media/libtheora/lib/state.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libtheora/lib/state.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1260 @@
     1.4 +/********************************************************************
     1.5 + *                                                                  *
     1.6 + * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
     1.7 + * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
     1.8 + * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
     1.9 + * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
    1.10 + *                                                                  *
    1.11 + * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009                *
    1.12 + * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
    1.13 + *                                                                  *
    1.14 + ********************************************************************
    1.15 +
    1.16 +  function:
    1.17 +    last mod: $Id: state.c 17576 2010-10-29 01:07:51Z tterribe $
    1.18 +
    1.19 + ********************************************************************/
    1.20 +
    1.21 +#include <stdlib.h>
    1.22 +#include <string.h>
    1.23 +#include "state.h"
    1.24 +#if defined(OC_DUMP_IMAGES)
    1.25 +# include <stdio.h>
    1.26 +# include "png.h"
    1.27 +#endif
    1.28 +
    1.29 +/*The function used to fill in the chroma plane motion vectors for a macro
    1.30 +   block when 4 different motion vectors are specified in the luma plane.
    1.31 +  This version is for use with chroma decimated in the X and Y directions
    1.32 +   (4:2:0).
    1.33 +  _cbmvs: The chroma block-level motion vectors to fill in.
    1.34 +  _lbmvs: The luma block-level motion vectors.*/
    1.35 +static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
    1.36 +  int dx;
    1.37 +  int dy;
    1.38 +  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
    1.39 +   +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
    1.40 +  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
    1.41 +   +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
    1.42 +  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
    1.43 +}
    1.44 +
    1.45 +/*The function used to fill in the chroma plane motion vectors for a macro
    1.46 +   block when 4 different motion vectors are specified in the luma plane.
    1.47 +  This version is for use with chroma decimated in the Y direction.
    1.48 +  _cbmvs: The chroma block-level motion vectors to fill in.
    1.49 +  _lbmvs: The luma block-level motion vectors.*/
    1.50 +static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
    1.51 +  int dx;
    1.52 +  int dy;
    1.53 +  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
    1.54 +  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
    1.55 +  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
    1.56 +  dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
    1.57 +  dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
    1.58 +  _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
    1.59 +}
    1.60 +
    1.61 +/*The function used to fill in the chroma plane motion vectors for a macro
    1.62 +   block when 4 different motion vectors are specified in the luma plane.
    1.63 +  This version is for use with chroma decimated in the X direction (4:2:2).
    1.64 +  _cbmvs: The chroma block-level motion vectors to fill in.
    1.65 +  _lbmvs: The luma block-level motion vectors.*/
    1.66 +static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
    1.67 +  int dx;
    1.68 +  int dy;
    1.69 +  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
    1.70 +  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
    1.71 +  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
    1.72 +  dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
    1.73 +  dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
    1.74 +  _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
    1.75 +}
    1.76 +
    1.77 +/*The function used to fill in the chroma plane motion vectors for a macro
    1.78 +   block when 4 different motion vectors are specified in the luma plane.
    1.79 +  This version is for use with no chroma decimation (4:4:4).
    1.80 +  _cbmvs: The chroma block-level motion vectors to fill in.
    1.81 +  _lmbmv: The luma macro-block level motion vector to fill in for use in
    1.82 +           prediction.
    1.83 +  _lbmvs: The luma block-level motion vectors.*/
    1.84 +static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
    1.85 +  _cbmvs[0]=_lbmvs[0];
    1.86 +  _cbmvs[1]=_lbmvs[1];
    1.87 +  _cbmvs[2]=_lbmvs[2];
    1.88 +  _cbmvs[3]=_lbmvs[3];
    1.89 +}
    1.90 +
    1.91 +/*A table of functions used to fill in the chroma plane motion vectors for a
    1.92 +   macro block when 4 different motion vectors are specified in the luma
    1.93 +   plane.*/
    1.94 +const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
    1.95 +  (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
    1.96 +  (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
    1.97 +  (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
    1.98 +  (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
    1.99 +};
   1.100 +
   1.101 +
   1.102 +
   1.103 +/*Returns the fragment index of the top-left block in a macro block.
   1.104 +  This can be used to test whether or not the whole macro block is valid.
   1.105 +  _sb_map: The super block map.
   1.106 +  _quadi:  The quadrant number.
   1.107 +  Return: The index of the fragment of the upper left block in the macro
   1.108 +   block, or -1 if the block lies outside the coded frame.*/
   1.109 +static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
   1.110 +  /*It so happens that under the Hilbert curve ordering described below, the
   1.111 +     upper-left block in each macro block is at index 0, except in macro block
   1.112 +     3, where it is at index 2.*/
   1.113 +  return _sb_map[_quadi][_quadi&_quadi<<1];
   1.114 +}
   1.115 +
   1.116 +/*Fills in the mapping from block positions to fragment numbers for a single
   1.117 +   color plane.
   1.118 +  This function also fills in the "valid" flag of each quadrant in the super
   1.119 +   block flags.
   1.120 +  _sb_maps:  The array of super block maps for the color plane.
   1.121 +  _sb_flags: The array of super block flags for the color plane.
   1.122 +  _frag0:    The index of the first fragment in the plane.
   1.123 +  _hfrags:   The number of horizontal fragments in a coded frame.
   1.124 +  _vfrags:   The number of vertical fragments in a coded frame.*/
   1.125 +static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
   1.126 + oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
   1.127 +  /*Contains the (macro_block,block) indices for a 4x4 grid of
   1.128 +     fragments.
   1.129 +    The pattern is a 4x4 Hilbert space-filling curve.
   1.130 +    A Hilbert curve has the nice property that as the curve grows larger, its
   1.131 +     fractal dimension approaches 2.
   1.132 +    The intuition is that nearby blocks in the curve are also close spatially,
   1.133 +     with the previous element always an immediate neighbor, so that runs of
   1.134 +     blocks should be well correlated.*/
   1.135 +  static const int SB_MAP[4][4][2]={
   1.136 +    {{0,0},{0,1},{3,2},{3,3}},
   1.137 +    {{0,3},{0,2},{3,1},{3,0}},
   1.138 +    {{1,0},{1,3},{2,0},{2,3}},
   1.139 +    {{1,1},{1,2},{2,1},{2,2}}
   1.140 +  };
   1.141 +  ptrdiff_t  yfrag;
   1.142 +  unsigned   sbi;
   1.143 +  int        y;
   1.144 +  sbi=0;
   1.145 +  yfrag=_frag0;
   1.146 +  for(y=0;;y+=4){
   1.147 +    int imax;
   1.148 +    int x;
   1.149 +    /*Figure out how many columns of blocks in this super block lie within the
   1.150 +       image.*/
   1.151 +    imax=_vfrags-y;
   1.152 +    if(imax>4)imax=4;
   1.153 +    else if(imax<=0)break;
   1.154 +    for(x=0;;x+=4,sbi++){
   1.155 +      ptrdiff_t xfrag;
   1.156 +      int       jmax;
   1.157 +      int       quadi;
   1.158 +      int       i;
   1.159 +      /*Figure out how many rows of blocks in this super block lie within the
   1.160 +         image.*/
   1.161 +      jmax=_hfrags-x;
   1.162 +      if(jmax>4)jmax=4;
   1.163 +      else if(jmax<=0)break;
   1.164 +      /*By default, set all fragment indices to -1.*/
   1.165 +      memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
   1.166 +      /*Fill in the fragment map for this super block.*/
   1.167 +      xfrag=yfrag+x;
   1.168 +      for(i=0;i<imax;i++){
   1.169 +        int j;
   1.170 +        for(j=0;j<jmax;j++){
   1.171 +          _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
   1.172 +        }
   1.173 +        xfrag+=_hfrags;
   1.174 +      }
   1.175 +      /*Mark which quadrants of this super block lie within the image.*/
   1.176 +      for(quadi=0;quadi<4;quadi++){
   1.177 +        _sb_flags[sbi].quad_valid|=
   1.178 +         (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
   1.179 +      }
   1.180 +    }
   1.181 +    yfrag+=_hfrags<<2;
   1.182 +  }
   1.183 +}
   1.184 +
   1.185 +/*Fills in the Y plane fragment map for a macro block given the fragment
   1.186 +   coordinates of its upper-left hand corner.
   1.187 +  _mb_map:    The macro block map to fill.
   1.188 +  _fplane: The description of the Y plane.
   1.189 +  _xfrag0: The X location of the upper-left hand fragment in the luma plane.
   1.190 +  _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
   1.191 +static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
   1.192 + const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
   1.193 +  int i;
   1.194 +  int j;
   1.195 +  for(i=0;i<2;i++)for(j=0;j<2;j++){
   1.196 +    _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
   1.197 +  }
   1.198 +}
   1.199 +
   1.200 +/*Fills in the chroma plane fragment maps for a macro block.
   1.201 +  This version is for use with chroma decimated in the X and Y directions
   1.202 +   (4:2:0).
   1.203 +  _mb_map:  The macro block map to fill.
   1.204 +  _fplanes: The descriptions of the fragment planes.
   1.205 +  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
   1.206 +  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
   1.207 +static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
   1.208 + const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
   1.209 +  ptrdiff_t fragi;
   1.210 +  _xfrag0>>=1;
   1.211 +  _yfrag0>>=1;
   1.212 +  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
   1.213 +  _mb_map[1][0]=fragi+_fplanes[1].froffset;
   1.214 +  _mb_map[2][0]=fragi+_fplanes[2].froffset;
   1.215 +}
   1.216 +
   1.217 +/*Fills in the chroma plane fragment maps for a macro block.
   1.218 +  This version is for use with chroma decimated in the Y direction.
   1.219 +  _mb_map:  The macro block map to fill.
   1.220 +  _fplanes: The descriptions of the fragment planes.
   1.221 +  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
   1.222 +  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
   1.223 +static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
   1.224 + const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
   1.225 +  ptrdiff_t fragi;
   1.226 +  int       j;
   1.227 +  _yfrag0>>=1;
   1.228 +  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
   1.229 +  for(j=0;j<2;j++){
   1.230 +    _mb_map[1][j]=fragi+_fplanes[1].froffset;
   1.231 +    _mb_map[2][j]=fragi+_fplanes[2].froffset;
   1.232 +    fragi++;
   1.233 +  }
   1.234 +}
   1.235 +
   1.236 +/*Fills in the chroma plane fragment maps for a macro block.
   1.237 +  This version is for use with chroma decimated in the X direction (4:2:2).
   1.238 +  _mb_map:  The macro block map to fill.
   1.239 +  _fplanes: The descriptions of the fragment planes.
   1.240 +  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
   1.241 +  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
   1.242 +static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
   1.243 + const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
   1.244 +  ptrdiff_t fragi;
   1.245 +  int       i;
   1.246 +  _xfrag0>>=1;
   1.247 +  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
   1.248 +  for(i=0;i<2;i++){
   1.249 +    _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
   1.250 +    _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
   1.251 +    fragi+=_fplanes[1].nhfrags;
   1.252 +  }
   1.253 +}
   1.254 +
   1.255 +/*Fills in the chroma plane fragment maps for a macro block.
   1.256 +  This version is for use with no chroma decimation (4:4:4).
   1.257 +  This uses the already filled-in luma plane values.
   1.258 +  _mb_map:  The macro block map to fill.
   1.259 +  _fplanes: The descriptions of the fragment planes.*/
   1.260 +static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
   1.261 + const oc_fragment_plane _fplanes[3]){
   1.262 +  int k;
   1.263 +  for(k=0;k<4;k++){
   1.264 +    _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
   1.265 +    _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
   1.266 +  }
   1.267 +}
   1.268 +
   1.269 +/*The function type used to fill in the chroma plane fragment maps for a
   1.270 +   macro block.
   1.271 +  _mb_map:  The macro block map to fill.
   1.272 +  _fplanes: The descriptions of the fragment planes.
   1.273 +  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
   1.274 +  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
   1.275 +typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
   1.276 + const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
   1.277 +
   1.278 +/*A table of functions used to fill in the chroma plane fragment maps for a
   1.279 +   macro block for each type of chrominance decimation.*/
   1.280 +static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
   1.281 +  oc_mb_fill_cmapping00,
   1.282 +  oc_mb_fill_cmapping01,
   1.283 +  oc_mb_fill_cmapping10,
   1.284 +  (oc_mb_fill_cmapping_func)oc_mb_fill_cmapping11
   1.285 +};
   1.286 +
   1.287 +/*Fills in the mapping from macro blocks to their corresponding fragment
   1.288 +   numbers in each plane.
   1.289 +  _mb_maps:   The list of macro block maps.
   1.290 +  _mb_modes:  The list of macro block modes; macro blocks completely outside
   1.291 +               the coded region are marked invalid.
   1.292 +  _fplanes:   The descriptions of the fragment planes.
   1.293 +  _pixel_fmt: The chroma decimation type.*/
   1.294 +static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
   1.295 + signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
   1.296 +  oc_mb_fill_cmapping_func  mb_fill_cmapping;
   1.297 +  unsigned                  sbi;
   1.298 +  int                       y;
   1.299 +  mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
   1.300 +  /*Loop through the luma plane super blocks.*/
   1.301 +  for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
   1.302 +    int x;
   1.303 +    for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
   1.304 +      int ymb;
   1.305 +      /*Loop through the macro blocks in each super block in display order.*/
   1.306 +      for(ymb=0;ymb<2;ymb++){
   1.307 +        int xmb;
   1.308 +        for(xmb=0;xmb<2;xmb++){
   1.309 +          unsigned mbi;
   1.310 +          int      mbx;
   1.311 +          int      mby;
   1.312 +          mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
   1.313 +          mbx=x|xmb<<1;
   1.314 +          mby=y|ymb<<1;
   1.315 +          /*Initialize fragment indices to -1.*/
   1.316 +          memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
   1.317 +          /*Make sure this macro block is within the encoded region.*/
   1.318 +          if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
   1.319 +            _mb_modes[mbi]=OC_MODE_INVALID;
   1.320 +            continue;
   1.321 +          }
   1.322 +          /*Fill in the fragment indices for the luma plane.*/
   1.323 +          oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
   1.324 +          /*Fill in the fragment indices for the chroma planes.*/
   1.325 +          (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
   1.326 +        }
   1.327 +      }
   1.328 +    }
   1.329 +  }
   1.330 +}
   1.331 +
   1.332 +/*Marks the fragments which fall all or partially outside the displayable
   1.333 +   region of the frame.
   1.334 +  _state: The Theora state containing the fragments to be marked.*/
   1.335 +static void oc_state_border_init(oc_theora_state *_state){
   1.336 +  oc_fragment       *frag;
   1.337 +  oc_fragment       *yfrag_end;
   1.338 +  oc_fragment       *xfrag_end;
   1.339 +  oc_fragment_plane *fplane;
   1.340 +  int                crop_x0;
   1.341 +  int                crop_y0;
   1.342 +  int                crop_xf;
   1.343 +  int                crop_yf;
   1.344 +  int                pli;
   1.345 +  int                y;
   1.346 +  int                x;
   1.347 +  /*The method we use here is slow, but the code is dead simple and handles
   1.348 +     all the special cases easily.
   1.349 +    We only ever need to do it once.*/
   1.350 +  /*Loop through the fragments, marking those completely outside the
   1.351 +     displayable region and constructing a border mask for those that straddle
   1.352 +     the border.*/
   1.353 +  _state->nborders=0;
   1.354 +  yfrag_end=frag=_state->frags;
   1.355 +  for(pli=0;pli<3;pli++){
   1.356 +    fplane=_state->fplanes+pli;
   1.357 +    /*Set up the cropping rectangle for this plane.*/
   1.358 +    crop_x0=_state->info.pic_x;
   1.359 +    crop_xf=_state->info.pic_x+_state->info.pic_width;
   1.360 +    crop_y0=_state->info.pic_y;
   1.361 +    crop_yf=_state->info.pic_y+_state->info.pic_height;
   1.362 +    if(pli>0){
   1.363 +      if(!(_state->info.pixel_fmt&1)){
   1.364 +        crop_x0=crop_x0>>1;
   1.365 +        crop_xf=crop_xf+1>>1;
   1.366 +      }
   1.367 +      if(!(_state->info.pixel_fmt&2)){
   1.368 +        crop_y0=crop_y0>>1;
   1.369 +        crop_yf=crop_yf+1>>1;
   1.370 +      }
   1.371 +    }
   1.372 +    y=0;
   1.373 +    for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
   1.374 +      x=0;
   1.375 +      for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
   1.376 +        /*First check to see if this fragment is completely outside the
   1.377 +           displayable region.*/
   1.378 +        /*Note the special checks for an empty cropping rectangle.
   1.379 +          This guarantees that if we count a fragment as straddling the
   1.380 +           border below, at least one pixel in the fragment will be inside
   1.381 +           the displayable region.*/
   1.382 +        if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
   1.383 +         crop_x0>=crop_xf||crop_y0>=crop_yf){
   1.384 +          frag->invalid=1;
   1.385 +        }
   1.386 +        /*Otherwise, check to see if it straddles the border.*/
   1.387 +        else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
   1.388 +         y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
   1.389 +          ogg_int64_t mask;
   1.390 +          int         npixels;
   1.391 +          int         i;
   1.392 +          mask=npixels=0;
   1.393 +          for(i=0;i<8;i++){
   1.394 +            int j;
   1.395 +            for(j=0;j<8;j++){
   1.396 +              if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
   1.397 +                mask|=(ogg_int64_t)1<<(i<<3|j);
   1.398 +                npixels++;
   1.399 +              }
   1.400 +            }
   1.401 +          }
   1.402 +          /*Search the fragment array for border info with the same pattern.
   1.403 +            In general, there will be at most 8 different patterns (per
   1.404 +             plane).*/
   1.405 +          for(i=0;;i++){
   1.406 +            if(i>=_state->nborders){
   1.407 +              _state->nborders++;
   1.408 +              _state->borders[i].mask=mask;
   1.409 +              _state->borders[i].npixels=npixels;
   1.410 +            }
   1.411 +            else if(_state->borders[i].mask!=mask)continue;
   1.412 +            frag->borderi=i;
   1.413 +            break;
   1.414 +          }
   1.415 +        }
   1.416 +        else frag->borderi=-1;
   1.417 +      }
   1.418 +    }
   1.419 +  }
   1.420 +}
   1.421 +
   1.422 +static int oc_state_frarray_init(oc_theora_state *_state){
   1.423 +  int       yhfrags;
   1.424 +  int       yvfrags;
   1.425 +  int       chfrags;
   1.426 +  int       cvfrags;
   1.427 +  ptrdiff_t yfrags;
   1.428 +  ptrdiff_t cfrags;
   1.429 +  ptrdiff_t nfrags;
   1.430 +  unsigned  yhsbs;
   1.431 +  unsigned  yvsbs;
   1.432 +  unsigned  chsbs;
   1.433 +  unsigned  cvsbs;
   1.434 +  unsigned  ysbs;
   1.435 +  unsigned  csbs;
   1.436 +  unsigned  nsbs;
   1.437 +  size_t    nmbs;
   1.438 +  int       hdec;
   1.439 +  int       vdec;
   1.440 +  int       pli;
   1.441 +  /*Figure out the number of fragments in each plane.*/
   1.442 +  /*These parameters have already been validated to be multiples of 16.*/
   1.443 +  yhfrags=_state->info.frame_width>>3;
   1.444 +  yvfrags=_state->info.frame_height>>3;
   1.445 +  hdec=!(_state->info.pixel_fmt&1);
   1.446 +  vdec=!(_state->info.pixel_fmt&2);
   1.447 +  chfrags=yhfrags+hdec>>hdec;
   1.448 +  cvfrags=yvfrags+vdec>>vdec;
   1.449 +  yfrags=yhfrags*(ptrdiff_t)yvfrags;
   1.450 +  cfrags=chfrags*(ptrdiff_t)cvfrags;
   1.451 +  nfrags=yfrags+2*cfrags;
   1.452 +  /*Figure out the number of super blocks in each plane.*/
   1.453 +  yhsbs=yhfrags+3>>2;
   1.454 +  yvsbs=yvfrags+3>>2;
   1.455 +  chsbs=chfrags+3>>2;
   1.456 +  cvsbs=cvfrags+3>>2;
   1.457 +  ysbs=yhsbs*yvsbs;
   1.458 +  csbs=chsbs*cvsbs;
   1.459 +  nsbs=ysbs+2*csbs;
   1.460 +  nmbs=(size_t)ysbs<<2;
   1.461 +  /*Check for overflow.
   1.462 +    We support the ridiculous upper limits of the specification (1048560 by
   1.463 +     1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
   1.464 +     but for those with 32-bit pointers (or smaller!) we have to check.
   1.465 +    If the caller wants to prevent denial-of-service by imposing a more
   1.466 +     reasonable upper limit on the size of attempted allocations, they must do
   1.467 +     so themselves; we have no platform independent way to determine how much
   1.468 +     system memory there is nor an application-independent way to decide what a
   1.469 +     "reasonable" allocation is.*/
   1.470 +  if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
   1.471 +   ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
   1.472 +    return TH_EIMPL;
   1.473 +  }
   1.474 +  /*Initialize the fragment array.*/
   1.475 +  _state->fplanes[0].nhfrags=yhfrags;
   1.476 +  _state->fplanes[0].nvfrags=yvfrags;
   1.477 +  _state->fplanes[0].froffset=0;
   1.478 +  _state->fplanes[0].nfrags=yfrags;
   1.479 +  _state->fplanes[0].nhsbs=yhsbs;
   1.480 +  _state->fplanes[0].nvsbs=yvsbs;
   1.481 +  _state->fplanes[0].sboffset=0;
   1.482 +  _state->fplanes[0].nsbs=ysbs;
   1.483 +  _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
   1.484 +  _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
   1.485 +  _state->fplanes[1].froffset=yfrags;
   1.486 +  _state->fplanes[2].froffset=yfrags+cfrags;
   1.487 +  _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
   1.488 +  _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
   1.489 +  _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
   1.490 +  _state->fplanes[1].sboffset=ysbs;
   1.491 +  _state->fplanes[2].sboffset=ysbs+csbs;
   1.492 +  _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
   1.493 +  _state->nfrags=nfrags;
   1.494 +  _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
   1.495 +  _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
   1.496 +  _state->nsbs=nsbs;
   1.497 +  _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
   1.498 +  _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
   1.499 +  _state->nhmbs=yhsbs<<1;
   1.500 +  _state->nvmbs=yvsbs<<1;
   1.501 +  _state->nmbs=nmbs;
   1.502 +  _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
   1.503 +  _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
   1.504 +  _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
   1.505 +  if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
   1.506 +   _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
   1.507 +   _state->coded_fragis==NULL){
   1.508 +    return TH_EFAULT;
   1.509 +  }
   1.510 +  /*Create the mapping from super blocks to fragments.*/
   1.511 +  for(pli=0;pli<3;pli++){
   1.512 +    oc_fragment_plane *fplane;
   1.513 +    fplane=_state->fplanes+pli;
   1.514 +    oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
   1.515 +     _state->sb_flags+fplane->sboffset,fplane->froffset,
   1.516 +     fplane->nhfrags,fplane->nvfrags);
   1.517 +  }
   1.518 +  /*Create the mapping from macro blocks to fragments.*/
   1.519 +  oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
   1.520 +   _state->fplanes,_state->info.pixel_fmt);
   1.521 +  /*Initialize the invalid and borderi fields of each fragment.*/
   1.522 +  oc_state_border_init(_state);
   1.523 +  return 0;
   1.524 +}
   1.525 +
   1.526 +static void oc_state_frarray_clear(oc_theora_state *_state){
   1.527 +  _ogg_free(_state->coded_fragis);
   1.528 +  _ogg_free(_state->mb_modes);
   1.529 +  _ogg_free(_state->mb_maps);
   1.530 +  _ogg_free(_state->sb_flags);
   1.531 +  _ogg_free(_state->sb_maps);
   1.532 +  _ogg_free(_state->frag_mvs);
   1.533 +  _ogg_free(_state->frags);
   1.534 +}
   1.535 +
   1.536 +
   1.537 +/*Initializes the buffers used for reconstructed frames.
   1.538 +  These buffers are padded with 16 extra pixels on each side, to allow
   1.539 +   unrestricted motion vectors without special casing the boundary.
   1.540 +  If chroma is decimated in either direction, the padding is reduced by a
   1.541 +   factor of 2 on the appropriate sides.
   1.542 +  _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
   1.543 +static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
   1.544 +  th_info       *info;
   1.545 +  unsigned char *ref_frame_data;
   1.546 +  size_t         ref_frame_data_sz;
   1.547 +  size_t         ref_frame_sz;
   1.548 +  size_t         yplane_sz;
   1.549 +  size_t         cplane_sz;
   1.550 +  int            yhstride;
   1.551 +  int            yheight;
   1.552 +  int            chstride;
   1.553 +  int            cheight;
   1.554 +  ptrdiff_t      align;
   1.555 +  ptrdiff_t      yoffset;
   1.556 +  ptrdiff_t      coffset;
   1.557 +  ptrdiff_t     *frag_buf_offs;
   1.558 +  ptrdiff_t      fragi;
   1.559 +  int            hdec;
   1.560 +  int            vdec;
   1.561 +  int            rfi;
   1.562 +  int            pli;
   1.563 +  if(_nrefs<3||_nrefs>6)return TH_EINVAL;
   1.564 +  info=&_state->info;
   1.565 +  /*Compute the image buffer parameters for each plane.*/
   1.566 +  hdec=!(info->pixel_fmt&1);
   1.567 +  vdec=!(info->pixel_fmt&2);
   1.568 +  yhstride=info->frame_width+2*OC_UMV_PADDING;
   1.569 +  yheight=info->frame_height+2*OC_UMV_PADDING;
   1.570 +  /*Require 16-byte aligned rows in the chroma planes.*/
   1.571 +  chstride=(yhstride>>hdec)+15&~15;
   1.572 +  cheight=yheight>>vdec;
   1.573 +  yplane_sz=yhstride*(size_t)yheight;
   1.574 +  cplane_sz=chstride*(size_t)cheight;
   1.575 +  yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
   1.576 +  coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
   1.577 +  /*Although we guarantee the rows of the chroma planes are a multiple of 16
   1.578 +     bytes, the initial padding on the first row may only be 8 bytes.
   1.579 +    Compute the offset needed to the actual image data to a multiple of 16.*/
   1.580 +  align=-coffset&15;
   1.581 +  ref_frame_sz=yplane_sz+2*cplane_sz+16;
   1.582 +  ref_frame_data_sz=_nrefs*ref_frame_sz;
   1.583 +  /*Check for overflow.
   1.584 +    The same caveats apply as for oc_state_frarray_init().*/
   1.585 +  if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
   1.586 +   ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
   1.587 +    return TH_EIMPL;
   1.588 +  }
   1.589 +  ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
   1.590 +  frag_buf_offs=_state->frag_buf_offs=
   1.591 +   _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
   1.592 +  if(ref_frame_data==NULL||frag_buf_offs==NULL){
   1.593 +    _ogg_free(frag_buf_offs);
   1.594 +    oc_aligned_free(ref_frame_data);
   1.595 +    return TH_EFAULT;
   1.596 +  }
   1.597 +  /*Set up the width, height and stride for the image buffers.*/
   1.598 +  _state->ref_frame_bufs[0][0].width=info->frame_width;
   1.599 +  _state->ref_frame_bufs[0][0].height=info->frame_height;
   1.600 +  _state->ref_frame_bufs[0][0].stride=yhstride;
   1.601 +  _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
   1.602 +   info->frame_width>>hdec;
   1.603 +  _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
   1.604 +   info->frame_height>>vdec;
   1.605 +  _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
   1.606 +   chstride;
   1.607 +  for(rfi=1;rfi<_nrefs;rfi++){
   1.608 +    memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
   1.609 +     sizeof(_state->ref_frame_bufs[0]));
   1.610 +  }
   1.611 +  _state->ref_frame_handle=ref_frame_data;
   1.612 +  /*Set up the data pointers for the image buffers.*/
   1.613 +  for(rfi=0;rfi<_nrefs;rfi++){
   1.614 +    _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
   1.615 +    ref_frame_data+=yplane_sz+align;
   1.616 +    _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
   1.617 +    ref_frame_data+=cplane_sz;
   1.618 +    _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
   1.619 +    ref_frame_data+=cplane_sz+(16-align);
   1.620 +    /*Flip the buffer upside down.
   1.621 +      This allows us to decode Theora's bottom-up frames in their natural
   1.622 +       order, yet return a top-down buffer with a positive stride to the user.*/
   1.623 +    oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
   1.624 +     _state->ref_frame_bufs[rfi]);
   1.625 +  }
   1.626 +  _state->ref_ystride[0]=-yhstride;
   1.627 +  _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
   1.628 +  /*Initialize the fragment buffer offsets.*/
   1.629 +  ref_frame_data=_state->ref_frame_bufs[0][0].data;
   1.630 +  fragi=0;
   1.631 +  for(pli=0;pli<3;pli++){
   1.632 +    th_img_plane      *iplane;
   1.633 +    oc_fragment_plane *fplane;
   1.634 +    unsigned char     *vpix;
   1.635 +    ptrdiff_t          stride;
   1.636 +    ptrdiff_t          vfragi_end;
   1.637 +    int                nhfrags;
   1.638 +    iplane=_state->ref_frame_bufs[0]+pli;
   1.639 +    fplane=_state->fplanes+pli;
   1.640 +    vpix=iplane->data;
   1.641 +    vfragi_end=fplane->froffset+fplane->nfrags;
   1.642 +    nhfrags=fplane->nhfrags;
   1.643 +    stride=iplane->stride;
   1.644 +    while(fragi<vfragi_end){
   1.645 +      ptrdiff_t      hfragi_end;
   1.646 +      unsigned char *hpix;
   1.647 +      hpix=vpix;
   1.648 +      for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
   1.649 +        frag_buf_offs[fragi]=hpix-ref_frame_data;
   1.650 +        hpix+=8;
   1.651 +      }
   1.652 +      vpix+=stride<<3;
   1.653 +    }
   1.654 +  }
   1.655 +  /*Initialize the reference frame pointers and indices.*/
   1.656 +  _state->ref_frame_idx[OC_FRAME_GOLD]=
   1.657 +   _state->ref_frame_idx[OC_FRAME_PREV]=
   1.658 +   _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
   1.659 +   _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
   1.660 +   _state->ref_frame_idx[OC_FRAME_SELF]=
   1.661 +   _state->ref_frame_idx[OC_FRAME_IO]=-1;
   1.662 +  _state->ref_frame_data[OC_FRAME_GOLD]=
   1.663 +   _state->ref_frame_data[OC_FRAME_PREV]=
   1.664 +   _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
   1.665 +   _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
   1.666 +   _state->ref_frame_data[OC_FRAME_SELF]=
   1.667 +   _state->ref_frame_data[OC_FRAME_IO]=NULL;
   1.668 +  return 0;
   1.669 +}
   1.670 +
   1.671 +static void oc_state_ref_bufs_clear(oc_theora_state *_state){
   1.672 +  _ogg_free(_state->frag_buf_offs);
   1.673 +  oc_aligned_free(_state->ref_frame_handle);
   1.674 +}
   1.675 +
   1.676 +
   1.677 +void oc_state_accel_init_c(oc_theora_state *_state){
   1.678 +  _state->cpu_flags=0;
   1.679 +#if defined(OC_STATE_USE_VTABLE)
   1.680 +  _state->opt_vtable.frag_copy=oc_frag_copy_c;
   1.681 +  _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
   1.682 +  _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
   1.683 +  _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
   1.684 +  _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
   1.685 +  _state->opt_vtable.idct8x8=oc_idct8x8_c;
   1.686 +  _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
   1.687 +  _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
   1.688 +  _state->opt_vtable.state_loop_filter_frag_rows=
   1.689 +   oc_state_loop_filter_frag_rows_c;
   1.690 +  _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
   1.691 +#endif
   1.692 +  _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
   1.693 +}
   1.694 +
   1.695 +
   1.696 +int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
   1.697 +  int ret;
   1.698 +  /*First validate the parameters.*/
   1.699 +  if(_info==NULL)return TH_EFAULT;
   1.700 +  /*The width and height of the encoded frame must be multiples of 16.
   1.701 +    They must also, when divided by 16, fit into a 16-bit unsigned integer.
   1.702 +    The displayable frame offset coordinates must fit into an 8-bit unsigned
   1.703 +     integer.
   1.704 +    Note that the offset Y in the API is specified on the opposite side from
   1.705 +     how it is specified in the bitstream, because the Y axis is flipped in
   1.706 +     the bitstream.
   1.707 +    The displayable frame must fit inside the encoded frame.
   1.708 +    The color space must be one known by the encoder.*/
   1.709 +  if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
   1.710 +   _info->frame_width<=0||_info->frame_width>=0x100000||
   1.711 +   _info->frame_height<=0||_info->frame_height>=0x100000||
   1.712 +   _info->pic_x+_info->pic_width>_info->frame_width||
   1.713 +   _info->pic_y+_info->pic_height>_info->frame_height||
   1.714 +   _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
   1.715 +   /*Note: the following <0 comparisons may generate spurious warnings on
   1.716 +      platforms where enums are unsigned.
   1.717 +     We could cast them to unsigned and just use the following >= comparison,
   1.718 +      but there are a number of compilers which will mis-optimize this.
   1.719 +     It's better to live with the spurious warnings.*/
   1.720 +   _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
   1.721 +   _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS){
   1.722 +    return TH_EINVAL;
   1.723 +  }
   1.724 +  memset(_state,0,sizeof(*_state));
   1.725 +  memcpy(&_state->info,_info,sizeof(*_info));
   1.726 +  /*Invert the sense of pic_y to match Theora's right-handed coordinate
   1.727 +     system.*/
   1.728 +  _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
   1.729 +  _state->frame_type=OC_UNKWN_FRAME;
   1.730 +  oc_state_accel_init(_state);
   1.731 +  ret=oc_state_frarray_init(_state);
   1.732 +  if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
   1.733 +  if(ret<0){
   1.734 +    oc_state_frarray_clear(_state);
   1.735 +    return ret;
   1.736 +  }
   1.737 +  /*If the keyframe_granule_shift is out of range, use the maximum allowable
   1.738 +     value.*/
   1.739 +  if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
   1.740 +    _state->info.keyframe_granule_shift=31;
   1.741 +  }
   1.742 +  _state->keyframe_num=0;
   1.743 +  _state->curframe_num=-1;
   1.744 +  /*3.2.0 streams mark the frame index instead of the frame count.
   1.745 +    This was changed with stream version 3.2.1 to conform to other Ogg
   1.746 +     codecs.
   1.747 +    We add an extra bias when computing granule positions for new streams.*/
   1.748 +  _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
   1.749 +  return 0;
   1.750 +}
   1.751 +
   1.752 +void oc_state_clear(oc_theora_state *_state){
   1.753 +  oc_state_ref_bufs_clear(_state);
   1.754 +  oc_state_frarray_clear(_state);
   1.755 +}
   1.756 +
   1.757 +
   1.758 +/*Duplicates the pixels on the border of the image plane out into the
   1.759 +   surrounding padding for use by unrestricted motion vectors.
   1.760 +  This function only adds the left and right borders, and only for the fragment
   1.761 +   rows specified.
   1.762 +  _refi: The index of the reference buffer to pad.
   1.763 +  _pli:  The color plane.
   1.764 +  _y0:   The Y coordinate of the first row to pad.
   1.765 +  _yend: The Y coordinate of the row to stop padding at.*/
   1.766 +void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
   1.767 + int _y0,int _yend){
   1.768 +  th_img_plane  *iplane;
   1.769 +  unsigned char *apix;
   1.770 +  unsigned char *bpix;
   1.771 +  unsigned char *epix;
   1.772 +  int            stride;
   1.773 +  int            hpadding;
   1.774 +  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
   1.775 +  iplane=_state->ref_frame_bufs[_refi]+_pli;
   1.776 +  stride=iplane->stride;
   1.777 +  apix=iplane->data+_y0*(ptrdiff_t)stride;
   1.778 +  bpix=apix+iplane->width-1;
   1.779 +  epix=iplane->data+_yend*(ptrdiff_t)stride;
   1.780 +  /*Note the use of != instead of <, which allows the stride to be negative.*/
   1.781 +  while(apix!=epix){
   1.782 +    memset(apix-hpadding,apix[0],hpadding);
   1.783 +    memset(bpix+1,bpix[0],hpadding);
   1.784 +    apix+=stride;
   1.785 +    bpix+=stride;
   1.786 +  }
   1.787 +}
   1.788 +
   1.789 +/*Duplicates the pixels on the border of the image plane out into the
   1.790 +   surrounding padding for use by unrestricted motion vectors.
   1.791 +  This function only adds the top and bottom borders, and must be called after
   1.792 +   the left and right borders are added.
   1.793 +  _refi:      The index of the reference buffer to pad.
   1.794 +  _pli:       The color plane.*/
   1.795 +void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
   1.796 +  th_img_plane  *iplane;
   1.797 +  unsigned char *apix;
   1.798 +  unsigned char *bpix;
   1.799 +  unsigned char *epix;
   1.800 +  int            stride;
   1.801 +  int            hpadding;
   1.802 +  int            vpadding;
   1.803 +  int            fullw;
   1.804 +  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
   1.805 +  vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
   1.806 +  iplane=_state->ref_frame_bufs[_refi]+_pli;
   1.807 +  stride=iplane->stride;
   1.808 +  fullw=iplane->width+(hpadding<<1);
   1.809 +  apix=iplane->data-hpadding;
   1.810 +  bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
   1.811 +  epix=apix-stride*(ptrdiff_t)vpadding;
   1.812 +  while(apix!=epix){
   1.813 +    memcpy(apix-stride,apix,fullw);
   1.814 +    memcpy(bpix+stride,bpix,fullw);
   1.815 +    apix-=stride;
   1.816 +    bpix+=stride;
   1.817 +  }
   1.818 +}
   1.819 +
   1.820 +/*Duplicates the pixels on the border of the given reference image out into
   1.821 +   the surrounding padding for use by unrestricted motion vectors.
   1.822 +  _state: The context containing the reference buffers.
   1.823 +  _refi:  The index of the reference buffer to pad.*/
   1.824 +void oc_state_borders_fill(oc_theora_state *_state,int _refi){
   1.825 +  int pli;
   1.826 +  for(pli=0;pli<3;pli++){
   1.827 +    oc_state_borders_fill_rows(_state,_refi,pli,0,
   1.828 +     _state->ref_frame_bufs[_refi][pli].height);
   1.829 +    oc_state_borders_fill_caps(_state,_refi,pli);
   1.830 +  }
   1.831 +}
   1.832 +
   1.833 +/*Determines the offsets in an image buffer to use for motion compensation.
   1.834 +  _state:   The Theora state the offsets are to be computed with.
   1.835 +  _offsets: Returns the offset for the buffer(s).
   1.836 +            _offsets[0] is always set.
   1.837 +            _offsets[1] is set if the motion vector has non-zero fractional
   1.838 +             components.
   1.839 +  _pli:     The color plane index.
   1.840 +  _mv:      The motion vector.
   1.841 +  Return: The number of offsets returned: 1 or 2.*/
   1.842 +int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
   1.843 + int _pli,oc_mv _mv){
   1.844 +  /*Here is a brief description of how Theora handles motion vectors:
   1.845 +    Motion vector components are specified to half-pixel accuracy in
   1.846 +     undecimated directions of each plane, and quarter-pixel accuracy in
   1.847 +     decimated directions.
   1.848 +    Integer parts are extracted by dividing (not shifting) by the
   1.849 +     appropriate amount, with truncation towards zero.
   1.850 +    These integer values are used to calculate the first offset.
   1.851 +
   1.852 +    If either of the fractional parts are non-zero, then a second offset is
   1.853 +     computed.
   1.854 +    No third or fourth offsets are computed, even if both components have
   1.855 +     non-zero fractional parts.
   1.856 +    The second offset is computed by dividing (not shifting) by the
   1.857 +     appropriate amount, always truncating _away_ from zero.*/
   1.858 +#if 0
   1.859 +  /*This version of the code doesn't use any tables, but is slower.*/
   1.860 +  int ystride;
   1.861 +  int xprec;
   1.862 +  int yprec;
   1.863 +  int xfrac;
   1.864 +  int yfrac;
   1.865 +  int offs;
   1.866 +  int dx;
   1.867 +  int dy;
   1.868 +  ystride=_state->ref_ystride[_pli];
   1.869 +  /*These two variables decide whether we are in half- or quarter-pixel
   1.870 +     precision in each component.*/
   1.871 +  xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
   1.872 +  yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
   1.873 +  dx=OC_MV_X(_mv);
   1.874 +  dy=OC_MV_Y(_mv);
   1.875 +  /*These two variables are either 0 if all the fractional bits are zero or -1
   1.876 +     if any of them are non-zero.*/
   1.877 +  xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
   1.878 +  yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
   1.879 +  offs=(dx>>xprec)+(dy>>yprec)*ystride;
   1.880 +  if(xfrac||yfrac){
   1.881 +    int xmask;
   1.882 +    int ymask;
   1.883 +    xmask=OC_SIGNMASK(dx);
   1.884 +    ymask=OC_SIGNMASK(dy);
   1.885 +    yfrac&=ystride;
   1.886 +    _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
   1.887 +    _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
   1.888 +    return 2;
   1.889 +  }
   1.890 +  else{
   1.891 +    _offsets[0]=offs;
   1.892 +    return 1;
   1.893 +  }
   1.894 +#else
   1.895 +  /*Using tables simplifies the code, and there's enough arithmetic to hide the
   1.896 +     latencies of the memory references.*/
   1.897 +  static const signed char OC_MVMAP[2][64]={
   1.898 +    {
   1.899 +          -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
   1.900 +       -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
   1.901 +        0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
   1.902 +        8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
   1.903 +    },
   1.904 +    {
   1.905 +           -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
   1.906 +       -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
   1.907 +        0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
   1.908 +        4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
   1.909 +    }
   1.910 +  };
   1.911 +  static const signed char OC_MVMAP2[2][64]={
   1.912 +    {
   1.913 +        -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
   1.914 +      0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
   1.915 +      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
   1.916 +      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
   1.917 +    },
   1.918 +    {
   1.919 +        -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
   1.920 +      0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
   1.921 +      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
   1.922 +      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
   1.923 +    }
   1.924 +  };
   1.925 +  int ystride;
   1.926 +  int qpx;
   1.927 +  int qpy;
   1.928 +  int mx;
   1.929 +  int my;
   1.930 +  int mx2;
   1.931 +  int my2;
   1.932 +  int offs;
   1.933 +  int dx;
   1.934 +  int dy;
   1.935 +  ystride=_state->ref_ystride[_pli];
   1.936 +  qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
   1.937 +  dx=OC_MV_X(_mv);
   1.938 +  dy=OC_MV_Y(_mv);
   1.939 +  my=OC_MVMAP[qpy][dy+31];
   1.940 +  my2=OC_MVMAP2[qpy][dy+31];
   1.941 +  qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
   1.942 +  mx=OC_MVMAP[qpx][dx+31];
   1.943 +  mx2=OC_MVMAP2[qpx][dx+31];
   1.944 +  offs=my*ystride+mx;
   1.945 +  if(mx2||my2){
   1.946 +    _offsets[1]=offs+my2*ystride+mx2;
   1.947 +    _offsets[0]=offs;
   1.948 +    return 2;
   1.949 +  }
   1.950 +  _offsets[0]=offs;
   1.951 +  return 1;
   1.952 +#endif
   1.953 +}
   1.954 +
   1.955 +void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
   1.956 + int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
   1.957 +  unsigned char *dst;
   1.958 +  ptrdiff_t      frag_buf_off;
   1.959 +  int            ystride;
   1.960 +  int            refi;
   1.961 +  /*Apply the inverse transform.*/
   1.962 +  /*Special case only having a DC component.*/
   1.963 +  if(_last_zzi<2){
   1.964 +    ogg_int16_t p;
   1.965 +    int         ci;
   1.966 +    /*We round this dequant product (and not any of the others) because there's
   1.967 +       no iDCT rounding.*/
   1.968 +    p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
   1.969 +    /*LOOP VECTORIZES.*/
   1.970 +    for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
   1.971 +  }
   1.972 +  else{
   1.973 +    /*First, dequantize the DC coefficient.*/
   1.974 +    _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
   1.975 +    oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
   1.976 +  }
   1.977 +  /*Fill in the target buffer.*/
   1.978 +  frag_buf_off=_state->frag_buf_offs[_fragi];
   1.979 +  refi=_state->frags[_fragi].refi;
   1.980 +  ystride=_state->ref_ystride[_pli];
   1.981 +  dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
   1.982 +  if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
   1.983 +  else{
   1.984 +    const unsigned char *ref;
   1.985 +    int                  mvoffsets[2];
   1.986 +    ref=_state->ref_frame_data[refi]+frag_buf_off;
   1.987 +    if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
   1.988 +     _state->frag_mvs[_fragi])>1){
   1.989 +      oc_frag_recon_inter2(_state,
   1.990 +       dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
   1.991 +    }
   1.992 +    else{
   1.993 +      oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
   1.994 +    }
   1.995 +  }
   1.996 +}
   1.997 +
   1.998 +static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
   1.999 +  int y;
  1.1000 +  _pix-=2;
  1.1001 +  for(y=0;y<8;y++){
  1.1002 +    int f;
  1.1003 +    f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
  1.1004 +    /*The _bv array is used to compute the function
  1.1005 +      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
  1.1006 +      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
  1.1007 +    f=*(_bv+(f+4>>3));
  1.1008 +    _pix[1]=OC_CLAMP255(_pix[1]+f);
  1.1009 +    _pix[2]=OC_CLAMP255(_pix[2]-f);
  1.1010 +    _pix+=_ystride;
  1.1011 +  }
  1.1012 +}
  1.1013 +
  1.1014 +static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
  1.1015 +  int x;
  1.1016 +  _pix-=_ystride*2;
  1.1017 +  for(x=0;x<8;x++){
  1.1018 +    int f;
  1.1019 +    f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
  1.1020 +    /*The _bv array is used to compute the function
  1.1021 +      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
  1.1022 +      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
  1.1023 +    f=*(_bv+(f+4>>3));
  1.1024 +    _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
  1.1025 +    _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
  1.1026 +  }
  1.1027 +}
  1.1028 +
  1.1029 +/*Initialize the bounding values array used by the loop filter.
  1.1030 +  _bv: Storage for the array.
  1.1031 +  _flimit: The filter limit as defined in Section 7.10 of the spec.*/
  1.1032 +void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
  1.1033 +  int i;
  1.1034 +  memset(_bv,0,sizeof(_bv[0])*256);
  1.1035 +  for(i=0;i<_flimit;i++){
  1.1036 +    if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
  1.1037 +    _bv[127-i]=(signed char)(-i);
  1.1038 +    _bv[127+i]=(signed char)(i);
  1.1039 +    if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
  1.1040 +  }
  1.1041 +}
  1.1042 +
  1.1043 +/*Apply the loop filter to a given set of fragment rows in the given plane.
  1.1044 +  The filter may be run on the bottom edge, affecting pixels in the next row of
  1.1045 +   fragments, so this row also needs to be available.
  1.1046 +  _bv:        The bounding values array.
  1.1047 +  _refi:      The index of the frame buffer to filter.
  1.1048 +  _pli:       The color plane to filter.
  1.1049 +  _fragy0:    The Y coordinate of the first fragment row to filter.
  1.1050 +  _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
  1.1051 +void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
  1.1052 + signed char *_bv,int _refi,int _pli,int _fragy0,int _fragy_end){
  1.1053 +  const oc_fragment_plane *fplane;
  1.1054 +  const oc_fragment       *frags;
  1.1055 +  const ptrdiff_t         *frag_buf_offs;
  1.1056 +  unsigned char           *ref_frame_data;
  1.1057 +  ptrdiff_t                fragi_top;
  1.1058 +  ptrdiff_t                fragi_bot;
  1.1059 +  ptrdiff_t                fragi0;
  1.1060 +  ptrdiff_t                fragi0_end;
  1.1061 +  int                      ystride;
  1.1062 +  int                      nhfrags;
  1.1063 +  _bv+=127;
  1.1064 +  fplane=_state->fplanes+_pli;
  1.1065 +  nhfrags=fplane->nhfrags;
  1.1066 +  fragi_top=fplane->froffset;
  1.1067 +  fragi_bot=fragi_top+fplane->nfrags;
  1.1068 +  fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
  1.1069 +  fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
  1.1070 +  ystride=_state->ref_ystride[_pli];
  1.1071 +  frags=_state->frags;
  1.1072 +  frag_buf_offs=_state->frag_buf_offs;
  1.1073 +  ref_frame_data=_state->ref_frame_data[_refi];
  1.1074 +  /*The following loops are constructed somewhat non-intuitively on purpose.
  1.1075 +    The main idea is: if a block boundary has at least one coded fragment on
  1.1076 +     it, the filter is applied to it.
  1.1077 +    However, the order that the filters are applied in matters, and VP3 chose
  1.1078 +     the somewhat strange ordering used below.*/
  1.1079 +  while(fragi0<fragi0_end){
  1.1080 +    ptrdiff_t fragi;
  1.1081 +    ptrdiff_t fragi_end;
  1.1082 +    fragi=fragi0;
  1.1083 +    fragi_end=fragi+nhfrags;
  1.1084 +    while(fragi<fragi_end){
  1.1085 +      if(frags[fragi].coded){
  1.1086 +        unsigned char *ref;
  1.1087 +        ref=ref_frame_data+frag_buf_offs[fragi];
  1.1088 +        if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
  1.1089 +        if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
  1.1090 +        if(fragi+1<fragi_end&&!frags[fragi+1].coded){
  1.1091 +          loop_filter_h(ref+8,ystride,_bv);
  1.1092 +        }
  1.1093 +        if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
  1.1094 +          loop_filter_v(ref+(ystride<<3),ystride,_bv);
  1.1095 +        }
  1.1096 +      }
  1.1097 +      fragi++;
  1.1098 +    }
  1.1099 +    fragi0+=nhfrags;
  1.1100 +  }
  1.1101 +}
  1.1102 +
  1.1103 +#if defined(OC_DUMP_IMAGES)
  1.1104 +int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
  1.1105 + const char *_suf){
  1.1106 +  /*Dump a PNG of the reconstructed image.*/
  1.1107 +  png_structp    png;
  1.1108 +  png_infop      info;
  1.1109 +  png_bytep     *image;
  1.1110 +  FILE          *fp;
  1.1111 +  char           fname[16];
  1.1112 +  unsigned char *y_row;
  1.1113 +  unsigned char *u_row;
  1.1114 +  unsigned char *v_row;
  1.1115 +  unsigned char *y;
  1.1116 +  unsigned char *u;
  1.1117 +  unsigned char *v;
  1.1118 +  ogg_int64_t    iframe;
  1.1119 +  ogg_int64_t    pframe;
  1.1120 +  int            y_stride;
  1.1121 +  int            u_stride;
  1.1122 +  int            v_stride;
  1.1123 +  int            framei;
  1.1124 +  int            width;
  1.1125 +  int            height;
  1.1126 +  int            imgi;
  1.1127 +  int            imgj;
  1.1128 +  width=_state->info.frame_width;
  1.1129 +  height=_state->info.frame_height;
  1.1130 +  iframe=_state->granpos>>_state->info.keyframe_granule_shift;
  1.1131 +  pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
  1.1132 +  sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
  1.1133 +  fp=fopen(fname,"wb");
  1.1134 +  if(fp==NULL)return TH_EFAULT;
  1.1135 +  image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
  1.1136 +  if(image==NULL){
  1.1137 +    fclose(fp);
  1.1138 +    return TH_EFAULT;
  1.1139 +  }
  1.1140 +  png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
  1.1141 +  if(png==NULL){
  1.1142 +    oc_free_2d(image);
  1.1143 +    fclose(fp);
  1.1144 +    return TH_EFAULT;
  1.1145 +  }
  1.1146 +  info=png_create_info_struct(png);
  1.1147 +  if(info==NULL){
  1.1148 +    png_destroy_write_struct(&png,NULL);
  1.1149 +    oc_free_2d(image);
  1.1150 +    fclose(fp);
  1.1151 +    return TH_EFAULT;
  1.1152 +  }
  1.1153 +  if(setjmp(png_jmpbuf(png))){
  1.1154 +    png_destroy_write_struct(&png,&info);
  1.1155 +    oc_free_2d(image);
  1.1156 +    fclose(fp);
  1.1157 +    return TH_EFAULT;
  1.1158 +  }
  1.1159 +  framei=_state->ref_frame_idx[_frame];
  1.1160 +  y_row=_state->ref_frame_bufs[framei][0].data;
  1.1161 +  u_row=_state->ref_frame_bufs[framei][1].data;
  1.1162 +  v_row=_state->ref_frame_bufs[framei][2].data;
  1.1163 +  y_stride=_state->ref_frame_bufs[framei][0].stride;
  1.1164 +  u_stride=_state->ref_frame_bufs[framei][1].stride;
  1.1165 +  v_stride=_state->ref_frame_bufs[framei][2].stride;
  1.1166 +  /*Chroma up-sampling is just done with a box filter.
  1.1167 +    This is very likely what will actually be used in practice on a real
  1.1168 +     display, and also removes one more layer to search in for the source of
  1.1169 +     artifacts.
  1.1170 +    As an added bonus, it's dead simple.*/
  1.1171 +  for(imgi=height;imgi-->0;){
  1.1172 +    int dc;
  1.1173 +    y=y_row;
  1.1174 +    u=u_row;
  1.1175 +    v=v_row;
  1.1176 +    for(imgj=0;imgj<6*width;){
  1.1177 +      float    yval;
  1.1178 +      float    uval;
  1.1179 +      float    vval;
  1.1180 +      unsigned rval;
  1.1181 +      unsigned gval;
  1.1182 +      unsigned bval;
  1.1183 +      /*This is intentionally slow and very accurate.*/
  1.1184 +      yval=(*y-16)*(1.0F/219);
  1.1185 +      uval=(*u-128)*(2*(1-0.114F)/224);
  1.1186 +      vval=(*v-128)*(2*(1-0.299F)/224);
  1.1187 +      rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
  1.1188 +      gval=OC_CLAMPI(0,(int)(65535*(
  1.1189 +       yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
  1.1190 +      bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
  1.1191 +      image[imgi][imgj++]=(unsigned char)(rval>>8);
  1.1192 +      image[imgi][imgj++]=(unsigned char)(rval&0xFF);
  1.1193 +      image[imgi][imgj++]=(unsigned char)(gval>>8);
  1.1194 +      image[imgi][imgj++]=(unsigned char)(gval&0xFF);
  1.1195 +      image[imgi][imgj++]=(unsigned char)(bval>>8);
  1.1196 +      image[imgi][imgj++]=(unsigned char)(bval&0xFF);
  1.1197 +      dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
  1.1198 +      y++;
  1.1199 +      u+=dc;
  1.1200 +      v+=dc;
  1.1201 +    }
  1.1202 +    dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
  1.1203 +    y_row+=y_stride;
  1.1204 +    u_row+=dc&u_stride;
  1.1205 +    v_row+=dc&v_stride;
  1.1206 +  }
  1.1207 +  png_init_io(png,fp);
  1.1208 +  png_set_compression_level(png,Z_BEST_COMPRESSION);
  1.1209 +  png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
  1.1210 +   PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
  1.1211 +  switch(_state->info.colorspace){
  1.1212 +    case TH_CS_ITU_REC_470M:{
  1.1213 +      png_set_gAMA(png,info,2.2);
  1.1214 +      png_set_cHRM_fixed(png,info,31006,31616,
  1.1215 +       67000,32000,21000,71000,14000,8000);
  1.1216 +    }break;
  1.1217 +    case TH_CS_ITU_REC_470BG:{
  1.1218 +      png_set_gAMA(png,info,2.67);
  1.1219 +      png_set_cHRM_fixed(png,info,31271,32902,
  1.1220 +       64000,33000,29000,60000,15000,6000);
  1.1221 +    }break;
  1.1222 +    default:break;
  1.1223 +  }
  1.1224 +  png_set_pHYs(png,info,_state->info.aspect_numerator,
  1.1225 +   _state->info.aspect_denominator,0);
  1.1226 +  png_set_rows(png,info,image);
  1.1227 +  png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
  1.1228 +  png_write_end(png,info);
  1.1229 +  png_destroy_write_struct(&png,&info);
  1.1230 +  oc_free_2d(image);
  1.1231 +  fclose(fp);
  1.1232 +  return 0;
  1.1233 +}
  1.1234 +#endif
  1.1235 +
  1.1236 +
  1.1237 +
  1.1238 +ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
  1.1239 +  oc_theora_state *state;
  1.1240 +  state=(oc_theora_state *)_encdec;
  1.1241 +  if(_granpos>=0){
  1.1242 +    ogg_int64_t iframe;
  1.1243 +    ogg_int64_t pframe;
  1.1244 +    iframe=_granpos>>state->info.keyframe_granule_shift;
  1.1245 +    pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
  1.1246 +    /*3.2.0 streams store the frame index in the granule position.
  1.1247 +      3.2.1 and later store the frame count.
  1.1248 +      We return the index, so adjust the value if we have a 3.2.1 or later
  1.1249 +       stream.*/
  1.1250 +    return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
  1.1251 +  }
  1.1252 +  return -1;
  1.1253 +}
  1.1254 +
  1.1255 +double th_granule_time(void *_encdec,ogg_int64_t _granpos){
  1.1256 +  oc_theora_state *state;
  1.1257 +  state=(oc_theora_state *)_encdec;
  1.1258 +  if(_granpos>=0){
  1.1259 +    return (th_granule_frame(_encdec, _granpos)+1)*(
  1.1260 +     (double)state->info.fps_denominator/state->info.fps_numerator);
  1.1261 +  }
  1.1262 +  return -1;
  1.1263 +}

mercurial