1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libopus/silk/float/noise_shape_analysis_FLP.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,365 @@ 1.4 +/*********************************************************************** 1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved. 1.6 +Redistribution and use in source and binary forms, with or without 1.7 +modification, are permitted provided that the following conditions 1.8 +are met: 1.9 +- Redistributions of source code must retain the above copyright notice, 1.10 +this list of conditions and the following disclaimer. 1.11 +- Redistributions in binary form must reproduce the above copyright 1.12 +notice, this list of conditions and the following disclaimer in the 1.13 +documentation and/or other materials provided with the distribution. 1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the 1.15 +names of specific contributors, may be used to endorse or promote 1.16 +products derived from this software without specific prior written 1.17 +permission. 1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 1.28 +POSSIBILITY OF SUCH DAMAGE. 1.29 +***********************************************************************/ 1.30 + 1.31 +#ifdef HAVE_CONFIG_H 1.32 +#include "config.h" 1.33 +#endif 1.34 + 1.35 +#include "main_FLP.h" 1.36 +#include "tuning_parameters.h" 1.37 + 1.38 +/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ 1.39 +/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ 1.40 +/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ 1.41 +/* coefficient in an array of coefficients, for monic filters. */ 1.42 +static OPUS_INLINE silk_float warped_gain( 1.43 + const silk_float *coefs, 1.44 + silk_float lambda, 1.45 + opus_int order 1.46 +) { 1.47 + opus_int i; 1.48 + silk_float gain; 1.49 + 1.50 + lambda = -lambda; 1.51 + gain = coefs[ order - 1 ]; 1.52 + for( i = order - 2; i >= 0; i-- ) { 1.53 + gain = lambda * gain + coefs[ i ]; 1.54 + } 1.55 + return (silk_float)( 1.0f / ( 1.0f - lambda * gain ) ); 1.56 +} 1.57 + 1.58 +/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ 1.59 +/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ 1.60 +static OPUS_INLINE void warped_true2monic_coefs( 1.61 + silk_float *coefs_syn, 1.62 + silk_float *coefs_ana, 1.63 + silk_float lambda, 1.64 + silk_float limit, 1.65 + opus_int order 1.66 +) { 1.67 + opus_int i, iter, ind = 0; 1.68 + silk_float tmp, maxabs, chirp, gain_syn, gain_ana; 1.69 + 1.70 + /* Convert to monic coefficients */ 1.71 + for( i = order - 1; i > 0; i-- ) { 1.72 + coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; 1.73 + coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; 1.74 + } 1.75 + gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); 1.76 + gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); 1.77 + for( i = 0; i < order; i++ ) { 1.78 + coefs_syn[ i ] *= gain_syn; 1.79 + coefs_ana[ i ] *= gain_ana; 1.80 + } 1.81 + 1.82 + /* Limit */ 1.83 + for( iter = 0; iter < 10; iter++ ) { 1.84 + /* Find maximum absolute value */ 1.85 + maxabs = -1.0f; 1.86 + for( i = 0; i < order; i++ ) { 1.87 + tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) ); 1.88 + if( tmp > maxabs ) { 1.89 + maxabs = tmp; 1.90 + ind = i; 1.91 + } 1.92 + } 1.93 + if( maxabs <= limit ) { 1.94 + /* Coefficients are within range - done */ 1.95 + return; 1.96 + } 1.97 + 1.98 + /* Convert back to true warped coefficients */ 1.99 + for( i = 1; i < order; i++ ) { 1.100 + coefs_syn[ i - 1 ] += lambda * coefs_syn[ i ]; 1.101 + coefs_ana[ i - 1 ] += lambda * coefs_ana[ i ]; 1.102 + } 1.103 + gain_syn = 1.0f / gain_syn; 1.104 + gain_ana = 1.0f / gain_ana; 1.105 + for( i = 0; i < order; i++ ) { 1.106 + coefs_syn[ i ] *= gain_syn; 1.107 + coefs_ana[ i ] *= gain_ana; 1.108 + } 1.109 + 1.110 + /* Apply bandwidth expansion */ 1.111 + chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); 1.112 + silk_bwexpander_FLP( coefs_syn, order, chirp ); 1.113 + silk_bwexpander_FLP( coefs_ana, order, chirp ); 1.114 + 1.115 + /* Convert to monic warped coefficients */ 1.116 + for( i = order - 1; i > 0; i-- ) { 1.117 + coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; 1.118 + coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; 1.119 + } 1.120 + gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); 1.121 + gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); 1.122 + for( i = 0; i < order; i++ ) { 1.123 + coefs_syn[ i ] *= gain_syn; 1.124 + coefs_ana[ i ] *= gain_ana; 1.125 + } 1.126 + } 1.127 + silk_assert( 0 ); 1.128 +} 1.129 + 1.130 +/* Compute noise shaping coefficients and initial gain values */ 1.131 +void silk_noise_shape_analysis_FLP( 1.132 + silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ 1.133 + silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ 1.134 + const silk_float *pitch_res, /* I LPC residual from pitch analysis */ 1.135 + const silk_float *x /* I Input signal [frame_length + la_shape] */ 1.136 +) 1.137 +{ 1.138 + silk_shape_state_FLP *psShapeSt = &psEnc->sShape; 1.139 + opus_int k, nSamples; 1.140 + silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt; 1.141 + silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation; 1.142 + silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping; 1.143 + silk_float x_windowed[ SHAPE_LPC_WIN_MAX ]; 1.144 + silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; 1.145 + const silk_float *x_ptr, *pitch_res_ptr; 1.146 + 1.147 + /* Point to start of first LPC analysis block */ 1.148 + x_ptr = x - psEnc->sCmn.la_shape; 1.149 + 1.150 + /****************/ 1.151 + /* GAIN CONTROL */ 1.152 + /****************/ 1.153 + SNR_adj_dB = psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ); 1.154 + 1.155 + /* Input quality is the average of the quality in the lowest two VAD bands */ 1.156 + psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f ); 1.157 + 1.158 + /* Coding quality level, between 0.0 and 1.0 */ 1.159 + psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 20.0f ) ); 1.160 + 1.161 + if( psEnc->sCmn.useCBR == 0 ) { 1.162 + /* Reduce coding SNR during low speech activity */ 1.163 + b = 1.0f - psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); 1.164 + SNR_adj_dB -= BG_SNR_DECR_dB * psEncCtrl->coding_quality * ( 0.5f + 0.5f * psEncCtrl->input_quality ) * b * b; 1.165 + } 1.166 + 1.167 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.168 + /* Reduce gains for periodic signals */ 1.169 + SNR_adj_dB += HARM_SNR_INCR_dB * psEnc->LTPCorr; 1.170 + } else { 1.171 + /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ 1.172 + SNR_adj_dB += ( -0.4f * psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) + 6.0f ) * ( 1.0f - psEncCtrl->input_quality ); 1.173 + } 1.174 + 1.175 + /*************************/ 1.176 + /* SPARSENESS PROCESSING */ 1.177 + /*************************/ 1.178 + /* Set quantizer offset */ 1.179 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.180 + /* Initially set to 0; may be overruled in process_gains(..) */ 1.181 + psEnc->sCmn.indices.quantOffsetType = 0; 1.182 + psEncCtrl->sparseness = 0.0f; 1.183 + } else { 1.184 + /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ 1.185 + nSamples = 2 * psEnc->sCmn.fs_kHz; 1.186 + energy_variation = 0.0f; 1.187 + log_energy_prev = 0.0f; 1.188 + pitch_res_ptr = pitch_res; 1.189 + for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { 1.190 + nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples ); 1.191 + log_energy = silk_log2( nrg ); 1.192 + if( k > 0 ) { 1.193 + energy_variation += silk_abs_float( log_energy - log_energy_prev ); 1.194 + } 1.195 + log_energy_prev = log_energy; 1.196 + pitch_res_ptr += nSamples; 1.197 + } 1.198 + psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) ); 1.199 + 1.200 + /* Set quantization offset depending on sparseness measure */ 1.201 + if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) { 1.202 + psEnc->sCmn.indices.quantOffsetType = 0; 1.203 + } else { 1.204 + psEnc->sCmn.indices.quantOffsetType = 1; 1.205 + } 1.206 + 1.207 + /* Increase coding SNR for sparse signals */ 1.208 + SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f ); 1.209 + } 1.210 + 1.211 + /*******************************/ 1.212 + /* Control bandwidth expansion */ 1.213 + /*******************************/ 1.214 + /* More BWE for signals with high prediction gain */ 1.215 + strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */ 1.216 + BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); 1.217 + delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality ); 1.218 + BWExp1 -= delta; 1.219 + BWExp2 += delta; 1.220 + /* BWExp1 will be applied after BWExp2, so make it relative */ 1.221 + BWExp1 /= BWExp2; 1.222 + 1.223 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.224 + /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ 1.225 + warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; 1.226 + } else { 1.227 + warping = 0.0f; 1.228 + } 1.229 + 1.230 + /********************************************/ 1.231 + /* Compute noise shaping AR coefs and gains */ 1.232 + /********************************************/ 1.233 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.234 + /* Apply window: sine slope followed by flat part followed by cosine slope */ 1.235 + opus_int shift, slope_part, flat_part; 1.236 + flat_part = psEnc->sCmn.fs_kHz * 3; 1.237 + slope_part = ( psEnc->sCmn.shapeWinLength - flat_part ) / 2; 1.238 + 1.239 + silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part ); 1.240 + shift = slope_part; 1.241 + silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) ); 1.242 + shift += flat_part; 1.243 + silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part ); 1.244 + 1.245 + /* Update pointer: next LPC analysis block */ 1.246 + x_ptr += psEnc->sCmn.subfr_length; 1.247 + 1.248 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.249 + /* Calculate warped auto correlation */ 1.250 + silk_warped_autocorrelation_FLP( auto_corr, x_windowed, warping, 1.251 + psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); 1.252 + } else { 1.253 + /* Calculate regular auto correlation */ 1.254 + silk_autocorrelation_FLP( auto_corr, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 ); 1.255 + } 1.256 + 1.257 + /* Add white noise, as a fraction of energy */ 1.258 + auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION; 1.259 + 1.260 + /* Convert correlations to prediction coefficients, and compute residual energy */ 1.261 + nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder ); 1.262 + psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg ); 1.263 + 1.264 + if( psEnc->sCmn.warping_Q16 > 0 ) { 1.265 + /* Adjust gain for warping */ 1.266 + psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); 1.267 + } 1.268 + 1.269 + /* Bandwidth expansion for synthesis filter shaping */ 1.270 + silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 ); 1.271 + 1.272 + /* Compute noise shaping filter coefficients */ 1.273 + silk_memcpy( 1.274 + &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], 1.275 + &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], 1.276 + psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) ); 1.277 + 1.278 + /* Bandwidth expansion for analysis filter shaping */ 1.279 + silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 ); 1.280 + 1.281 + /* Ratio of prediction gains, in energy domain */ 1.282 + pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); 1.283 + nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); 1.284 + psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ); 1.285 + 1.286 + /* Convert to monic warped prediction coefficients and limit absolute values */ 1.287 + warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], 1.288 + warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); 1.289 + } 1.290 + 1.291 + /*****************/ 1.292 + /* Gain tweaking */ 1.293 + /*****************/ 1.294 + /* Increase gains during low speech activity */ 1.295 + gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB ); 1.296 + gain_add = (silk_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB ); 1.297 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.298 + psEncCtrl->Gains[ k ] *= gain_mult; 1.299 + psEncCtrl->Gains[ k ] += gain_add; 1.300 + } 1.301 + 1.302 + gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT; 1.303 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.304 + psEncCtrl->GainsPre[ k ] *= gain_mult; 1.305 + } 1.306 + 1.307 + /************************************************/ 1.308 + /* Control low-frequency shaping and noise tilt */ 1.309 + /************************************************/ 1.310 + /* Less low frequency shaping for noisy inputs */ 1.311 + strength = LOW_FREQ_SHAPING * ( 1.0f + LOW_QUALITY_LOW_FREQ_SHAPING_DECR * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] * ( 1.0f / 32768.0f ) - 1.0f ) ); 1.312 + strength *= psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); 1.313 + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.314 + /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ 1.315 + /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ 1.316 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.317 + b = 0.2f / psEnc->sCmn.fs_kHz + 3.0f / psEncCtrl->pitchL[ k ]; 1.318 + psEncCtrl->LF_MA_shp[ k ] = -1.0f + b; 1.319 + psEncCtrl->LF_AR_shp[ k ] = 1.0f - b - b * strength; 1.320 + } 1.321 + Tilt = - HP_NOISE_COEF - 1.322 + (1 - HP_NOISE_COEF) * HARM_HP_NOISE_COEF * psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); 1.323 + } else { 1.324 + b = 1.3f / psEnc->sCmn.fs_kHz; 1.325 + psEncCtrl->LF_MA_shp[ 0 ] = -1.0f + b; 1.326 + psEncCtrl->LF_AR_shp[ 0 ] = 1.0f - b - b * strength * 0.6f; 1.327 + for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { 1.328 + psEncCtrl->LF_MA_shp[ k ] = psEncCtrl->LF_MA_shp[ 0 ]; 1.329 + psEncCtrl->LF_AR_shp[ k ] = psEncCtrl->LF_AR_shp[ 0 ]; 1.330 + } 1.331 + Tilt = -HP_NOISE_COEF; 1.332 + } 1.333 + 1.334 + /****************************/ 1.335 + /* HARMONIC SHAPING CONTROL */ 1.336 + /****************************/ 1.337 + /* Control boosting of harmonic frequencies */ 1.338 + HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr; 1.339 + 1.340 + /* More harmonic boost for noisy input signals */ 1.341 + HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality ); 1.342 + 1.343 + if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { 1.344 + /* Harmonic noise shaping */ 1.345 + HarmShapeGain = HARMONIC_SHAPING; 1.346 + 1.347 + /* More harmonic noise shaping for high bitrates or noisy input */ 1.348 + HarmShapeGain += HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING * 1.349 + ( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality ); 1.350 + 1.351 + /* Less harmonic noise shaping for less periodic signals */ 1.352 + HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr ); 1.353 + } else { 1.354 + HarmShapeGain = 0.0f; 1.355 + } 1.356 + 1.357 + /*************************/ 1.358 + /* Smooth over subframes */ 1.359 + /*************************/ 1.360 + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { 1.361 + psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth ); 1.362 + psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth; 1.363 + psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth ); 1.364 + psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth; 1.365 + psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth ); 1.366 + psEncCtrl->Tilt[ k ] = psShapeSt->Tilt_smth; 1.367 + } 1.368 +}