media/libopus/silk/fixed/noise_shape_analysis_FIX.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/silk/fixed/noise_shape_analysis_FIX.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,445 @@
     1.4 +/***********************************************************************
     1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     1.6 +Redistribution and use in source and binary forms, with or without
     1.7 +modification, are permitted provided that the following conditions
     1.8 +are met:
     1.9 +- Redistributions of source code must retain the above copyright notice,
    1.10 +this list of conditions and the following disclaimer.
    1.11 +- Redistributions in binary form must reproduce the above copyright
    1.12 +notice, this list of conditions and the following disclaimer in the
    1.13 +documentation and/or other materials provided with the distribution.
    1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the
    1.15 +names of specific contributors, may be used to endorse or promote
    1.16 +products derived from this software without specific prior written
    1.17 +permission.
    1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    1.28 +POSSIBILITY OF SUCH DAMAGE.
    1.29 +***********************************************************************/
    1.30 +
    1.31 +#ifdef HAVE_CONFIG_H
    1.32 +#include "config.h"
    1.33 +#endif
    1.34 +
    1.35 +#include "main_FIX.h"
    1.36 +#include "stack_alloc.h"
    1.37 +#include "tuning_parameters.h"
    1.38 +
    1.39 +/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a   */
    1.40 +/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
    1.41 +/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
    1.42 +/* coefficient in an array of coefficients, for monic filters.                                    */
    1.43 +static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
    1.44 +    const opus_int32     *coefs_Q24,
    1.45 +    opus_int             lambda_Q16,
    1.46 +    opus_int             order
    1.47 +) {
    1.48 +    opus_int   i;
    1.49 +    opus_int32 gain_Q24;
    1.50 +
    1.51 +    lambda_Q16 = -lambda_Q16;
    1.52 +    gain_Q24 = coefs_Q24[ order - 1 ];
    1.53 +    for( i = order - 2; i >= 0; i-- ) {
    1.54 +        gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
    1.55 +    }
    1.56 +    gain_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
    1.57 +    return silk_INVERSE32_varQ( gain_Q24, 40 );
    1.58 +}
    1.59 +
    1.60 +/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum     */
    1.61 +/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
    1.62 +static OPUS_INLINE void limit_warped_coefs(
    1.63 +    opus_int32           *coefs_syn_Q24,
    1.64 +    opus_int32           *coefs_ana_Q24,
    1.65 +    opus_int             lambda_Q16,
    1.66 +    opus_int32           limit_Q24,
    1.67 +    opus_int             order
    1.68 +) {
    1.69 +    opus_int   i, iter, ind = 0;
    1.70 +    opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
    1.71 +    opus_int32 nom_Q16, den_Q24;
    1.72 +
    1.73 +    /* Convert to monic coefficients */
    1.74 +    lambda_Q16 = -lambda_Q16;
    1.75 +    for( i = order - 1; i > 0; i-- ) {
    1.76 +        coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
    1.77 +        coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
    1.78 +    }
    1.79 +    lambda_Q16 = -lambda_Q16;
    1.80 +    nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
    1.81 +    den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
    1.82 +    gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
    1.83 +    den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
    1.84 +    gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
    1.85 +    for( i = 0; i < order; i++ ) {
    1.86 +        coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
    1.87 +        coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
    1.88 +    }
    1.89 +
    1.90 +    for( iter = 0; iter < 10; iter++ ) {
    1.91 +        /* Find maximum absolute value */
    1.92 +        maxabs_Q24 = -1;
    1.93 +        for( i = 0; i < order; i++ ) {
    1.94 +            tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
    1.95 +            if( tmp > maxabs_Q24 ) {
    1.96 +                maxabs_Q24 = tmp;
    1.97 +                ind = i;
    1.98 +            }
    1.99 +        }
   1.100 +        if( maxabs_Q24 <= limit_Q24 ) {
   1.101 +            /* Coefficients are within range - done */
   1.102 +            return;
   1.103 +        }
   1.104 +
   1.105 +        /* Convert back to true warped coefficients */
   1.106 +        for( i = 1; i < order; i++ ) {
   1.107 +            coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
   1.108 +            coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
   1.109 +        }
   1.110 +        gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
   1.111 +        gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
   1.112 +        for( i = 0; i < order; i++ ) {
   1.113 +            coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
   1.114 +            coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
   1.115 +        }
   1.116 +
   1.117 +        /* Apply bandwidth expansion */
   1.118 +        chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
   1.119 +            silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
   1.120 +            silk_MUL( maxabs_Q24, ind + 1 ), 22 );
   1.121 +        silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
   1.122 +        silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
   1.123 +
   1.124 +        /* Convert to monic warped coefficients */
   1.125 +        lambda_Q16 = -lambda_Q16;
   1.126 +        for( i = order - 1; i > 0; i-- ) {
   1.127 +            coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
   1.128 +            coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
   1.129 +        }
   1.130 +        lambda_Q16 = -lambda_Q16;
   1.131 +        nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
   1.132 +        den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
   1.133 +        gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
   1.134 +        den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
   1.135 +        gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
   1.136 +        for( i = 0; i < order; i++ ) {
   1.137 +            coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
   1.138 +            coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
   1.139 +        }
   1.140 +    }
   1.141 +    silk_assert( 0 );
   1.142 +}
   1.143 +
   1.144 +/**************************************************************/
   1.145 +/* Compute noise shaping coefficients and initial gain values */
   1.146 +/**************************************************************/
   1.147 +void silk_noise_shape_analysis_FIX(
   1.148 +    silk_encoder_state_FIX          *psEnc,                                 /* I/O  Encoder state FIX                                                           */
   1.149 +    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  Encoder control FIX                                                         */
   1.150 +    const opus_int16                *pitch_res,                             /* I    LPC residual from pitch analysis                                            */
   1.151 +    const opus_int16                *x,                                     /* I    Input signal [ frame_length + la_shape ]                                    */
   1.152 +    int                              arch                                   /* I    Run-time architecture                                                       */
   1.153 +)
   1.154 +{
   1.155 +    silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
   1.156 +    opus_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
   1.157 +    opus_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
   1.158 +    opus_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
   1.159 +    opus_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
   1.160 +    opus_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
   1.161 +    opus_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
   1.162 +    opus_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
   1.163 +    opus_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
   1.164 +    VARDECL( opus_int16, x_windowed );
   1.165 +    const opus_int16 *x_ptr, *pitch_res_ptr;
   1.166 +    SAVE_STACK;
   1.167 +
   1.168 +    /* Point to start of first LPC analysis block */
   1.169 +    x_ptr = x - psEnc->sCmn.la_shape;
   1.170 +
   1.171 +    /****************/
   1.172 +    /* GAIN CONTROL */
   1.173 +    /****************/
   1.174 +    SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
   1.175 +
   1.176 +    /* Input quality is the average of the quality in the lowest two VAD bands */
   1.177 +    psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
   1.178 +        + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
   1.179 +
   1.180 +    /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
   1.181 +    psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
   1.182 +        SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
   1.183 +
   1.184 +    /* Reduce coding SNR during low speech activity */
   1.185 +    if( psEnc->sCmn.useCBR == 0 ) {
   1.186 +        b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
   1.187 +        b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
   1.188 +        SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
   1.189 +            silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       /* Q11*/
   1.190 +            silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     /* Q12*/
   1.191 +    }
   1.192 +
   1.193 +    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
   1.194 +        /* Reduce gains for periodic signals */
   1.195 +        SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
   1.196 +    } else {
   1.197 +        /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
   1.198 +        SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
   1.199 +            silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
   1.200 +            SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
   1.201 +    }
   1.202 +
   1.203 +    /*************************/
   1.204 +    /* SPARSENESS PROCESSING */
   1.205 +    /*************************/
   1.206 +    /* Set quantizer offset */
   1.207 +    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
   1.208 +        /* Initially set to 0; may be overruled in process_gains(..) */
   1.209 +        psEnc->sCmn.indices.quantOffsetType = 0;
   1.210 +        psEncCtrl->sparseness_Q8 = 0;
   1.211 +    } else {
   1.212 +        /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
   1.213 +        nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
   1.214 +        energy_variation_Q7 = 0;
   1.215 +        log_energy_prev_Q7  = 0;
   1.216 +        pitch_res_ptr = pitch_res;
   1.217 +        for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
   1.218 +            silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
   1.219 +            nrg += silk_RSHIFT( nSamples, scale );           /* Q(-scale)*/
   1.220 +
   1.221 +            log_energy_Q7 = silk_lin2log( nrg );
   1.222 +            if( k > 0 ) {
   1.223 +                energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
   1.224 +            }
   1.225 +            log_energy_prev_Q7 = log_energy_Q7;
   1.226 +            pitch_res_ptr += nSamples;
   1.227 +        }
   1.228 +
   1.229 +        psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
   1.230 +            SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
   1.231 +
   1.232 +        /* Set quantization offset depending on sparseness measure */
   1.233 +        if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
   1.234 +            psEnc->sCmn.indices.quantOffsetType = 0;
   1.235 +        } else {
   1.236 +            psEnc->sCmn.indices.quantOffsetType = 1;
   1.237 +        }
   1.238 +
   1.239 +        /* Increase coding SNR for sparse signals */
   1.240 +        SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
   1.241 +    }
   1.242 +
   1.243 +    /*******************************/
   1.244 +    /* Control bandwidth expansion */
   1.245 +    /*******************************/
   1.246 +    /* More BWE for signals with high prediction gain */
   1.247 +    strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
   1.248 +    BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
   1.249 +        silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
   1.250 +    delta_Q16  = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
   1.251 +        SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
   1.252 +    BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
   1.253 +    BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
   1.254 +    /* BWExp1 will be applied after BWExp2, so make it relative */
   1.255 +    BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
   1.256 +
   1.257 +    if( psEnc->sCmn.warping_Q16 > 0 ) {
   1.258 +        /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
   1.259 +        warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
   1.260 +    } else {
   1.261 +        warping_Q16 = 0;
   1.262 +    }
   1.263 +
   1.264 +    /********************************************/
   1.265 +    /* Compute noise shaping AR coefs and gains */
   1.266 +    /********************************************/
   1.267 +    ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
   1.268 +    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
   1.269 +        /* Apply window: sine slope followed by flat part followed by cosine slope */
   1.270 +        opus_int shift, slope_part, flat_part;
   1.271 +        flat_part = psEnc->sCmn.fs_kHz * 3;
   1.272 +        slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
   1.273 +
   1.274 +        silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
   1.275 +        shift = slope_part;
   1.276 +        silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
   1.277 +        shift += flat_part;
   1.278 +        silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
   1.279 +
   1.280 +        /* Update pointer: next LPC analysis block */
   1.281 +        x_ptr += psEnc->sCmn.subfr_length;
   1.282 +
   1.283 +        if( psEnc->sCmn.warping_Q16 > 0 ) {
   1.284 +            /* Calculate warped auto correlation */
   1.285 +            silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
   1.286 +        } else {
   1.287 +            /* Calculate regular auto correlation */
   1.288 +            silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
   1.289 +        }
   1.290 +
   1.291 +        /* Add white noise, as a fraction of energy */
   1.292 +        auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
   1.293 +            SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
   1.294 +
   1.295 +        /* Calculate the reflection coefficients using schur */
   1.296 +        nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
   1.297 +        silk_assert( nrg >= 0 );
   1.298 +
   1.299 +        /* Convert reflection coefficients to prediction coefficients */
   1.300 +        silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
   1.301 +
   1.302 +        Qnrg = -scale;          /* range: -12...30*/
   1.303 +        silk_assert( Qnrg >= -12 );
   1.304 +        silk_assert( Qnrg <=  30 );
   1.305 +
   1.306 +        /* Make sure that Qnrg is an even number */
   1.307 +        if( Qnrg & 1 ) {
   1.308 +            Qnrg -= 1;
   1.309 +            nrg >>= 1;
   1.310 +        }
   1.311 +
   1.312 +        tmp32 = silk_SQRT_APPROX( nrg );
   1.313 +        Qnrg >>= 1;             /* range: -6...15*/
   1.314 +
   1.315 +        psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
   1.316 +
   1.317 +        if( psEnc->sCmn.warping_Q16 > 0 ) {
   1.318 +            /* Adjust gain for warping */
   1.319 +            gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
   1.320 +            silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
   1.321 +            if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
   1.322 +               psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
   1.323 +            } else {
   1.324 +               psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
   1.325 +            }
   1.326 +        }
   1.327 +
   1.328 +        /* Bandwidth expansion for synthesis filter shaping */
   1.329 +        silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
   1.330 +
   1.331 +        /* Compute noise shaping filter coefficients */
   1.332 +        silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
   1.333 +
   1.334 +        /* Bandwidth expansion for analysis filter shaping */
   1.335 +        silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
   1.336 +        silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
   1.337 +
   1.338 +        /* Ratio of prediction gains, in energy domain */
   1.339 +        pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
   1.340 +        nrg         = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
   1.341 +
   1.342 +        /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
   1.343 +        pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
   1.344 +        psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
   1.345 +
   1.346 +        /* Convert to monic warped prediction coefficients and limit absolute values */
   1.347 +        limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
   1.348 +
   1.349 +        /* Convert from Q24 to Q13 and store in int16 */
   1.350 +        for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
   1.351 +            psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
   1.352 +            psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
   1.353 +        }
   1.354 +    }
   1.355 +
   1.356 +    /*****************/
   1.357 +    /* Gain tweaking */
   1.358 +    /*****************/
   1.359 +    /* Increase gains during low speech activity and put lower limit on gains */
   1.360 +    gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
   1.361 +    gain_add_Q16  = silk_log2lin(  silk_SMLAWB(  SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
   1.362 +    silk_assert( gain_mult_Q16 > 0 );
   1.363 +    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
   1.364 +        psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
   1.365 +        silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
   1.366 +        psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
   1.367 +    }
   1.368 +
   1.369 +    gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
   1.370 +        psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
   1.371 +    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
   1.372 +        psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
   1.373 +    }
   1.374 +
   1.375 +    /************************************************/
   1.376 +    /* Control low-frequency shaping and noise tilt */
   1.377 +    /************************************************/
   1.378 +    /* Less low frequency shaping for noisy inputs */
   1.379 +    strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
   1.380 +        SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
   1.381 +    strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
   1.382 +    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
   1.383 +        /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
   1.384 +        /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
   1.385 +        opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
   1.386 +        for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
   1.387 +            b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
   1.388 +            /* Pack two coefficients in one int32 */
   1.389 +            psEncCtrl->LF_shp_Q14[ k ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
   1.390 +            psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
   1.391 +        }
   1.392 +        silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
   1.393 +        Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
   1.394 +            silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
   1.395 +                silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
   1.396 +    } else {
   1.397 +        b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
   1.398 +        /* Pack two coefficients in one int32 */
   1.399 +        psEncCtrl->LF_shp_Q14[ 0 ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
   1.400 +            silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
   1.401 +        psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
   1.402 +        for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
   1.403 +            psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
   1.404 +        }
   1.405 +        Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
   1.406 +    }
   1.407 +
   1.408 +    /****************************/
   1.409 +    /* HARMONIC SHAPING CONTROL */
   1.410 +    /****************************/
   1.411 +    /* Control boosting of harmonic frequencies */
   1.412 +    HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
   1.413 +        psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
   1.414 +
   1.415 +    /* More harmonic boost for noisy input signals */
   1.416 +    HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
   1.417 +        SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
   1.418 +
   1.419 +    if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
   1.420 +        /* More harmonic noise shaping for high bitrates or noisy input */
   1.421 +        HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
   1.422 +                SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
   1.423 +                psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
   1.424 +
   1.425 +        /* Less harmonic noise shaping for less periodic signals */
   1.426 +        HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
   1.427 +            silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
   1.428 +    } else {
   1.429 +        HarmShapeGain_Q16 = 0;
   1.430 +    }
   1.431 +
   1.432 +    /*************************/
   1.433 +    /* Smooth over subframes */
   1.434 +    /*************************/
   1.435 +    for( k = 0; k < MAX_NB_SUBFR; k++ ) {
   1.436 +        psShapeSt->HarmBoost_smth_Q16 =
   1.437 +            silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16,     HarmBoost_Q16     - psShapeSt->HarmBoost_smth_Q16,     SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
   1.438 +        psShapeSt->HarmShapeGain_smth_Q16 =
   1.439 +            silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
   1.440 +        psShapeSt->Tilt_smth_Q16 =
   1.441 +            silk_SMLAWB( psShapeSt->Tilt_smth_Q16,          Tilt_Q16          - psShapeSt->Tilt_smth_Q16,          SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
   1.442 +
   1.443 +        psEncCtrl->HarmBoost_Q14[ k ]     = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16,     2 );
   1.444 +        psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
   1.445 +        psEncCtrl->Tilt_Q14[ k ]          = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16,          2 );
   1.446 +    }
   1.447 +    RESTORE_STACK;
   1.448 +}

mercurial