media/libopus/silk/Inlines.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/silk/Inlines.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,188 @@
     1.4 +/***********************************************************************
     1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     1.6 +Redistribution and use in source and binary forms, with or without
     1.7 +modification, are permitted provided that the following conditions
     1.8 +are met:
     1.9 +- Redistributions of source code must retain the above copyright notice,
    1.10 +this list of conditions and the following disclaimer.
    1.11 +- Redistributions in binary form must reproduce the above copyright
    1.12 +notice, this list of conditions and the following disclaimer in the
    1.13 +documentation and/or other materials provided with the distribution.
    1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the
    1.15 +names of specific contributors, may be used to endorse or promote
    1.16 +products derived from this software without specific prior written
    1.17 +permission.
    1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    1.28 +POSSIBILITY OF SUCH DAMAGE.
    1.29 +***********************************************************************/
    1.30 +
    1.31 +/*! \file silk_Inlines.h
    1.32 + *  \brief silk_Inlines.h defines OPUS_INLINE signal processing functions.
    1.33 + */
    1.34 +
    1.35 +#ifndef SILK_FIX_INLINES_H
    1.36 +#define SILK_FIX_INLINES_H
    1.37 +
    1.38 +#ifdef  __cplusplus
    1.39 +extern "C"
    1.40 +{
    1.41 +#endif
    1.42 +
    1.43 +/* count leading zeros of opus_int64 */
    1.44 +static OPUS_INLINE opus_int32 silk_CLZ64( opus_int64 in )
    1.45 +{
    1.46 +    opus_int32 in_upper;
    1.47 +
    1.48 +    in_upper = (opus_int32)silk_RSHIFT64(in, 32);
    1.49 +    if (in_upper == 0) {
    1.50 +        /* Search in the lower 32 bits */
    1.51 +        return 32 + silk_CLZ32( (opus_int32) in );
    1.52 +    } else {
    1.53 +        /* Search in the upper 32 bits */
    1.54 +        return silk_CLZ32( in_upper );
    1.55 +    }
    1.56 +}
    1.57 +
    1.58 +/* get number of leading zeros and fractional part (the bits right after the leading one */
    1.59 +static OPUS_INLINE void silk_CLZ_FRAC(
    1.60 +    opus_int32 in,            /* I  input                               */
    1.61 +    opus_int32 *lz,           /* O  number of leading zeros             */
    1.62 +    opus_int32 *frac_Q7       /* O  the 7 bits right after the leading one */
    1.63 +)
    1.64 +{
    1.65 +    opus_int32 lzeros = silk_CLZ32(in);
    1.66 +
    1.67 +    * lz = lzeros;
    1.68 +    * frac_Q7 = silk_ROR32(in, 24 - lzeros) & 0x7f;
    1.69 +}
    1.70 +
    1.71 +/* Approximation of square root                                          */
    1.72 +/* Accuracy: < +/- 10%  for output values > 15                           */
    1.73 +/*           < +/- 2.5% for output values > 120                          */
    1.74 +static OPUS_INLINE opus_int32 silk_SQRT_APPROX( opus_int32 x )
    1.75 +{
    1.76 +    opus_int32 y, lz, frac_Q7;
    1.77 +
    1.78 +    if( x <= 0 ) {
    1.79 +        return 0;
    1.80 +    }
    1.81 +
    1.82 +    silk_CLZ_FRAC(x, &lz, &frac_Q7);
    1.83 +
    1.84 +    if( lz & 1 ) {
    1.85 +        y = 32768;
    1.86 +    } else {
    1.87 +        y = 46214;        /* 46214 = sqrt(2) * 32768 */
    1.88 +    }
    1.89 +
    1.90 +    /* get scaling right */
    1.91 +    y >>= silk_RSHIFT(lz, 1);
    1.92 +
    1.93 +    /* increment using fractional part of input */
    1.94 +    y = silk_SMLAWB(y, y, silk_SMULBB(213, frac_Q7));
    1.95 +
    1.96 +    return y;
    1.97 +}
    1.98 +
    1.99 +/* Divide two int32 values and return result as int32 in a given Q-domain */
   1.100 +static OPUS_INLINE opus_int32 silk_DIV32_varQ(   /* O    returns a good approximation of "(a32 << Qres) / b32" */
   1.101 +    const opus_int32     a32,               /* I    numerator (Q0)                  */
   1.102 +    const opus_int32     b32,               /* I    denominator (Q0)                */
   1.103 +    const opus_int       Qres               /* I    Q-domain of result (>= 0)       */
   1.104 +)
   1.105 +{
   1.106 +    opus_int   a_headrm, b_headrm, lshift;
   1.107 +    opus_int32 b32_inv, a32_nrm, b32_nrm, result;
   1.108 +
   1.109 +    silk_assert( b32 != 0 );
   1.110 +    silk_assert( Qres >= 0 );
   1.111 +
   1.112 +    /* Compute number of bits head room and normalize inputs */
   1.113 +    a_headrm = silk_CLZ32( silk_abs(a32) ) - 1;
   1.114 +    a32_nrm = silk_LSHIFT(a32, a_headrm);                                       /* Q: a_headrm                  */
   1.115 +    b_headrm = silk_CLZ32( silk_abs(b32) ) - 1;
   1.116 +    b32_nrm = silk_LSHIFT(b32, b_headrm);                                       /* Q: b_headrm                  */
   1.117 +
   1.118 +    /* Inverse of b32, with 14 bits of precision */
   1.119 +    b32_inv = silk_DIV32_16( silk_int32_MAX >> 2, silk_RSHIFT(b32_nrm, 16) );   /* Q: 29 + 16 - b_headrm        */
   1.120 +
   1.121 +    /* First approximation */
   1.122 +    result = silk_SMULWB(a32_nrm, b32_inv);                                     /* Q: 29 + a_headrm - b_headrm  */
   1.123 +
   1.124 +    /* Compute residual by subtracting product of denominator and first approximation */
   1.125 +    /* It's OK to overflow because the final value of a32_nrm should always be small */
   1.126 +    a32_nrm = silk_SUB32_ovflw(a32_nrm, silk_LSHIFT_ovflw( silk_SMMUL(b32_nrm, result), 3 ));  /* Q: a_headrm   */
   1.127 +
   1.128 +    /* Refinement */
   1.129 +    result = silk_SMLAWB(result, a32_nrm, b32_inv);                             /* Q: 29 + a_headrm - b_headrm  */
   1.130 +
   1.131 +    /* Convert to Qres domain */
   1.132 +    lshift = 29 + a_headrm - b_headrm - Qres;
   1.133 +    if( lshift < 0 ) {
   1.134 +        return silk_LSHIFT_SAT32(result, -lshift);
   1.135 +    } else {
   1.136 +        if( lshift < 32){
   1.137 +            return silk_RSHIFT(result, lshift);
   1.138 +        } else {
   1.139 +            /* Avoid undefined result */
   1.140 +            return 0;
   1.141 +        }
   1.142 +    }
   1.143 +}
   1.144 +
   1.145 +/* Invert int32 value and return result as int32 in a given Q-domain */
   1.146 +static OPUS_INLINE opus_int32 silk_INVERSE32_varQ(   /* O    returns a good approximation of "(1 << Qres) / b32" */
   1.147 +    const opus_int32     b32,                   /* I    denominator (Q0)                */
   1.148 +    const opus_int       Qres                   /* I    Q-domain of result (> 0)        */
   1.149 +)
   1.150 +{
   1.151 +    opus_int   b_headrm, lshift;
   1.152 +    opus_int32 b32_inv, b32_nrm, err_Q32, result;
   1.153 +
   1.154 +    silk_assert( b32 != 0 );
   1.155 +    silk_assert( Qres > 0 );
   1.156 +
   1.157 +    /* Compute number of bits head room and normalize input */
   1.158 +    b_headrm = silk_CLZ32( silk_abs(b32) ) - 1;
   1.159 +    b32_nrm = silk_LSHIFT(b32, b_headrm);                                       /* Q: b_headrm                */
   1.160 +
   1.161 +    /* Inverse of b32, with 14 bits of precision */
   1.162 +    b32_inv = silk_DIV32_16( silk_int32_MAX >> 2, silk_RSHIFT(b32_nrm, 16) );   /* Q: 29 + 16 - b_headrm    */
   1.163 +
   1.164 +    /* First approximation */
   1.165 +    result = silk_LSHIFT(b32_inv, 16);                                          /* Q: 61 - b_headrm            */
   1.166 +
   1.167 +    /* Compute residual by subtracting product of denominator and first approximation from one */
   1.168 +    err_Q32 = silk_LSHIFT( ((opus_int32)1<<29) - silk_SMULWB(b32_nrm, b32_inv), 3 );        /* Q32                        */
   1.169 +
   1.170 +    /* Refinement */
   1.171 +    result = silk_SMLAWW(result, err_Q32, b32_inv);                             /* Q: 61 - b_headrm            */
   1.172 +
   1.173 +    /* Convert to Qres domain */
   1.174 +    lshift = 61 - b_headrm - Qres;
   1.175 +    if( lshift <= 0 ) {
   1.176 +        return silk_LSHIFT_SAT32(result, -lshift);
   1.177 +    } else {
   1.178 +        if( lshift < 32){
   1.179 +            return silk_RSHIFT(result, lshift);
   1.180 +        }else{
   1.181 +            /* Avoid undefined result */
   1.182 +            return 0;
   1.183 +        }
   1.184 +    }
   1.185 +}
   1.186 +
   1.187 +#ifdef  __cplusplus
   1.188 +}
   1.189 +#endif
   1.190 +
   1.191 +#endif /* SILK_FIX_INLINES_H */

mercurial