media/libopus/silk/float/burg_modified_FLP.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/silk/float/burg_modified_FLP.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,186 @@
     1.4 +/***********************************************************************
     1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     1.6 +Redistribution and use in source and binary forms, with or without
     1.7 +modification, are permitted provided that the following conditions
     1.8 +are met:
     1.9 +- Redistributions of source code must retain the above copyright notice,
    1.10 +this list of conditions and the following disclaimer.
    1.11 +- Redistributions in binary form must reproduce the above copyright
    1.12 +notice, this list of conditions and the following disclaimer in the
    1.13 +documentation and/or other materials provided with the distribution.
    1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the
    1.15 +names of specific contributors, may be used to endorse or promote
    1.16 +products derived from this software without specific prior written
    1.17 +permission.
    1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    1.28 +POSSIBILITY OF SUCH DAMAGE.
    1.29 +***********************************************************************/
    1.30 +
    1.31 +#ifdef HAVE_CONFIG_H
    1.32 +#include "config.h"
    1.33 +#endif
    1.34 +
    1.35 +#include "SigProc_FLP.h"
    1.36 +#include "tuning_parameters.h"
    1.37 +#include "define.h"
    1.38 +
    1.39 +#define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
    1.40 +
    1.41 +/* Compute reflection coefficients from input signal */
    1.42 +silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
    1.43 +    silk_float          A[],                /* O    prediction coefficients (length order)                      */
    1.44 +    const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
    1.45 +    const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
    1.46 +    const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
    1.47 +    const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
    1.48 +    const opus_int      D                   /* I    order                                                       */
    1.49 +)
    1.50 +{
    1.51 +    opus_int         k, n, s, reached_max_gain;
    1.52 +    double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
    1.53 +    const silk_float *x_ptr;
    1.54 +    double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
    1.55 +    double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
    1.56 +    double           Af[ SILK_MAX_ORDER_LPC ];
    1.57 +
    1.58 +    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
    1.59 +
    1.60 +    /* Compute autocorrelations, added over subframes */
    1.61 +    C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
    1.62 +    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
    1.63 +    for( s = 0; s < nb_subfr; s++ ) {
    1.64 +        x_ptr = x + s * subfr_length;
    1.65 +        for( n = 1; n < D + 1; n++ ) {
    1.66 +            C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
    1.67 +        }
    1.68 +    }
    1.69 +    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
    1.70 +
    1.71 +    /* Initialize */
    1.72 +    CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
    1.73 +    invGain = 1.0f;
    1.74 +    reached_max_gain = 0;
    1.75 +    for( n = 0; n < D; n++ ) {
    1.76 +        /* Update first row of correlation matrix (without first element) */
    1.77 +        /* Update last row of correlation matrix (without last element, stored in reversed order) */
    1.78 +        /* Update C * Af */
    1.79 +        /* Update C * flipud(Af) (stored in reversed order) */
    1.80 +        for( s = 0; s < nb_subfr; s++ ) {
    1.81 +            x_ptr = x + s * subfr_length;
    1.82 +            tmp1 = x_ptr[ n ];
    1.83 +            tmp2 = x_ptr[ subfr_length - n - 1 ];
    1.84 +            for( k = 0; k < n; k++ ) {
    1.85 +                C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
    1.86 +                C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
    1.87 +                Atmp = Af[ k ];
    1.88 +                tmp1 += x_ptr[ n - k - 1 ] * Atmp;
    1.89 +                tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
    1.90 +            }
    1.91 +            for( k = 0; k <= n; k++ ) {
    1.92 +                CAf[ k ] -= tmp1 * x_ptr[ n - k ];
    1.93 +                CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
    1.94 +            }
    1.95 +        }
    1.96 +        tmp1 = C_first_row[ n ];
    1.97 +        tmp2 = C_last_row[ n ];
    1.98 +        for( k = 0; k < n; k++ ) {
    1.99 +            Atmp = Af[ k ];
   1.100 +            tmp1 += C_last_row[  n - k - 1 ] * Atmp;
   1.101 +            tmp2 += C_first_row[ n - k - 1 ] * Atmp;
   1.102 +        }
   1.103 +        CAf[ n + 1 ] = tmp1;
   1.104 +        CAb[ n + 1 ] = tmp2;
   1.105 +
   1.106 +        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
   1.107 +        num = CAb[ n + 1 ];
   1.108 +        nrg_b = CAb[ 0 ];
   1.109 +        nrg_f = CAf[ 0 ];
   1.110 +        for( k = 0; k < n; k++ ) {
   1.111 +            Atmp = Af[ k ];
   1.112 +            num   += CAb[ n - k ] * Atmp;
   1.113 +            nrg_b += CAb[ k + 1 ] * Atmp;
   1.114 +            nrg_f += CAf[ k + 1 ] * Atmp;
   1.115 +        }
   1.116 +        silk_assert( nrg_f > 0.0 );
   1.117 +        silk_assert( nrg_b > 0.0 );
   1.118 +
   1.119 +        /* Calculate the next order reflection (parcor) coefficient */
   1.120 +        rc = -2.0 * num / ( nrg_f + nrg_b );
   1.121 +        silk_assert( rc > -1.0 && rc < 1.0 );
   1.122 +
   1.123 +        /* Update inverse prediction gain */
   1.124 +        tmp1 = invGain * ( 1.0 - rc * rc );
   1.125 +        if( tmp1 <= minInvGain ) {
   1.126 +            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
   1.127 +            rc = sqrt( 1.0 - minInvGain / invGain );
   1.128 +            if( num > 0 ) {
   1.129 +                /* Ensure adjusted reflection coefficients has the original sign */
   1.130 +                rc = -rc;
   1.131 +            }
   1.132 +            invGain = minInvGain;
   1.133 +            reached_max_gain = 1;
   1.134 +        } else {
   1.135 +            invGain = tmp1;
   1.136 +        }
   1.137 +
   1.138 +        /* Update the AR coefficients */
   1.139 +        for( k = 0; k < (n + 1) >> 1; k++ ) {
   1.140 +            tmp1 = Af[ k ];
   1.141 +            tmp2 = Af[ n - k - 1 ];
   1.142 +            Af[ k ]         = tmp1 + rc * tmp2;
   1.143 +            Af[ n - k - 1 ] = tmp2 + rc * tmp1;
   1.144 +        }
   1.145 +        Af[ n ] = rc;
   1.146 +
   1.147 +        if( reached_max_gain ) {
   1.148 +            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
   1.149 +            for( k = n + 1; k < D; k++ ) {
   1.150 +                Af[ k ] = 0.0;
   1.151 +            }
   1.152 +            break;
   1.153 +        }
   1.154 +
   1.155 +        /* Update C * Af and C * Ab */
   1.156 +        for( k = 0; k <= n + 1; k++ ) {
   1.157 +            tmp1 = CAf[ k ];
   1.158 +            CAf[ k ]          += rc * CAb[ n - k + 1 ];
   1.159 +            CAb[ n - k + 1  ] += rc * tmp1;
   1.160 +        }
   1.161 +    }
   1.162 +
   1.163 +    if( reached_max_gain ) {
   1.164 +        /* Convert to silk_float */
   1.165 +        for( k = 0; k < D; k++ ) {
   1.166 +            A[ k ] = (silk_float)( -Af[ k ] );
   1.167 +        }
   1.168 +        /* Subtract energy of preceding samples from C0 */
   1.169 +        for( s = 0; s < nb_subfr; s++ ) {
   1.170 +            C0 -= silk_energy_FLP( x + s * subfr_length, D );
   1.171 +        }
   1.172 +        /* Approximate residual energy */
   1.173 +        nrg_f = C0 * invGain;
   1.174 +    } else {
   1.175 +        /* Compute residual energy and store coefficients as silk_float */
   1.176 +        nrg_f = CAf[ 0 ];
   1.177 +        tmp1 = 1.0;
   1.178 +        for( k = 0; k < D; k++ ) {
   1.179 +            Atmp = Af[ k ];
   1.180 +            nrg_f += CAf[ k + 1 ] * Atmp;
   1.181 +            tmp1  += Atmp * Atmp;
   1.182 +            A[ k ] = (silk_float)(-Atmp);
   1.183 +        }
   1.184 +        nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
   1.185 +    }
   1.186 +
   1.187 +    /* Return residual energy */
   1.188 +    return (silk_float)nrg_f;
   1.189 +}

mercurial