode->nbEBands*sizeof(opus_val16);
   1.114 +   return size;
   1.115 +}
   1.116 +
   1.117 +#ifdef CUSTOM_MODES
   1.118 +CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
   1.119 +{
   1.120 +   int ret;
   1.121 +   CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
   1.122 +   ret = opus_custom_decoder_init(st, mode, channels);
   1.123 +   if (ret != OPUS_OK)
   1.124 +   {
   1.125 +      opus_custom_decoder_destroy(st);
   1.126 +      st = NULL;
   1.127 +   }
   1.128 +   if (error)
   1.129 +      *error = ret;
   1.130 +   return st;
   1.131 +}
   1.132 +#endif /* CUSTOM_MODES */
   1.133 +
   1.134 +int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
   1.135 +{
   1.136 +   int ret;
   1.137 +   ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
   1.138 +   if (ret != OPUS_OK)
   1.139 +      return ret;
   1.140 +   st->downsample = resampling_factor(sampling_rate);
   1.141 +   if (st->downsample==0)
   1.142 +      return OPUS_BAD_ARG;
   1.143 +   else
   1.144 +      return OPUS_OK;
   1.145 +}
   1.146 +
   1.147 +OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
   1.148 +{
   1.149 +   if (channels < 0 || channels > 2)
   1.150 +      return OPUS_BAD_ARG;
   1.151 +
   1.152 +   if (st==NULL)
   1.153 +      return OPUS_ALLOC_FAIL;
   1.154 +
   1.155 +   OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
   1.156 +
   1.157 +   st->mode = mode;
   1.158 +   st->overlap = mode->overlap;
   1.159 +   st->stream_channels = st->channels = channels;
   1.160 +
   1.161 +   st->downsample = 1;
   1.162 +   st->start = 0;
   1.163 +   st->end = st->mode->effEBands;
   1.164 +   st->signalling = 1;
   1.165 +   st->arch = opus_select_arch();
   1.166 +
   1.167 +   st->loss_count = 0;
   1.168 +
   1.169 +   opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
   1.170 +
   1.171 +   return OPUS_OK;
   1.172 +}
   1.173 +
   1.174 +#ifdef CUSTOM_MODES
   1.175 +void opus_custom_decoder_destroy(CELTDecoder *st)
   1.176 +{
   1.177 +   opus_free(st);
   1.178 +}
   1.179 +#endif /* CUSTOM_MODES */
   1.180 +
   1.181 +static OPUS_INLINE opus_val16 SIG2WORD16(celt_sig x)
   1.182 +{
   1.183 +#ifdef FIXED_POINT
   1.184 +   x = PSHR32(x, SIG_SHIFT);
   1.185 +   x = MAX32(x, -32768);
   1.186 +   x = MIN32(x, 32767);
   1.187 +   return EXTRACT16(x);
   1.188 +#else
   1.189 +   return (opus_val16)x;
   1.190 +#endif
   1.191 +}
   1.192 +
   1.193 +#ifndef RESYNTH
   1.194 +static
   1.195 +#endif
   1.196 +void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch)
   1.197 +{
   1.198 +   int c;
   1.199 +   int Nd;
   1.200 +   int apply_downsampling=0;
   1.201 +   opus_val16 coef0;
   1.202 +
   1.203 +   coef0 = coef[0];
   1.204 +   Nd = N/downsample;
   1.205 +   c=0; do {
   1.206 +      int j;
   1.207 +      celt_sig * OPUS_RESTRICT x;
   1.208 +      opus_val16  * OPUS_RESTRICT y;
   1.209 +      celt_sig m = mem[c];
   1.210 +      x =in[c];
   1.211 +      y = pcm+c;
   1.212 +#ifdef CUSTOM_MODES
   1.213 +      if (coef[1] != 0)
   1.214 +      {
   1.215 +         opus_val16 coef1 = coef[1];
   1.216 +         opus_val16 coef3 = coef[3];
   1.217 +         for (j=0;j<N;j++)
   1.218 +         {
   1.219 +            celt_sig tmp = x[j] + m + VERY_SMALL;
   1.220 +            m = MULT16_32_Q15(coef0, tmp)
   1.221 +                          - MULT16_32_Q15(coef1, x[j]);
   1.222 +            tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
   1.223 +            scratch[j] = tmp;
   1.224 +         }
   1.225 +         apply_downsampling=1;
   1.226 +      } else
   1.227 +#endif
   1.228 +      if (downsample>1)
   1.229 +      {
   1.230 +         /* Shortcut for the standard (non-custom modes) case */
   1.231 +         for (j=0;j<N;j++)
   1.232 +         {
   1.233 +            celt_sig tmp = x[j] + m + VERY_SMALL;
   1.234 +            m = MULT16_32_Q15(coef0, tmp);
   1.235 +            scratch[j] = tmp;
   1.236 +         }
   1.237 +         apply_downsampling=1;
   1.238 +      } else {
   1.239 +         /* Shortcut for the standard (non-custom modes) case */
   1.240 +         for (j=0;j<N;j++)
   1.241 +         {
   1.242 +            celt_sig tmp = x[j] + m + VERY_SMALL;
   1.243 +            m = MULT16_32_Q15(coef0, tmp);
   1.244 +            y[j*C] = SCALEOUT(SIG2WORD16(tmp));
   1.245 +         }
   1.246 +      }
   1.247 +      mem[c] = m;
   1.248 +
   1.249 +      if (apply_downsampling)
   1.250 +      {
   1.251 +         /* Perform down-sampling */
   1.252 +         for (j=0;j<Nd;j++)
   1.253 +            y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
   1.254 +      }
   1.255 +   } while (++c<C);
   1.256 +}
   1.257 +
   1.258 +/** Compute the IMDCT and apply window for all sub-frames and
   1.259 +    all channels in a frame */
   1.260 +#ifndef RESYNTH
   1.261 +static
   1.262 +#endif
   1.263 +void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
   1.264 +      celt_sig * OPUS_RESTRICT out_mem[], int C, int LM)
   1.265 +{
   1.266 +   int b, c;
   1.267 +   int B;
   1.268 +   int N;
   1.269 +   int shift;
   1.270 +   const int overlap = OVERLAP(mode);
   1.271 +
   1.272 +   if (shortBlocks)
   1.273 +   {
   1.274 +      B = shortBlocks;
   1.275 +      N = mode->shortMdctSize;
   1.276 +      shift = mode->maxLM;
   1.277 +   } else {
   1.278 +      B = 1;
   1.279 +      N = mode->shortMdctSize<<LM;
   1.280 +      shift = mode->maxLM-LM;
   1.281 +   }
   1.282 +   c=0; do {
   1.283 +      /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */
   1.284 +      for (b=0;b<B;b++)
   1.285 +         clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B);
   1.286 +   } while (++c<C);
   1.287 +}
   1.288 +
   1.289 +static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
   1.290 +{
   1.291 +   int i, curr, tf_select;
   1.292 +   int tf_select_rsv;
   1.293 +   int tf_changed;
   1.294 +   int logp;
   1.295 +   opus_uint32 budget;
   1.296 +   opus_uint32 tell;
   1.297 +
   1.298 +   budget = dec->storage*8;
   1.299 +   tell = ec_tell(dec);
   1.300 +   logp = isTransient ? 2 : 4;
   1.301 +   tf_select_rsv = LM>0 && tell+logp+1<=budget;
   1.302 +   budget -= tf_select_rsv;
   1.303 +   tf_changed = curr = 0;
   1.304 +   for (i=start;i<end;i++)
   1.305 +   {
   1.306 +      if (tell+logp<=budget)
   1.307 +      {
   1.308 +         curr ^= ec_dec_bit_logp(dec, logp);
   1.309 +         tell = ec_tell(dec);
   1.310 +         tf_changed |= curr;
   1.311 +      }
   1.312 +      tf_res[i] = curr;
   1.313 +      logp = isTransient ? 4 : 5;
   1.314 +   }
   1.315 +   tf_select = 0;
   1.316 +   if (tf_select_rsv &&
   1.317 +     tf_select_table[LM][4*isTransient+0+tf_changed] !=
   1.318 +     tf_select_table[LM][4*isTransient+2+tf_changed])
   1.319 +   {
   1.320 +      tf_select = ec_dec_bit_logp(dec, 1);
   1.321 +   }
   1.322 +   for (i=start;i<end;i++)
   1.323 +   {
   1.324 +      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
   1.325 +   }
   1.326 +}
   1.327 +
   1.328 +/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save
   1.329 +   CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The
   1.330 +   current value corresponds to a pitch of 66.67 Hz. */
   1.331 +#define PLC_PITCH_LAG_MAX (720)
   1.332 +/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a
   1.333 +   pitch of 480 Hz. */
   1.334 +#define PLC_PITCH_LAG_MIN (100)
   1.335 +
   1.336 +static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
   1.337 +{
   1.338 +   int c;
   1.339 +   int i;
   1.340 +   const int C = st->channels;
   1.341 +   celt_sig *decode_mem[2];
   1.342 +   celt_sig *out_syn[2];
   1.343 +   opus_val16 *lpc;
   1.344 +   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
   1.345 +   const OpusCustomMode *mode;
   1.346 +   int nbEBands;
   1.347 +   int overlap;
   1.348 +   int start;
   1.349 +   int downsample;
   1.350 +   int loss_count;
   1.351 +   int noise_based;
   1.352 +   const opus_int16 *eBands;
   1.353 +   VARDECL(celt_sig, scratch);
   1.354 +   SAVE_STACK;
   1.355 +
   1.356 +   mode = st->mode;
   1.357 +   nbEBands = mode->nbEBands;
   1.358 +   overlap = mode->overlap;
   1.359 +   eBands = mode->eBands;
   1.360 +
   1.361 +   c=0; do {
   1.362 +      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
   1.363 +      out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N;
   1.364 +   } while (++c<C);
   1.365 +   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*C);
   1.366 +   oldBandE = lpc+C*LPC_ORDER;
   1.367 +   oldLogE = oldBandE + 2*nbEBands;
   1.368 +   oldLogE2 = oldLogE + 2*nbEBands;
   1.369 +   backgroundLogE = oldLogE2  + 2*nbEBands;
   1.370 +
   1.371 +   loss_count = st->loss_count;
   1.372 +   start = st->start;
   1.373 +   downsample = st->downsample;
   1.374 +   noise_based = loss_count >= 5 || start != 0;
   1.375 +   ALLOC(scratch, noise_based?N*C:N, celt_sig);
   1.376 +   if (noise_based)
   1.377 +   {
   1.378 +      /* Noise-based PLC/CNG */
   1.379 +      celt_sig *freq;
   1.380 +      VARDECL(celt_norm, X);
   1.381 +      opus_uint32 seed;
   1.382 +      opus_val16 *plcLogE;
   1.383 +      int end;
   1.384 +      int effEnd;
   1.385 +
   1.386 +      end = st->end;
   1.387 +      effEnd = IMAX(start, IMIN(end, mode->effEBands));
   1.388 +
   1.389 +      /* Share the interleaved signal MDCT coefficient buffer with the
   1.390 +         deemphasis scratch buffer. */
   1.391 +      freq = scratch;
   1.392 +      ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
   1.393 +
   1.394 +      if (loss_count >= 5)
   1.395 +         plcLogE = backgroundLogE;
   1.396 +      else {
   1.397 +         /* Energy decay */
   1.398 +         opus_val16 decay = loss_count==0 ?
   1.399 +               QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
   1.400 +         c=0; do
   1.401 +         {
   1.402 +            for (i=start;i<end;i++)
   1.403 +               oldBandE[c*nbEBands+i] -= decay;
   1.404 +         } while (++c<C);
   1.405 +         plcLogE = oldBandE;
   1.406 +      }
   1.407 +      seed = st->rng;
   1.408 +      for (c=0;c<C;c++)
   1.409 +      {
   1.410 +         for (i=start;i<effEnd;i++)
   1.411 +         {
   1.412 +            int j;
   1.413 +            int boffs;
   1.414 +            int blen;
   1.415 +            boffs = N*c+(eBands[i]<<LM);
   1.416 +            blen = (eBands[i+1]-eBands[i])<<LM;
   1.417 +            for (j=0;j<blen;j++)
   1.418 +            {
   1.419 +               seed = celt_lcg_rand(seed);
   1.420 +               X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
   1.421 +            }
   1.422 +            renormalise_vector(X+boffs, blen, Q15ONE);
   1.423 +         }
   1.424 +      }
   1.425 +      st->rng = seed;
   1.426 +
   1.427 +      denormalise_bands(mode, X, freq, plcLogE, start, effEnd, C, 1<<LM);
   1.428 +
   1.429 +      c=0; do {
   1.430 +         int bound = eBands[effEnd]<<LM;
   1.431 +         if (downsample!=1)
   1.432 +            bound = IMIN(bound, N/downsample);
   1.433 +         for (i=bound;i<N;i++)
   1.434 +            freq[c*N+i] = 0;
   1.435 +      } while (++c<C);
   1.436 +      c=0; do {
   1.437 +         OPUS_MOVE(decode_mem[c], decode_mem[c]+N,
   1.438 +               DECODE_BUFFER_SIZE-N+(overlap>>1));
   1.439 +      } while (++c<C);
   1.440 +      compute_inv_mdcts(mode, 0, freq, out_syn, C, LM);
   1.441 +   } else {
   1.442 +      /* Pitch-based PLC */
   1.443 +      const opus_val16 *window;
   1.444 +      opus_val16 fade = Q15ONE;
   1.445 +      int pitch_index;
   1.446 +      VARDECL(opus_val32, etmp);
   1.447 +      VARDECL(opus_val16, exc);
   1.448 +
   1.449 +      if (loss_count == 0)
   1.450 +      {
   1.451 +         VARDECL( opus_val16, lp_pitch_buf );
   1.452 +         ALLOC( lp_pitch_buf, DECODE_BUFFER_SIZE>>1, opus_val16 );
   1.453 +         pitch_downsample(decode_mem, lp_pitch_buf,
   1.454 +               DECODE_BUFFER_SIZE, C, st->arch);
   1.455 +         pitch_search(lp_pitch_buf+(PLC_PITCH_LAG_MAX>>1), lp_pitch_buf,
   1.456 +               DECODE_BUFFER_SIZE-PLC_PITCH_LAG_MAX,
   1.457 +               PLC_PITCH_LAG_MAX-PLC_PITCH_LAG_MIN, &pitch_index, st->arch);
   1.458 +         pitch_index = PLC_PITCH_LAG_MAX-pitch_index;
   1.459 +         st->last_pitch_index = pitch_index;
   1.460 +      } else {
   1.461 +         pitch_index = st->last_pitch_index;
   1.462 +         fade = QCONST16(.8f,15);
   1.463 +      }
   1.464 +
   1.465 +      ALLOC(etmp, overlap, opus_val32);
   1.466 +      ALLOC(exc, MAX_PERIOD, opus_val16);
   1.467 +      window = mode->window;
   1.468 +      c=0; do {
   1.469 +         opus_val16 decay;
   1.470 +         opus_val16 attenuation;
   1.471 +         opus_val32 S1=0;
   1.472 +         celt_sig *buf;
   1.473 +         int extrapolation_offset;
   1.474 +         int extrapolation_len;
   1.475 +         int exc_length;
   1.476 +         int j;
   1.477 +
   1.478 +         buf = decode_mem[c];
   1.479 +         for (i=0;i<MAX_PERIOD;i++) {
   1.480 +            exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT);
   1.481 +         }
   1.482 +
   1.483 +         if (loss_count == 0)
   1.484 +         {
   1.485 +            opus_val32 ac[LPC_ORDER+1];
   1.486 +            /* Compute LPC coefficients for the last MAX_PERIOD samples before
   1.487 +               the first loss so we can work in the excitation-filter domain. */
   1.488 +            _celt_autocorr(exc, ac, window, overlap,
   1.489 +                   LPC_ORDER, MAX_PERIOD, st->arch);
   1.490 +            /* Add a noise floor of -40 dB. */
   1.491 +#ifdef FIXED_POINT
   1.492 +            ac[0] += SHR32(ac[0],13);
   1.493 +#else
   1.494 +            ac[0] *= 1.0001f;
   1.495 +#endif
   1.496 +            /* Use lag windowing to stabilize the Levinson-Durbin recursion. */
   1.497 +            for (i=1;i<=LPC_ORDER;i++)
   1.498 +            {
   1.499 +               /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
   1.500 +#ifdef FIXED_POINT
   1.501 +               ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
   1.502 +#else
   1.503 +               ac[i] -= ac[i]*(0.008f*0.008f)*i*i;
   1.504 +#endif
   1.505 +            }
   1.506 +            _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
   1.507 +         }
   1.508 +         /* We want the excitation for 2 pitch periods in order to look for a
   1.509 +            decaying signal, but we can't get more than MAX_PERIOD. */
   1.510 +         exc_length = IMIN(2*pitch_index, MAX_PERIOD);
   1.511 +         /* Initialize the LPC history with the samples just before the start
   1.512 +            of the region for which we're computing the excitation. */
   1.513 +         {
   1.514 +            opus_val16 lpc_mem[LPC_ORDER];
   1.515 +            for (i=0;i<LPC_ORDER;i++)
   1.516 +            {
   1.517 +               lpc_mem[i] =
   1.518 +                     ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-1-i], SIG_SHIFT);
   1.519 +            }
   1.520 +            /* Compute the excitation for exc_length samples before the loss. */
   1.521 +            celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER,
   1.522 +                  exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, lpc_mem);
   1.523 +         }
   1.524 +
   1.525 +         /* Check if the waveform is decaying, and if so how fast.
   1.526 +            We do this to avoid adding energy when concealing in a segment
   1.527 +            with decaying energy. */
   1.528 +         {
   1.529 +            opus_val32 E1=1, E2=1;
   1.530 +            int decay_length;
   1.531 +#ifdef FIXED_POINT
   1.532 +            int shift = IMAX(0,2*celt_zlog2(celt_maxabs16(&exc[MAX_PERIOD-exc_length], exc_length))-20);
   1.533 +#endif
   1.534 +            decay_length = exc_length>>1;
   1.535 +            for (i=0;i<decay_length;i++)
   1.536 +            {
   1.537 +               opus_val16 e;
   1.538 +               e = exc[MAX_PERIOD-decay_length+i];
   1.539 +               E1 += SHR32(MULT16_16(e, e), shift);
   1.540 +               e = exc[MAX_PERIOD-2*decay_length+i];
   1.541 +               E2 += SHR32(MULT16_16(e, e), shift);
   1.542 +            }
   1.543 +            E1 = MIN32(E1, E2);
   1.544 +            decay = celt_sqrt(frac_div32(SHR32(E1, 1), E2));
   1.545 +         }
   1.546 +
   1.547 +         /* Move the decoder memory one frame to the left to give us room to
   1.548 +            add the data for the new frame. We ignore the overlap that extends
   1.549 +            past the end of the buffer, because we aren't going to use it. */
   1.550 +         OPUS_MOVE(buf, buf+N, DECODE_BUFFER_SIZE-N);
   1.551 +
   1.552 +         /* Extrapolate from the end of the excitation with a period of
   1.553 +            "pitch_index", scaling down each period by an additional factor of
   1.554 +            "decay". */
   1.555 +         extrapolation_offset = MAX_PERIOD-pitch_index;
   1.556 +         /* We need to extrapolate enough samples to cover a complete MDCT
   1.557 +            window (including overlap/2 samples on both sides). */
   1.558 +         extrapolation_len = N+overlap;
   1.559 +         /* We also apply fading if this is not the first loss. */
   1.560 +         attenuation = MULT16_16_Q15(fade, decay);
   1.561 +         for (i=j=0;i<extrapolation_len;i++,j++)
   1.562 +         {
   1.563 +            opus_val16 tmp;
   1.564 +            if (j >= pitch_index) {
   1.565 +               j -= pitch_index;
   1.566 +               attenuation = MULT16_16_Q15(attenuation, decay);
   1.567 +            }
   1.568 +            buf[DECODE_BUFFER_SIZE-N+i] =
   1.569 +                  SHL32(EXTEND32(MULT16_16_Q15(attenuation,
   1.570 +                        exc[extrapolation_offset+j])), SIG_SHIFT);
   1.571 +            /* Compute the energy of the previously decoded signal whose
   1.572 +               excitation we're copying. */
   1.573 +            tmp = ROUND16(
   1.574 +                  buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j],
   1.575 +                  SIG_SHIFT);
   1.576 +            S1 += SHR32(MULT16_16(tmp, tmp), 8);
   1.577 +         }
   1.578 +
   1.579 +         {
   1.580 +            opus_val16 lpc_mem[LPC_ORDER];
   1.581 +            /* Copy the last decoded samples (prior to the overlap region) to
   1.582 +               synthesis filter memory so we can have a continuous signal. */
   1.583 +            for (i=0;i<LPC_ORDER;i++)
   1.584 +               lpc_mem[i] = ROUND16(buf[DECODE_BUFFER_SIZE-N-1-i], SIG_SHIFT);
   1.585 +            /* Apply the synthesis filter to convert the excitation back into
   1.586 +               the signal domain. */
   1.587 +            celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER,
   1.588 +                  buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER,
   1.589 +                  lpc_mem);
   1.590 +         }
   1.591 +
   1.592 +         /* Check if the synthesis energy is higher than expected, which can
   1.593 +            happen with the signal changes during our window. If so,
   1.594 +            attenuate. */
   1.595 +         {
   1.596 +            opus_val32 S2=0;
   1.597 +            for (i=0;i<extrapolation_len;i++)
   1.598 +            {
   1.599 +               opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT);
   1.600 +               S2 += SHR32(MULT16_16(tmp, tmp), 8);
   1.601 +            }
   1.602 +            /* This checks for an "explosion" in the synthesis. */
   1.603 +#ifdef FIXED_POINT
   1.604 +            if (!(S1 > SHR32(S2,2)))
   1.605 +#else
   1.606 +            /* The float test is written this way to catch NaNs in the output
   1.607 +               of the IIR filter at the same time. */
   1.608 +            if (!(S1 > 0.2f*S2))
   1.609 +#endif
   1.610 +            {
   1.611 +               for (i=0;i<extrapolation_len;i++)
   1.612 +                  buf[DECODE_BUFFER_SIZE-N+i] = 0;
   1.613 +            } else if (S1 < S2)
   1.614 +            {
   1.615 +               opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
   1.616 +               for (i=0;i<overlap;i++)
   1.617 +               {
   1.618 +                  opus_val16 tmp_g = Q15ONE
   1.619 +                        - MULT16_16_Q15(window[i], Q15ONE-ratio);
   1.620 +                  buf[DECODE_BUFFER_SIZE-N+i] =
   1.621 +                        MULT16_32_Q15(tmp_g, buf[DECODE_BUFFER_SIZE-N+i]);
   1.622 +               }
   1.623 +               for (i=overlap;i<extrapolation_len;i++)
   1.624 +               {
   1.625 +                  buf[DECODE_BUFFER_SIZE-N+i] =
   1.626 +                        MULT16_32_Q15(ratio, buf[DECODE_BUFFER_SIZE-N+i]);
   1.627 +               }
   1.628 +            }
   1.629 +         }
   1.630 +
   1.631 +         /* Apply the pre-filter to the MDCT overlap for the next frame because
   1.632 +            the post-filter will be re-applied in the decoder after the MDCT
   1.633 +            overlap. */
   1.634 +         comb_filter(etmp, buf+DECODE_BUFFER_SIZE,
   1.635 +              st->postfilter_period, st->postfilter_period, overlap,
   1.636 +              -st->postfilter_gain, -st->postfilter_gain,
   1.637 +              st->postfilter_tapset, st->postfilter_tapset, NULL, 0);
   1.638 +
   1.639 +         /* Simulate TDAC on the concealed audio so that it blends with the
   1.640 +            MDCT of the next frame. */
   1.641 +         for (i=0;i<overlap/2;i++)
   1.642 +         {
   1.643 +            buf[DECODE_BUFFER_SIZE+i] =
   1.644 +               MULT16_32_Q15(window[i], etmp[overlap-1-i])
   1.645 +               + MULT16_32_Q15(window[overlap-i-1], etmp[i]);
   1.646 +         }
   1.647 +      } while (++c<C);
   1.648 +   }
   1.649 +
   1.650 +   deemphasis(out_syn, pcm, N, C, downsample,
   1.651 +         mode->preemph, st->preemph_memD, scratch);
   1.652 +
   1.653 +   st->loss_count = loss_count+1;
   1.654 +
   1.655 +   RESTORE_STACK;
   1.656 +}
   1.657 +
   1.658 +int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
   1.659 +{
   1.660 +   int c, i, N;
   1.661 +   int spread_decision;
   1.662 +   opus_int32 bits;
   1.663 +   ec_dec _dec;
   1.664 +   VARDECL(celt_sig, freq);
   1.665 +   VARDECL(celt_norm, X);
   1.666 +   VARDECL(int, fine_quant);
   1.667 +   VARDECL(int, pulses);
   1.668 +   VARDECL(int, cap);
   1.669 +   VARDECL(int, offsets);
   1.670 +   VARDECL(int, fine_priority);
   1.671 +   VARDECL(int, tf_res);
   1.672 +   VARDECL(unsigned char, collapse_masks);
   1.673 +   celt_sig *decode_mem[2];
   1.674 +   celt_sig *out_syn[2];
   1.675 +   opus_val16 *lpc;
   1.676 +   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
   1.677 +
   1.678 +   int shortBlocks;
   1.679 +   int isTransient;
   1.680 +   int intra_ener;
   1.681 +   const int CC = st->channels;
   1.682 +   int LM, M;
   1.683 +   int effEnd;
   1.684 +   int codedBands;
   1.685 +   int alloc_trim;
   1.686 +   int postfilter_pitch;
   1.687 +   opus_val16 postfilter_gain;
   1.688 +   int intensity=0;
   1.689 +   int dual_stereo=0;
   1.690 +   opus_int32 total_bits;
   1.691 +   opus_int32 balance;
   1.692 +   opus_int32 tell;
   1.693 +   int dynalloc_logp;
   1.694 +   int postfilter_tapset;
   1.695 +   int anti_collapse_rsv;
   1.696 +   int anti_collapse_on=0;
   1.697 +   int silence;
   1.698 +   int C = st->stream_channels;
   1.699 +   const OpusCustomMode *mode;
   1.700 +   int nbEBands;
   1.701 +   int overlap;
   1.702 +   const opus_int16 *eBands;
   1.703 +   ALLOC_STACK;
   1.704 +
   1.705 +   mode = st->mode;
   1.706 +   nbEBands = mode->nbEBands;
   1.707 +   overlap = mode->overlap;
   1.708 +   eBands = mode->eBands;
   1.709 +   frame_size *= st->downsample;
   1.710 +
   1.711 +   c=0; do {
   1.712 +      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
   1.713 +   } while (++c<CC);
   1.714 +   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
   1.715 +   oldBandE = lpc+CC*LPC_ORDER;
   1.716 +   oldLogE = oldBandE + 2*nbEBands;
   1.717 +   oldLogE2 = oldLogE + 2*nbEBands;
   1.718 +   backgroundLogE = oldLogE2  + 2*nbEBands;
   1.719 +
   1.720 +#ifdef CUSTOM_MODES
   1.721 +   if (st->signalling && data!=NULL)
   1.722 +   {
   1.723 +      int data0=data[0];
   1.724 +      /* Convert "standard mode" to Opus header */
   1.725 +      if (mode->Fs==48000 && mode->shortMdctSize==120)
   1.726 +      {
   1.727 +         data0 = fromOpus(data0);
   1.728 +         if (data0<0)
   1.729 +            return OPUS_INVALID_PACKET;
   1.730 +      }
   1.731 +      st->end = IMAX(1, mode->effEBands-2*(data0>>5));
   1.732 +      LM = (data0>>3)&0x3;
   1.733 +      C = 1 + ((data0>>2)&0x1);
   1.734 +      data++;
   1.735 +      len--;
   1.736 +      if (LM>mode->maxLM)
   1.737 +         return OPUS_INVALID_PACKET;
   1.738 +      if (frame_size < mode->shortMdctSize<<LM)
   1.739 +         return OPUS_BUFFER_TOO_SMALL;
   1.740 +      else
   1.741 +         frame_size = mode->shortMdctSize<<LM;
   1.742 +   } else {
   1.743 +#else
   1.744 +   {
   1.745 +#endif
   1.746 +      for (LM=0;LM<=mode->maxLM;LM++)
   1.747 +         if (mode->shortMdctSize<<LM==frame_size)
   1.748 +            break;
   1.749 +      if (LM>mode->maxLM)
   1.750 +         return OPUS_BAD_ARG;
   1.751 +   }
   1.752 +   M=1<<LM;
   1.753 +
   1.754 +   if (len<0 || len>1275 || pcm==NULL)
   1.755 +      return OPUS_BAD_ARG;
   1.756 +
   1.757 +   N = M*mode->shortMdctSize;
   1.758 +
   1.759 +   effEnd = st->end;
   1.760 +   if (effEnd > mode->effEBands)
   1.761 +      effEnd = mode->effEBands;
   1.762 +
   1.763 +   if (data == NULL || len<=1)
   1.764 +   {
   1.765 +      celt_decode_lost(st, pcm, N, LM);
   1.766 +      RESTORE_STACK;
   1.767 +      return frame_size/st->downsample;
   1.768 +   }
   1.769 +
   1.770 +   if (dec == NULL)
   1.771 +   {
   1.772 +      ec_dec_init(&_dec,(unsigned char*)data,len);
   1.773 +      dec = &_dec;
   1.774 +   }
   1.775 +
   1.776 +   if (C==1)
   1.777 +   {
   1.778 +      for (i=0;i<nbEBands;i++)
   1.779 +         oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
   1.780 +   }
   1.781 +
   1.782 +   total_bits = len*8;
   1.783 +   tell = ec_tell(dec);
   1.784 +
   1.785 +   if (tell >= total_bits)
   1.786 +      silence = 1;
   1.787 +   else if (tell==1)
   1.788 +      silence = ec_dec_bit_logp(dec, 15);
   1.789 +   else
   1.790 +      silence = 0;
   1.791 +   if (silence)
   1.792 +   {
   1.793 +      /* Pretend we've read all the remaining bits */
   1.794 +      tell = len*8;
   1.795 +      dec->nbits_total+=tell-ec_tell(dec);
   1.796 +   }
   1.797 +
   1.798 +   postfilter_gain = 0;
   1.799 +   postfilter_pitch = 0;
   1.800 +   postfilter_tapset = 0;
   1.801 +   if (st->start==0 && tell+16 <= total_bits)
   1.802 +   {
   1.803 +      if(ec_dec_bit_logp(dec, 1))
   1.804 +      {
   1.805 +         int qg, octave;
   1.806 +         octave = ec_dec_uint(dec, 6);
   1.807 +         postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
   1.808 +         qg = ec_dec_bits(dec, 3);
   1.809 +         if (ec_tell(dec)+2<=total_bits)
   1.810 +            postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
   1.811 +         postfilter_gain = QCONST16(.09375f,15)*(qg+1);
   1.812 +      }
   1.813 +      tell = ec_tell(dec);
   1.814 +   }
   1.815 +
   1.816 +   if (LM > 0 && tell+3 <= total_bits)
   1.817 +   {
   1.818 +      isTransient = ec_dec_bit_logp(dec, 3);
   1.819 +      tell = ec_tell(dec);
   1.820 +   }
   1.821 +   else
   1.822 +      isTransient = 0;
   1.823 +
   1.824 +   if (isTransient)
   1.825 +      shortBlocks = M;
   1.826 +   else
   1.827 +      shortBlocks = 0;
   1.828 +
   1.829 +   /* Decode the global flags (first symbols in the stream) */
   1.830 +   intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
   1.831 +   /* Get band energies */
   1.832 +   unquant_coarse_energy(mode, st->start, st->end, oldBandE,
   1.833 +         intra_ener, dec, C, LM);
   1.834 +
   1.835 +   ALLOC(tf_res, nbEBands, int);
   1.836 +   tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
   1.837 +
   1.838 +   tell = ec_tell(dec);
   1.839 +   spread_decision = SPREAD_NORMAL;
   1.840 +   if (tell+4 <= total_bits)
   1.841 +      spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
   1.842 +
   1.843 +   ALLOC(cap, nbEBands, int);
   1.844 +
   1.845 +   init_caps(mode,cap,LM,C);
   1.846 +
   1.847 +   ALLOC(offsets, nbEBands, int);
   1.848 +
   1.849 +   dynalloc_logp = 6;
   1.850 +   total_bits<<=BITRES;
   1.851 +   tell = ec_tell_frac(dec);
   1.852 +   for (i=st->start;i<st->end;i++)
   1.853 +   {
   1.854 +      int width, quanta;
   1.855 +      int dynalloc_loop_logp;
   1.856 +      int boost;
   1.857 +      width = C*(eBands[i+1]-eBands[i])<<LM;
   1.858 +      /* quanta is 6 bits, but no more than 1 bit/sample
   1.859 +         and no less than 1/8 bit/sample */
   1.860 +      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
   1.861 +      dynalloc_loop_logp = dynalloc_logp;
   1.862 +      boost = 0;
   1.863 +      while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
   1.864 +      {
   1.865 +         int flag;
   1.866 +         flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
   1.867 +         tell = ec_tell_frac(dec);
   1.868 +         if (!flag)
   1.869 +            break;
   1.870 +         boost += quanta;
   1.871 +         total_bits -= quanta;
   1.872 +         dynalloc_loop_logp = 1;
   1.873 +      }
   1.874 +      offsets[i] = boost;
   1.875 +      /* Making dynalloc more likely */
   1.876 +      if (boost>0)
   1.877 +         dynalloc_logp = IMAX(2, dynalloc_logp-1);
   1.878 +   }
   1.879 +
   1.880 +   ALLOC(fine_quant, nbEBands, int);
   1.881 +   alloc_trim = tell+(6<<BITRES) <= total_bits ?
   1.882 +         ec_dec_icdf(dec, trim_icdf, 7) : 5;
   1.883 +
   1.884 +   bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
   1.885 +   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
   1.886 +   bits -= anti_collapse_rsv;
   1.887 +
   1.888 +   ALLOC(pulses, nbEBands, int);
   1.889 +   ALLOC(fine_priority, nbEBands, int);
   1.890 +
   1.891 +   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
   1.892 +         alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
   1.893 +         fine_quant, fine_priority, C, LM, dec, 0, 0, 0);
   1.894 +
   1.895 +   unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C);
   1.896 +
   1.897 +   /* Decode fixed codebook */
   1.898 +   ALLOC(collapse_masks, C*nbEBands, unsigned char);
   1.899 +   ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
   1.900 +
   1.901 +   quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
   1.902 +         NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
   1.903 +         len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
   1.904 +
   1.905 +   if (anti_collapse_rsv > 0)
   1.906 +   {
   1.907 +      anti_collapse_on = ec_dec_bits(dec, 1);
   1.908 +   }
   1.909 +
   1.910 +   unquant_energy_finalise(mode, st->start, st->end, oldBandE,
   1.911 +         fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
   1.912 +
   1.913 +   if (anti_collapse_on)
   1.914 +      anti_collapse(mode, X, collapse_masks, LM, C, N,
   1.915 +            st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
   1.916 +
   1.917 +   ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
   1.918 +
   1.919 +   if (silence)
   1.920 +   {
   1.921 +      for (i=0;i<C*nbEBands;i++)
   1.922 +         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
   1.923 +      for (i=0;i<C*N;i++)
   1.924 +         freq[i] = 0;
   1.925 +   } else {
   1.926 +      /* Synthesis */
   1.927 +      denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M);
   1.928 +   }
   1.929 +   c=0; do {
   1.930 +      OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap/2);
   1.931 +   } while (++c<CC);
   1.932 +
   1.933 +   c=0; do {
   1.934 +      int bound = M*eBands[effEnd];
   1.935 +      if (st->downsample!=1)
   1.936 +         bound = IMIN(bound, N/st->downsample);
   1.937 +      for (i=bound;i<N;i++)
   1.938 +         freq[c*N+i] = 0;
   1.939 +   } while (++c<C);
   1.940 +
   1.941 +   c=0; do {
   1.942 +      out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N;
   1.943 +   } while (++c<CC);
   1.944 +
   1.945 +   if (CC==2&&C==1)
   1.946 +   {
   1.947 +      for (i=0;i<N;i++)
   1.948 +         freq[N+i] = freq[i];
   1.949 +   }
   1.950 +   if (CC==1&&C==2)
   1.951 +   {
   1.952 +      for (i=0;i<N;i++)
   1.953 +         freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
   1.954 +   }
   1.955 +
   1.956 +   /* Compute inverse MDCTs */
   1.957 +   compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM);
   1.958 +
   1.959 +   c=0; do {
   1.960 +      st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
   1.961 +      st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
   1.962 +      comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
   1.963 +            st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
   1.964 +            mode->window, overlap);
   1.965 +      if (LM!=0)
   1.966 +         comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
   1.967 +               st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
   1.968 +               mode->window, overlap);
   1.969 +
   1.970 +   } while (++c<CC);
   1.971 +   st->postfilter_period_old = st->postfilter_period;
   1.972 +   st->postfilter_gain_old = st->postfilter_gain;
   1.973 +   st->postfilter_tapset_old = st->postfilter_tapset;
   1.974 +   st->postfilter_period = postfilter_pitch;
   1.975 +   st->postfilter_gain = postfilter_gain;
   1.976 +   st->postfilter_tapset = postfilter_tapset;
   1.977 +   if (LM!=0)
   1.978 +   {
   1.979 +      st->postfilter_period_old = st->postfilter_period;
   1.980 +      st->postfilter_gain_old = st->postfilter_gain;
   1.981 +      st->postfilter_tapset_old = st->postfilter_tapset;
   1.982 +   }
   1.983 +
   1.984 +   if (C==1) {
   1.985 +      for (i=0;i<nbEBands;i++)
   1.986 +         oldBandE[nbEBands+i]=oldBandE[i];
   1.987 +   }
   1.988 +
   1.989 +   /* In case start or end were to change */
   1.990 +   if (!isTransient)
   1.991 +   {
   1.992 +      for (i=0;i<2*nbEBands;i++)
   1.993 +         oldLogE2[i] = oldLogE[i];
   1.994 +      for (i=0;i<2*nbEBands;i++)
   1.995 +         oldLogE[i] = oldBandE[i];
   1.996 +      for (i=0;i<2*nbEBands;i++)
   1.997 +         backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
   1.998 +   } else {
   1.999 +      for (i=0;i<2*nbEBands;i++)
  1.1000 +         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
  1.1001 +   }
  1.1002 +   c=0; do
  1.1003 +   {
  1.1004 +      for (i=0;i<st->start;i++)
  1.1005 +      {
  1.1006 +         oldBandE[c*nbEBands+i]=0;
  1.1007 +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
  1.1008 +      }
  1.1009 +      for (i=st->end;i<nbEBands;i++)
  1.1010 +      {
  1.1011 +         oldBandE[c*nbEBands+i]=0;
  1.1012 +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
  1.1013 +      }
  1.1014 +   } while (++c<2);
  1.1015 +   st->rng = dec->rng;
  1.1016 +
  1.1017 +   /* We reuse freq[] as scratch space for the de-emphasis */
  1.1018 +   deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq);
  1.1019 +   st->loss_count = 0;
  1.1020 +   RESTORE_STACK;
  1.1021 +   if (ec_tell(dec) > 8*len)
  1.1022 +      return OPUS_INTERNAL_ERROR;
  1.1023 +   if(ec_get_error(dec))
  1.1024 +      st->error = 1;
  1.1025 +   return frame_size/st->downsample;
  1.1026 +}
  1.1027 +
  1.1028 +
  1.1029 +#ifdef CUSTOM_MODES
  1.1030 +
  1.1031 +#ifdef FIXED_POINT
  1.1032 +int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
  1.1033 +{
  1.1034 +   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
  1.1035 +}
  1.1036 +
  1.1037 +#ifndef DISABLE_FLOAT_API
  1.1038 +int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
  1.1039 +{
  1.1040 +   int j, ret, C, N;
  1.1041 +   VARDECL(opus_int16, out);
  1.1042 +   ALLOC_STACK;
  1.1043 +
  1.1044 +   if (pcm==NULL)
  1.1045 +      return OPUS_BAD_ARG;
  1.1046 +
  1.1047 +   C = st->channels;
  1.1048 +   N = frame_size;
  1.1049 +
  1.1050 +   ALLOC(out, C*N, opus_int16);
  1.1051 +   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
  1.1052 +   if (ret>0)
  1.1053 +      for (j=0;j<C*ret;j++)
  1.1054 +         pcm[j]=out[j]*(1.f/32768.f);
  1.1055 +
  1.1056 +   RESTORE_STACK;
  1.1057 +   return ret;
  1.1058 +}
  1.1059 +#endif /* DISABLE_FLOAT_API */
  1.1060 +
  1.1061 +#else
  1.1062 +
  1.1063 +int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
  1.1064 +{
  1.1065 +   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
  1.1066 +}
  1.1067 +
  1.1068 +int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
  1.1069 +{
  1.1070 +   int j, ret, C, N;
  1.1071 +   VARDECL(celt_sig, out);
  1.1072 +   ALLOC_STACK;
  1.1073 +
  1.1074 +   if (pcm==NULL)
  1.1075 +      return OPUS_BAD_ARG;
  1.1076 +
  1.1077 +   C = st->channels;
  1.1078 +   N = frame_size;
  1.1079 +   ALLOC(out, C*N, celt_sig);
  1.1080 +
  1.1081 +   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
  1.1082 +
  1.1083 +   if (ret>0)
  1.1084 +      for (j=0;j<C*ret;j++)
  1.1085 +         pcm[j] = FLOAT2INT16 (out[j]);
  1.1086 +
  1.1087 +   RESTORE_STACK;
  1.1088 +   return ret;
  1.1089 +}
  1.1090 +
  1.1091 +#endif
  1.1092 +#endif /* CUSTOM_MODES */
  1.1093 +
  1.1094 +int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
  1.1095 +{
  1.1096 +   va_list ap;
  1.1097 +
  1.1098 +   va_start(ap, request);
  1.1099 +   switch (request)
  1.1100 +   {
  1.1101 +      case CELT_SET_START_BAND_REQUEST:
  1.1102 +      {
  1.1103 +         opus_int32 value = va_arg(ap, opus_int32);
  1.1104 +         if (value<0 || value>=st->mode->nbEBands)
  1.1105 +            goto bad_arg;
  1.1106 +         st->start = value;
  1.1107 +      }
  1.1108 +      break;
  1.1109 +      case CELT_SET_END_BAND_REQUEST:
  1.1110 +      {
  1.1111 +         opus_int32 value = va_arg(ap, opus_int32);
  1.1112 +         if (value<1 || value>st->mode->nbEBands)
  1.1113 +            goto bad_arg;
  1.1114 +         st->end = value;
  1.1115 +      }
  1.1116 +      break;
  1.1117 +      case CELT_SET_CHANNELS_REQUEST:
  1.1118 +      {
  1.1119 +         opus_int32 value = va_arg(ap, opus_int32);
  1.1120 +         if (value<1 || value>2)
  1.1121 +            goto bad_arg;
  1.1122 +         st->stream_channels = value;
  1.1123 +      }
  1.1124 +      break;
  1.1125 +      case CELT_GET_AND_CLEAR_ERROR_REQUEST:
  1.1126 +      {
  1.1127 +         opus_int32 *value = va_arg(ap, opus_int32*);
  1.1128 +         if (value==NULL)
  1.1129 +            goto bad_arg;
  1.1130 +         *value=st->error;
  1.1131 +         st->error = 0;
  1.1132 +      }
  1.1133 +      break;
  1.1134 +      case OPUS_GET_LOOKAHEAD_REQUEST:
  1.1135 +      {
  1.1136 +         opus_int32 *value = va_arg(ap, opus_int32*);
  1.1137 +         if (value==NULL)
  1.1138 +            goto bad_arg;
  1.1139 +         *value = st->overlap/st->downsample;
  1.1140 +      }
  1.1141 +      break;
  1.1142 +      case OPUS_RESET_STATE:
  1.1143 +      {
  1.1144 +         int i;
  1.1145 +         opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
  1.1146 +         lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
  1.1147 +         oldBandE = lpc+st->channels*LPC_ORDER;
  1.1148 +         oldLogE = oldBandE + 2*st->mode->nbEBands;
  1.1149 +         oldLogE2 = oldLogE + 2*st->mode->nbEBands;
  1.1150 +         OPUS_CLEAR((char*)&st->DECODER_RESET_START,
  1.1151 +               opus_custom_decoder_get_size(st->mode, st->channels)-
  1.1152 +               ((char*)&st->DECODER_RESET_START - (char*)st));
  1.1153 +         for (i=0;i<2*st->mode->nbEBands;i++)
  1.1154 +            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
  1.1155 +      }
  1.1156 +      break;
  1.1157 +      case OPUS_GET_PITCH_REQUEST:
  1.1158 +      {
  1.1159 +         opus_int32 *value = va_arg(ap, opus_int32*);
  1.1160 +         if (value==NULL)
  1.1161 +            goto bad_arg;
  1.1162 +         *value = st->postfilter_period;
  1.1163 +      }
  1.1164 +      break;
  1.1165 +      case CELT_GET_MODE_REQUEST:
  1.1166 +      {
  1.1167 +         const CELTMode ** value = va_arg(ap, const CELTMode**);
  1.1168 +         if (value==0)
  1.1169 +            goto bad_arg;
  1.1170 +         *value=st->mode;
  1.1171 +      }
  1.1172 +      break;
  1.1173 +      case CELT_SET_SIGNALLING_REQUEST:
  1.1174 +      {
  1.1175 +         opus_int32 value = va_arg(ap, opus_int32);
  1.1176 +         st->signalling = value;
  1.1177 +      }
  1.1178 +      break;
  1.1179 +      case OPUS_GET_FINAL_RANGE_REQUEST:
  1.1180 +      {
  1.1181 +         opus_uint32 * value = va_arg(ap, opus_uint32 *);
  1.1182 +         if (value==0)
  1.1183 +            goto bad_arg;
  1.1184 +         *value=st->rng;
  1.1185 +      }
  1.1186 +      break;
  1.1187 +      default:
  1.1188 +         goto bad_request;
  1.1189 +   }
  1.1190 +   va_end(ap);
  1.1191 +   return OPUS_OK;
  1.1192 +bad_arg:
  1.1193 +   va_end(ap);
  1.1194 +   return OPUS_BAD_ARG;
  1.1195 +bad_request:
  1.1196 +      va_end(ap);
  1.1197 +  return OPUS_UNIMPLEMENTED;
  1.1198 +}

mercurial