media/libopus/silk/float/solve_LS_FLP.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/silk/float/solve_LS_FLP.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,207 @@
     1.4 +/***********************************************************************
     1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     1.6 +Redistribution and use in source and binary forms, with or without
     1.7 +modification, are permitted provided that the following conditions
     1.8 +are met:
     1.9 +- Redistributions of source code must retain the above copyright notice,
    1.10 +this list of conditions and the following disclaimer.
    1.11 +- Redistributions in binary form must reproduce the above copyright
    1.12 +notice, this list of conditions and the following disclaimer in the
    1.13 +documentation and/or other materials provided with the distribution.
    1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the
    1.15 +names of specific contributors, may be used to endorse or promote
    1.16 +products derived from this software without specific prior written
    1.17 +permission.
    1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    1.28 +POSSIBILITY OF SUCH DAMAGE.
    1.29 +***********************************************************************/
    1.30 +
    1.31 +#ifdef HAVE_CONFIG_H
    1.32 +#include "config.h"
    1.33 +#endif
    1.34 +
    1.35 +#include "main_FLP.h"
    1.36 +#include "tuning_parameters.h"
    1.37 +
    1.38 +/**********************************************************************
    1.39 + * LDL Factorisation. Finds the upper triangular matrix L and the diagonal
    1.40 + * Matrix D (only the diagonal elements returned in a vector)such that
    1.41 + * the symmetric matric A is given by A = L*D*L'.
    1.42 + **********************************************************************/
    1.43 +static OPUS_INLINE void silk_LDL_FLP(
    1.44 +    silk_float          *A,         /* I/O  Pointer to Symetric Square Matrix                               */
    1.45 +    opus_int            M,          /* I    Size of Matrix                                                  */
    1.46 +    silk_float          *L,         /* I/O  Pointer to Square Upper triangular Matrix                       */
    1.47 +    silk_float          *Dinv       /* I/O  Pointer to vector holding the inverse diagonal elements of D    */
    1.48 +);
    1.49 +
    1.50 +/**********************************************************************
    1.51 + * Function to solve linear equation Ax = b, when A is a MxM lower
    1.52 + * triangular matrix, with ones on the diagonal.
    1.53 + **********************************************************************/
    1.54 +static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
    1.55 +    const silk_float    *L,         /* I    Pointer to Lower Triangular Matrix                              */
    1.56 +    opus_int            M,          /* I    Dim of Matrix equation                                          */
    1.57 +    const silk_float    *b,         /* I    b Vector                                                        */
    1.58 +    silk_float          *x          /* O    x Vector                                                        */
    1.59 +);
    1.60 +
    1.61 +/**********************************************************************
    1.62 + * Function to solve linear equation (A^T)x = b, when A is a MxM lower
    1.63 + * triangular, with ones on the diagonal. (ie then A^T is upper triangular)
    1.64 + **********************************************************************/
    1.65 +static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
    1.66 +    const silk_float    *L,         /* I    Pointer to Lower Triangular Matrix                              */
    1.67 +    opus_int            M,          /* I    Dim of Matrix equation                                          */
    1.68 +    const silk_float    *b,         /* I    b Vector                                                        */
    1.69 +    silk_float          *x          /* O    x Vector                                                        */
    1.70 +);
    1.71 +
    1.72 +/**********************************************************************
    1.73 + * Function to solve linear equation Ax = b, when A is a MxM
    1.74 + * symmetric square matrix - using LDL factorisation
    1.75 + **********************************************************************/
    1.76 +void silk_solve_LDL_FLP(
    1.77 +    silk_float                      *A,                                 /* I/O  Symmetric square matrix, out: reg.          */
    1.78 +    const opus_int                  M,                                  /* I    Size of matrix                              */
    1.79 +    const silk_float                *b,                                 /* I    Pointer to b vector                         */
    1.80 +    silk_float                      *x                                  /* O    Pointer to x solution vector                */
    1.81 +)
    1.82 +{
    1.83 +    opus_int   i;
    1.84 +    silk_float L[    MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
    1.85 +    silk_float T[    MAX_MATRIX_SIZE ];
    1.86 +    silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
    1.87 +
    1.88 +    silk_assert( M <= MAX_MATRIX_SIZE );
    1.89 +
    1.90 +    /***************************************************
    1.91 +    Factorize A by LDL such that A = L*D*(L^T),
    1.92 +    where L is lower triangular with ones on diagonal
    1.93 +    ****************************************************/
    1.94 +    silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv );
    1.95 +
    1.96 +    /****************************************************
    1.97 +    * substitute D*(L^T) = T. ie:
    1.98 +    L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b
    1.99 +    ******************************************************/
   1.100 +    silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T );
   1.101 +
   1.102 +    /****************************************************
   1.103 +    D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is
   1.104 +    diagonal just multiply with 1/d_i
   1.105 +    ****************************************************/
   1.106 +    for( i = 0; i < M; i++ ) {
   1.107 +        T[ i ] = T[ i ] * Dinv[ i ];
   1.108 +    }
   1.109 +    /****************************************************
   1.110 +    x = inv(L') * inv(D) * T
   1.111 +    *****************************************************/
   1.112 +    silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x );
   1.113 +}
   1.114 +
   1.115 +static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
   1.116 +    const silk_float    *L,         /* I    Pointer to Lower Triangular Matrix                              */
   1.117 +    opus_int            M,          /* I    Dim of Matrix equation                                          */
   1.118 +    const silk_float    *b,         /* I    b Vector                                                        */
   1.119 +    silk_float          *x          /* O    x Vector                                                        */
   1.120 +)
   1.121 +{
   1.122 +    opus_int   i, j;
   1.123 +    silk_float temp;
   1.124 +    const silk_float *ptr1;
   1.125 +
   1.126 +    for( i = M - 1; i >= 0; i-- ) {
   1.127 +        ptr1 =  matrix_adr( L, 0, i, M );
   1.128 +        temp = 0;
   1.129 +        for( j = M - 1; j > i ; j-- ) {
   1.130 +            temp += ptr1[ j * M ] * x[ j ];
   1.131 +        }
   1.132 +        temp = b[ i ] - temp;
   1.133 +        x[ i ] = temp;
   1.134 +    }
   1.135 +}
   1.136 +
   1.137 +static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP(
   1.138 +    const silk_float    *L,         /* I    Pointer to Lower Triangular Matrix                              */
   1.139 +    opus_int            M,          /* I    Dim of Matrix equation                                          */
   1.140 +    const silk_float    *b,         /* I    b Vector                                                        */
   1.141 +    silk_float          *x          /* O    x Vector                                                        */
   1.142 +)
   1.143 +{
   1.144 +    opus_int   i, j;
   1.145 +    silk_float temp;
   1.146 +    const silk_float *ptr1;
   1.147 +
   1.148 +    for( i = 0; i < M; i++ ) {
   1.149 +        ptr1 =  matrix_adr( L, i, 0, M );
   1.150 +        temp = 0;
   1.151 +        for( j = 0; j < i; j++ ) {
   1.152 +            temp += ptr1[ j ] * x[ j ];
   1.153 +        }
   1.154 +        temp = b[ i ] - temp;
   1.155 +        x[ i ] = temp;
   1.156 +    }
   1.157 +}
   1.158 +
   1.159 +static OPUS_INLINE void silk_LDL_FLP(
   1.160 +    silk_float          *A,         /* I/O  Pointer to Symetric Square Matrix                               */
   1.161 +    opus_int            M,          /* I    Size of Matrix                                                  */
   1.162 +    silk_float          *L,         /* I/O  Pointer to Square Upper triangular Matrix                       */
   1.163 +    silk_float          *Dinv       /* I/O  Pointer to vector holding the inverse diagonal elements of D    */
   1.164 +)
   1.165 +{
   1.166 +    opus_int i, j, k, loop_count, err = 1;
   1.167 +    silk_float *ptr1, *ptr2;
   1.168 +    double temp, diag_min_value;
   1.169 +    silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/
   1.170 +
   1.171 +    silk_assert( M <= MAX_MATRIX_SIZE );
   1.172 +
   1.173 +    diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] );
   1.174 +    for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) {
   1.175 +        err = 0;
   1.176 +        for( j = 0; j < M; j++ ) {
   1.177 +            ptr1 = matrix_adr( L, j, 0, M );
   1.178 +            temp = matrix_ptr( A, j, j, M ); /* element in row j column j*/
   1.179 +            for( i = 0; i < j; i++ ) {
   1.180 +                v[ i ] = ptr1[ i ] * D[ i ];
   1.181 +                temp  -= ptr1[ i ] * v[ i ];
   1.182 +            }
   1.183 +            if( temp < diag_min_value ) {
   1.184 +                /* Badly conditioned matrix: add white noise and run again */
   1.185 +                temp = ( loop_count + 1 ) * diag_min_value - temp;
   1.186 +                for( i = 0; i < M; i++ ) {
   1.187 +                    matrix_ptr( A, i, i, M ) += ( silk_float )temp;
   1.188 +                }
   1.189 +                err = 1;
   1.190 +                break;
   1.191 +            }
   1.192 +            D[ j ]    = ( silk_float )temp;
   1.193 +            Dinv[ j ] = ( silk_float )( 1.0f / temp );
   1.194 +            matrix_ptr( L, j, j, M ) = 1.0f;
   1.195 +
   1.196 +            ptr1 = matrix_adr( A, j, 0, M );
   1.197 +            ptr2 = matrix_adr( L, j + 1, 0, M);
   1.198 +            for( i = j + 1; i < M; i++ ) {
   1.199 +                temp = 0.0;
   1.200 +                for( k = 0; k < j; k++ ) {
   1.201 +                    temp += ptr2[ k ] * v[ k ];
   1.202 +                }
   1.203 +                matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
   1.204 +                ptr2 += M; /* go to next column*/
   1.205 +            }
   1.206 +        }
   1.207 +    }
   1.208 +    silk_assert( err == 0 );
   1.209 +}
   1.210 +

mercurial