1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libopus/silk/fixed/noise_shape_analysis_FIX.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,445 @@ 1.4 +/*********************************************************************** 1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved. 1.6 +Redistribution and use in source and binary forms, with or without 1.7 +modification, are permitted provided that the following conditions 1.8 +are met: 1.9 +- Redistributions of source code must retain the above copyright notice, 1.10 +this list of conditions and the following disclaimer. 1.11 +- Redistributions in binary form must reproduce the above copyright 1.12 +notice, this list of conditions and the following disclaimer in the 1.13 +documentation and/or other materials provided with the distribution. 1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the 1.15 +names of specific contributors, may be used to endorse or promote 1.16 +products derived from this software without specific prior written 1.17 +permission. 1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 1.28 +POSSIBILITY OF SUCH DAMAGE. 1.29 +***********************************************************************/ 1.30 + 1.31 +#ifdef HAVE_CONFIG_H 1.32 +#include "config.h" 1.33 +#endif 1.34 + 1.35 +#include "main_FIX.h" 1.36 +#include "stack_alloc.h" 1.37 +#include "tuning_parameters.h" 1.38 + 1.39 +/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ 1.40 +/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ 1.41 +/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ 1.42 +/* coefficient in an array of coefficients, for monic filters. */ 1.43 +static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ 1.44 + const opus_int32 *coefs_Q24, 1.45 + opus_int lambda_Q16, 1.46 + opus_int order 1.47 +) { 1.48 + opus_int i; 1.49 + opus_int32 gain_Q24; 1.50 + 1.51 + lambda_Q16 = -lambda_Q16; 1.52 + gain_Q24 = coefs_Q24[ order - 1 ]; 1.53 + for( i = order - 2; i >= 0; i-- ) { 1.54 + gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); 1.55 + } 1.56 + gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); 1.57 + return silk_INVERSE32_varQ( gain_Q24, 40 ); 1.58 +} 1.59 + 1.60 +/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ 1.61 +/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ 1.62 +static OPUS_INLINE void limit_warped_coefs( 1.63 + opus_int32 *coefs_syn_Q24, 1.64 + opus_int32 *coefs_ana_Q24, 1.65 + opus_int lambda_Q16, 1.66 + opus_int32 limit_Q24, 1.67 + opus_int order 1.68 +) { 1.69 + opus_int i, iter, ind = 0; 1.70 + opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16; 1.71 + opus_int32 nom_Q16, den_Q24; 1.72 + 1.73 + /* Convert to monic coefficients */ 1.74 + lambda_Q16 = -lambda_Q16; 1.75 + for( i = order - 1; i > 0; i-- ) { 1.76 + coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); 1.77 + coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); 1.78 + } 1.79 + lambda_Q16 = -lambda_Q16; 1.80 + nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); 1.81 + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); 1.82 + gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); 1.83 + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); 1.84 + gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); 1.85 + for( i = 0; i < order; i++ ) { 1.86 + coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); 1.87 + coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); 1.88 + } 1.89 + 1.90 + for( iter = 0; iter < 10; iter++ ) { 1.91 + /* Find maximum absolute value */ 1.92 + maxabs_Q24 = -1; 1.93 + for( i = 0; i < order; i++ ) { 1.94 + tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) ); 1.95 + if( tmp > maxabs_Q24 ) { 1.96 + maxabs_Q24 = tmp; 1.97 + ind = i; 1.98 + } 1.99 + } 1.100 + if( maxabs_Q24 <= limit_Q24 ) { 1.101 + /* Coefficients are within range - done */ 1.102 + return; 1.103 + } 1.104 + 1.105 + /* Convert back to true warped coefficients */ 1.106 + for( i = 1; i < order; i++ ) { 1.107 + coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); 1.108 + coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); 1.109 + } 1.110 + gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 ); 1.111 + gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 ); 1.112 + for( i = 0; i < order; i++ ) { 1.113 + coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); 1.114 + coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); 1.115 + } 1.116 + 1.117 + /* Apply bandwidth expansion */ 1.118 + chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( 1.119 + silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), 1.120 + silk_MUL( maxabs_Q24, ind + 1 ), 22 ); 1.121 + silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 ); 1.122 + silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 ); 1.123 + 1.124 + /* Convert to monic warped coefficients */ 1.125 + lambda_Q16 = -lambda_Q16; 1.126 + for( i = order - 1; i > 0; i-- ) { 1.127 + coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); 1.128 + coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); 1.129 + } 1.130 + lambda_Q16 = -lambda_Q16; 1.131 + nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); 1.132 + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); 1.133 + gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); 1.134 + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); 1.135 + gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); 1.136 + for( i = 0; i < order; i++ ) { 1.137 + coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); 1.138 + coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); 1.139 + } 1.140 + } 1.141 + silk_assert( 0 ); 1.142 +} 1.143 + 1.144 +/**************************************************************/ 1.145 +/* Compute noise shaping coefficients and initial gain values */ 1.146 +/**************************************************************/ 1.147 +void silk_noise_shape_analysis_FIX( 1.148 + silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ 1.149 + silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ 1.150 + const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ 1.151 + const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ 1.152 + int arch /* I Run-time architecture */ 1.153 +) 1.154 +{ 1.155 + silk_shape_state_FIX *psShapeSt = &psEnc->sShape; 1.156 + opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0; 1.157 + opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32; 1.158 + opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; 1.159 + opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; 1.160 + opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; 1.161 + opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; 1.162 + opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ]; 1.163 + opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ]; 1.164 + VARDECL( opus_int16, x_windowed ); 1.165 + const opus_int16 *x_ptr, *pitch_res_ptr; 1.166 + SAVE_STACK; 1.167 + 1.168 + /* Point to start of first LPC analysis block */ 1.169 + x_ptr = x - psEnc->sCmn.la_shape; 1.170 + 1.171 + /****************/ 1.172 + /* GAIN CONTROL */ 1.173 + /****************/ 1.174 + SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; 1.175 + 1.176 + /* Input quality is the average of the quality in the lowest two VAD bands */ 1.177 + psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] 1.178 + + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); 1.179 + 1.180 + /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ 1.181 + psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - 1.182 + SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); 1.183 + 1.184 + /* Reduce coding SNR during low speech activity */ 1.185 + if( psEnc->sCmn.useCBR == 0 ) { 1.186 + b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; 1.187 + b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); 1.188 + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, 1.189 + silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ 1.190 + silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ 1.191 + } 1.192 + 1.193 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.194 + /* Reduce gains for periodic signals */ 1.195 + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); 1.196 + } else { 1.197 + /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ 1.198 + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, 1.199 + silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), 1.200 + SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); 1.201 + } 1.202 + 1.203 + /*************************/ 1.204 + /* SPARSENESS PROCESSING */ 1.205 + /*************************/ 1.206 + /* Set quantizer offset */ 1.207 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.208 + /* Initially set to 0; may be overruled in process_gains(..) */ 1.209 + psEnc->sCmn.indices.quantOffsetType = 0; 1.210 + psEncCtrl->sparseness_Q8 = 0; 1.211 + } else { 1.212 + /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ 1.213 + nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); 1.214 + energy_variation_Q7 = 0; 1.215 + log_energy_prev_Q7 = 0; 1.216 + pitch_res_ptr = pitch_res; 1.217 + for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { 1.218 + silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); 1.219 + nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ 1.220 + 1.221 + log_energy_Q7 = silk_lin2log( nrg ); 1.222 + if( k > 0 ) { 1.223 + energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); 1.224 + } 1.225 + log_energy_prev_Q7 = log_energy_Q7; 1.226 + pitch_res_ptr += nSamples; 1.227 + } 1.228 + 1.229 + psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 - 1.230 + SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 ); 1.231 + 1.232 + /* Set quantization offset depending on sparseness measure */ 1.233 + if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) { 1.234 + psEnc->sCmn.indices.quantOffsetType = 0; 1.235 + } else { 1.236 + psEnc->sCmn.indices.quantOffsetType = 1; 1.237 + } 1.238 + 1.239 + /* Increase coding SNR for sparse signals */ 1.240 + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) ); 1.241 + } 1.242 + 1.243 + /*******************************/ 1.244 + /* Control bandwidth expansion */ 1.245 + /*******************************/ 1.246 + /* More BWE for signals with high prediction gain */ 1.247 + strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); 1.248 + BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), 1.249 + silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); 1.250 + delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), 1.251 + SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) ); 1.252 + BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 ); 1.253 + BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 ); 1.254 + /* BWExp1 will be applied after BWExp2, so make it relative */ 1.255 + BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) ); 1.256 + 1.257 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.258 + /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ 1.259 + warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); 1.260 + } else { 1.261 + warping_Q16 = 0; 1.262 + } 1.263 + 1.264 + /********************************************/ 1.265 + /* Compute noise shaping AR coefs and gains */ 1.266 + /********************************************/ 1.267 + ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); 1.268 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.269 + /* Apply window: sine slope followed by flat part followed by cosine slope */ 1.270 + opus_int shift, slope_part, flat_part; 1.271 + flat_part = psEnc->sCmn.fs_kHz * 3; 1.272 + slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); 1.273 + 1.274 + silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); 1.275 + shift = slope_part; 1.276 + silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); 1.277 + shift += flat_part; 1.278 + silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); 1.279 + 1.280 + /* Update pointer: next LPC analysis block */ 1.281 + x_ptr += psEnc->sCmn.subfr_length; 1.282 + 1.283 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.284 + /* Calculate warped auto correlation */ 1.285 + silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); 1.286 + } else { 1.287 + /* Calculate regular auto correlation */ 1.288 + silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); 1.289 + } 1.290 + 1.291 + /* Add white noise, as a fraction of energy */ 1.292 + auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), 1.293 + SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); 1.294 + 1.295 + /* Calculate the reflection coefficients using schur */ 1.296 + nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); 1.297 + silk_assert( nrg >= 0 ); 1.298 + 1.299 + /* Convert reflection coefficients to prediction coefficients */ 1.300 + silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); 1.301 + 1.302 + Qnrg = -scale; /* range: -12...30*/ 1.303 + silk_assert( Qnrg >= -12 ); 1.304 + silk_assert( Qnrg <= 30 ); 1.305 + 1.306 + /* Make sure that Qnrg is an even number */ 1.307 + if( Qnrg & 1 ) { 1.308 + Qnrg -= 1; 1.309 + nrg >>= 1; 1.310 + } 1.311 + 1.312 + tmp32 = silk_SQRT_APPROX( nrg ); 1.313 + Qnrg >>= 1; /* range: -6...15*/ 1.314 + 1.315 + psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); 1.316 + 1.317 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.318 + /* Adjust gain for warping */ 1.319 + gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); 1.320 + silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); 1.321 + if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) { 1.322 + psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; 1.323 + } else { 1.324 + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); 1.325 + } 1.326 + } 1.327 + 1.328 + /* Bandwidth expansion for synthesis filter shaping */ 1.329 + silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); 1.330 + 1.331 + /* Compute noise shaping filter coefficients */ 1.332 + silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) ); 1.333 + 1.334 + /* Bandwidth expansion for analysis filter shaping */ 1.335 + silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) ); 1.336 + silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); 1.337 + 1.338 + /* Ratio of prediction gains, in energy domain */ 1.339 + pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder ); 1.340 + nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder ); 1.341 + 1.342 + /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/ 1.343 + pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 ); 1.344 + psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 ); 1.345 + 1.346 + /* Convert to monic warped prediction coefficients and limit absolute values */ 1.347 + limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); 1.348 + 1.349 + /* Convert from Q24 to Q13 and store in int16 */ 1.350 + for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { 1.351 + psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) ); 1.352 + psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) ); 1.353 + } 1.354 + } 1.355 + 1.356 + /*****************/ 1.357 + /* Gain tweaking */ 1.358 + /*****************/ 1.359 + /* Increase gains during low speech activity and put lower limit on gains */ 1.360 + gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); 1.361 + gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); 1.362 + silk_assert( gain_mult_Q16 > 0 ); 1.363 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.364 + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); 1.365 + silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); 1.366 + psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); 1.367 + } 1.368 + 1.369 + gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ), 1.370 + psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 ); 1.371 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.372 + psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] ); 1.373 + } 1.374 + 1.375 + /************************************************/ 1.376 + /* Control low-frequency shaping and noise tilt */ 1.377 + /************************************************/ 1.378 + /* Less low frequency shaping for noisy inputs */ 1.379 + strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), 1.380 + SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); 1.381 + strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); 1.382 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.383 + /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ 1.384 + /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ 1.385 + opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); 1.386 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.387 + b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); 1.388 + /* Pack two coefficients in one int32 */ 1.389 + psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); 1.390 + psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); 1.391 + } 1.392 + silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ 1.393 + Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - 1.394 + silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), 1.395 + silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); 1.396 + } else { 1.397 + b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ 1.398 + /* Pack two coefficients in one int32 */ 1.399 + psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - 1.400 + silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); 1.401 + psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); 1.402 + for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { 1.403 + psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; 1.404 + } 1.405 + Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); 1.406 + } 1.407 + 1.408 + /****************************/ 1.409 + /* HARMONIC SHAPING CONTROL */ 1.410 + /****************************/ 1.411 + /* Control boosting of harmonic frequencies */ 1.412 + HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ), 1.413 + psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) ); 1.414 + 1.415 + /* More harmonic boost for noisy input signals */ 1.416 + HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16, 1.417 + SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) ); 1.418 + 1.419 + if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.420 + /* More harmonic noise shaping for high bitrates or noisy input */ 1.421 + HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), 1.422 + SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), 1.423 + psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); 1.424 + 1.425 + /* Less harmonic noise shaping for less periodic signals */ 1.426 + HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), 1.427 + silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); 1.428 + } else { 1.429 + HarmShapeGain_Q16 = 0; 1.430 + } 1.431 + 1.432 + /*************************/ 1.433 + /* Smooth over subframes */ 1.434 + /*************************/ 1.435 + for( k = 0; k < MAX_NB_SUBFR; k++ ) { 1.436 + psShapeSt->HarmBoost_smth_Q16 = 1.437 + silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); 1.438 + psShapeSt->HarmShapeGain_smth_Q16 = 1.439 + silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); 1.440 + psShapeSt->Tilt_smth_Q16 = 1.441 + silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); 1.442 + 1.443 + psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 ); 1.444 + psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); 1.445 + psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); 1.446 + } 1.447 + RESTORE_STACK; 1.448 +}