1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libopus/celt/mathops.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,258 @@ 1.4 +/* Copyright (c) 2002-2008 Jean-Marc Valin 1.5 + Copyright (c) 2007-2008 CSIRO 1.6 + Copyright (c) 2007-2009 Xiph.Org Foundation 1.7 + Written by Jean-Marc Valin */ 1.8 +/** 1.9 + @file mathops.h 1.10 + @brief Various math functions 1.11 +*/ 1.12 +/* 1.13 + Redistribution and use in source and binary forms, with or without 1.14 + modification, are permitted provided that the following conditions 1.15 + are met: 1.16 + 1.17 + - Redistributions of source code must retain the above copyright 1.18 + notice, this list of conditions and the following disclaimer. 1.19 + 1.20 + - Redistributions in binary form must reproduce the above copyright 1.21 + notice, this list of conditions and the following disclaimer in the 1.22 + documentation and/or other materials provided with the distribution. 1.23 + 1.24 + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1.25 + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1.26 + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1.27 + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER 1.28 + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 1.29 + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 1.30 + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 1.31 + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 1.32 + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 1.33 + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 1.34 + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1.35 +*/ 1.36 + 1.37 +#ifndef MATHOPS_H 1.38 +#define MATHOPS_H 1.39 + 1.40 +#include "arch.h" 1.41 +#include "entcode.h" 1.42 +#include "os_support.h" 1.43 + 1.44 +/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ 1.45 +#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) 1.46 + 1.47 +unsigned isqrt32(opus_uint32 _val); 1.48 + 1.49 +#ifndef OVERRIDE_CELT_MAXABS16 1.50 +static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) 1.51 +{ 1.52 + int i; 1.53 + opus_val16 maxval = 0; 1.54 + opus_val16 minval = 0; 1.55 + for (i=0;i<len;i++) 1.56 + { 1.57 + maxval = MAX16(maxval, x[i]); 1.58 + minval = MIN16(minval, x[i]); 1.59 + } 1.60 + return MAX32(EXTEND32(maxval),-EXTEND32(minval)); 1.61 +} 1.62 +#endif 1.63 + 1.64 +#ifndef OVERRIDE_CELT_MAXABS32 1.65 +#ifdef FIXED_POINT 1.66 +static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) 1.67 +{ 1.68 + int i; 1.69 + opus_val32 maxval = 0; 1.70 + opus_val32 minval = 0; 1.71 + for (i=0;i<len;i++) 1.72 + { 1.73 + maxval = MAX32(maxval, x[i]); 1.74 + minval = MIN32(minval, x[i]); 1.75 + } 1.76 + return MAX32(maxval, -minval); 1.77 +} 1.78 +#else 1.79 +#define celt_maxabs32(x,len) celt_maxabs16(x,len) 1.80 +#endif 1.81 +#endif 1.82 + 1.83 + 1.84 +#ifndef FIXED_POINT 1.85 + 1.86 +#define PI 3.141592653f 1.87 +#define celt_sqrt(x) ((float)sqrt(x)) 1.88 +#define celt_rsqrt(x) (1.f/celt_sqrt(x)) 1.89 +#define celt_rsqrt_norm(x) (celt_rsqrt(x)) 1.90 +#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) 1.91 +#define celt_rcp(x) (1.f/(x)) 1.92 +#define celt_div(a,b) ((a)/(b)) 1.93 +#define frac_div32(a,b) ((float)(a)/(b)) 1.94 + 1.95 +#ifdef FLOAT_APPROX 1.96 + 1.97 +/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 1.98 + denorm, +/- inf and NaN are *not* handled */ 1.99 + 1.100 +/** Base-2 log approximation (log2(x)). */ 1.101 +static OPUS_INLINE float celt_log2(float x) 1.102 +{ 1.103 + int integer; 1.104 + float frac; 1.105 + union { 1.106 + float f; 1.107 + opus_uint32 i; 1.108 + } in; 1.109 + in.f = x; 1.110 + integer = (in.i>>23)-127; 1.111 + in.i -= integer<<23; 1.112 + frac = in.f - 1.5f; 1.113 + frac = -0.41445418f + frac*(0.95909232f 1.114 + + frac*(-0.33951290f + frac*0.16541097f)); 1.115 + return 1+integer+frac; 1.116 +} 1.117 + 1.118 +/** Base-2 exponential approximation (2^x). */ 1.119 +static OPUS_INLINE float celt_exp2(float x) 1.120 +{ 1.121 + int integer; 1.122 + float frac; 1.123 + union { 1.124 + float f; 1.125 + opus_uint32 i; 1.126 + } res; 1.127 + integer = floor(x); 1.128 + if (integer < -50) 1.129 + return 0; 1.130 + frac = x-integer; 1.131 + /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ 1.132 + res.f = 0.99992522f + frac * (0.69583354f 1.133 + + frac * (0.22606716f + 0.078024523f*frac)); 1.134 + res.i = (res.i + (integer<<23)) & 0x7fffffff; 1.135 + return res.f; 1.136 +} 1.137 + 1.138 +#else 1.139 +#define celt_log2(x) ((float)(1.442695040888963387*log(x))) 1.140 +#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) 1.141 +#endif 1.142 + 1.143 +#endif 1.144 + 1.145 +#ifdef FIXED_POINT 1.146 + 1.147 +#include "os_support.h" 1.148 + 1.149 +#ifndef OVERRIDE_CELT_ILOG2 1.150 +/** Integer log in base2. Undefined for zero and negative numbers */ 1.151 +static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) 1.152 +{ 1.153 + celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); 1.154 + return EC_ILOG(x)-1; 1.155 +} 1.156 +#endif 1.157 + 1.158 + 1.159 +/** Integer log in base2. Defined for zero, but not for negative numbers */ 1.160 +static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) 1.161 +{ 1.162 + return x <= 0 ? 0 : celt_ilog2(x); 1.163 +} 1.164 + 1.165 +opus_val16 celt_rsqrt_norm(opus_val32 x); 1.166 + 1.167 +opus_val32 celt_sqrt(opus_val32 x); 1.168 + 1.169 +opus_val16 celt_cos_norm(opus_val32 x); 1.170 + 1.171 +/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ 1.172 +static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) 1.173 +{ 1.174 + int i; 1.175 + opus_val16 n, frac; 1.176 + /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, 1.177 + 0.15530808010959576, -0.08556153059057618 */ 1.178 + static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; 1.179 + if (x==0) 1.180 + return -32767; 1.181 + i = celt_ilog2(x); 1.182 + n = VSHR32(x,i-15)-32768-16384; 1.183 + frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); 1.184 + return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); 1.185 +} 1.186 + 1.187 +/* 1.188 + K0 = 1 1.189 + K1 = log(2) 1.190 + K2 = 3-4*log(2) 1.191 + K3 = 3*log(2) - 2 1.192 +*/ 1.193 +#define D0 16383 1.194 +#define D1 22804 1.195 +#define D2 14819 1.196 +#define D3 10204 1.197 + 1.198 +static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) 1.199 +{ 1.200 + opus_val16 frac; 1.201 + frac = SHL16(x, 4); 1.202 + return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); 1.203 +} 1.204 +/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ 1.205 +static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) 1.206 +{ 1.207 + int integer; 1.208 + opus_val16 frac; 1.209 + integer = SHR16(x,10); 1.210 + if (integer>14) 1.211 + return 0x7f000000; 1.212 + else if (integer < -15) 1.213 + return 0; 1.214 + frac = celt_exp2_frac(x-SHL16(integer,10)); 1.215 + return VSHR32(EXTEND32(frac), -integer-2); 1.216 +} 1.217 + 1.218 +opus_val32 celt_rcp(opus_val32 x); 1.219 + 1.220 +#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) 1.221 + 1.222 +opus_val32 frac_div32(opus_val32 a, opus_val32 b); 1.223 + 1.224 +#define M1 32767 1.225 +#define M2 -21 1.226 +#define M3 -11943 1.227 +#define M4 4936 1.228 + 1.229 +/* Atan approximation using a 4th order polynomial. Input is in Q15 format 1.230 + and normalized by pi/4. Output is in Q15 format */ 1.231 +static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) 1.232 +{ 1.233 + return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); 1.234 +} 1.235 + 1.236 +#undef M1 1.237 +#undef M2 1.238 +#undef M3 1.239 +#undef M4 1.240 + 1.241 +/* atan2() approximation valid for positive input values */ 1.242 +static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) 1.243 +{ 1.244 + if (y < x) 1.245 + { 1.246 + opus_val32 arg; 1.247 + arg = celt_div(SHL32(EXTEND32(y),15),x); 1.248 + if (arg >= 32767) 1.249 + arg = 32767; 1.250 + return SHR16(celt_atan01(EXTRACT16(arg)),1); 1.251 + } else { 1.252 + opus_val32 arg; 1.253 + arg = celt_div(SHL32(EXTEND32(x),15),y); 1.254 + if (arg >= 32767) 1.255 + arg = 32767; 1.256 + return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); 1.257 + } 1.258 +} 1.259 + 1.260 +#endif /* FIXED_POINT */ 1.261 +#endif /* MATHOPS_H */