1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libopus/silk/VAD.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,357 @@ 1.4 +/*********************************************************************** 1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved. 1.6 +Redistribution and use in source and binary forms, with or without 1.7 +modification, are permitted provided that the following conditions 1.8 +are met: 1.9 +- Redistributions of source code must retain the above copyright notice, 1.10 +this list of conditions and the following disclaimer. 1.11 +- Redistributions in binary form must reproduce the above copyright 1.12 +notice, this list of conditions and the following disclaimer in the 1.13 +documentation and/or other materials provided with the distribution. 1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the 1.15 +names of specific contributors, may be used to endorse or promote 1.16 +products derived from this software without specific prior written 1.17 +permission. 1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 1.28 +POSSIBILITY OF SUCH DAMAGE. 1.29 +***********************************************************************/ 1.30 + 1.31 +#ifdef HAVE_CONFIG_H 1.32 +#include "config.h" 1.33 +#endif 1.34 + 1.35 +#include "main.h" 1.36 +#include "stack_alloc.h" 1.37 + 1.38 +/* Silk VAD noise level estimation */ 1.39 +static OPUS_INLINE void silk_VAD_GetNoiseLevels( 1.40 + const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ 1.41 + silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ 1.42 +); 1.43 + 1.44 +/**********************************/ 1.45 +/* Initialization of the Silk VAD */ 1.46 +/**********************************/ 1.47 +opus_int silk_VAD_Init( /* O Return value, 0 if success */ 1.48 + silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ 1.49 +) 1.50 +{ 1.51 + opus_int b, ret = 0; 1.52 + 1.53 + /* reset state memory */ 1.54 + silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) ); 1.55 + 1.56 + /* init noise levels */ 1.57 + /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */ 1.58 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.59 + psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 ); 1.60 + } 1.61 + 1.62 + /* Initialize state */ 1.63 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.64 + psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] ); 1.65 + psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] ); 1.66 + } 1.67 + psSilk_VAD->counter = 15; 1.68 + 1.69 + /* init smoothed energy-to-noise ratio*/ 1.70 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.71 + psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */ 1.72 + } 1.73 + 1.74 + return( ret ); 1.75 +} 1.76 + 1.77 +/* Weighting factors for tilt measure */ 1.78 +static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 }; 1.79 + 1.80 +/***************************************/ 1.81 +/* Get the speech activity level in Q8 */ 1.82 +/***************************************/ 1.83 +opus_int silk_VAD_GetSA_Q8( /* O Return value, 0 if success */ 1.84 + silk_encoder_state *psEncC, /* I/O Encoder state */ 1.85 + const opus_int16 pIn[] /* I PCM input */ 1.86 +) 1.87 +{ 1.88 + opus_int SA_Q15, pSNR_dB_Q7, input_tilt; 1.89 + opus_int decimated_framelength1, decimated_framelength2; 1.90 + opus_int decimated_framelength; 1.91 + opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; 1.92 + opus_int32 sumSquared, smooth_coef_Q16; 1.93 + opus_int16 HPstateTmp; 1.94 + VARDECL( opus_int16, X ); 1.95 + opus_int32 Xnrg[ VAD_N_BANDS ]; 1.96 + opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; 1.97 + opus_int32 speech_nrg, x_tmp; 1.98 + opus_int X_offset[ VAD_N_BANDS ]; 1.99 + opus_int ret = 0; 1.100 + silk_VAD_state *psSilk_VAD = &psEncC->sVAD; 1.101 + SAVE_STACK; 1.102 + 1.103 + /* Safety checks */ 1.104 + silk_assert( VAD_N_BANDS == 4 ); 1.105 + silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); 1.106 + silk_assert( psEncC->frame_length <= 512 ); 1.107 + silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); 1.108 + 1.109 + /***********************/ 1.110 + /* Filter and Decimate */ 1.111 + /***********************/ 1.112 + decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); 1.113 + decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); 1.114 + decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); 1.115 + /* Decimate into 4 bands: 1.116 + 0 L 3L L 3L 5L 1.117 + - -- - -- -- 1.118 + 8 8 2 4 4 1.119 + 1.120 + [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | 1.121 + 1.122 + They're arranged to allow the minimal ( frame_length / 4 ) extra 1.123 + scratch space during the downsampling process */ 1.124 + X_offset[ 0 ] = 0; 1.125 + X_offset[ 1 ] = decimated_framelength + decimated_framelength2; 1.126 + X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; 1.127 + X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; 1.128 + ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); 1.129 + 1.130 + /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ 1.131 + silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], 1.132 + X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); 1.133 + 1.134 + /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ 1.135 + silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], 1.136 + X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); 1.137 + 1.138 + /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ 1.139 + silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], 1.140 + X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); 1.141 + 1.142 + /*********************************************/ 1.143 + /* HP filter on lowest band (differentiator) */ 1.144 + /*********************************************/ 1.145 + X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); 1.146 + HPstateTmp = X[ decimated_framelength - 1 ]; 1.147 + for( i = decimated_framelength - 1; i > 0; i-- ) { 1.148 + X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); 1.149 + X[ i ] -= X[ i - 1 ]; 1.150 + } 1.151 + X[ 0 ] -= psSilk_VAD->HPstate; 1.152 + psSilk_VAD->HPstate = HPstateTmp; 1.153 + 1.154 + /*************************************/ 1.155 + /* Calculate the energy in each band */ 1.156 + /*************************************/ 1.157 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.158 + /* Find the decimated framelength in the non-uniformly divided bands */ 1.159 + decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); 1.160 + 1.161 + /* Split length into subframe lengths */ 1.162 + dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); 1.163 + dec_subframe_offset = 0; 1.164 + 1.165 + /* Compute energy per sub-frame */ 1.166 + /* initialize with summed energy of last subframe */ 1.167 + Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; 1.168 + for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { 1.169 + sumSquared = 0; 1.170 + for( i = 0; i < dec_subframe_length; i++ ) { 1.171 + /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ 1.172 + /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ 1.173 + x_tmp = silk_RSHIFT( 1.174 + X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); 1.175 + sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); 1.176 + 1.177 + /* Safety check */ 1.178 + silk_assert( sumSquared >= 0 ); 1.179 + } 1.180 + 1.181 + /* Add/saturate summed energy of current subframe */ 1.182 + if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { 1.183 + Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); 1.184 + } else { 1.185 + /* Look-ahead subframe */ 1.186 + Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); 1.187 + } 1.188 + 1.189 + dec_subframe_offset += dec_subframe_length; 1.190 + } 1.191 + psSilk_VAD->XnrgSubfr[ b ] = sumSquared; 1.192 + } 1.193 + 1.194 + /********************/ 1.195 + /* Noise estimation */ 1.196 + /********************/ 1.197 + silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); 1.198 + 1.199 + /***********************************************/ 1.200 + /* Signal-plus-noise to noise ratio estimation */ 1.201 + /***********************************************/ 1.202 + sumSquared = 0; 1.203 + input_tilt = 0; 1.204 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.205 + speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; 1.206 + if( speech_nrg > 0 ) { 1.207 + /* Divide, with sufficient resolution */ 1.208 + if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { 1.209 + NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); 1.210 + } else { 1.211 + NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); 1.212 + } 1.213 + 1.214 + /* Convert to log domain */ 1.215 + SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; 1.216 + 1.217 + /* Sum-of-squares */ 1.218 + sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ 1.219 + 1.220 + /* Tilt measure */ 1.221 + if( speech_nrg < ( (opus_int32)1 << 20 ) ) { 1.222 + /* Scale down SNR value for small subband speech energies */ 1.223 + SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); 1.224 + } 1.225 + input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); 1.226 + } else { 1.227 + NrgToNoiseRatio_Q8[ b ] = 256; 1.228 + } 1.229 + } 1.230 + 1.231 + /* Mean-of-squares */ 1.232 + sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ 1.233 + 1.234 + /* Root-mean-square approximation, scale to dBs, and write to output pointer */ 1.235 + pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ 1.236 + 1.237 + /*********************************/ 1.238 + /* Speech Probability Estimation */ 1.239 + /*********************************/ 1.240 + SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); 1.241 + 1.242 + /**************************/ 1.243 + /* Frequency Tilt Measure */ 1.244 + /**************************/ 1.245 + psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); 1.246 + 1.247 + /**************************************************/ 1.248 + /* Scale the sigmoid output based on power levels */ 1.249 + /**************************************************/ 1.250 + speech_nrg = 0; 1.251 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.252 + /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ 1.253 + speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); 1.254 + } 1.255 + 1.256 + /* Power scaling */ 1.257 + if( speech_nrg <= 0 ) { 1.258 + SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); 1.259 + } else if( speech_nrg < 32768 ) { 1.260 + if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { 1.261 + speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 ); 1.262 + } else { 1.263 + speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 ); 1.264 + } 1.265 + 1.266 + /* square-root */ 1.267 + speech_nrg = silk_SQRT_APPROX( speech_nrg ); 1.268 + SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); 1.269 + } 1.270 + 1.271 + /* Copy the resulting speech activity in Q8 */ 1.272 + psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); 1.273 + 1.274 + /***********************************/ 1.275 + /* Energy Level and SNR estimation */ 1.276 + /***********************************/ 1.277 + /* Smoothing coefficient */ 1.278 + smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); 1.279 + 1.280 + if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { 1.281 + smooth_coef_Q16 >>= 1; 1.282 + } 1.283 + 1.284 + for( b = 0; b < VAD_N_BANDS; b++ ) { 1.285 + /* compute smoothed energy-to-noise ratio per band */ 1.286 + psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], 1.287 + NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); 1.288 + 1.289 + /* signal to noise ratio in dB per band */ 1.290 + SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); 1.291 + /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ 1.292 + psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); 1.293 + } 1.294 + 1.295 + RESTORE_STACK; 1.296 + return( ret ); 1.297 +} 1.298 + 1.299 +/**************************/ 1.300 +/* Noise level estimation */ 1.301 +/**************************/ 1.302 +static OPUS_INLINE void silk_VAD_GetNoiseLevels( 1.303 + const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ 1.304 + silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ 1.305 +) 1.306 +{ 1.307 + opus_int k; 1.308 + opus_int32 nl, nrg, inv_nrg; 1.309 + opus_int coef, min_coef; 1.310 + 1.311 + /* Initially faster smoothing */ 1.312 + if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */ 1.313 + min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 ); 1.314 + } else { 1.315 + min_coef = 0; 1.316 + } 1.317 + 1.318 + for( k = 0; k < VAD_N_BANDS; k++ ) { 1.319 + /* Get old noise level estimate for current band */ 1.320 + nl = psSilk_VAD->NL[ k ]; 1.321 + silk_assert( nl >= 0 ); 1.322 + 1.323 + /* Add bias */ 1.324 + nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] ); 1.325 + silk_assert( nrg > 0 ); 1.326 + 1.327 + /* Invert energies */ 1.328 + inv_nrg = silk_DIV32( silk_int32_MAX, nrg ); 1.329 + silk_assert( inv_nrg >= 0 ); 1.330 + 1.331 + /* Less update when subband energy is high */ 1.332 + if( nrg > silk_LSHIFT( nl, 3 ) ) { 1.333 + coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3; 1.334 + } else if( nrg < nl ) { 1.335 + coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16; 1.336 + } else { 1.337 + coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 ); 1.338 + } 1.339 + 1.340 + /* Initially faster smoothing */ 1.341 + coef = silk_max_int( coef, min_coef ); 1.342 + 1.343 + /* Smooth inverse energies */ 1.344 + psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef ); 1.345 + silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 ); 1.346 + 1.347 + /* Compute noise level by inverting again */ 1.348 + nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] ); 1.349 + silk_assert( nl >= 0 ); 1.350 + 1.351 + /* Limit noise levels (guarantee 7 bits of head room) */ 1.352 + nl = silk_min( nl, 0x00FFFFFF ); 1.353 + 1.354 + /* Store as part of state */ 1.355 + psSilk_VAD->NL[ k ] = nl; 1.356 + } 1.357 + 1.358 + /* Increment frame counter */ 1.359 + psSilk_VAD->counter++; 1.360 +}