1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libvpx/vp8/encoder/firstpass.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,3367 @@ 1.4 +/* 1.5 + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license 1.8 + * that can be found in the LICENSE file in the root of the source 1.9 + * tree. An additional intellectual property rights grant can be found 1.10 + * in the file PATENTS. All contributing project authors may 1.11 + * be found in the AUTHORS file in the root of the source tree. 1.12 + */ 1.13 + 1.14 +#include <math.h> 1.15 +#include <limits.h> 1.16 +#include <stdio.h> 1.17 + 1.18 +#include "./vpx_scale_rtcd.h" 1.19 +#include "block.h" 1.20 +#include "onyx_int.h" 1.21 +#include "vp8/common/variance.h" 1.22 +#include "encodeintra.h" 1.23 +#include "vp8/common/setupintrarecon.h" 1.24 +#include "vp8/common/systemdependent.h" 1.25 +#include "mcomp.h" 1.26 +#include "firstpass.h" 1.27 +#include "vpx_scale/vpx_scale.h" 1.28 +#include "encodemb.h" 1.29 +#include "vp8/common/extend.h" 1.30 +#include "vpx_mem/vpx_mem.h" 1.31 +#include "vp8/common/swapyv12buffer.h" 1.32 +#include "rdopt.h" 1.33 +#include "vp8/common/quant_common.h" 1.34 +#include "encodemv.h" 1.35 +#include "encodeframe.h" 1.36 + 1.37 +/* #define OUTPUT_FPF 1 */ 1.38 + 1.39 +extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); 1.40 +extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); 1.41 +extern void vp8_alloc_compressor_data(VP8_COMP *cpi); 1.42 + 1.43 +#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] 1.44 +extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; 1.45 + 1.46 +extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; 1.47 + 1.48 +#define IIFACTOR 1.5 1.49 +#define IIKFACTOR1 1.40 1.50 +#define IIKFACTOR2 1.5 1.51 +#define RMAX 14.0 1.52 +#define GF_RMAX 48.0 1.53 + 1.54 +#define KF_MB_INTRA_MIN 300 1.55 +#define GF_MB_INTRA_MIN 200 1.56 + 1.57 +#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) 1.58 + 1.59 +#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 1.60 +#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 1.61 + 1.62 +#define NEW_BOOST 1 1.63 + 1.64 +static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; 1.65 +static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; 1.66 + 1.67 + 1.68 +static const int cq_level[QINDEX_RANGE] = 1.69 +{ 1.70 + 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, 1.71 + 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, 1.72 + 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, 1.73 + 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, 1.74 + 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, 1.75 + 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, 1.76 + 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, 1.77 + 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 1.78 +}; 1.79 + 1.80 +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); 1.81 + 1.82 +/* Resets the first pass file to the given position using a relative seek 1.83 + * from the current position 1.84 + */ 1.85 +static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) 1.86 +{ 1.87 + cpi->twopass.stats_in = Position; 1.88 +} 1.89 + 1.90 +static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) 1.91 +{ 1.92 + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) 1.93 + return EOF; 1.94 + 1.95 + *next_frame = *cpi->twopass.stats_in; 1.96 + return 1; 1.97 +} 1.98 + 1.99 +/* Read frame stats at an offset from the current position */ 1.100 +static int read_frame_stats( VP8_COMP *cpi, 1.101 + FIRSTPASS_STATS *frame_stats, 1.102 + int offset ) 1.103 +{ 1.104 + FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; 1.105 + 1.106 + /* Check legality of offset */ 1.107 + if ( offset >= 0 ) 1.108 + { 1.109 + if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) 1.110 + return EOF; 1.111 + } 1.112 + else if ( offset < 0 ) 1.113 + { 1.114 + if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) 1.115 + return EOF; 1.116 + } 1.117 + 1.118 + *frame_stats = fps_ptr[offset]; 1.119 + return 1; 1.120 +} 1.121 + 1.122 +static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) 1.123 +{ 1.124 + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) 1.125 + return EOF; 1.126 + 1.127 + *fps = *cpi->twopass.stats_in; 1.128 + cpi->twopass.stats_in = 1.129 + (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); 1.130 + return 1; 1.131 +} 1.132 + 1.133 +static void output_stats(const VP8_COMP *cpi, 1.134 + struct vpx_codec_pkt_list *pktlist, 1.135 + FIRSTPASS_STATS *stats) 1.136 +{ 1.137 + struct vpx_codec_cx_pkt pkt; 1.138 + pkt.kind = VPX_CODEC_STATS_PKT; 1.139 + pkt.data.twopass_stats.buf = stats; 1.140 + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); 1.141 + vpx_codec_pkt_list_add(pktlist, &pkt); 1.142 + 1.143 +/* TEMP debug code */ 1.144 +#if OUTPUT_FPF 1.145 + 1.146 + { 1.147 + FILE *fpfile; 1.148 + fpfile = fopen("firstpass.stt", "a"); 1.149 + 1.150 + fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" 1.151 + " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" 1.152 + " %12.0f %12.0f %12.4f\n", 1.153 + stats->frame, 1.154 + stats->intra_error, 1.155 + stats->coded_error, 1.156 + stats->ssim_weighted_pred_err, 1.157 + stats->pcnt_inter, 1.158 + stats->pcnt_motion, 1.159 + stats->pcnt_second_ref, 1.160 + stats->pcnt_neutral, 1.161 + stats->MVr, 1.162 + stats->mvr_abs, 1.163 + stats->MVc, 1.164 + stats->mvc_abs, 1.165 + stats->MVrv, 1.166 + stats->MVcv, 1.167 + stats->mv_in_out_count, 1.168 + stats->new_mv_count, 1.169 + stats->count, 1.170 + stats->duration); 1.171 + fclose(fpfile); 1.172 + } 1.173 +#endif 1.174 +} 1.175 + 1.176 +static void zero_stats(FIRSTPASS_STATS *section) 1.177 +{ 1.178 + section->frame = 0.0; 1.179 + section->intra_error = 0.0; 1.180 + section->coded_error = 0.0; 1.181 + section->ssim_weighted_pred_err = 0.0; 1.182 + section->pcnt_inter = 0.0; 1.183 + section->pcnt_motion = 0.0; 1.184 + section->pcnt_second_ref = 0.0; 1.185 + section->pcnt_neutral = 0.0; 1.186 + section->MVr = 0.0; 1.187 + section->mvr_abs = 0.0; 1.188 + section->MVc = 0.0; 1.189 + section->mvc_abs = 0.0; 1.190 + section->MVrv = 0.0; 1.191 + section->MVcv = 0.0; 1.192 + section->mv_in_out_count = 0.0; 1.193 + section->new_mv_count = 0.0; 1.194 + section->count = 0.0; 1.195 + section->duration = 1.0; 1.196 +} 1.197 + 1.198 +static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) 1.199 +{ 1.200 + section->frame += frame->frame; 1.201 + section->intra_error += frame->intra_error; 1.202 + section->coded_error += frame->coded_error; 1.203 + section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; 1.204 + section->pcnt_inter += frame->pcnt_inter; 1.205 + section->pcnt_motion += frame->pcnt_motion; 1.206 + section->pcnt_second_ref += frame->pcnt_second_ref; 1.207 + section->pcnt_neutral += frame->pcnt_neutral; 1.208 + section->MVr += frame->MVr; 1.209 + section->mvr_abs += frame->mvr_abs; 1.210 + section->MVc += frame->MVc; 1.211 + section->mvc_abs += frame->mvc_abs; 1.212 + section->MVrv += frame->MVrv; 1.213 + section->MVcv += frame->MVcv; 1.214 + section->mv_in_out_count += frame->mv_in_out_count; 1.215 + section->new_mv_count += frame->new_mv_count; 1.216 + section->count += frame->count; 1.217 + section->duration += frame->duration; 1.218 +} 1.219 + 1.220 +static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) 1.221 +{ 1.222 + section->frame -= frame->frame; 1.223 + section->intra_error -= frame->intra_error; 1.224 + section->coded_error -= frame->coded_error; 1.225 + section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; 1.226 + section->pcnt_inter -= frame->pcnt_inter; 1.227 + section->pcnt_motion -= frame->pcnt_motion; 1.228 + section->pcnt_second_ref -= frame->pcnt_second_ref; 1.229 + section->pcnt_neutral -= frame->pcnt_neutral; 1.230 + section->MVr -= frame->MVr; 1.231 + section->mvr_abs -= frame->mvr_abs; 1.232 + section->MVc -= frame->MVc; 1.233 + section->mvc_abs -= frame->mvc_abs; 1.234 + section->MVrv -= frame->MVrv; 1.235 + section->MVcv -= frame->MVcv; 1.236 + section->mv_in_out_count -= frame->mv_in_out_count; 1.237 + section->new_mv_count -= frame->new_mv_count; 1.238 + section->count -= frame->count; 1.239 + section->duration -= frame->duration; 1.240 +} 1.241 + 1.242 +static void avg_stats(FIRSTPASS_STATS *section) 1.243 +{ 1.244 + if (section->count < 1.0) 1.245 + return; 1.246 + 1.247 + section->intra_error /= section->count; 1.248 + section->coded_error /= section->count; 1.249 + section->ssim_weighted_pred_err /= section->count; 1.250 + section->pcnt_inter /= section->count; 1.251 + section->pcnt_second_ref /= section->count; 1.252 + section->pcnt_neutral /= section->count; 1.253 + section->pcnt_motion /= section->count; 1.254 + section->MVr /= section->count; 1.255 + section->mvr_abs /= section->count; 1.256 + section->MVc /= section->count; 1.257 + section->mvc_abs /= section->count; 1.258 + section->MVrv /= section->count; 1.259 + section->MVcv /= section->count; 1.260 + section->mv_in_out_count /= section->count; 1.261 + section->duration /= section->count; 1.262 +} 1.263 + 1.264 +/* Calculate a modified Error used in distributing bits between easier 1.265 + * and harder frames 1.266 + */ 1.267 +static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) 1.268 +{ 1.269 + double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / 1.270 + cpi->twopass.total_stats.count ); 1.271 + double this_err = this_frame->ssim_weighted_pred_err; 1.272 + double modified_err; 1.273 + 1.274 + if (this_err > av_err) 1.275 + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); 1.276 + else 1.277 + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); 1.278 + 1.279 + return modified_err; 1.280 +} 1.281 + 1.282 +static const double weight_table[256] = { 1.283 +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 1.284 +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 1.285 +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 1.286 +0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 1.287 +0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 1.288 +0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 1.289 +0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 1.290 +0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.291 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.292 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.293 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.294 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.295 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.296 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.297 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.298 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.299 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.300 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.301 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.302 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.303 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.304 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.305 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.306 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.307 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.308 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.309 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.310 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.311 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.312 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.313 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.314 +1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 1.315 +}; 1.316 + 1.317 +static double simple_weight(YV12_BUFFER_CONFIG *source) 1.318 +{ 1.319 + int i, j; 1.320 + 1.321 + unsigned char *src = source->y_buffer; 1.322 + double sum_weights = 0.0; 1.323 + 1.324 + /* Loop throught the Y plane raw examining levels and creating a weight 1.325 + * for the image 1.326 + */ 1.327 + i = source->y_height; 1.328 + do 1.329 + { 1.330 + j = source->y_width; 1.331 + do 1.332 + { 1.333 + sum_weights += weight_table[ *src]; 1.334 + src++; 1.335 + }while(--j); 1.336 + src -= source->y_width; 1.337 + src += source->y_stride; 1.338 + }while(--i); 1.339 + 1.340 + sum_weights /= (source->y_height * source->y_width); 1.341 + 1.342 + return sum_weights; 1.343 +} 1.344 + 1.345 + 1.346 +/* This function returns the current per frame maximum bitrate target */ 1.347 +static int frame_max_bits(VP8_COMP *cpi) 1.348 +{ 1.349 + /* Max allocation for a single frame based on the max section guidelines 1.350 + * passed in and how many bits are left 1.351 + */ 1.352 + int max_bits; 1.353 + 1.354 + /* For CBR we need to also consider buffer fullness. 1.355 + * If we are running below the optimal level then we need to gradually 1.356 + * tighten up on max_bits. 1.357 + */ 1.358 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.359 + { 1.360 + double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); 1.361 + 1.362 + /* For CBR base this on the target average bits per frame plus the 1.363 + * maximum sedction rate passed in by the user 1.364 + */ 1.365 + max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); 1.366 + 1.367 + /* If our buffer is below the optimum level */ 1.368 + if (buffer_fullness_ratio < 1.0) 1.369 + { 1.370 + /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ 1.371 + int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; 1.372 + 1.373 + max_bits = (int)(max_bits * buffer_fullness_ratio); 1.374 + 1.375 + /* Lowest value we will set ... which should allow the buffer to 1.376 + * refill. 1.377 + */ 1.378 + if (max_bits < min_max_bits) 1.379 + max_bits = min_max_bits; 1.380 + } 1.381 + } 1.382 + /* VBR */ 1.383 + else 1.384 + { 1.385 + /* For VBR base this on the bits and frames left plus the 1.386 + * two_pass_vbrmax_section rate passed in by the user 1.387 + */ 1.388 + max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); 1.389 + } 1.390 + 1.391 + /* Trap case where we are out of bits */ 1.392 + if (max_bits < 0) 1.393 + max_bits = 0; 1.394 + 1.395 + return max_bits; 1.396 +} 1.397 + 1.398 +void vp8_init_first_pass(VP8_COMP *cpi) 1.399 +{ 1.400 + zero_stats(&cpi->twopass.total_stats); 1.401 +} 1.402 + 1.403 +void vp8_end_first_pass(VP8_COMP *cpi) 1.404 +{ 1.405 + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); 1.406 +} 1.407 + 1.408 +static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, 1.409 + YV12_BUFFER_CONFIG * raw_buffer, 1.410 + int * raw_motion_err, 1.411 + YV12_BUFFER_CONFIG * recon_buffer, 1.412 + int * best_motion_err, int recon_yoffset) 1.413 +{ 1.414 + MACROBLOCKD * const xd = & x->e_mbd; 1.415 + BLOCK *b = &x->block[0]; 1.416 + BLOCKD *d = &x->e_mbd.block[0]; 1.417 + 1.418 + unsigned char *src_ptr = (*(b->base_src) + b->src); 1.419 + int src_stride = b->src_stride; 1.420 + unsigned char *raw_ptr; 1.421 + int raw_stride = raw_buffer->y_stride; 1.422 + unsigned char *ref_ptr; 1.423 + int ref_stride = x->e_mbd.pre.y_stride; 1.424 + 1.425 + /* Set up pointers for this macro block raw buffer */ 1.426 + raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset 1.427 + + d->offset); 1.428 + vp8_mse16x16 ( src_ptr, src_stride, raw_ptr, raw_stride, 1.429 + (unsigned int *)(raw_motion_err)); 1.430 + 1.431 + /* Set up pointers for this macro block recon buffer */ 1.432 + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; 1.433 + ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); 1.434 + vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride, 1.435 + (unsigned int *)(best_motion_err)); 1.436 +} 1.437 + 1.438 +static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, 1.439 + int_mv *ref_mv, MV *best_mv, 1.440 + YV12_BUFFER_CONFIG *recon_buffer, 1.441 + int *best_motion_err, int recon_yoffset ) 1.442 +{ 1.443 + MACROBLOCKD *const xd = & x->e_mbd; 1.444 + BLOCK *b = &x->block[0]; 1.445 + BLOCKD *d = &x->e_mbd.block[0]; 1.446 + int num00; 1.447 + 1.448 + int_mv tmp_mv; 1.449 + int_mv ref_mv_full; 1.450 + 1.451 + int tmp_err; 1.452 + int step_param = 3; /* Dont search over full range for first pass */ 1.453 + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; 1.454 + int n; 1.455 + vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; 1.456 + int new_mv_mode_penalty = 256; 1.457 + 1.458 + /* override the default variance function to use MSE */ 1.459 + v_fn_ptr.vf = vp8_mse16x16; 1.460 + 1.461 + /* Set up pointers for this macro block recon buffer */ 1.462 + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; 1.463 + 1.464 + /* Initial step/diamond search centred on best mv */ 1.465 + tmp_mv.as_int = 0; 1.466 + ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; 1.467 + ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; 1.468 + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, 1.469 + x->sadperbit16, &num00, &v_fn_ptr, 1.470 + x->mvcost, ref_mv); 1.471 + if ( tmp_err < INT_MAX-new_mv_mode_penalty ) 1.472 + tmp_err += new_mv_mode_penalty; 1.473 + 1.474 + if (tmp_err < *best_motion_err) 1.475 + { 1.476 + *best_motion_err = tmp_err; 1.477 + best_mv->row = tmp_mv.as_mv.row; 1.478 + best_mv->col = tmp_mv.as_mv.col; 1.479 + } 1.480 + 1.481 + /* Further step/diamond searches as necessary */ 1.482 + n = num00; 1.483 + num00 = 0; 1.484 + 1.485 + while (n < further_steps) 1.486 + { 1.487 + n++; 1.488 + 1.489 + if (num00) 1.490 + num00--; 1.491 + else 1.492 + { 1.493 + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, 1.494 + step_param + n, x->sadperbit16, 1.495 + &num00, &v_fn_ptr, x->mvcost, 1.496 + ref_mv); 1.497 + if ( tmp_err < INT_MAX-new_mv_mode_penalty ) 1.498 + tmp_err += new_mv_mode_penalty; 1.499 + 1.500 + if (tmp_err < *best_motion_err) 1.501 + { 1.502 + *best_motion_err = tmp_err; 1.503 + best_mv->row = tmp_mv.as_mv.row; 1.504 + best_mv->col = tmp_mv.as_mv.col; 1.505 + } 1.506 + } 1.507 + } 1.508 +} 1.509 + 1.510 +void vp8_first_pass(VP8_COMP *cpi) 1.511 +{ 1.512 + int mb_row, mb_col; 1.513 + MACROBLOCK *const x = & cpi->mb; 1.514 + VP8_COMMON *const cm = & cpi->common; 1.515 + MACROBLOCKD *const xd = & x->e_mbd; 1.516 + 1.517 + int recon_yoffset, recon_uvoffset; 1.518 + YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; 1.519 + YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; 1.520 + YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; 1.521 + int recon_y_stride = lst_yv12->y_stride; 1.522 + int recon_uv_stride = lst_yv12->uv_stride; 1.523 + int64_t intra_error = 0; 1.524 + int64_t coded_error = 0; 1.525 + 1.526 + int sum_mvr = 0, sum_mvc = 0; 1.527 + int sum_mvr_abs = 0, sum_mvc_abs = 0; 1.528 + int sum_mvrs = 0, sum_mvcs = 0; 1.529 + int mvcount = 0; 1.530 + int intercount = 0; 1.531 + int second_ref_count = 0; 1.532 + int intrapenalty = 256; 1.533 + int neutral_count = 0; 1.534 + int new_mv_count = 0; 1.535 + int sum_in_vectors = 0; 1.536 + uint32_t lastmv_as_int = 0; 1.537 + 1.538 + int_mv zero_ref_mv; 1.539 + 1.540 + zero_ref_mv.as_int = 0; 1.541 + 1.542 + vp8_clear_system_state(); 1.543 + 1.544 + x->src = * cpi->Source; 1.545 + xd->pre = *lst_yv12; 1.546 + xd->dst = *new_yv12; 1.547 + 1.548 + x->partition_info = x->pi; 1.549 + 1.550 + xd->mode_info_context = cm->mi; 1.551 + 1.552 + if(!cm->use_bilinear_mc_filter) 1.553 + { 1.554 + xd->subpixel_predict = vp8_sixtap_predict4x4; 1.555 + xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; 1.556 + xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; 1.557 + xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; 1.558 + } 1.559 + else 1.560 + { 1.561 + xd->subpixel_predict = vp8_bilinear_predict4x4; 1.562 + xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; 1.563 + xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; 1.564 + xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; 1.565 + } 1.566 + 1.567 + vp8_build_block_offsets(x); 1.568 + 1.569 + /* set up frame new frame for intra coded blocks */ 1.570 + vp8_setup_intra_recon(new_yv12); 1.571 + vp8cx_frame_init_quantizer(cpi); 1.572 + 1.573 + /* Initialise the MV cost table to the defaults */ 1.574 + { 1.575 + int flag[2] = {1, 1}; 1.576 + vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); 1.577 + vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); 1.578 + vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); 1.579 + } 1.580 + 1.581 + /* for each macroblock row in image */ 1.582 + for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) 1.583 + { 1.584 + int_mv best_ref_mv; 1.585 + 1.586 + best_ref_mv.as_int = 0; 1.587 + 1.588 + /* reset above block coeffs */ 1.589 + xd->up_available = (mb_row != 0); 1.590 + recon_yoffset = (mb_row * recon_y_stride * 16); 1.591 + recon_uvoffset = (mb_row * recon_uv_stride * 8); 1.592 + 1.593 + /* Set up limit values for motion vectors to prevent them extending 1.594 + * outside the UMV borders 1.595 + */ 1.596 + x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); 1.597 + x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); 1.598 + 1.599 + 1.600 + /* for each macroblock col in image */ 1.601 + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) 1.602 + { 1.603 + int this_error; 1.604 + int gf_motion_error = INT_MAX; 1.605 + int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); 1.606 + 1.607 + xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; 1.608 + xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; 1.609 + xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; 1.610 + xd->left_available = (mb_col != 0); 1.611 + 1.612 + /* Copy current mb to a buffer */ 1.613 + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); 1.614 + 1.615 + /* do intra 16x16 prediction */ 1.616 + this_error = vp8_encode_intra(cpi, x, use_dc_pred); 1.617 + 1.618 + /* "intrapenalty" below deals with situations where the intra 1.619 + * and inter error scores are very low (eg a plain black frame) 1.620 + * We do not have special cases in first pass for 0,0 and 1.621 + * nearest etc so all inter modes carry an overhead cost 1.622 + * estimate fot the mv. When the error score is very low this 1.623 + * causes us to pick all or lots of INTRA modes and throw lots 1.624 + * of key frames. This penalty adds a cost matching that of a 1.625 + * 0,0 mv to the intra case. 1.626 + */ 1.627 + this_error += intrapenalty; 1.628 + 1.629 + /* Cumulative intra error total */ 1.630 + intra_error += (int64_t)this_error; 1.631 + 1.632 + /* Set up limit values for motion vectors to prevent them 1.633 + * extending outside the UMV borders 1.634 + */ 1.635 + x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); 1.636 + x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); 1.637 + 1.638 + /* Other than for the first frame do a motion search */ 1.639 + if (cm->current_video_frame > 0) 1.640 + { 1.641 + BLOCKD *d = &x->e_mbd.block[0]; 1.642 + MV tmp_mv = {0, 0}; 1.643 + int tmp_err; 1.644 + int motion_error = INT_MAX; 1.645 + int raw_motion_error = INT_MAX; 1.646 + 1.647 + /* Simple 0,0 motion with no mv overhead */ 1.648 + zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, 1.649 + &raw_motion_error, lst_yv12, &motion_error, 1.650 + recon_yoffset ); 1.651 + d->bmi.mv.as_mv.row = 0; 1.652 + d->bmi.mv.as_mv.col = 0; 1.653 + 1.654 + if (raw_motion_error < cpi->oxcf.encode_breakout) 1.655 + goto skip_motion_search; 1.656 + 1.657 + /* Test last reference frame using the previous best mv as the 1.658 + * starting point (best reference) for the search 1.659 + */ 1.660 + first_pass_motion_search(cpi, x, &best_ref_mv, 1.661 + &d->bmi.mv.as_mv, lst_yv12, 1.662 + &motion_error, recon_yoffset); 1.663 + 1.664 + /* If the current best reference mv is not centred on 0,0 1.665 + * then do a 0,0 based search as well 1.666 + */ 1.667 + if (best_ref_mv.as_int) 1.668 + { 1.669 + tmp_err = INT_MAX; 1.670 + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, 1.671 + lst_yv12, &tmp_err, recon_yoffset); 1.672 + 1.673 + if ( tmp_err < motion_error ) 1.674 + { 1.675 + motion_error = tmp_err; 1.676 + d->bmi.mv.as_mv.row = tmp_mv.row; 1.677 + d->bmi.mv.as_mv.col = tmp_mv.col; 1.678 + } 1.679 + } 1.680 + 1.681 + /* Experimental search in a second reference frame ((0,0) 1.682 + * based only) 1.683 + */ 1.684 + if (cm->current_video_frame > 1) 1.685 + { 1.686 + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); 1.687 + 1.688 + if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) 1.689 + { 1.690 + second_ref_count++; 1.691 + } 1.692 + 1.693 + /* Reset to last frame as reference buffer */ 1.694 + xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; 1.695 + xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; 1.696 + xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; 1.697 + } 1.698 + 1.699 +skip_motion_search: 1.700 + /* Intra assumed best */ 1.701 + best_ref_mv.as_int = 0; 1.702 + 1.703 + if (motion_error <= this_error) 1.704 + { 1.705 + /* Keep a count of cases where the inter and intra were 1.706 + * very close and very low. This helps with scene cut 1.707 + * detection for example in cropped clips with black bars 1.708 + * at the sides or top and bottom. 1.709 + */ 1.710 + if( (((this_error-intrapenalty) * 9) <= 1.711 + (motion_error*10)) && 1.712 + (this_error < (2*intrapenalty)) ) 1.713 + { 1.714 + neutral_count++; 1.715 + } 1.716 + 1.717 + d->bmi.mv.as_mv.row *= 8; 1.718 + d->bmi.mv.as_mv.col *= 8; 1.719 + this_error = motion_error; 1.720 + vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); 1.721 + vp8_encode_inter16x16y(x); 1.722 + sum_mvr += d->bmi.mv.as_mv.row; 1.723 + sum_mvr_abs += abs(d->bmi.mv.as_mv.row); 1.724 + sum_mvc += d->bmi.mv.as_mv.col; 1.725 + sum_mvc_abs += abs(d->bmi.mv.as_mv.col); 1.726 + sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; 1.727 + sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; 1.728 + intercount++; 1.729 + 1.730 + best_ref_mv.as_int = d->bmi.mv.as_int; 1.731 + 1.732 + /* Was the vector non-zero */ 1.733 + if (d->bmi.mv.as_int) 1.734 + { 1.735 + mvcount++; 1.736 + 1.737 + /* Was it different from the last non zero vector */ 1.738 + if ( d->bmi.mv.as_int != lastmv_as_int ) 1.739 + new_mv_count++; 1.740 + lastmv_as_int = d->bmi.mv.as_int; 1.741 + 1.742 + /* Does the Row vector point inwards or outwards */ 1.743 + if (mb_row < cm->mb_rows / 2) 1.744 + { 1.745 + if (d->bmi.mv.as_mv.row > 0) 1.746 + sum_in_vectors--; 1.747 + else if (d->bmi.mv.as_mv.row < 0) 1.748 + sum_in_vectors++; 1.749 + } 1.750 + else if (mb_row > cm->mb_rows / 2) 1.751 + { 1.752 + if (d->bmi.mv.as_mv.row > 0) 1.753 + sum_in_vectors++; 1.754 + else if (d->bmi.mv.as_mv.row < 0) 1.755 + sum_in_vectors--; 1.756 + } 1.757 + 1.758 + /* Does the Row vector point inwards or outwards */ 1.759 + if (mb_col < cm->mb_cols / 2) 1.760 + { 1.761 + if (d->bmi.mv.as_mv.col > 0) 1.762 + sum_in_vectors--; 1.763 + else if (d->bmi.mv.as_mv.col < 0) 1.764 + sum_in_vectors++; 1.765 + } 1.766 + else if (mb_col > cm->mb_cols / 2) 1.767 + { 1.768 + if (d->bmi.mv.as_mv.col > 0) 1.769 + sum_in_vectors++; 1.770 + else if (d->bmi.mv.as_mv.col < 0) 1.771 + sum_in_vectors--; 1.772 + } 1.773 + } 1.774 + } 1.775 + } 1.776 + 1.777 + coded_error += (int64_t)this_error; 1.778 + 1.779 + /* adjust to the next column of macroblocks */ 1.780 + x->src.y_buffer += 16; 1.781 + x->src.u_buffer += 8; 1.782 + x->src.v_buffer += 8; 1.783 + 1.784 + recon_yoffset += 16; 1.785 + recon_uvoffset += 8; 1.786 + } 1.787 + 1.788 + /* adjust to the next row of mbs */ 1.789 + x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; 1.790 + x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; 1.791 + x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; 1.792 + 1.793 + /* extend the recon for intra prediction */ 1.794 + vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); 1.795 + vp8_clear_system_state(); 1.796 + } 1.797 + 1.798 + vp8_clear_system_state(); 1.799 + { 1.800 + double weight = 0.0; 1.801 + 1.802 + FIRSTPASS_STATS fps; 1.803 + 1.804 + fps.frame = cm->current_video_frame ; 1.805 + fps.intra_error = (double)(intra_error >> 8); 1.806 + fps.coded_error = (double)(coded_error >> 8); 1.807 + weight = simple_weight(cpi->Source); 1.808 + 1.809 + 1.810 + if (weight < 0.1) 1.811 + weight = 0.1; 1.812 + 1.813 + fps.ssim_weighted_pred_err = fps.coded_error * weight; 1.814 + 1.815 + fps.pcnt_inter = 0.0; 1.816 + fps.pcnt_motion = 0.0; 1.817 + fps.MVr = 0.0; 1.818 + fps.mvr_abs = 0.0; 1.819 + fps.MVc = 0.0; 1.820 + fps.mvc_abs = 0.0; 1.821 + fps.MVrv = 0.0; 1.822 + fps.MVcv = 0.0; 1.823 + fps.mv_in_out_count = 0.0; 1.824 + fps.new_mv_count = 0.0; 1.825 + fps.count = 1.0; 1.826 + 1.827 + fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; 1.828 + fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; 1.829 + fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; 1.830 + 1.831 + if (mvcount > 0) 1.832 + { 1.833 + fps.MVr = (double)sum_mvr / (double)mvcount; 1.834 + fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; 1.835 + fps.MVc = (double)sum_mvc / (double)mvcount; 1.836 + fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; 1.837 + fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; 1.838 + fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; 1.839 + fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); 1.840 + fps.new_mv_count = new_mv_count; 1.841 + 1.842 + fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; 1.843 + } 1.844 + 1.845 + /* TODO: handle the case when duration is set to 0, or something less 1.846 + * than the full time between subsequent cpi->source_time_stamps 1.847 + */ 1.848 + fps.duration = (double)(cpi->source->ts_end 1.849 + - cpi->source->ts_start); 1.850 + 1.851 + /* don't want to do output stats with a stack variable! */ 1.852 + memcpy(&cpi->twopass.this_frame_stats, 1.853 + &fps, 1.854 + sizeof(FIRSTPASS_STATS)); 1.855 + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); 1.856 + accumulate_stats(&cpi->twopass.total_stats, &fps); 1.857 + } 1.858 + 1.859 + /* Copy the previous Last Frame into the GF buffer if specific 1.860 + * conditions for doing so are met 1.861 + */ 1.862 + if ((cm->current_video_frame > 0) && 1.863 + (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && 1.864 + ((cpi->twopass.this_frame_stats.intra_error / 1.865 + DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > 1.866 + 2.0)) 1.867 + { 1.868 + vp8_yv12_copy_frame(lst_yv12, gld_yv12); 1.869 + } 1.870 + 1.871 + /* swap frame pointers so last frame refers to the frame we just 1.872 + * compressed 1.873 + */ 1.874 + vp8_swap_yv12_buffer(lst_yv12, new_yv12); 1.875 + vp8_yv12_extend_frame_borders(lst_yv12); 1.876 + 1.877 + /* Special case for the first frame. Copy into the GF buffer as a 1.878 + * second reference. 1.879 + */ 1.880 + if (cm->current_video_frame == 0) 1.881 + { 1.882 + vp8_yv12_copy_frame(lst_yv12, gld_yv12); 1.883 + } 1.884 + 1.885 + 1.886 + /* use this to see what the first pass reconstruction looks like */ 1.887 + if (0) 1.888 + { 1.889 + char filename[512]; 1.890 + FILE *recon_file; 1.891 + sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); 1.892 + 1.893 + if (cm->current_video_frame == 0) 1.894 + recon_file = fopen(filename, "wb"); 1.895 + else 1.896 + recon_file = fopen(filename, "ab"); 1.897 + 1.898 + (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, 1.899 + recon_file); 1.900 + fclose(recon_file); 1.901 + } 1.902 + 1.903 + cm->current_video_frame++; 1.904 + 1.905 +} 1.906 +extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; 1.907 + 1.908 +/* Estimate a cost per mb attributable to overheads such as the coding of 1.909 + * modes and motion vectors. 1.910 + * Currently simplistic in its assumptions for testing. 1.911 + */ 1.912 + 1.913 +static double bitcost( double prob ) 1.914 +{ 1.915 + if (prob > 0.000122) 1.916 + return -log(prob) / log(2.0); 1.917 + else 1.918 + return 13.0; 1.919 +} 1.920 +static int64_t estimate_modemvcost(VP8_COMP *cpi, 1.921 + FIRSTPASS_STATS * fpstats) 1.922 +{ 1.923 + int mv_cost; 1.924 + int64_t mode_cost; 1.925 + 1.926 + double av_pct_inter = fpstats->pcnt_inter / fpstats->count; 1.927 + double av_pct_motion = fpstats->pcnt_motion / fpstats->count; 1.928 + double av_intra = (1.0 - av_pct_inter); 1.929 + 1.930 + double zz_cost; 1.931 + double motion_cost; 1.932 + double intra_cost; 1.933 + 1.934 + zz_cost = bitcost(av_pct_inter - av_pct_motion); 1.935 + motion_cost = bitcost(av_pct_motion); 1.936 + intra_cost = bitcost(av_intra); 1.937 + 1.938 + /* Estimate of extra bits per mv overhead for mbs 1.939 + * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb 1.940 + */ 1.941 + mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; 1.942 + 1.943 + /* Crude estimate of overhead cost from modes 1.944 + * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb 1.945 + */ 1.946 + mode_cost =((((av_pct_inter - av_pct_motion) * zz_cost) + 1.947 + (av_pct_motion * motion_cost) + 1.948 + (av_intra * intra_cost)) * cpi->common.MBs) * 512; 1.949 + 1.950 + return mv_cost + mode_cost; 1.951 +} 1.952 + 1.953 +static double calc_correction_factor( double err_per_mb, 1.954 + double err_devisor, 1.955 + double pt_low, 1.956 + double pt_high, 1.957 + int Q ) 1.958 +{ 1.959 + double power_term; 1.960 + double error_term = err_per_mb / err_devisor; 1.961 + double correction_factor; 1.962 + 1.963 + /* Adjustment based on Q to power term. */ 1.964 + power_term = pt_low + (Q * 0.01); 1.965 + power_term = (power_term > pt_high) ? pt_high : power_term; 1.966 + 1.967 + /* Adjustments to error term */ 1.968 + /* TBD */ 1.969 + 1.970 + /* Calculate correction factor */ 1.971 + correction_factor = pow(error_term, power_term); 1.972 + 1.973 + /* Clip range */ 1.974 + correction_factor = 1.975 + (correction_factor < 0.05) 1.976 + ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; 1.977 + 1.978 + return correction_factor; 1.979 +} 1.980 + 1.981 +static int estimate_max_q(VP8_COMP *cpi, 1.982 + FIRSTPASS_STATS * fpstats, 1.983 + int section_target_bandwitdh, 1.984 + int overhead_bits ) 1.985 +{ 1.986 + int Q; 1.987 + int num_mbs = cpi->common.MBs; 1.988 + int target_norm_bits_per_mb; 1.989 + 1.990 + double section_err = (fpstats->coded_error / fpstats->count); 1.991 + double err_per_mb = section_err / num_mbs; 1.992 + double err_correction_factor; 1.993 + double speed_correction = 1.0; 1.994 + int overhead_bits_per_mb; 1.995 + 1.996 + if (section_target_bandwitdh <= 0) 1.997 + return cpi->twopass.maxq_max_limit; /* Highest value allowed */ 1.998 + 1.999 + target_norm_bits_per_mb = 1.1000 + (section_target_bandwitdh < (1 << 20)) 1.1001 + ? (512 * section_target_bandwitdh) / num_mbs 1.1002 + : 512 * (section_target_bandwitdh / num_mbs); 1.1003 + 1.1004 + /* Calculate a corrective factor based on a rolling ratio of bits spent 1.1005 + * vs target bits 1.1006 + */ 1.1007 + if ((cpi->rolling_target_bits > 0) && 1.1008 + (cpi->active_worst_quality < cpi->worst_quality)) 1.1009 + { 1.1010 + double rolling_ratio; 1.1011 + 1.1012 + rolling_ratio = (double)cpi->rolling_actual_bits / 1.1013 + (double)cpi->rolling_target_bits; 1.1014 + 1.1015 + if (rolling_ratio < 0.95) 1.1016 + cpi->twopass.est_max_qcorrection_factor -= 0.005; 1.1017 + else if (rolling_ratio > 1.05) 1.1018 + cpi->twopass.est_max_qcorrection_factor += 0.005; 1.1019 + 1.1020 + cpi->twopass.est_max_qcorrection_factor = 1.1021 + (cpi->twopass.est_max_qcorrection_factor < 0.1) 1.1022 + ? 0.1 1.1023 + : (cpi->twopass.est_max_qcorrection_factor > 10.0) 1.1024 + ? 10.0 : cpi->twopass.est_max_qcorrection_factor; 1.1025 + } 1.1026 + 1.1027 + /* Corrections for higher compression speed settings 1.1028 + * (reduced compression expected) 1.1029 + */ 1.1030 + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) 1.1031 + { 1.1032 + if (cpi->oxcf.cpu_used <= 5) 1.1033 + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); 1.1034 + else 1.1035 + speed_correction = 1.25; 1.1036 + } 1.1037 + 1.1038 + /* Estimate of overhead bits per mb */ 1.1039 + /* Correction to overhead bits for min allowed Q. */ 1.1040 + overhead_bits_per_mb = overhead_bits / num_mbs; 1.1041 + overhead_bits_per_mb = (int)(overhead_bits_per_mb * 1.1042 + pow( 0.98, (double)cpi->twopass.maxq_min_limit )); 1.1043 + 1.1044 + /* Try and pick a max Q that will be high enough to encode the 1.1045 + * content at the given rate. 1.1046 + */ 1.1047 + for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) 1.1048 + { 1.1049 + int bits_per_mb_at_this_q; 1.1050 + 1.1051 + /* Error per MB based correction factor */ 1.1052 + err_correction_factor = 1.1053 + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); 1.1054 + 1.1055 + bits_per_mb_at_this_q = 1.1056 + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; 1.1057 + 1.1058 + bits_per_mb_at_this_q = (int)(.5 + err_correction_factor 1.1059 + * speed_correction * cpi->twopass.est_max_qcorrection_factor 1.1060 + * cpi->twopass.section_max_qfactor 1.1061 + * (double)bits_per_mb_at_this_q); 1.1062 + 1.1063 + /* Mode and motion overhead */ 1.1064 + /* As Q rises in real encode loop rd code will force overhead down 1.1065 + * We make a crude adjustment for this here as *.98 per Q step. 1.1066 + */ 1.1067 + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); 1.1068 + 1.1069 + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) 1.1070 + break; 1.1071 + } 1.1072 + 1.1073 + /* Restriction on active max q for constrained quality mode. */ 1.1074 + if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && 1.1075 + (Q < cpi->cq_target_quality) ) 1.1076 + { 1.1077 + Q = cpi->cq_target_quality; 1.1078 + } 1.1079 + 1.1080 + /* Adjust maxq_min_limit and maxq_max_limit limits based on 1.1081 + * average q observed in clip for non kf/gf.arf frames 1.1082 + * Give average a chance to settle though. 1.1083 + */ 1.1084 + if ( (cpi->ni_frames > 1.1085 + ((int)cpi->twopass.total_stats.count >> 8)) && 1.1086 + (cpi->ni_frames > 150) ) 1.1087 + { 1.1088 + cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) 1.1089 + ? (cpi->ni_av_qi + 32) : cpi->worst_quality; 1.1090 + cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) 1.1091 + ? (cpi->ni_av_qi - 32) : cpi->best_quality; 1.1092 + } 1.1093 + 1.1094 + return Q; 1.1095 +} 1.1096 + 1.1097 +/* For cq mode estimate a cq level that matches the observed 1.1098 + * complexity and data rate. 1.1099 + */ 1.1100 +static int estimate_cq( VP8_COMP *cpi, 1.1101 + FIRSTPASS_STATS * fpstats, 1.1102 + int section_target_bandwitdh, 1.1103 + int overhead_bits ) 1.1104 +{ 1.1105 + int Q; 1.1106 + int num_mbs = cpi->common.MBs; 1.1107 + int target_norm_bits_per_mb; 1.1108 + 1.1109 + double section_err = (fpstats->coded_error / fpstats->count); 1.1110 + double err_per_mb = section_err / num_mbs; 1.1111 + double err_correction_factor; 1.1112 + double speed_correction = 1.0; 1.1113 + double clip_iiratio; 1.1114 + double clip_iifactor; 1.1115 + int overhead_bits_per_mb; 1.1116 + 1.1117 + if (0) 1.1118 + { 1.1119 + FILE *f = fopen("epmp.stt", "a"); 1.1120 + fprintf(f, "%10.2f\n", err_per_mb ); 1.1121 + fclose(f); 1.1122 + } 1.1123 + 1.1124 + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) 1.1125 + ? (512 * section_target_bandwitdh) / num_mbs 1.1126 + : 512 * (section_target_bandwitdh / num_mbs); 1.1127 + 1.1128 + /* Estimate of overhead bits per mb */ 1.1129 + overhead_bits_per_mb = overhead_bits / num_mbs; 1.1130 + 1.1131 + /* Corrections for higher compression speed settings 1.1132 + * (reduced compression expected) 1.1133 + */ 1.1134 + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) 1.1135 + { 1.1136 + if (cpi->oxcf.cpu_used <= 5) 1.1137 + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); 1.1138 + else 1.1139 + speed_correction = 1.25; 1.1140 + } 1.1141 + 1.1142 + /* II ratio correction factor for clip as a whole */ 1.1143 + clip_iiratio = cpi->twopass.total_stats.intra_error / 1.1144 + DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); 1.1145 + clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); 1.1146 + if (clip_iifactor < 0.80) 1.1147 + clip_iifactor = 0.80; 1.1148 + 1.1149 + /* Try and pick a Q that can encode the content at the given rate. */ 1.1150 + for (Q = 0; Q < MAXQ; Q++) 1.1151 + { 1.1152 + int bits_per_mb_at_this_q; 1.1153 + 1.1154 + /* Error per MB based correction factor */ 1.1155 + err_correction_factor = 1.1156 + calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); 1.1157 + 1.1158 + bits_per_mb_at_this_q = 1.1159 + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; 1.1160 + 1.1161 + bits_per_mb_at_this_q = 1.1162 + (int)( .5 + err_correction_factor * 1.1163 + speed_correction * 1.1164 + clip_iifactor * 1.1165 + (double)bits_per_mb_at_this_q); 1.1166 + 1.1167 + /* Mode and motion overhead */ 1.1168 + /* As Q rises in real encode loop rd code will force overhead down 1.1169 + * We make a crude adjustment for this here as *.98 per Q step. 1.1170 + */ 1.1171 + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); 1.1172 + 1.1173 + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) 1.1174 + break; 1.1175 + } 1.1176 + 1.1177 + /* Clip value to range "best allowed to (worst allowed - 1)" */ 1.1178 + Q = cq_level[Q]; 1.1179 + if ( Q >= cpi->worst_quality ) 1.1180 + Q = cpi->worst_quality - 1; 1.1181 + if ( Q < cpi->best_quality ) 1.1182 + Q = cpi->best_quality; 1.1183 + 1.1184 + return Q; 1.1185 +} 1.1186 + 1.1187 +static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) 1.1188 +{ 1.1189 + int Q; 1.1190 + int num_mbs = cpi->common.MBs; 1.1191 + int target_norm_bits_per_mb; 1.1192 + 1.1193 + double err_per_mb = section_err / num_mbs; 1.1194 + double err_correction_factor; 1.1195 + double speed_correction = 1.0; 1.1196 + 1.1197 + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); 1.1198 + 1.1199 + /* Corrections for higher compression speed settings 1.1200 + * (reduced compression expected) 1.1201 + */ 1.1202 + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) 1.1203 + { 1.1204 + if (cpi->oxcf.cpu_used <= 5) 1.1205 + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); 1.1206 + else 1.1207 + speed_correction = 1.25; 1.1208 + } 1.1209 + 1.1210 + /* Try and pick a Q that can encode the content at the given rate. */ 1.1211 + for (Q = 0; Q < MAXQ; Q++) 1.1212 + { 1.1213 + int bits_per_mb_at_this_q; 1.1214 + 1.1215 + /* Error per MB based correction factor */ 1.1216 + err_correction_factor = 1.1217 + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); 1.1218 + 1.1219 + bits_per_mb_at_this_q = 1.1220 + (int)( .5 + ( err_correction_factor * 1.1221 + speed_correction * 1.1222 + cpi->twopass.est_max_qcorrection_factor * 1.1223 + (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); 1.1224 + 1.1225 + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) 1.1226 + break; 1.1227 + } 1.1228 + 1.1229 + return Q; 1.1230 +} 1.1231 + 1.1232 +/* Estimate a worst case Q for a KF group */ 1.1233 +static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) 1.1234 +{ 1.1235 + int Q; 1.1236 + int num_mbs = cpi->common.MBs; 1.1237 + int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; 1.1238 + int bits_per_mb_at_this_q; 1.1239 + 1.1240 + double err_per_mb = section_err / num_mbs; 1.1241 + double err_correction_factor; 1.1242 + double speed_correction = 1.0; 1.1243 + double current_spend_ratio = 1.0; 1.1244 + 1.1245 + double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; 1.1246 + double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; 1.1247 + 1.1248 + double iiratio_correction_factor = 1.0; 1.1249 + 1.1250 + double combined_correction_factor; 1.1251 + 1.1252 + /* Trap special case where the target is <= 0 */ 1.1253 + if (target_norm_bits_per_mb <= 0) 1.1254 + return MAXQ * 2; 1.1255 + 1.1256 + /* Calculate a corrective factor based on a rolling ratio of bits spent 1.1257 + * vs target bits 1.1258 + * This is clamped to the range 0.1 to 10.0 1.1259 + */ 1.1260 + if (cpi->long_rolling_target_bits <= 0) 1.1261 + current_spend_ratio = 10.0; 1.1262 + else 1.1263 + { 1.1264 + current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; 1.1265 + current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; 1.1266 + } 1.1267 + 1.1268 + /* Calculate a correction factor based on the quality of prediction in 1.1269 + * the sequence as indicated by intra_inter error score ratio (IIRatio) 1.1270 + * The idea here is to favour subsampling in the hardest sections vs 1.1271 + * the easyest. 1.1272 + */ 1.1273 + iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); 1.1274 + 1.1275 + if (iiratio_correction_factor < 0.5) 1.1276 + iiratio_correction_factor = 0.5; 1.1277 + 1.1278 + /* Corrections for higher compression speed settings 1.1279 + * (reduced compression expected) 1.1280 + */ 1.1281 + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) 1.1282 + { 1.1283 + if (cpi->oxcf.cpu_used <= 5) 1.1284 + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); 1.1285 + else 1.1286 + speed_correction = 1.25; 1.1287 + } 1.1288 + 1.1289 + /* Combine the various factors calculated above */ 1.1290 + combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; 1.1291 + 1.1292 + /* Try and pick a Q that should be high enough to encode the content at 1.1293 + * the given rate. 1.1294 + */ 1.1295 + for (Q = 0; Q < MAXQ; Q++) 1.1296 + { 1.1297 + /* Error per MB based correction factor */ 1.1298 + err_correction_factor = 1.1299 + calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); 1.1300 + 1.1301 + bits_per_mb_at_this_q = 1.1302 + (int)(.5 + ( err_correction_factor * 1.1303 + combined_correction_factor * 1.1304 + (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); 1.1305 + 1.1306 + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) 1.1307 + break; 1.1308 + } 1.1309 + 1.1310 + /* If we could not hit the target even at Max Q then estimate what Q 1.1311 + * would have been required 1.1312 + */ 1.1313 + while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) 1.1314 + { 1.1315 + 1.1316 + bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); 1.1317 + Q++; 1.1318 + } 1.1319 + 1.1320 + if (0) 1.1321 + { 1.1322 + FILE *f = fopen("estkf_q.stt", "a"); 1.1323 + fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, 1.1324 + target_norm_bits_per_mb, err_per_mb, err_correction_factor, 1.1325 + current_spend_ratio, group_iiratio, iiratio_correction_factor, 1.1326 + (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); 1.1327 + fclose(f); 1.1328 + } 1.1329 + 1.1330 + return Q; 1.1331 +} 1.1332 + 1.1333 +extern void vp8_new_framerate(VP8_COMP *cpi, double framerate); 1.1334 + 1.1335 +void vp8_init_second_pass(VP8_COMP *cpi) 1.1336 +{ 1.1337 + FIRSTPASS_STATS this_frame; 1.1338 + FIRSTPASS_STATS *start_pos; 1.1339 + 1.1340 + double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); 1.1341 + 1.1342 + zero_stats(&cpi->twopass.total_stats); 1.1343 + zero_stats(&cpi->twopass.total_left_stats); 1.1344 + 1.1345 + if (!cpi->twopass.stats_in_end) 1.1346 + return; 1.1347 + 1.1348 + cpi->twopass.total_stats = *cpi->twopass.stats_in_end; 1.1349 + cpi->twopass.total_left_stats = cpi->twopass.total_stats; 1.1350 + 1.1351 + /* each frame can have a different duration, as the frame rate in the 1.1352 + * source isn't guaranteed to be constant. The frame rate prior to 1.1353 + * the first frame encoded in the second pass is a guess. However the 1.1354 + * sum duration is not. Its calculated based on the actual durations of 1.1355 + * all frames from the first pass. 1.1356 + */ 1.1357 + vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); 1.1358 + 1.1359 + cpi->output_framerate = cpi->framerate; 1.1360 + cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; 1.1361 + cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); 1.1362 + 1.1363 + /* Calculate a minimum intra value to be used in determining the IIratio 1.1364 + * scores used in the second pass. We have this minimum to make sure 1.1365 + * that clips that are static but "low complexity" in the intra domain 1.1366 + * are still boosted appropriately for KF/GF/ARF 1.1367 + */ 1.1368 + cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; 1.1369 + cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; 1.1370 + 1.1371 + /* Scan the first pass file and calculate an average Intra / Inter error 1.1372 + * score ratio for the sequence 1.1373 + */ 1.1374 + { 1.1375 + double sum_iiratio = 0.0; 1.1376 + double IIRatio; 1.1377 + 1.1378 + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ 1.1379 + 1.1380 + while (input_stats(cpi, &this_frame) != EOF) 1.1381 + { 1.1382 + IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); 1.1383 + IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; 1.1384 + sum_iiratio += IIRatio; 1.1385 + } 1.1386 + 1.1387 + cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); 1.1388 + 1.1389 + /* Reset file position */ 1.1390 + reset_fpf_position(cpi, start_pos); 1.1391 + } 1.1392 + 1.1393 + /* Scan the first pass file and calculate a modified total error based 1.1394 + * upon the bias/power function used to allocate bits 1.1395 + */ 1.1396 + { 1.1397 + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ 1.1398 + 1.1399 + cpi->twopass.modified_error_total = 0.0; 1.1400 + cpi->twopass.modified_error_used = 0.0; 1.1401 + 1.1402 + while (input_stats(cpi, &this_frame) != EOF) 1.1403 + { 1.1404 + cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); 1.1405 + } 1.1406 + cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; 1.1407 + 1.1408 + reset_fpf_position(cpi, start_pos); /* Reset file position */ 1.1409 + 1.1410 + } 1.1411 +} 1.1412 + 1.1413 +void vp8_end_second_pass(VP8_COMP *cpi) 1.1414 +{ 1.1415 +} 1.1416 + 1.1417 +/* This function gives and estimate of how badly we believe the prediction 1.1418 + * quality is decaying from frame to frame. 1.1419 + */ 1.1420 +static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) 1.1421 +{ 1.1422 + double prediction_decay_rate; 1.1423 + double motion_decay; 1.1424 + double motion_pct = next_frame->pcnt_motion; 1.1425 + 1.1426 + /* Initial basis is the % mbs inter coded */ 1.1427 + prediction_decay_rate = next_frame->pcnt_inter; 1.1428 + 1.1429 + /* High % motion -> somewhat higher decay rate */ 1.1430 + motion_decay = (1.0 - (motion_pct / 20.0)); 1.1431 + if (motion_decay < prediction_decay_rate) 1.1432 + prediction_decay_rate = motion_decay; 1.1433 + 1.1434 + /* Adjustment to decay rate based on speed of motion */ 1.1435 + { 1.1436 + double this_mv_rabs; 1.1437 + double this_mv_cabs; 1.1438 + double distance_factor; 1.1439 + 1.1440 + this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); 1.1441 + this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); 1.1442 + 1.1443 + distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + 1.1444 + (this_mv_cabs * this_mv_cabs)) / 250.0; 1.1445 + distance_factor = ((distance_factor > 1.0) 1.1446 + ? 0.0 : (1.0 - distance_factor)); 1.1447 + if (distance_factor < prediction_decay_rate) 1.1448 + prediction_decay_rate = distance_factor; 1.1449 + } 1.1450 + 1.1451 + return prediction_decay_rate; 1.1452 +} 1.1453 + 1.1454 +/* Function to test for a condition where a complex transition is followed 1.1455 + * by a static section. For example in slide shows where there is a fade 1.1456 + * between slides. This is to help with more optimal kf and gf positioning. 1.1457 + */ 1.1458 +static int detect_transition_to_still( 1.1459 + VP8_COMP *cpi, 1.1460 + int frame_interval, 1.1461 + int still_interval, 1.1462 + double loop_decay_rate, 1.1463 + double decay_accumulator ) 1.1464 +{ 1.1465 + int trans_to_still = 0; 1.1466 + 1.1467 + /* Break clause to detect very still sections after motion 1.1468 + * For example a static image after a fade or other transition 1.1469 + * instead of a clean scene cut. 1.1470 + */ 1.1471 + if ( (frame_interval > MIN_GF_INTERVAL) && 1.1472 + (loop_decay_rate >= 0.999) && 1.1473 + (decay_accumulator < 0.9) ) 1.1474 + { 1.1475 + int j; 1.1476 + FIRSTPASS_STATS * position = cpi->twopass.stats_in; 1.1477 + FIRSTPASS_STATS tmp_next_frame; 1.1478 + double decay_rate; 1.1479 + 1.1480 + /* Look ahead a few frames to see if static condition persists... */ 1.1481 + for ( j = 0; j < still_interval; j++ ) 1.1482 + { 1.1483 + if (EOF == input_stats(cpi, &tmp_next_frame)) 1.1484 + break; 1.1485 + 1.1486 + decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); 1.1487 + if ( decay_rate < 0.999 ) 1.1488 + break; 1.1489 + } 1.1490 + /* Reset file position */ 1.1491 + reset_fpf_position(cpi, position); 1.1492 + 1.1493 + /* Only if it does do we signal a transition to still */ 1.1494 + if ( j == still_interval ) 1.1495 + trans_to_still = 1; 1.1496 + } 1.1497 + 1.1498 + return trans_to_still; 1.1499 +} 1.1500 + 1.1501 +/* This function detects a flash through the high relative pcnt_second_ref 1.1502 + * score in the frame following a flash frame. The offset passed in should 1.1503 + * reflect this 1.1504 + */ 1.1505 +static int detect_flash( VP8_COMP *cpi, int offset ) 1.1506 +{ 1.1507 + FIRSTPASS_STATS next_frame; 1.1508 + 1.1509 + int flash_detected = 0; 1.1510 + 1.1511 + /* Read the frame data. */ 1.1512 + /* The return is 0 (no flash detected) if not a valid frame */ 1.1513 + if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) 1.1514 + { 1.1515 + /* What we are looking for here is a situation where there is a 1.1516 + * brief break in prediction (such as a flash) but subsequent frames 1.1517 + * are reasonably well predicted by an earlier (pre flash) frame. 1.1518 + * The recovery after a flash is indicated by a high pcnt_second_ref 1.1519 + * comapred to pcnt_inter. 1.1520 + */ 1.1521 + if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && 1.1522 + (next_frame.pcnt_second_ref >= 0.5 ) ) 1.1523 + { 1.1524 + flash_detected = 1; 1.1525 + 1.1526 + /*if (1) 1.1527 + { 1.1528 + FILE *f = fopen("flash.stt", "a"); 1.1529 + fprintf(f, "%8.0f %6.2f %6.2f\n", 1.1530 + next_frame.frame, 1.1531 + next_frame.pcnt_inter, 1.1532 + next_frame.pcnt_second_ref); 1.1533 + fclose(f); 1.1534 + }*/ 1.1535 + } 1.1536 + } 1.1537 + 1.1538 + return flash_detected; 1.1539 +} 1.1540 + 1.1541 +/* Update the motion related elements to the GF arf boost calculation */ 1.1542 +static void accumulate_frame_motion_stats( 1.1543 + VP8_COMP *cpi, 1.1544 + FIRSTPASS_STATS * this_frame, 1.1545 + double * this_frame_mv_in_out, 1.1546 + double * mv_in_out_accumulator, 1.1547 + double * abs_mv_in_out_accumulator, 1.1548 + double * mv_ratio_accumulator ) 1.1549 +{ 1.1550 + double this_frame_mvr_ratio; 1.1551 + double this_frame_mvc_ratio; 1.1552 + double motion_pct; 1.1553 + 1.1554 + /* Accumulate motion stats. */ 1.1555 + motion_pct = this_frame->pcnt_motion; 1.1556 + 1.1557 + /* Accumulate Motion In/Out of frame stats */ 1.1558 + *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; 1.1559 + *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; 1.1560 + *abs_mv_in_out_accumulator += 1.1561 + fabs(this_frame->mv_in_out_count * motion_pct); 1.1562 + 1.1563 + /* Accumulate a measure of how uniform (or conversely how random) 1.1564 + * the motion field is. (A ratio of absmv / mv) 1.1565 + */ 1.1566 + if (motion_pct > 0.05) 1.1567 + { 1.1568 + this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / 1.1569 + DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); 1.1570 + 1.1571 + this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / 1.1572 + DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); 1.1573 + 1.1574 + *mv_ratio_accumulator += 1.1575 + (this_frame_mvr_ratio < this_frame->mvr_abs) 1.1576 + ? (this_frame_mvr_ratio * motion_pct) 1.1577 + : this_frame->mvr_abs * motion_pct; 1.1578 + 1.1579 + *mv_ratio_accumulator += 1.1580 + (this_frame_mvc_ratio < this_frame->mvc_abs) 1.1581 + ? (this_frame_mvc_ratio * motion_pct) 1.1582 + : this_frame->mvc_abs * motion_pct; 1.1583 + 1.1584 + } 1.1585 +} 1.1586 + 1.1587 +/* Calculate a baseline boost number for the current frame. */ 1.1588 +static double calc_frame_boost( 1.1589 + VP8_COMP *cpi, 1.1590 + FIRSTPASS_STATS * this_frame, 1.1591 + double this_frame_mv_in_out ) 1.1592 +{ 1.1593 + double frame_boost; 1.1594 + 1.1595 + /* Underlying boost factor is based on inter intra error ratio */ 1.1596 + if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) 1.1597 + frame_boost = (IIFACTOR * this_frame->intra_error / 1.1598 + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); 1.1599 + else 1.1600 + frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / 1.1601 + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); 1.1602 + 1.1603 + /* Increase boost for frames where new data coming into frame 1.1604 + * (eg zoom out). Slightly reduce boost if there is a net balance 1.1605 + * of motion out of the frame (zoom in). 1.1606 + * The range for this_frame_mv_in_out is -1.0 to +1.0 1.1607 + */ 1.1608 + if (this_frame_mv_in_out > 0.0) 1.1609 + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); 1.1610 + /* In extreme case boost is halved */ 1.1611 + else 1.1612 + frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); 1.1613 + 1.1614 + /* Clip to maximum */ 1.1615 + if (frame_boost > GF_RMAX) 1.1616 + frame_boost = GF_RMAX; 1.1617 + 1.1618 + return frame_boost; 1.1619 +} 1.1620 + 1.1621 +#if NEW_BOOST 1.1622 +static int calc_arf_boost( 1.1623 + VP8_COMP *cpi, 1.1624 + int offset, 1.1625 + int f_frames, 1.1626 + int b_frames, 1.1627 + int *f_boost, 1.1628 + int *b_boost ) 1.1629 +{ 1.1630 + FIRSTPASS_STATS this_frame; 1.1631 + 1.1632 + int i; 1.1633 + double boost_score = 0.0; 1.1634 + double mv_ratio_accumulator = 0.0; 1.1635 + double decay_accumulator = 1.0; 1.1636 + double this_frame_mv_in_out = 0.0; 1.1637 + double mv_in_out_accumulator = 0.0; 1.1638 + double abs_mv_in_out_accumulator = 0.0; 1.1639 + double r; 1.1640 + int flash_detected = 0; 1.1641 + 1.1642 + /* Search forward from the proposed arf/next gf position */ 1.1643 + for ( i = 0; i < f_frames; i++ ) 1.1644 + { 1.1645 + if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) 1.1646 + break; 1.1647 + 1.1648 + /* Update the motion related elements to the boost calculation */ 1.1649 + accumulate_frame_motion_stats( cpi, &this_frame, 1.1650 + &this_frame_mv_in_out, &mv_in_out_accumulator, 1.1651 + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); 1.1652 + 1.1653 + /* Calculate the baseline boost number for this frame */ 1.1654 + r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); 1.1655 + 1.1656 + /* We want to discount the the flash frame itself and the recovery 1.1657 + * frame that follows as both will have poor scores. 1.1658 + */ 1.1659 + flash_detected = detect_flash(cpi, (i+offset)) || 1.1660 + detect_flash(cpi, (i+offset+1)); 1.1661 + 1.1662 + /* Cumulative effect of prediction quality decay */ 1.1663 + if ( !flash_detected ) 1.1664 + { 1.1665 + decay_accumulator = 1.1666 + decay_accumulator * 1.1667 + get_prediction_decay_rate(cpi, &this_frame); 1.1668 + decay_accumulator = 1.1669 + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; 1.1670 + } 1.1671 + boost_score += (decay_accumulator * r); 1.1672 + 1.1673 + /* Break out conditions. */ 1.1674 + if ( (!flash_detected) && 1.1675 + ((mv_ratio_accumulator > 100.0) || 1.1676 + (abs_mv_in_out_accumulator > 3.0) || 1.1677 + (mv_in_out_accumulator < -2.0) ) ) 1.1678 + { 1.1679 + break; 1.1680 + } 1.1681 + } 1.1682 + 1.1683 + *f_boost = (int)(boost_score * 100.0) >> 4; 1.1684 + 1.1685 + /* Reset for backward looking loop */ 1.1686 + boost_score = 0.0; 1.1687 + mv_ratio_accumulator = 0.0; 1.1688 + decay_accumulator = 1.0; 1.1689 + this_frame_mv_in_out = 0.0; 1.1690 + mv_in_out_accumulator = 0.0; 1.1691 + abs_mv_in_out_accumulator = 0.0; 1.1692 + 1.1693 + /* Search forward from the proposed arf/next gf position */ 1.1694 + for ( i = -1; i >= -b_frames; i-- ) 1.1695 + { 1.1696 + if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) 1.1697 + break; 1.1698 + 1.1699 + /* Update the motion related elements to the boost calculation */ 1.1700 + accumulate_frame_motion_stats( cpi, &this_frame, 1.1701 + &this_frame_mv_in_out, &mv_in_out_accumulator, 1.1702 + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); 1.1703 + 1.1704 + /* Calculate the baseline boost number for this frame */ 1.1705 + r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); 1.1706 + 1.1707 + /* We want to discount the the flash frame itself and the recovery 1.1708 + * frame that follows as both will have poor scores. 1.1709 + */ 1.1710 + flash_detected = detect_flash(cpi, (i+offset)) || 1.1711 + detect_flash(cpi, (i+offset+1)); 1.1712 + 1.1713 + /* Cumulative effect of prediction quality decay */ 1.1714 + if ( !flash_detected ) 1.1715 + { 1.1716 + decay_accumulator = 1.1717 + decay_accumulator * 1.1718 + get_prediction_decay_rate(cpi, &this_frame); 1.1719 + decay_accumulator = 1.1720 + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; 1.1721 + } 1.1722 + 1.1723 + boost_score += (decay_accumulator * r); 1.1724 + 1.1725 + /* Break out conditions. */ 1.1726 + if ( (!flash_detected) && 1.1727 + ((mv_ratio_accumulator > 100.0) || 1.1728 + (abs_mv_in_out_accumulator > 3.0) || 1.1729 + (mv_in_out_accumulator < -2.0) ) ) 1.1730 + { 1.1731 + break; 1.1732 + } 1.1733 + } 1.1734 + *b_boost = (int)(boost_score * 100.0) >> 4; 1.1735 + 1.1736 + return (*f_boost + *b_boost); 1.1737 +} 1.1738 +#endif 1.1739 + 1.1740 +/* Analyse and define a gf/arf group . */ 1.1741 +static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) 1.1742 +{ 1.1743 + FIRSTPASS_STATS next_frame; 1.1744 + FIRSTPASS_STATS *start_pos; 1.1745 + int i; 1.1746 + double r; 1.1747 + double boost_score = 0.0; 1.1748 + double old_boost_score = 0.0; 1.1749 + double gf_group_err = 0.0; 1.1750 + double gf_first_frame_err = 0.0; 1.1751 + double mod_frame_err = 0.0; 1.1752 + 1.1753 + double mv_ratio_accumulator = 0.0; 1.1754 + double decay_accumulator = 1.0; 1.1755 + 1.1756 + double loop_decay_rate = 1.00; /* Starting decay rate */ 1.1757 + 1.1758 + double this_frame_mv_in_out = 0.0; 1.1759 + double mv_in_out_accumulator = 0.0; 1.1760 + double abs_mv_in_out_accumulator = 0.0; 1.1761 + double mod_err_per_mb_accumulator = 0.0; 1.1762 + 1.1763 + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ 1.1764 + 1.1765 + unsigned int allow_alt_ref = 1.1766 + cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; 1.1767 + 1.1768 + int alt_boost = 0; 1.1769 + int f_boost = 0; 1.1770 + int b_boost = 0; 1.1771 + int flash_detected; 1.1772 + 1.1773 + cpi->twopass.gf_group_bits = 0; 1.1774 + cpi->twopass.gf_decay_rate = 0; 1.1775 + 1.1776 + vp8_clear_system_state(); 1.1777 + 1.1778 + start_pos = cpi->twopass.stats_in; 1.1779 + 1.1780 + vpx_memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ 1.1781 + 1.1782 + /* Load stats for the current frame. */ 1.1783 + mod_frame_err = calculate_modified_err(cpi, this_frame); 1.1784 + 1.1785 + /* Note the error of the frame at the start of the group (this will be 1.1786 + * the GF frame error if we code a normal gf 1.1787 + */ 1.1788 + gf_first_frame_err = mod_frame_err; 1.1789 + 1.1790 + /* Special treatment if the current frame is a key frame (which is also 1.1791 + * a gf). If it is then its error score (and hence bit allocation) need 1.1792 + * to be subtracted out from the calculation for the GF group 1.1793 + */ 1.1794 + if (cpi->common.frame_type == KEY_FRAME) 1.1795 + gf_group_err -= gf_first_frame_err; 1.1796 + 1.1797 + /* Scan forward to try and work out how many frames the next gf group 1.1798 + * should contain and what level of boost is appropriate for the GF 1.1799 + * or ARF that will be coded with the group 1.1800 + */ 1.1801 + i = 0; 1.1802 + 1.1803 + while (((i < cpi->twopass.static_scene_max_gf_interval) || 1.1804 + ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && 1.1805 + (i < cpi->twopass.frames_to_key)) 1.1806 + { 1.1807 + i++; 1.1808 + 1.1809 + /* Accumulate error score of frames in this gf group */ 1.1810 + mod_frame_err = calculate_modified_err(cpi, this_frame); 1.1811 + 1.1812 + gf_group_err += mod_frame_err; 1.1813 + 1.1814 + mod_err_per_mb_accumulator += 1.1815 + mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); 1.1816 + 1.1817 + if (EOF == input_stats(cpi, &next_frame)) 1.1818 + break; 1.1819 + 1.1820 + /* Test for the case where there is a brief flash but the prediction 1.1821 + * quality back to an earlier frame is then restored. 1.1822 + */ 1.1823 + flash_detected = detect_flash(cpi, 0); 1.1824 + 1.1825 + /* Update the motion related elements to the boost calculation */ 1.1826 + accumulate_frame_motion_stats( cpi, &next_frame, 1.1827 + &this_frame_mv_in_out, &mv_in_out_accumulator, 1.1828 + &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); 1.1829 + 1.1830 + /* Calculate a baseline boost number for this frame */ 1.1831 + r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); 1.1832 + 1.1833 + /* Cumulative effect of prediction quality decay */ 1.1834 + if ( !flash_detected ) 1.1835 + { 1.1836 + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); 1.1837 + decay_accumulator = decay_accumulator * loop_decay_rate; 1.1838 + decay_accumulator = 1.1839 + decay_accumulator < 0.1 ? 0.1 : decay_accumulator; 1.1840 + } 1.1841 + boost_score += (decay_accumulator * r); 1.1842 + 1.1843 + /* Break clause to detect very still sections after motion 1.1844 + * For example a staic image after a fade or other transition. 1.1845 + */ 1.1846 + if ( detect_transition_to_still( cpi, i, 5, 1.1847 + loop_decay_rate, 1.1848 + decay_accumulator ) ) 1.1849 + { 1.1850 + allow_alt_ref = 0; 1.1851 + boost_score = old_boost_score; 1.1852 + break; 1.1853 + } 1.1854 + 1.1855 + /* Break out conditions. */ 1.1856 + if ( 1.1857 + /* Break at cpi->max_gf_interval unless almost totally static */ 1.1858 + (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || 1.1859 + ( 1.1860 + /* Dont break out with a very short interval */ 1.1861 + (i > MIN_GF_INTERVAL) && 1.1862 + /* Dont break out very close to a key frame */ 1.1863 + ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && 1.1864 + ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && 1.1865 + (!flash_detected) && 1.1866 + ((mv_ratio_accumulator > 100.0) || 1.1867 + (abs_mv_in_out_accumulator > 3.0) || 1.1868 + (mv_in_out_accumulator < -2.0) || 1.1869 + ((boost_score - old_boost_score) < 2.0)) 1.1870 + ) ) 1.1871 + { 1.1872 + boost_score = old_boost_score; 1.1873 + break; 1.1874 + } 1.1875 + 1.1876 + vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); 1.1877 + 1.1878 + old_boost_score = boost_score; 1.1879 + } 1.1880 + 1.1881 + cpi->twopass.gf_decay_rate = 1.1882 + (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; 1.1883 + 1.1884 + /* When using CBR apply additional buffer related upper limits */ 1.1885 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.1886 + { 1.1887 + double max_boost; 1.1888 + 1.1889 + /* For cbr apply buffer related limits */ 1.1890 + if (cpi->drop_frames_allowed) 1.1891 + { 1.1892 + int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * 1.1893 + (cpi->oxcf.optimal_buffer_level / 100); 1.1894 + 1.1895 + if (cpi->buffer_level > df_buffer_level) 1.1896 + max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); 1.1897 + else 1.1898 + max_boost = 0.0; 1.1899 + } 1.1900 + else if (cpi->buffer_level > 0) 1.1901 + { 1.1902 + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); 1.1903 + } 1.1904 + else 1.1905 + { 1.1906 + max_boost = 0.0; 1.1907 + } 1.1908 + 1.1909 + if (boost_score > max_boost) 1.1910 + boost_score = max_boost; 1.1911 + } 1.1912 + 1.1913 + /* Dont allow conventional gf too near the next kf */ 1.1914 + if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) 1.1915 + { 1.1916 + while (i < cpi->twopass.frames_to_key) 1.1917 + { 1.1918 + i++; 1.1919 + 1.1920 + if (EOF == input_stats(cpi, this_frame)) 1.1921 + break; 1.1922 + 1.1923 + if (i < cpi->twopass.frames_to_key) 1.1924 + { 1.1925 + mod_frame_err = calculate_modified_err(cpi, this_frame); 1.1926 + gf_group_err += mod_frame_err; 1.1927 + } 1.1928 + } 1.1929 + } 1.1930 + 1.1931 + cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; 1.1932 + 1.1933 +#if NEW_BOOST 1.1934 + /* Alterrnative boost calculation for alt ref */ 1.1935 + alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); 1.1936 +#endif 1.1937 + 1.1938 + /* Should we use the alternate refernce frame */ 1.1939 + if (allow_alt_ref && 1.1940 + (i >= MIN_GF_INTERVAL) && 1.1941 + /* dont use ARF very near next kf */ 1.1942 + (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && 1.1943 +#if NEW_BOOST 1.1944 + ((next_frame.pcnt_inter > 0.75) || 1.1945 + (next_frame.pcnt_second_ref > 0.5)) && 1.1946 + ((mv_in_out_accumulator / (double)i > -0.2) || 1.1947 + (mv_in_out_accumulator > -2.0)) && 1.1948 + (b_boost > 100) && 1.1949 + (f_boost > 100) ) 1.1950 +#else 1.1951 + (next_frame.pcnt_inter > 0.75) && 1.1952 + ((mv_in_out_accumulator / (double)i > -0.2) || 1.1953 + (mv_in_out_accumulator > -2.0)) && 1.1954 + (cpi->gfu_boost > 100) && 1.1955 + (cpi->twopass.gf_decay_rate <= 1.1956 + (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) 1.1957 +#endif 1.1958 + { 1.1959 + int Boost; 1.1960 + int allocation_chunks; 1.1961 + int Q = (cpi->oxcf.fixed_q < 0) 1.1962 + ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; 1.1963 + int tmp_q; 1.1964 + int arf_frame_bits = 0; 1.1965 + int group_bits; 1.1966 + 1.1967 +#if NEW_BOOST 1.1968 + cpi->gfu_boost = alt_boost; 1.1969 +#endif 1.1970 + 1.1971 + /* Estimate the bits to be allocated to the group as a whole */ 1.1972 + if ((cpi->twopass.kf_group_bits > 0) && 1.1973 + (cpi->twopass.kf_group_error_left > 0)) 1.1974 + { 1.1975 + group_bits = (int)((double)cpi->twopass.kf_group_bits * 1.1976 + (gf_group_err / (double)cpi->twopass.kf_group_error_left)); 1.1977 + } 1.1978 + else 1.1979 + group_bits = 0; 1.1980 + 1.1981 + /* Boost for arf frame */ 1.1982 +#if NEW_BOOST 1.1983 + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; 1.1984 +#else 1.1985 + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); 1.1986 +#endif 1.1987 + Boost += (i * 50); 1.1988 + 1.1989 + /* Set max and minimum boost and hence minimum allocation */ 1.1990 + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) 1.1991 + Boost = ((cpi->baseline_gf_interval + 1) * 200); 1.1992 + else if (Boost < 125) 1.1993 + Boost = 125; 1.1994 + 1.1995 + allocation_chunks = (i * 100) + Boost; 1.1996 + 1.1997 + /* Normalize Altboost and allocations chunck down to prevent overflow */ 1.1998 + while (Boost > 1000) 1.1999 + { 1.2000 + Boost /= 2; 1.2001 + allocation_chunks /= 2; 1.2002 + } 1.2003 + 1.2004 + /* Calculate the number of bits to be spent on the arf based on the 1.2005 + * boost number 1.2006 + */ 1.2007 + arf_frame_bits = (int)((double)Boost * (group_bits / 1.2008 + (double)allocation_chunks)); 1.2009 + 1.2010 + /* Estimate if there are enough bits available to make worthwhile use 1.2011 + * of an arf. 1.2012 + */ 1.2013 + tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); 1.2014 + 1.2015 + /* Only use an arf if it is likely we will be able to code 1.2016 + * it at a lower Q than the surrounding frames. 1.2017 + */ 1.2018 + if (tmp_q < cpi->worst_quality) 1.2019 + { 1.2020 + int half_gf_int; 1.2021 + int frames_after_arf; 1.2022 + int frames_bwd = cpi->oxcf.arnr_max_frames - 1; 1.2023 + int frames_fwd = cpi->oxcf.arnr_max_frames - 1; 1.2024 + 1.2025 + cpi->source_alt_ref_pending = 1; 1.2026 + 1.2027 + /* 1.2028 + * For alt ref frames the error score for the end frame of the 1.2029 + * group (the alt ref frame) should not contribute to the group 1.2030 + * total and hence the number of bit allocated to the group. 1.2031 + * Rather it forms part of the next group (it is the GF at the 1.2032 + * start of the next group) 1.2033 + * gf_group_err -= mod_frame_err; 1.2034 + * 1.2035 + * For alt ref frames alt ref frame is technically part of the 1.2036 + * GF frame for the next group but we always base the error 1.2037 + * calculation and bit allocation on the current group of frames. 1.2038 + * 1.2039 + * Set the interval till the next gf or arf. 1.2040 + * For ARFs this is the number of frames to be coded before the 1.2041 + * future frame that is coded as an ARF. 1.2042 + * The future frame itself is part of the next group 1.2043 + */ 1.2044 + cpi->baseline_gf_interval = i; 1.2045 + 1.2046 + /* 1.2047 + * Define the arnr filter width for this group of frames: 1.2048 + * We only filter frames that lie within a distance of half 1.2049 + * the GF interval from the ARF frame. We also have to trap 1.2050 + * cases where the filter extends beyond the end of clip. 1.2051 + * Note: this_frame->frame has been updated in the loop 1.2052 + * so it now points at the ARF frame. 1.2053 + */ 1.2054 + half_gf_int = cpi->baseline_gf_interval >> 1; 1.2055 + frames_after_arf = (int)(cpi->twopass.total_stats.count - 1.2056 + this_frame->frame - 1); 1.2057 + 1.2058 + switch (cpi->oxcf.arnr_type) 1.2059 + { 1.2060 + case 1: /* Backward filter */ 1.2061 + frames_fwd = 0; 1.2062 + if (frames_bwd > half_gf_int) 1.2063 + frames_bwd = half_gf_int; 1.2064 + break; 1.2065 + 1.2066 + case 2: /* Forward filter */ 1.2067 + if (frames_fwd > half_gf_int) 1.2068 + frames_fwd = half_gf_int; 1.2069 + if (frames_fwd > frames_after_arf) 1.2070 + frames_fwd = frames_after_arf; 1.2071 + frames_bwd = 0; 1.2072 + break; 1.2073 + 1.2074 + case 3: /* Centered filter */ 1.2075 + default: 1.2076 + frames_fwd >>= 1; 1.2077 + if (frames_fwd > frames_after_arf) 1.2078 + frames_fwd = frames_after_arf; 1.2079 + if (frames_fwd > half_gf_int) 1.2080 + frames_fwd = half_gf_int; 1.2081 + 1.2082 + frames_bwd = frames_fwd; 1.2083 + 1.2084 + /* For even length filter there is one more frame backward 1.2085 + * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. 1.2086 + */ 1.2087 + if (frames_bwd < half_gf_int) 1.2088 + frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; 1.2089 + break; 1.2090 + } 1.2091 + 1.2092 + cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; 1.2093 + } 1.2094 + else 1.2095 + { 1.2096 + cpi->source_alt_ref_pending = 0; 1.2097 + cpi->baseline_gf_interval = i; 1.2098 + } 1.2099 + } 1.2100 + else 1.2101 + { 1.2102 + cpi->source_alt_ref_pending = 0; 1.2103 + cpi->baseline_gf_interval = i; 1.2104 + } 1.2105 + 1.2106 + /* 1.2107 + * Now decide how many bits should be allocated to the GF group as a 1.2108 + * proportion of those remaining in the kf group. 1.2109 + * The final key frame group in the clip is treated as a special case 1.2110 + * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. 1.2111 + * This is also important for short clips where there may only be one 1.2112 + * key frame. 1.2113 + */ 1.2114 + if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - 1.2115 + cpi->common.current_video_frame)) 1.2116 + { 1.2117 + cpi->twopass.kf_group_bits = 1.2118 + (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; 1.2119 + } 1.2120 + 1.2121 + /* Calculate the bits to be allocated to the group as a whole */ 1.2122 + if ((cpi->twopass.kf_group_bits > 0) && 1.2123 + (cpi->twopass.kf_group_error_left > 0)) 1.2124 + { 1.2125 + cpi->twopass.gf_group_bits = 1.2126 + (int64_t)(cpi->twopass.kf_group_bits * 1.2127 + (gf_group_err / cpi->twopass.kf_group_error_left)); 1.2128 + } 1.2129 + else 1.2130 + cpi->twopass.gf_group_bits = 0; 1.2131 + 1.2132 + cpi->twopass.gf_group_bits = 1.2133 + (cpi->twopass.gf_group_bits < 0) 1.2134 + ? 0 1.2135 + : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) 1.2136 + ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; 1.2137 + 1.2138 + /* Clip cpi->twopass.gf_group_bits based on user supplied data rate 1.2139 + * variability limit (cpi->oxcf.two_pass_vbrmax_section) 1.2140 + */ 1.2141 + if (cpi->twopass.gf_group_bits > 1.2142 + (int64_t)max_bits * cpi->baseline_gf_interval) 1.2143 + cpi->twopass.gf_group_bits = 1.2144 + (int64_t)max_bits * cpi->baseline_gf_interval; 1.2145 + 1.2146 + /* Reset the file position */ 1.2147 + reset_fpf_position(cpi, start_pos); 1.2148 + 1.2149 + /* Update the record of error used so far (only done once per gf group) */ 1.2150 + cpi->twopass.modified_error_used += gf_group_err; 1.2151 + 1.2152 + /* Assign bits to the arf or gf. */ 1.2153 + for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { 1.2154 + int Boost; 1.2155 + int allocation_chunks; 1.2156 + int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; 1.2157 + int gf_bits; 1.2158 + 1.2159 + /* For ARF frames */ 1.2160 + if (cpi->source_alt_ref_pending && i == 0) 1.2161 + { 1.2162 +#if NEW_BOOST 1.2163 + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; 1.2164 +#else 1.2165 + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); 1.2166 +#endif 1.2167 + Boost += (cpi->baseline_gf_interval * 50); 1.2168 + 1.2169 + /* Set max and minimum boost and hence minimum allocation */ 1.2170 + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) 1.2171 + Boost = ((cpi->baseline_gf_interval + 1) * 200); 1.2172 + else if (Boost < 125) 1.2173 + Boost = 125; 1.2174 + 1.2175 + allocation_chunks = 1.2176 + ((cpi->baseline_gf_interval + 1) * 100) + Boost; 1.2177 + } 1.2178 + /* Else for standard golden frames */ 1.2179 + else 1.2180 + { 1.2181 + /* boost based on inter / intra ratio of subsequent frames */ 1.2182 + Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; 1.2183 + 1.2184 + /* Set max and minimum boost and hence minimum allocation */ 1.2185 + if (Boost > (cpi->baseline_gf_interval * 150)) 1.2186 + Boost = (cpi->baseline_gf_interval * 150); 1.2187 + else if (Boost < 125) 1.2188 + Boost = 125; 1.2189 + 1.2190 + allocation_chunks = 1.2191 + (cpi->baseline_gf_interval * 100) + (Boost - 100); 1.2192 + } 1.2193 + 1.2194 + /* Normalize Altboost and allocations chunck down to prevent overflow */ 1.2195 + while (Boost > 1000) 1.2196 + { 1.2197 + Boost /= 2; 1.2198 + allocation_chunks /= 2; 1.2199 + } 1.2200 + 1.2201 + /* Calculate the number of bits to be spent on the gf or arf based on 1.2202 + * the boost number 1.2203 + */ 1.2204 + gf_bits = (int)((double)Boost * 1.2205 + (cpi->twopass.gf_group_bits / 1.2206 + (double)allocation_chunks)); 1.2207 + 1.2208 + /* If the frame that is to be boosted is simpler than the average for 1.2209 + * the gf/arf group then use an alternative calculation 1.2210 + * based on the error score of the frame itself 1.2211 + */ 1.2212 + if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) 1.2213 + { 1.2214 + double alt_gf_grp_bits; 1.2215 + int alt_gf_bits; 1.2216 + 1.2217 + alt_gf_grp_bits = 1.2218 + (double)cpi->twopass.kf_group_bits * 1.2219 + (mod_frame_err * (double)cpi->baseline_gf_interval) / 1.2220 + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); 1.2221 + 1.2222 + alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / 1.2223 + (double)allocation_chunks)); 1.2224 + 1.2225 + if (gf_bits > alt_gf_bits) 1.2226 + { 1.2227 + gf_bits = alt_gf_bits; 1.2228 + } 1.2229 + } 1.2230 + /* Else if it is harder than other frames in the group make sure it at 1.2231 + * least receives an allocation in keeping with its relative error 1.2232 + * score, otherwise it may be worse off than an "un-boosted" frame 1.2233 + */ 1.2234 + else 1.2235 + { 1.2236 + int alt_gf_bits = 1.2237 + (int)((double)cpi->twopass.kf_group_bits * 1.2238 + mod_frame_err / 1.2239 + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); 1.2240 + 1.2241 + if (alt_gf_bits > gf_bits) 1.2242 + { 1.2243 + gf_bits = alt_gf_bits; 1.2244 + } 1.2245 + } 1.2246 + 1.2247 + /* Apply an additional limit for CBR */ 1.2248 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.2249 + { 1.2250 + if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) 1.2251 + cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); 1.2252 + } 1.2253 + 1.2254 + /* Dont allow a negative value for gf_bits */ 1.2255 + if (gf_bits < 0) 1.2256 + gf_bits = 0; 1.2257 + 1.2258 + /* Add in minimum for a frame */ 1.2259 + gf_bits += cpi->min_frame_bandwidth; 1.2260 + 1.2261 + if (i == 0) 1.2262 + { 1.2263 + cpi->twopass.gf_bits = gf_bits; 1.2264 + } 1.2265 + if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) 1.2266 + { 1.2267 + /* Per frame bit target for this frame */ 1.2268 + cpi->per_frame_bandwidth = gf_bits; 1.2269 + } 1.2270 + } 1.2271 + 1.2272 + { 1.2273 + /* Adjust KF group bits and error remainin */ 1.2274 + cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; 1.2275 + cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; 1.2276 + 1.2277 + if (cpi->twopass.kf_group_bits < 0) 1.2278 + cpi->twopass.kf_group_bits = 0; 1.2279 + 1.2280 + /* Note the error score left in the remaining frames of the group. 1.2281 + * For normal GFs we want to remove the error score for the first 1.2282 + * frame of the group (except in Key frame case where this has 1.2283 + * already happened) 1.2284 + */ 1.2285 + if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) 1.2286 + cpi->twopass.gf_group_error_left = (int)(gf_group_err - 1.2287 + gf_first_frame_err); 1.2288 + else 1.2289 + cpi->twopass.gf_group_error_left = (int) gf_group_err; 1.2290 + 1.2291 + cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; 1.2292 + 1.2293 + if (cpi->twopass.gf_group_bits < 0) 1.2294 + cpi->twopass.gf_group_bits = 0; 1.2295 + 1.2296 + /* This condition could fail if there are two kfs very close together 1.2297 + * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the 1.2298 + * calculation of cpi->twopass.alt_extra_bits. 1.2299 + */ 1.2300 + if ( cpi->baseline_gf_interval >= 3 ) 1.2301 + { 1.2302 +#if NEW_BOOST 1.2303 + int boost = (cpi->source_alt_ref_pending) 1.2304 + ? b_boost : cpi->gfu_boost; 1.2305 +#else 1.2306 + int boost = cpi->gfu_boost; 1.2307 +#endif 1.2308 + if ( boost >= 150 ) 1.2309 + { 1.2310 + int pct_extra; 1.2311 + 1.2312 + pct_extra = (boost - 100) / 50; 1.2313 + pct_extra = (pct_extra > 20) ? 20 : pct_extra; 1.2314 + 1.2315 + cpi->twopass.alt_extra_bits = 1.2316 + (cpi->twopass.gf_group_bits * pct_extra) / 100; 1.2317 + cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; 1.2318 + cpi->twopass.alt_extra_bits /= 1.2319 + ((cpi->baseline_gf_interval-1)>>1); 1.2320 + } 1.2321 + else 1.2322 + cpi->twopass.alt_extra_bits = 0; 1.2323 + } 1.2324 + else 1.2325 + cpi->twopass.alt_extra_bits = 0; 1.2326 + } 1.2327 + 1.2328 + /* Adjustments based on a measure of complexity of the section */ 1.2329 + if (cpi->common.frame_type != KEY_FRAME) 1.2330 + { 1.2331 + FIRSTPASS_STATS sectionstats; 1.2332 + double Ratio; 1.2333 + 1.2334 + zero_stats(§ionstats); 1.2335 + reset_fpf_position(cpi, start_pos); 1.2336 + 1.2337 + for (i = 0 ; i < cpi->baseline_gf_interval ; i++) 1.2338 + { 1.2339 + input_stats(cpi, &next_frame); 1.2340 + accumulate_stats(§ionstats, &next_frame); 1.2341 + } 1.2342 + 1.2343 + avg_stats(§ionstats); 1.2344 + 1.2345 + cpi->twopass.section_intra_rating = (unsigned int) 1.2346 + (sectionstats.intra_error / 1.2347 + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); 1.2348 + 1.2349 + Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); 1.2350 + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); 1.2351 + 1.2352 + if (cpi->twopass.section_max_qfactor < 0.80) 1.2353 + cpi->twopass.section_max_qfactor = 0.80; 1.2354 + 1.2355 + reset_fpf_position(cpi, start_pos); 1.2356 + } 1.2357 +} 1.2358 + 1.2359 +/* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ 1.2360 +static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) 1.2361 +{ 1.2362 + int target_frame_size; 1.2363 + 1.2364 + double modified_err; 1.2365 + double err_fraction; 1.2366 + 1.2367 + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ 1.2368 + 1.2369 + /* Calculate modified prediction error used in bit allocation */ 1.2370 + modified_err = calculate_modified_err(cpi, this_frame); 1.2371 + 1.2372 + /* What portion of the remaining GF group error is used by this frame */ 1.2373 + if (cpi->twopass.gf_group_error_left > 0) 1.2374 + err_fraction = modified_err / cpi->twopass.gf_group_error_left; 1.2375 + else 1.2376 + err_fraction = 0.0; 1.2377 + 1.2378 + /* How many of those bits available for allocation should we give it? */ 1.2379 + target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); 1.2380 + 1.2381 + /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) 1.2382 + * at the top end. 1.2383 + */ 1.2384 + if (target_frame_size < 0) 1.2385 + target_frame_size = 0; 1.2386 + else 1.2387 + { 1.2388 + if (target_frame_size > max_bits) 1.2389 + target_frame_size = max_bits; 1.2390 + 1.2391 + if (target_frame_size > cpi->twopass.gf_group_bits) 1.2392 + target_frame_size = cpi->twopass.gf_group_bits; 1.2393 + } 1.2394 + 1.2395 + /* Adjust error and bits remaining */ 1.2396 + cpi->twopass.gf_group_error_left -= (int)modified_err; 1.2397 + cpi->twopass.gf_group_bits -= target_frame_size; 1.2398 + 1.2399 + if (cpi->twopass.gf_group_bits < 0) 1.2400 + cpi->twopass.gf_group_bits = 0; 1.2401 + 1.2402 + /* Add in the minimum number of bits that is set aside for every frame. */ 1.2403 + target_frame_size += cpi->min_frame_bandwidth; 1.2404 + 1.2405 + /* Every other frame gets a few extra bits */ 1.2406 + if ( (cpi->frames_since_golden & 0x01) && 1.2407 + (cpi->frames_till_gf_update_due > 0) ) 1.2408 + { 1.2409 + target_frame_size += cpi->twopass.alt_extra_bits; 1.2410 + } 1.2411 + 1.2412 + /* Per frame bit target for this frame */ 1.2413 + cpi->per_frame_bandwidth = target_frame_size; 1.2414 +} 1.2415 + 1.2416 +void vp8_second_pass(VP8_COMP *cpi) 1.2417 +{ 1.2418 + int tmp_q; 1.2419 + int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); 1.2420 + 1.2421 + FIRSTPASS_STATS this_frame = {0}; 1.2422 + FIRSTPASS_STATS this_frame_copy; 1.2423 + 1.2424 + double this_frame_intra_error; 1.2425 + double this_frame_coded_error; 1.2426 + 1.2427 + int overhead_bits; 1.2428 + 1.2429 + if (!cpi->twopass.stats_in) 1.2430 + { 1.2431 + return ; 1.2432 + } 1.2433 + 1.2434 + vp8_clear_system_state(); 1.2435 + 1.2436 + if (EOF == input_stats(cpi, &this_frame)) 1.2437 + return; 1.2438 + 1.2439 + this_frame_intra_error = this_frame.intra_error; 1.2440 + this_frame_coded_error = this_frame.coded_error; 1.2441 + 1.2442 + /* keyframe and section processing ! */ 1.2443 + if (cpi->twopass.frames_to_key == 0) 1.2444 + { 1.2445 + /* Define next KF group and assign bits to it */ 1.2446 + vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); 1.2447 + find_next_key_frame(cpi, &this_frame_copy); 1.2448 + 1.2449 + /* Special case: Error error_resilient_mode mode does not make much 1.2450 + * sense for two pass but with its current meaning but this code is 1.2451 + * designed to stop outlandish behaviour if someone does set it when 1.2452 + * using two pass. It effectively disables GF groups. This is 1.2453 + * temporary code till we decide what should really happen in this 1.2454 + * case. 1.2455 + */ 1.2456 + if (cpi->oxcf.error_resilient_mode) 1.2457 + { 1.2458 + cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; 1.2459 + cpi->twopass.gf_group_error_left = 1.2460 + (int)cpi->twopass.kf_group_error_left; 1.2461 + cpi->baseline_gf_interval = cpi->twopass.frames_to_key; 1.2462 + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 1.2463 + cpi->source_alt_ref_pending = 0; 1.2464 + } 1.2465 + 1.2466 + } 1.2467 + 1.2468 + /* Is this a GF / ARF (Note that a KF is always also a GF) */ 1.2469 + if (cpi->frames_till_gf_update_due == 0) 1.2470 + { 1.2471 + /* Define next gf group and assign bits to it */ 1.2472 + vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); 1.2473 + define_gf_group(cpi, &this_frame_copy); 1.2474 + 1.2475 + /* If we are going to code an altref frame at the end of the group 1.2476 + * and the current frame is not a key frame.... If the previous 1.2477 + * group used an arf this frame has already benefited from that arf 1.2478 + * boost and it should not be given extra bits If the previous 1.2479 + * group was NOT coded using arf we may want to apply some boost to 1.2480 + * this GF as well 1.2481 + */ 1.2482 + if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) 1.2483 + { 1.2484 + /* Assign a standard frames worth of bits from those allocated 1.2485 + * to the GF group 1.2486 + */ 1.2487 + int bak = cpi->per_frame_bandwidth; 1.2488 + vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); 1.2489 + assign_std_frame_bits(cpi, &this_frame_copy); 1.2490 + cpi->per_frame_bandwidth = bak; 1.2491 + } 1.2492 + } 1.2493 + 1.2494 + /* Otherwise this is an ordinary frame */ 1.2495 + else 1.2496 + { 1.2497 + /* Special case: Error error_resilient_mode mode does not make much 1.2498 + * sense for two pass but with its current meaning but this code is 1.2499 + * designed to stop outlandish behaviour if someone does set it 1.2500 + * when using two pass. It effectively disables GF groups. This is 1.2501 + * temporary code till we decide what should really happen in this 1.2502 + * case. 1.2503 + */ 1.2504 + if (cpi->oxcf.error_resilient_mode) 1.2505 + { 1.2506 + cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; 1.2507 + 1.2508 + if (cpi->common.frame_type != KEY_FRAME) 1.2509 + { 1.2510 + /* Assign bits from those allocated to the GF group */ 1.2511 + vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); 1.2512 + assign_std_frame_bits(cpi, &this_frame_copy); 1.2513 + } 1.2514 + } 1.2515 + else 1.2516 + { 1.2517 + /* Assign bits from those allocated to the GF group */ 1.2518 + vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); 1.2519 + assign_std_frame_bits(cpi, &this_frame_copy); 1.2520 + } 1.2521 + } 1.2522 + 1.2523 + /* Keep a globally available copy of this and the next frame's iiratio. */ 1.2524 + cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / 1.2525 + DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); 1.2526 + { 1.2527 + FIRSTPASS_STATS next_frame; 1.2528 + if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) 1.2529 + { 1.2530 + cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / 1.2531 + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); 1.2532 + } 1.2533 + } 1.2534 + 1.2535 + /* Set nominal per second bandwidth for this frame */ 1.2536 + cpi->target_bandwidth = (int) 1.2537 + (cpi->per_frame_bandwidth * cpi->output_framerate); 1.2538 + if (cpi->target_bandwidth < 0) 1.2539 + cpi->target_bandwidth = 0; 1.2540 + 1.2541 + 1.2542 + /* Account for mv, mode and other overheads. */ 1.2543 + overhead_bits = (int)estimate_modemvcost( 1.2544 + cpi, &cpi->twopass.total_left_stats ); 1.2545 + 1.2546 + /* Special case code for first frame. */ 1.2547 + if (cpi->common.current_video_frame == 0) 1.2548 + { 1.2549 + cpi->twopass.est_max_qcorrection_factor = 1.0; 1.2550 + 1.2551 + /* Set a cq_level in constrained quality mode. */ 1.2552 + if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) 1.2553 + { 1.2554 + int est_cq; 1.2555 + 1.2556 + est_cq = 1.2557 + estimate_cq( cpi, 1.2558 + &cpi->twopass.total_left_stats, 1.2559 + (int)(cpi->twopass.bits_left / frames_left), 1.2560 + overhead_bits ); 1.2561 + 1.2562 + cpi->cq_target_quality = cpi->oxcf.cq_level; 1.2563 + if ( est_cq > cpi->cq_target_quality ) 1.2564 + cpi->cq_target_quality = est_cq; 1.2565 + } 1.2566 + 1.2567 + /* guess at maxq needed in 2nd pass */ 1.2568 + cpi->twopass.maxq_max_limit = cpi->worst_quality; 1.2569 + cpi->twopass.maxq_min_limit = cpi->best_quality; 1.2570 + 1.2571 + tmp_q = estimate_max_q( 1.2572 + cpi, 1.2573 + &cpi->twopass.total_left_stats, 1.2574 + (int)(cpi->twopass.bits_left / frames_left), 1.2575 + overhead_bits ); 1.2576 + 1.2577 + /* Limit the maxq value returned subsequently. 1.2578 + * This increases the risk of overspend or underspend if the initial 1.2579 + * estimate for the clip is bad, but helps prevent excessive 1.2580 + * variation in Q, especially near the end of a clip 1.2581 + * where for example a small overspend may cause Q to crash 1.2582 + */ 1.2583 + cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) 1.2584 + ? (tmp_q + 32) : cpi->worst_quality; 1.2585 + cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) 1.2586 + ? (tmp_q - 32) : cpi->best_quality; 1.2587 + 1.2588 + cpi->active_worst_quality = tmp_q; 1.2589 + cpi->ni_av_qi = tmp_q; 1.2590 + } 1.2591 + 1.2592 + /* The last few frames of a clip almost always have to few or too many 1.2593 + * bits and for the sake of over exact rate control we dont want to make 1.2594 + * radical adjustments to the allowed quantizer range just to use up a 1.2595 + * few surplus bits or get beneath the target rate. 1.2596 + */ 1.2597 + else if ( (cpi->common.current_video_frame < 1.2598 + (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && 1.2599 + ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < 1.2600 + (unsigned int)cpi->twopass.total_stats.count) ) 1.2601 + { 1.2602 + if (frames_left < 1) 1.2603 + frames_left = 1; 1.2604 + 1.2605 + tmp_q = estimate_max_q( 1.2606 + cpi, 1.2607 + &cpi->twopass.total_left_stats, 1.2608 + (int)(cpi->twopass.bits_left / frames_left), 1.2609 + overhead_bits ); 1.2610 + 1.2611 + /* Move active_worst_quality but in a damped way */ 1.2612 + if (tmp_q > cpi->active_worst_quality) 1.2613 + cpi->active_worst_quality ++; 1.2614 + else if (tmp_q < cpi->active_worst_quality) 1.2615 + cpi->active_worst_quality --; 1.2616 + 1.2617 + cpi->active_worst_quality = 1.2618 + ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; 1.2619 + } 1.2620 + 1.2621 + cpi->twopass.frames_to_key --; 1.2622 + 1.2623 + /* Update the total stats remaining sturcture */ 1.2624 + subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); 1.2625 +} 1.2626 + 1.2627 + 1.2628 +static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) 1.2629 +{ 1.2630 + int is_viable_kf = 0; 1.2631 + 1.2632 + /* Does the frame satisfy the primary criteria of a key frame 1.2633 + * If so, then examine how well it predicts subsequent frames 1.2634 + */ 1.2635 + if ((this_frame->pcnt_second_ref < 0.10) && 1.2636 + (next_frame->pcnt_second_ref < 0.10) && 1.2637 + ((this_frame->pcnt_inter < 0.05) || 1.2638 + ( 1.2639 + ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && 1.2640 + ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && 1.2641 + ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || 1.2642 + (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || 1.2643 + ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) 1.2644 + ) 1.2645 + ) 1.2646 + ) 1.2647 + ) 1.2648 + { 1.2649 + int i; 1.2650 + FIRSTPASS_STATS *start_pos; 1.2651 + 1.2652 + FIRSTPASS_STATS local_next_frame; 1.2653 + 1.2654 + double boost_score = 0.0; 1.2655 + double old_boost_score = 0.0; 1.2656 + double decay_accumulator = 1.0; 1.2657 + double next_iiratio; 1.2658 + 1.2659 + vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); 1.2660 + 1.2661 + /* Note the starting file position so we can reset to it */ 1.2662 + start_pos = cpi->twopass.stats_in; 1.2663 + 1.2664 + /* Examine how well the key frame predicts subsequent frames */ 1.2665 + for (i = 0 ; i < 16; i++) 1.2666 + { 1.2667 + next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; 1.2668 + 1.2669 + if (next_iiratio > RMAX) 1.2670 + next_iiratio = RMAX; 1.2671 + 1.2672 + /* Cumulative effect of decay in prediction quality */ 1.2673 + if (local_next_frame.pcnt_inter > 0.85) 1.2674 + decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; 1.2675 + else 1.2676 + decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); 1.2677 + 1.2678 + /* Keep a running total */ 1.2679 + boost_score += (decay_accumulator * next_iiratio); 1.2680 + 1.2681 + /* Test various breakout clauses */ 1.2682 + if ((local_next_frame.pcnt_inter < 0.05) || 1.2683 + (next_iiratio < 1.5) || 1.2684 + (((local_next_frame.pcnt_inter - 1.2685 + local_next_frame.pcnt_neutral) < 0.20) && 1.2686 + (next_iiratio < 3.0)) || 1.2687 + ((boost_score - old_boost_score) < 0.5) || 1.2688 + (local_next_frame.intra_error < 200) 1.2689 + ) 1.2690 + { 1.2691 + break; 1.2692 + } 1.2693 + 1.2694 + old_boost_score = boost_score; 1.2695 + 1.2696 + /* Get the next frame details */ 1.2697 + if (EOF == input_stats(cpi, &local_next_frame)) 1.2698 + break; 1.2699 + } 1.2700 + 1.2701 + /* If there is tolerable prediction for at least the next 3 frames 1.2702 + * then break out else discard this pottential key frame and move on 1.2703 + */ 1.2704 + if (boost_score > 5.0 && (i > 3)) 1.2705 + is_viable_kf = 1; 1.2706 + else 1.2707 + { 1.2708 + /* Reset the file position */ 1.2709 + reset_fpf_position(cpi, start_pos); 1.2710 + 1.2711 + is_viable_kf = 0; 1.2712 + } 1.2713 + } 1.2714 + 1.2715 + return is_viable_kf; 1.2716 +} 1.2717 +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) 1.2718 +{ 1.2719 + int i,j; 1.2720 + FIRSTPASS_STATS last_frame; 1.2721 + FIRSTPASS_STATS first_frame; 1.2722 + FIRSTPASS_STATS next_frame; 1.2723 + FIRSTPASS_STATS *start_position; 1.2724 + 1.2725 + double decay_accumulator = 1.0; 1.2726 + double boost_score = 0; 1.2727 + double old_boost_score = 0.0; 1.2728 + double loop_decay_rate; 1.2729 + 1.2730 + double kf_mod_err = 0.0; 1.2731 + double kf_group_err = 0.0; 1.2732 + double kf_group_intra_err = 0.0; 1.2733 + double kf_group_coded_err = 0.0; 1.2734 + double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; 1.2735 + 1.2736 + vpx_memset(&next_frame, 0, sizeof(next_frame)); 1.2737 + 1.2738 + vp8_clear_system_state(); 1.2739 + start_position = cpi->twopass.stats_in; 1.2740 + 1.2741 + cpi->common.frame_type = KEY_FRAME; 1.2742 + 1.2743 + /* is this a forced key frame by interval */ 1.2744 + cpi->this_key_frame_forced = cpi->next_key_frame_forced; 1.2745 + 1.2746 + /* Clear the alt ref active flag as this can never be active on a key 1.2747 + * frame 1.2748 + */ 1.2749 + cpi->source_alt_ref_active = 0; 1.2750 + 1.2751 + /* Kf is always a gf so clear frames till next gf counter */ 1.2752 + cpi->frames_till_gf_update_due = 0; 1.2753 + 1.2754 + cpi->twopass.frames_to_key = 1; 1.2755 + 1.2756 + /* Take a copy of the initial frame details */ 1.2757 + vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); 1.2758 + 1.2759 + cpi->twopass.kf_group_bits = 0; 1.2760 + cpi->twopass.kf_group_error_left = 0; 1.2761 + 1.2762 + kf_mod_err = calculate_modified_err(cpi, this_frame); 1.2763 + 1.2764 + /* find the next keyframe */ 1.2765 + i = 0; 1.2766 + while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) 1.2767 + { 1.2768 + /* Accumulate kf group error */ 1.2769 + kf_group_err += calculate_modified_err(cpi, this_frame); 1.2770 + 1.2771 + /* These figures keep intra and coded error counts for all frames 1.2772 + * including key frames in the group. The effect of the key frame 1.2773 + * itself can be subtracted out using the first_frame data 1.2774 + * collected above 1.2775 + */ 1.2776 + kf_group_intra_err += this_frame->intra_error; 1.2777 + kf_group_coded_err += this_frame->coded_error; 1.2778 + 1.2779 + /* load a the next frame's stats */ 1.2780 + vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); 1.2781 + input_stats(cpi, this_frame); 1.2782 + 1.2783 + /* Provided that we are not at the end of the file... */ 1.2784 + if (cpi->oxcf.auto_key 1.2785 + && lookup_next_frame_stats(cpi, &next_frame) != EOF) 1.2786 + { 1.2787 + /* Normal scene cut check */ 1.2788 + if ( ( i >= MIN_GF_INTERVAL ) && 1.2789 + test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) 1.2790 + { 1.2791 + break; 1.2792 + } 1.2793 + 1.2794 + /* How fast is prediction quality decaying */ 1.2795 + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); 1.2796 + 1.2797 + /* We want to know something about the recent past... rather than 1.2798 + * as used elsewhere where we are concened with decay in prediction 1.2799 + * quality since the last GF or KF. 1.2800 + */ 1.2801 + recent_loop_decay[i%8] = loop_decay_rate; 1.2802 + decay_accumulator = 1.0; 1.2803 + for (j = 0; j < 8; j++) 1.2804 + { 1.2805 + decay_accumulator = decay_accumulator * recent_loop_decay[j]; 1.2806 + } 1.2807 + 1.2808 + /* Special check for transition or high motion followed by a 1.2809 + * static scene. 1.2810 + */ 1.2811 + if ( detect_transition_to_still( cpi, i, 1.2812 + (cpi->key_frame_frequency-i), 1.2813 + loop_decay_rate, 1.2814 + decay_accumulator ) ) 1.2815 + { 1.2816 + break; 1.2817 + } 1.2818 + 1.2819 + 1.2820 + /* Step on to the next frame */ 1.2821 + cpi->twopass.frames_to_key ++; 1.2822 + 1.2823 + /* If we don't have a real key frame within the next two 1.2824 + * forcekeyframeevery intervals then break out of the loop. 1.2825 + */ 1.2826 + if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) 1.2827 + break; 1.2828 + } else 1.2829 + cpi->twopass.frames_to_key ++; 1.2830 + 1.2831 + i++; 1.2832 + } 1.2833 + 1.2834 + /* If there is a max kf interval set by the user we must obey it. 1.2835 + * We already breakout of the loop above at 2x max. 1.2836 + * This code centers the extra kf if the actual natural 1.2837 + * interval is between 1x and 2x 1.2838 + */ 1.2839 + if (cpi->oxcf.auto_key 1.2840 + && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) 1.2841 + { 1.2842 + FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; 1.2843 + FIRSTPASS_STATS tmp_frame; 1.2844 + 1.2845 + cpi->twopass.frames_to_key /= 2; 1.2846 + 1.2847 + /* Copy first frame details */ 1.2848 + vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); 1.2849 + 1.2850 + /* Reset to the start of the group */ 1.2851 + reset_fpf_position(cpi, start_position); 1.2852 + 1.2853 + kf_group_err = 0; 1.2854 + kf_group_intra_err = 0; 1.2855 + kf_group_coded_err = 0; 1.2856 + 1.2857 + /* Rescan to get the correct error data for the forced kf group */ 1.2858 + for( i = 0; i < cpi->twopass.frames_to_key; i++ ) 1.2859 + { 1.2860 + /* Accumulate kf group errors */ 1.2861 + kf_group_err += calculate_modified_err(cpi, &tmp_frame); 1.2862 + kf_group_intra_err += tmp_frame.intra_error; 1.2863 + kf_group_coded_err += tmp_frame.coded_error; 1.2864 + 1.2865 + /* Load a the next frame's stats */ 1.2866 + input_stats(cpi, &tmp_frame); 1.2867 + } 1.2868 + 1.2869 + /* Reset to the start of the group */ 1.2870 + reset_fpf_position(cpi, current_pos); 1.2871 + 1.2872 + cpi->next_key_frame_forced = 1; 1.2873 + } 1.2874 + else 1.2875 + cpi->next_key_frame_forced = 0; 1.2876 + 1.2877 + /* Special case for the last frame of the file */ 1.2878 + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) 1.2879 + { 1.2880 + /* Accumulate kf group error */ 1.2881 + kf_group_err += calculate_modified_err(cpi, this_frame); 1.2882 + 1.2883 + /* These figures keep intra and coded error counts for all frames 1.2884 + * including key frames in the group. The effect of the key frame 1.2885 + * itself can be subtracted out using the first_frame data 1.2886 + * collected above 1.2887 + */ 1.2888 + kf_group_intra_err += this_frame->intra_error; 1.2889 + kf_group_coded_err += this_frame->coded_error; 1.2890 + } 1.2891 + 1.2892 + /* Calculate the number of bits that should be assigned to the kf group. */ 1.2893 + if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) 1.2894 + { 1.2895 + /* Max for a single normal frame (not key frame) */ 1.2896 + int max_bits = frame_max_bits(cpi); 1.2897 + 1.2898 + /* Maximum bits for the kf group */ 1.2899 + int64_t max_grp_bits; 1.2900 + 1.2901 + /* Default allocation based on bits left and relative 1.2902 + * complexity of the section 1.2903 + */ 1.2904 + cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * 1.2905 + ( kf_group_err / 1.2906 + cpi->twopass.modified_error_left )); 1.2907 + 1.2908 + /* Clip based on maximum per frame rate defined by the user. */ 1.2909 + max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; 1.2910 + if (cpi->twopass.kf_group_bits > max_grp_bits) 1.2911 + cpi->twopass.kf_group_bits = max_grp_bits; 1.2912 + 1.2913 + /* Additional special case for CBR if buffer is getting full. */ 1.2914 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.2915 + { 1.2916 + int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; 1.2917 + int64_t buffer_lvl = cpi->buffer_level; 1.2918 + 1.2919 + /* If the buffer is near or above the optimal and this kf group is 1.2920 + * not being allocated much then increase the allocation a bit. 1.2921 + */ 1.2922 + if (buffer_lvl >= opt_buffer_lvl) 1.2923 + { 1.2924 + int64_t high_water_mark = (opt_buffer_lvl + 1.2925 + cpi->oxcf.maximum_buffer_size) >> 1; 1.2926 + 1.2927 + int64_t av_group_bits; 1.2928 + 1.2929 + /* Av bits per frame * number of frames */ 1.2930 + av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * 1.2931 + (int64_t)cpi->twopass.frames_to_key; 1.2932 + 1.2933 + /* We are at or above the maximum. */ 1.2934 + if (cpi->buffer_level >= high_water_mark) 1.2935 + { 1.2936 + int64_t min_group_bits; 1.2937 + 1.2938 + min_group_bits = av_group_bits + 1.2939 + (int64_t)(buffer_lvl - 1.2940 + high_water_mark); 1.2941 + 1.2942 + if (cpi->twopass.kf_group_bits < min_group_bits) 1.2943 + cpi->twopass.kf_group_bits = min_group_bits; 1.2944 + } 1.2945 + /* We are above optimal but below the maximum */ 1.2946 + else if (cpi->twopass.kf_group_bits < av_group_bits) 1.2947 + { 1.2948 + int64_t bits_below_av = av_group_bits - 1.2949 + cpi->twopass.kf_group_bits; 1.2950 + 1.2951 + cpi->twopass.kf_group_bits += 1.2952 + (int64_t)((double)bits_below_av * 1.2953 + (double)(buffer_lvl - opt_buffer_lvl) / 1.2954 + (double)(high_water_mark - opt_buffer_lvl)); 1.2955 + } 1.2956 + } 1.2957 + } 1.2958 + } 1.2959 + else 1.2960 + cpi->twopass.kf_group_bits = 0; 1.2961 + 1.2962 + /* Reset the first pass file position */ 1.2963 + reset_fpf_position(cpi, start_position); 1.2964 + 1.2965 + /* determine how big to make this keyframe based on how well the 1.2966 + * subsequent frames use inter blocks 1.2967 + */ 1.2968 + decay_accumulator = 1.0; 1.2969 + boost_score = 0.0; 1.2970 + loop_decay_rate = 1.00; /* Starting decay rate */ 1.2971 + 1.2972 + for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) 1.2973 + { 1.2974 + double r; 1.2975 + 1.2976 + if (EOF == input_stats(cpi, &next_frame)) 1.2977 + break; 1.2978 + 1.2979 + if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) 1.2980 + r = (IIKFACTOR2 * next_frame.intra_error / 1.2981 + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); 1.2982 + else 1.2983 + r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / 1.2984 + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); 1.2985 + 1.2986 + if (r > RMAX) 1.2987 + r = RMAX; 1.2988 + 1.2989 + /* How fast is prediction quality decaying */ 1.2990 + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); 1.2991 + 1.2992 + decay_accumulator = decay_accumulator * loop_decay_rate; 1.2993 + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; 1.2994 + 1.2995 + boost_score += (decay_accumulator * r); 1.2996 + 1.2997 + if ((i > MIN_GF_INTERVAL) && 1.2998 + ((boost_score - old_boost_score) < 1.0)) 1.2999 + { 1.3000 + break; 1.3001 + } 1.3002 + 1.3003 + old_boost_score = boost_score; 1.3004 + } 1.3005 + 1.3006 + if (1) 1.3007 + { 1.3008 + FIRSTPASS_STATS sectionstats; 1.3009 + double Ratio; 1.3010 + 1.3011 + zero_stats(§ionstats); 1.3012 + reset_fpf_position(cpi, start_position); 1.3013 + 1.3014 + for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) 1.3015 + { 1.3016 + input_stats(cpi, &next_frame); 1.3017 + accumulate_stats(§ionstats, &next_frame); 1.3018 + } 1.3019 + 1.3020 + avg_stats(§ionstats); 1.3021 + 1.3022 + cpi->twopass.section_intra_rating = (unsigned int) 1.3023 + (sectionstats.intra_error 1.3024 + / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); 1.3025 + 1.3026 + Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); 1.3027 + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); 1.3028 + 1.3029 + if (cpi->twopass.section_max_qfactor < 0.80) 1.3030 + cpi->twopass.section_max_qfactor = 0.80; 1.3031 + } 1.3032 + 1.3033 + /* When using CBR apply additional buffer fullness related upper limits */ 1.3034 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.3035 + { 1.3036 + double max_boost; 1.3037 + 1.3038 + if (cpi->drop_frames_allowed) 1.3039 + { 1.3040 + int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark 1.3041 + * (cpi->oxcf.optimal_buffer_level / 100)); 1.3042 + 1.3043 + if (cpi->buffer_level > df_buffer_level) 1.3044 + max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); 1.3045 + else 1.3046 + max_boost = 0.0; 1.3047 + } 1.3048 + else if (cpi->buffer_level > 0) 1.3049 + { 1.3050 + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); 1.3051 + } 1.3052 + else 1.3053 + { 1.3054 + max_boost = 0.0; 1.3055 + } 1.3056 + 1.3057 + if (boost_score > max_boost) 1.3058 + boost_score = max_boost; 1.3059 + } 1.3060 + 1.3061 + /* Reset the first pass file position */ 1.3062 + reset_fpf_position(cpi, start_position); 1.3063 + 1.3064 + /* Work out how many bits to allocate for the key frame itself */ 1.3065 + if (1) 1.3066 + { 1.3067 + int kf_boost = (int)boost_score; 1.3068 + int allocation_chunks; 1.3069 + int Counter = cpi->twopass.frames_to_key; 1.3070 + int alt_kf_bits; 1.3071 + YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; 1.3072 + /* Min boost based on kf interval */ 1.3073 +#if 0 1.3074 + 1.3075 + while ((kf_boost < 48) && (Counter > 0)) 1.3076 + { 1.3077 + Counter -= 2; 1.3078 + kf_boost ++; 1.3079 + } 1.3080 + 1.3081 +#endif 1.3082 + 1.3083 + if (kf_boost < 48) 1.3084 + { 1.3085 + kf_boost += ((Counter + 1) >> 1); 1.3086 + 1.3087 + if (kf_boost > 48) kf_boost = 48; 1.3088 + } 1.3089 + 1.3090 + /* bigger frame sizes need larger kf boosts, smaller frames smaller 1.3091 + * boosts... 1.3092 + */ 1.3093 + if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) 1.3094 + kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); 1.3095 + else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) 1.3096 + kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); 1.3097 + 1.3098 + /* Min KF boost */ 1.3099 + kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ 1.3100 + if (kf_boost < 250) 1.3101 + kf_boost = 250; 1.3102 + 1.3103 + /* 1.3104 + * We do three calculations for kf size. 1.3105 + * The first is based on the error score for the whole kf group. 1.3106 + * The second (optionaly) on the key frames own error if this is 1.3107 + * smaller than the average for the group. 1.3108 + * The final one insures that the frame receives at least the 1.3109 + * allocation it would have received based on its own error score vs 1.3110 + * the error score remaining 1.3111 + * Special case if the sequence appears almost totaly static 1.3112 + * as measured by the decay accumulator. In this case we want to 1.3113 + * spend almost all of the bits on the key frame. 1.3114 + * cpi->twopass.frames_to_key-1 because key frame itself is taken 1.3115 + * care of by kf_boost. 1.3116 + */ 1.3117 + if ( decay_accumulator >= 0.99 ) 1.3118 + { 1.3119 + allocation_chunks = 1.3120 + ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; 1.3121 + } 1.3122 + else 1.3123 + { 1.3124 + allocation_chunks = 1.3125 + ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; 1.3126 + } 1.3127 + 1.3128 + /* Normalize Altboost and allocations chunck down to prevent overflow */ 1.3129 + while (kf_boost > 1000) 1.3130 + { 1.3131 + kf_boost /= 2; 1.3132 + allocation_chunks /= 2; 1.3133 + } 1.3134 + 1.3135 + cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; 1.3136 + 1.3137 + /* Calculate the number of bits to be spent on the key frame */ 1.3138 + cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); 1.3139 + 1.3140 + /* Apply an additional limit for CBR */ 1.3141 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.3142 + { 1.3143 + if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) 1.3144 + cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); 1.3145 + } 1.3146 + 1.3147 + /* If the key frame is actually easier than the average for the 1.3148 + * kf group (which does sometimes happen... eg a blank intro frame) 1.3149 + * Then use an alternate calculation based on the kf error score 1.3150 + * which should give a smaller key frame. 1.3151 + */ 1.3152 + if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) 1.3153 + { 1.3154 + double alt_kf_grp_bits = 1.3155 + ((double)cpi->twopass.bits_left * 1.3156 + (kf_mod_err * (double)cpi->twopass.frames_to_key) / 1.3157 + DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); 1.3158 + 1.3159 + alt_kf_bits = (int)((double)kf_boost * 1.3160 + (alt_kf_grp_bits / (double)allocation_chunks)); 1.3161 + 1.3162 + if (cpi->twopass.kf_bits > alt_kf_bits) 1.3163 + { 1.3164 + cpi->twopass.kf_bits = alt_kf_bits; 1.3165 + } 1.3166 + } 1.3167 + /* Else if it is much harder than other frames in the group make sure 1.3168 + * it at least receives an allocation in keeping with its relative 1.3169 + * error score 1.3170 + */ 1.3171 + else 1.3172 + { 1.3173 + alt_kf_bits = 1.3174 + (int)((double)cpi->twopass.bits_left * 1.3175 + (kf_mod_err / 1.3176 + DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); 1.3177 + 1.3178 + if (alt_kf_bits > cpi->twopass.kf_bits) 1.3179 + { 1.3180 + cpi->twopass.kf_bits = alt_kf_bits; 1.3181 + } 1.3182 + } 1.3183 + 1.3184 + cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; 1.3185 + /* Add in the minimum frame allowance */ 1.3186 + cpi->twopass.kf_bits += cpi->min_frame_bandwidth; 1.3187 + 1.3188 + /* Peer frame bit target for this frame */ 1.3189 + cpi->per_frame_bandwidth = cpi->twopass.kf_bits; 1.3190 + 1.3191 + /* Convert to a per second bitrate */ 1.3192 + cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * 1.3193 + cpi->output_framerate); 1.3194 + } 1.3195 + 1.3196 + /* Note the total error score of the kf group minus the key frame itself */ 1.3197 + cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); 1.3198 + 1.3199 + /* Adjust the count of total modified error left. The count of bits left 1.3200 + * is adjusted elsewhere based on real coded frame sizes 1.3201 + */ 1.3202 + cpi->twopass.modified_error_left -= kf_group_err; 1.3203 + 1.3204 + if (cpi->oxcf.allow_spatial_resampling) 1.3205 + { 1.3206 + int resample_trigger = 0; 1.3207 + int last_kf_resampled = 0; 1.3208 + int kf_q; 1.3209 + int scale_val = 0; 1.3210 + int hr, hs, vr, vs; 1.3211 + int new_width = cpi->oxcf.Width; 1.3212 + int new_height = cpi->oxcf.Height; 1.3213 + 1.3214 + int projected_buffer_level = (int)cpi->buffer_level; 1.3215 + int tmp_q; 1.3216 + 1.3217 + double projected_bits_perframe; 1.3218 + double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); 1.3219 + double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; 1.3220 + double bits_per_frame; 1.3221 + double av_bits_per_frame; 1.3222 + double effective_size_ratio; 1.3223 + 1.3224 + if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) 1.3225 + last_kf_resampled = 1; 1.3226 + 1.3227 + /* Set back to unscaled by defaults */ 1.3228 + cpi->common.horiz_scale = NORMAL; 1.3229 + cpi->common.vert_scale = NORMAL; 1.3230 + 1.3231 + /* Calculate Average bits per frame. */ 1.3232 + av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate); 1.3233 + 1.3234 + /* CBR... Use the clip average as the target for deciding resample */ 1.3235 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.3236 + { 1.3237 + bits_per_frame = av_bits_per_frame; 1.3238 + } 1.3239 + 1.3240 + /* In VBR we want to avoid downsampling in easy section unless we 1.3241 + * are under extreme pressure So use the larger of target bitrate 1.3242 + * for this section or average bitrate for sequence 1.3243 + */ 1.3244 + else 1.3245 + { 1.3246 + /* This accounts for how hard the section is... */ 1.3247 + bits_per_frame = (double) 1.3248 + (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); 1.3249 + 1.3250 + /* Dont turn to resampling in easy sections just because they 1.3251 + * have been assigned a small number of bits 1.3252 + */ 1.3253 + if (bits_per_frame < av_bits_per_frame) 1.3254 + bits_per_frame = av_bits_per_frame; 1.3255 + } 1.3256 + 1.3257 + /* bits_per_frame should comply with our minimum */ 1.3258 + if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) 1.3259 + bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); 1.3260 + 1.3261 + /* Work out if spatial resampling is necessary */ 1.3262 + kf_q = estimate_kf_group_q(cpi, err_per_frame, 1.3263 + (int)bits_per_frame, group_iiratio); 1.3264 + 1.3265 + /* If we project a required Q higher than the maximum allowed Q then 1.3266 + * make a guess at the actual size of frames in this section 1.3267 + */ 1.3268 + projected_bits_perframe = bits_per_frame; 1.3269 + tmp_q = kf_q; 1.3270 + 1.3271 + while (tmp_q > cpi->worst_quality) 1.3272 + { 1.3273 + projected_bits_perframe *= 1.04; 1.3274 + tmp_q--; 1.3275 + } 1.3276 + 1.3277 + /* Guess at buffer level at the end of the section */ 1.3278 + projected_buffer_level = (int) 1.3279 + (cpi->buffer_level - (int) 1.3280 + ((projected_bits_perframe - av_bits_per_frame) * 1.3281 + cpi->twopass.frames_to_key)); 1.3282 + 1.3283 + if (0) 1.3284 + { 1.3285 + FILE *f = fopen("Subsamle.stt", "a"); 1.3286 + fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); 1.3287 + fclose(f); 1.3288 + } 1.3289 + 1.3290 + /* The trigger for spatial resampling depends on the various 1.3291 + * parameters such as whether we are streaming (CBR) or VBR. 1.3292 + */ 1.3293 + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) 1.3294 + { 1.3295 + /* Trigger resample if we are projected to fall below down 1.3296 + * sample level or resampled last time and are projected to 1.3297 + * remain below the up sample level 1.3298 + */ 1.3299 + if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || 1.3300 + (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) 1.3301 + resample_trigger = 1; 1.3302 + else 1.3303 + resample_trigger = 0; 1.3304 + } 1.3305 + else 1.3306 + { 1.3307 + int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); 1.3308 + int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; 1.3309 + 1.3310 + /* If triggered last time the threshold for triggering again is 1.3311 + * reduced: 1.3312 + * 1.3313 + * Projected Q higher than allowed and Overspend > 5% of total 1.3314 + * bits 1.3315 + */ 1.3316 + if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || 1.3317 + ((kf_q > cpi->worst_quality) && 1.3318 + (over_spend > clip_bits / 20))) 1.3319 + resample_trigger = 1; 1.3320 + else 1.3321 + resample_trigger = 0; 1.3322 + 1.3323 + } 1.3324 + 1.3325 + if (resample_trigger) 1.3326 + { 1.3327 + while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) 1.3328 + { 1.3329 + scale_val ++; 1.3330 + 1.3331 + cpi->common.vert_scale = vscale_lookup[scale_val]; 1.3332 + cpi->common.horiz_scale = hscale_lookup[scale_val]; 1.3333 + 1.3334 + Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); 1.3335 + Scale2Ratio(cpi->common.vert_scale, &vr, &vs); 1.3336 + 1.3337 + new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; 1.3338 + new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; 1.3339 + 1.3340 + /* Reducing the area to 1/4 does not reduce the complexity 1.3341 + * (err_per_frame) to 1/4... effective_sizeratio attempts 1.3342 + * to provide a crude correction for this 1.3343 + */ 1.3344 + effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); 1.3345 + effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; 1.3346 + 1.3347 + /* Now try again and see what Q we get with the smaller 1.3348 + * image size 1.3349 + */ 1.3350 + kf_q = estimate_kf_group_q(cpi, 1.3351 + err_per_frame * effective_size_ratio, 1.3352 + (int)bits_per_frame, group_iiratio); 1.3353 + 1.3354 + if (0) 1.3355 + { 1.3356 + FILE *f = fopen("Subsamle.stt", "a"); 1.3357 + fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); 1.3358 + fclose(f); 1.3359 + } 1.3360 + } 1.3361 + } 1.3362 + 1.3363 + if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) 1.3364 + { 1.3365 + cpi->common.Width = new_width; 1.3366 + cpi->common.Height = new_height; 1.3367 + vp8_alloc_compressor_data(cpi); 1.3368 + } 1.3369 + } 1.3370 +}