media/webrtc/trunk/testing/gtest/test/gtest-printers_test.cc

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/webrtc/trunk/testing/gtest/test/gtest-printers_test.cc	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1561 @@
     1.4 +// Copyright 2007, Google Inc.
     1.5 +// All rights reserved.
     1.6 +//
     1.7 +// Redistribution and use in source and binary forms, with or without
     1.8 +// modification, are permitted provided that the following conditions are
     1.9 +// met:
    1.10 +//
    1.11 +//     * Redistributions of source code must retain the above copyright
    1.12 +// notice, this list of conditions and the following disclaimer.
    1.13 +//     * Redistributions in binary form must reproduce the above
    1.14 +// copyright notice, this list of conditions and the following disclaimer
    1.15 +// in the documentation and/or other materials provided with the
    1.16 +// distribution.
    1.17 +//     * Neither the name of Google Inc. nor the names of its
    1.18 +// contributors may be used to endorse or promote products derived from
    1.19 +// this software without specific prior written permission.
    1.20 +//
    1.21 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    1.22 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    1.23 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.24 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    1.25 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    1.26 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    1.27 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    1.28 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    1.29 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    1.30 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    1.31 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.32 +//
    1.33 +// Author: wan@google.com (Zhanyong Wan)
    1.34 +
    1.35 +// Google Test - The Google C++ Testing Framework
    1.36 +//
    1.37 +// This file tests the universal value printer.
    1.38 +
    1.39 +#include "gtest/gtest-printers.h"
    1.40 +
    1.41 +#include <ctype.h>
    1.42 +#include <limits.h>
    1.43 +#include <string.h>
    1.44 +#include <algorithm>
    1.45 +#include <deque>
    1.46 +#include <list>
    1.47 +#include <map>
    1.48 +#include <set>
    1.49 +#include <sstream>
    1.50 +#include <string>
    1.51 +#include <utility>
    1.52 +#include <vector>
    1.53 +
    1.54 +#include "gtest/gtest.h"
    1.55 +
    1.56 +// hash_map and hash_set are available under Visual C++.
    1.57 +#if _MSC_VER
    1.58 +# define GTEST_HAS_HASH_MAP_ 1  // Indicates that hash_map is available.
    1.59 +# include <hash_map>            // NOLINT
    1.60 +# define GTEST_HAS_HASH_SET_ 1  // Indicates that hash_set is available.
    1.61 +# include <hash_set>            // NOLINT
    1.62 +#endif  // GTEST_OS_WINDOWS
    1.63 +
    1.64 +// Some user-defined types for testing the universal value printer.
    1.65 +
    1.66 +// An anonymous enum type.
    1.67 +enum AnonymousEnum {
    1.68 +  kAE1 = -1,
    1.69 +  kAE2 = 1
    1.70 +};
    1.71 +
    1.72 +// An enum without a user-defined printer.
    1.73 +enum EnumWithoutPrinter {
    1.74 +  kEWP1 = -2,
    1.75 +  kEWP2 = 42
    1.76 +};
    1.77 +
    1.78 +// An enum with a << operator.
    1.79 +enum EnumWithStreaming {
    1.80 +  kEWS1 = 10
    1.81 +};
    1.82 +
    1.83 +std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
    1.84 +  return os << (e == kEWS1 ? "kEWS1" : "invalid");
    1.85 +}
    1.86 +
    1.87 +// An enum with a PrintTo() function.
    1.88 +enum EnumWithPrintTo {
    1.89 +  kEWPT1 = 1
    1.90 +};
    1.91 +
    1.92 +void PrintTo(EnumWithPrintTo e, std::ostream* os) {
    1.93 +  *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
    1.94 +}
    1.95 +
    1.96 +// A class implicitly convertible to BiggestInt.
    1.97 +class BiggestIntConvertible {
    1.98 + public:
    1.99 +  operator ::testing::internal::BiggestInt() const { return 42; }
   1.100 +};
   1.101 +
   1.102 +// A user-defined unprintable class template in the global namespace.
   1.103 +template <typename T>
   1.104 +class UnprintableTemplateInGlobal {
   1.105 + public:
   1.106 +  UnprintableTemplateInGlobal() : value_() {}
   1.107 + private:
   1.108 +  T value_;
   1.109 +};
   1.110 +
   1.111 +// A user-defined streamable type in the global namespace.
   1.112 +class StreamableInGlobal {
   1.113 + public:
   1.114 +  virtual ~StreamableInGlobal() {}
   1.115 +};
   1.116 +
   1.117 +inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
   1.118 +  os << "StreamableInGlobal";
   1.119 +}
   1.120 +
   1.121 +void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
   1.122 +  os << "StreamableInGlobal*";
   1.123 +}
   1.124 +
   1.125 +namespace foo {
   1.126 +
   1.127 +// A user-defined unprintable type in a user namespace.
   1.128 +class UnprintableInFoo {
   1.129 + public:
   1.130 +  UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
   1.131 + private:
   1.132 +  char xy_[8];
   1.133 +  double z_;
   1.134 +};
   1.135 +
   1.136 +// A user-defined printable type in a user-chosen namespace.
   1.137 +struct PrintableViaPrintTo {
   1.138 +  PrintableViaPrintTo() : value() {}
   1.139 +  int value;
   1.140 +};
   1.141 +
   1.142 +void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
   1.143 +  *os << "PrintableViaPrintTo: " << x.value;
   1.144 +}
   1.145 +
   1.146 +// A type with a user-defined << for printing its pointer.
   1.147 +struct PointerPrintable {
   1.148 +};
   1.149 +
   1.150 +::std::ostream& operator<<(::std::ostream& os,
   1.151 +                           const PointerPrintable* /* x */) {
   1.152 +  return os << "PointerPrintable*";
   1.153 +}
   1.154 +
   1.155 +// A user-defined printable class template in a user-chosen namespace.
   1.156 +template <typename T>
   1.157 +class PrintableViaPrintToTemplate {
   1.158 + public:
   1.159 +  explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
   1.160 +
   1.161 +  const T& value() const { return value_; }
   1.162 + private:
   1.163 +  T value_;
   1.164 +};
   1.165 +
   1.166 +template <typename T>
   1.167 +void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
   1.168 +  *os << "PrintableViaPrintToTemplate: " << x.value();
   1.169 +}
   1.170 +
   1.171 +// A user-defined streamable class template in a user namespace.
   1.172 +template <typename T>
   1.173 +class StreamableTemplateInFoo {
   1.174 + public:
   1.175 +  StreamableTemplateInFoo() : value_() {}
   1.176 +
   1.177 +  const T& value() const { return value_; }
   1.178 + private:
   1.179 +  T value_;
   1.180 +};
   1.181 +
   1.182 +template <typename T>
   1.183 +inline ::std::ostream& operator<<(::std::ostream& os,
   1.184 +                                  const StreamableTemplateInFoo<T>& x) {
   1.185 +  return os << "StreamableTemplateInFoo: " << x.value();
   1.186 +}
   1.187 +
   1.188 +}  // namespace foo
   1.189 +
   1.190 +namespace testing {
   1.191 +namespace gtest_printers_test {
   1.192 +
   1.193 +using ::std::deque;
   1.194 +using ::std::list;
   1.195 +using ::std::make_pair;
   1.196 +using ::std::map;
   1.197 +using ::std::multimap;
   1.198 +using ::std::multiset;
   1.199 +using ::std::pair;
   1.200 +using ::std::set;
   1.201 +using ::std::vector;
   1.202 +using ::testing::PrintToString;
   1.203 +using ::testing::internal::FormatForComparisonFailureMessage;
   1.204 +using ::testing::internal::ImplicitCast_;
   1.205 +using ::testing::internal::NativeArray;
   1.206 +using ::testing::internal::RE;
   1.207 +using ::testing::internal::Strings;
   1.208 +using ::testing::internal::UniversalPrint;
   1.209 +using ::testing::internal::UniversalPrinter;
   1.210 +using ::testing::internal::UniversalTersePrint;
   1.211 +using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
   1.212 +using ::testing::internal::kReference;
   1.213 +using ::testing::internal::string;
   1.214 +
   1.215 +#if GTEST_HAS_TR1_TUPLE
   1.216 +using ::std::tr1::make_tuple;
   1.217 +using ::std::tr1::tuple;
   1.218 +#endif
   1.219 +
   1.220 +#if _MSC_VER
   1.221 +// MSVC defines the following classes in the ::stdext namespace while
   1.222 +// gcc defines them in the :: namespace.  Note that they are not part
   1.223 +// of the C++ standard.
   1.224 +using ::stdext::hash_map;
   1.225 +using ::stdext::hash_set;
   1.226 +using ::stdext::hash_multimap;
   1.227 +using ::stdext::hash_multiset;
   1.228 +#endif
   1.229 +
   1.230 +// Prints a value to a string using the universal value printer.  This
   1.231 +// is a helper for testing UniversalPrinter<T>::Print() for various types.
   1.232 +template <typename T>
   1.233 +string Print(const T& value) {
   1.234 +  ::std::stringstream ss;
   1.235 +  UniversalPrinter<T>::Print(value, &ss);
   1.236 +  return ss.str();
   1.237 +}
   1.238 +
   1.239 +// Prints a value passed by reference to a string, using the universal
   1.240 +// value printer.  This is a helper for testing
   1.241 +// UniversalPrinter<T&>::Print() for various types.
   1.242 +template <typename T>
   1.243 +string PrintByRef(const T& value) {
   1.244 +  ::std::stringstream ss;
   1.245 +  UniversalPrinter<T&>::Print(value, &ss);
   1.246 +  return ss.str();
   1.247 +}
   1.248 +
   1.249 +// Tests printing various enum types.
   1.250 +
   1.251 +TEST(PrintEnumTest, AnonymousEnum) {
   1.252 +  EXPECT_EQ("-1", Print(kAE1));
   1.253 +  EXPECT_EQ("1", Print(kAE2));
   1.254 +}
   1.255 +
   1.256 +TEST(PrintEnumTest, EnumWithoutPrinter) {
   1.257 +  EXPECT_EQ("-2", Print(kEWP1));
   1.258 +  EXPECT_EQ("42", Print(kEWP2));
   1.259 +}
   1.260 +
   1.261 +TEST(PrintEnumTest, EnumWithStreaming) {
   1.262 +  EXPECT_EQ("kEWS1", Print(kEWS1));
   1.263 +  EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
   1.264 +}
   1.265 +
   1.266 +TEST(PrintEnumTest, EnumWithPrintTo) {
   1.267 +  EXPECT_EQ("kEWPT1", Print(kEWPT1));
   1.268 +  EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
   1.269 +}
   1.270 +
   1.271 +// Tests printing a class implicitly convertible to BiggestInt.
   1.272 +
   1.273 +TEST(PrintClassTest, BiggestIntConvertible) {
   1.274 +  EXPECT_EQ("42", Print(BiggestIntConvertible()));
   1.275 +}
   1.276 +
   1.277 +// Tests printing various char types.
   1.278 +
   1.279 +// char.
   1.280 +TEST(PrintCharTest, PlainChar) {
   1.281 +  EXPECT_EQ("'\\0'", Print('\0'));
   1.282 +  EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
   1.283 +  EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
   1.284 +  EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
   1.285 +  EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
   1.286 +  EXPECT_EQ("'\\a' (7)", Print('\a'));
   1.287 +  EXPECT_EQ("'\\b' (8)", Print('\b'));
   1.288 +  EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
   1.289 +  EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
   1.290 +  EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
   1.291 +  EXPECT_EQ("'\\t' (9)", Print('\t'));
   1.292 +  EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
   1.293 +  EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
   1.294 +  EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
   1.295 +  EXPECT_EQ("' ' (32, 0x20)", Print(' '));
   1.296 +  EXPECT_EQ("'a' (97, 0x61)", Print('a'));
   1.297 +}
   1.298 +
   1.299 +// signed char.
   1.300 +TEST(PrintCharTest, SignedChar) {
   1.301 +  EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
   1.302 +  EXPECT_EQ("'\\xCE' (-50)",
   1.303 +            Print(static_cast<signed char>(-50)));
   1.304 +}
   1.305 +
   1.306 +// unsigned char.
   1.307 +TEST(PrintCharTest, UnsignedChar) {
   1.308 +  EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
   1.309 +  EXPECT_EQ("'b' (98, 0x62)",
   1.310 +            Print(static_cast<unsigned char>('b')));
   1.311 +}
   1.312 +
   1.313 +// Tests printing other simple, built-in types.
   1.314 +
   1.315 +// bool.
   1.316 +TEST(PrintBuiltInTypeTest, Bool) {
   1.317 +  EXPECT_EQ("false", Print(false));
   1.318 +  EXPECT_EQ("true", Print(true));
   1.319 +}
   1.320 +
   1.321 +// wchar_t.
   1.322 +TEST(PrintBuiltInTypeTest, Wchar_t) {
   1.323 +  EXPECT_EQ("L'\\0'", Print(L'\0'));
   1.324 +  EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
   1.325 +  EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
   1.326 +  EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
   1.327 +  EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
   1.328 +  EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
   1.329 +  EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
   1.330 +  EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
   1.331 +  EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
   1.332 +  EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
   1.333 +  EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
   1.334 +  EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
   1.335 +  EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
   1.336 +  EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
   1.337 +  EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
   1.338 +  EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
   1.339 +  EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
   1.340 +  EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
   1.341 +}
   1.342 +
   1.343 +// Test that Int64 provides more storage than wchar_t.
   1.344 +TEST(PrintTypeSizeTest, Wchar_t) {
   1.345 +  EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
   1.346 +}
   1.347 +
   1.348 +// Various integer types.
   1.349 +TEST(PrintBuiltInTypeTest, Integer) {
   1.350 +  EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255)));  // uint8
   1.351 +  EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128)));  // int8
   1.352 +  EXPECT_EQ("65535", Print(USHRT_MAX));  // uint16
   1.353 +  EXPECT_EQ("-32768", Print(SHRT_MIN));  // int16
   1.354 +  EXPECT_EQ("4294967295", Print(UINT_MAX));  // uint32
   1.355 +  EXPECT_EQ("-2147483648", Print(INT_MIN));  // int32
   1.356 +  EXPECT_EQ("18446744073709551615",
   1.357 +            Print(static_cast<testing::internal::UInt64>(-1)));  // uint64
   1.358 +  EXPECT_EQ("-9223372036854775808",
   1.359 +            Print(static_cast<testing::internal::Int64>(1) << 63));  // int64
   1.360 +}
   1.361 +
   1.362 +// Size types.
   1.363 +TEST(PrintBuiltInTypeTest, Size_t) {
   1.364 +  EXPECT_EQ("1", Print(sizeof('a')));  // size_t.
   1.365 +#if !GTEST_OS_WINDOWS
   1.366 +  // Windows has no ssize_t type.
   1.367 +  EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2)));  // ssize_t.
   1.368 +#endif  // !GTEST_OS_WINDOWS
   1.369 +}
   1.370 +
   1.371 +// Floating-points.
   1.372 +TEST(PrintBuiltInTypeTest, FloatingPoints) {
   1.373 +  EXPECT_EQ("1.5", Print(1.5f));   // float
   1.374 +  EXPECT_EQ("-2.5", Print(-2.5));  // double
   1.375 +}
   1.376 +
   1.377 +// Since ::std::stringstream::operator<<(const void *) formats the pointer
   1.378 +// output differently with different compilers, we have to create the expected
   1.379 +// output first and use it as our expectation.
   1.380 +static string PrintPointer(const void *p) {
   1.381 +  ::std::stringstream expected_result_stream;
   1.382 +  expected_result_stream << p;
   1.383 +  return expected_result_stream.str();
   1.384 +}
   1.385 +
   1.386 +// Tests printing C strings.
   1.387 +
   1.388 +// const char*.
   1.389 +TEST(PrintCStringTest, Const) {
   1.390 +  const char* p = "World";
   1.391 +  EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
   1.392 +}
   1.393 +
   1.394 +// char*.
   1.395 +TEST(PrintCStringTest, NonConst) {
   1.396 +  char p[] = "Hi";
   1.397 +  EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
   1.398 +            Print(static_cast<char*>(p)));
   1.399 +}
   1.400 +
   1.401 +// NULL C string.
   1.402 +TEST(PrintCStringTest, Null) {
   1.403 +  const char* p = NULL;
   1.404 +  EXPECT_EQ("NULL", Print(p));
   1.405 +}
   1.406 +
   1.407 +// Tests that C strings are escaped properly.
   1.408 +TEST(PrintCStringTest, EscapesProperly) {
   1.409 +  const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
   1.410 +  EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
   1.411 +            "\\n\\r\\t\\v\\x7F\\xFF a\"",
   1.412 +            Print(p));
   1.413 +}
   1.414 +
   1.415 +
   1.416 +
   1.417 +// MSVC compiler can be configured to define whar_t as a typedef
   1.418 +// of unsigned short. Defining an overload for const wchar_t* in that case
   1.419 +// would cause pointers to unsigned shorts be printed as wide strings,
   1.420 +// possibly accessing more memory than intended and causing invalid
   1.421 +// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
   1.422 +// wchar_t is implemented as a native type.
   1.423 +#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
   1.424 +
   1.425 +// const wchar_t*.
   1.426 +TEST(PrintWideCStringTest, Const) {
   1.427 +  const wchar_t* p = L"World";
   1.428 +  EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
   1.429 +}
   1.430 +
   1.431 +// wchar_t*.
   1.432 +TEST(PrintWideCStringTest, NonConst) {
   1.433 +  wchar_t p[] = L"Hi";
   1.434 +  EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
   1.435 +            Print(static_cast<wchar_t*>(p)));
   1.436 +}
   1.437 +
   1.438 +// NULL wide C string.
   1.439 +TEST(PrintWideCStringTest, Null) {
   1.440 +  const wchar_t* p = NULL;
   1.441 +  EXPECT_EQ("NULL", Print(p));
   1.442 +}
   1.443 +
   1.444 +// Tests that wide C strings are escaped properly.
   1.445 +TEST(PrintWideCStringTest, EscapesProperly) {
   1.446 +  const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
   1.447 +                       '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
   1.448 +  EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
   1.449 +            "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
   1.450 +            Print(static_cast<const wchar_t*>(s)));
   1.451 +}
   1.452 +#endif  // native wchar_t
   1.453 +
   1.454 +// Tests printing pointers to other char types.
   1.455 +
   1.456 +// signed char*.
   1.457 +TEST(PrintCharPointerTest, SignedChar) {
   1.458 +  signed char* p = reinterpret_cast<signed char*>(0x1234);
   1.459 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.460 +  p = NULL;
   1.461 +  EXPECT_EQ("NULL", Print(p));
   1.462 +}
   1.463 +
   1.464 +// const signed char*.
   1.465 +TEST(PrintCharPointerTest, ConstSignedChar) {
   1.466 +  signed char* p = reinterpret_cast<signed char*>(0x1234);
   1.467 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.468 +  p = NULL;
   1.469 +  EXPECT_EQ("NULL", Print(p));
   1.470 +}
   1.471 +
   1.472 +// unsigned char*.
   1.473 +TEST(PrintCharPointerTest, UnsignedChar) {
   1.474 +  unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
   1.475 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.476 +  p = NULL;
   1.477 +  EXPECT_EQ("NULL", Print(p));
   1.478 +}
   1.479 +
   1.480 +// const unsigned char*.
   1.481 +TEST(PrintCharPointerTest, ConstUnsignedChar) {
   1.482 +  const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
   1.483 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.484 +  p = NULL;
   1.485 +  EXPECT_EQ("NULL", Print(p));
   1.486 +}
   1.487 +
   1.488 +// Tests printing pointers to simple, built-in types.
   1.489 +
   1.490 +// bool*.
   1.491 +TEST(PrintPointerToBuiltInTypeTest, Bool) {
   1.492 +  bool* p = reinterpret_cast<bool*>(0xABCD);
   1.493 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.494 +  p = NULL;
   1.495 +  EXPECT_EQ("NULL", Print(p));
   1.496 +}
   1.497 +
   1.498 +// void*.
   1.499 +TEST(PrintPointerToBuiltInTypeTest, Void) {
   1.500 +  void* p = reinterpret_cast<void*>(0xABCD);
   1.501 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.502 +  p = NULL;
   1.503 +  EXPECT_EQ("NULL", Print(p));
   1.504 +}
   1.505 +
   1.506 +// const void*.
   1.507 +TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
   1.508 +  const void* p = reinterpret_cast<const void*>(0xABCD);
   1.509 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.510 +  p = NULL;
   1.511 +  EXPECT_EQ("NULL", Print(p));
   1.512 +}
   1.513 +
   1.514 +// Tests printing pointers to pointers.
   1.515 +TEST(PrintPointerToPointerTest, IntPointerPointer) {
   1.516 +  int** p = reinterpret_cast<int**>(0xABCD);
   1.517 +  EXPECT_EQ(PrintPointer(p), Print(p));
   1.518 +  p = NULL;
   1.519 +  EXPECT_EQ("NULL", Print(p));
   1.520 +}
   1.521 +
   1.522 +// Tests printing (non-member) function pointers.
   1.523 +
   1.524 +void MyFunction(int /* n */) {}
   1.525 +
   1.526 +TEST(PrintPointerTest, NonMemberFunctionPointer) {
   1.527 +  // We cannot directly cast &MyFunction to const void* because the
   1.528 +  // standard disallows casting between pointers to functions and
   1.529 +  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
   1.530 +  // this limitation.
   1.531 +  EXPECT_EQ(
   1.532 +      PrintPointer(reinterpret_cast<const void*>(
   1.533 +          reinterpret_cast<internal::BiggestInt>(&MyFunction))),
   1.534 +      Print(&MyFunction));
   1.535 +  int (*p)(bool) = NULL;  // NOLINT
   1.536 +  EXPECT_EQ("NULL", Print(p));
   1.537 +}
   1.538 +
   1.539 +// An assertion predicate determining whether a one string is a prefix for
   1.540 +// another.
   1.541 +template <typename StringType>
   1.542 +AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
   1.543 +  if (str.find(prefix, 0) == 0)
   1.544 +    return AssertionSuccess();
   1.545 +
   1.546 +  const bool is_wide_string = sizeof(prefix[0]) > 1;
   1.547 +  const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
   1.548 +  return AssertionFailure()
   1.549 +      << begin_string_quote << prefix << "\" is not a prefix of "
   1.550 +      << begin_string_quote << str << "\"\n";
   1.551 +}
   1.552 +
   1.553 +// Tests printing member variable pointers.  Although they are called
   1.554 +// pointers, they don't point to a location in the address space.
   1.555 +// Their representation is implementation-defined.  Thus they will be
   1.556 +// printed as raw bytes.
   1.557 +
   1.558 +struct Foo {
   1.559 + public:
   1.560 +  virtual ~Foo() {}
   1.561 +  int MyMethod(char x) { return x + 1; }
   1.562 +  virtual char MyVirtualMethod(int /* n */) { return 'a'; }
   1.563 +
   1.564 +  int value;
   1.565 +};
   1.566 +
   1.567 +TEST(PrintPointerTest, MemberVariablePointer) {
   1.568 +  EXPECT_TRUE(HasPrefix(Print(&Foo::value),
   1.569 +                        Print(sizeof(&Foo::value)) + "-byte object "));
   1.570 +  int (Foo::*p) = NULL;  // NOLINT
   1.571 +  EXPECT_TRUE(HasPrefix(Print(p),
   1.572 +                        Print(sizeof(p)) + "-byte object "));
   1.573 +}
   1.574 +
   1.575 +// Tests printing member function pointers.  Although they are called
   1.576 +// pointers, they don't point to a location in the address space.
   1.577 +// Their representation is implementation-defined.  Thus they will be
   1.578 +// printed as raw bytes.
   1.579 +TEST(PrintPointerTest, MemberFunctionPointer) {
   1.580 +  EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
   1.581 +                        Print(sizeof(&Foo::MyMethod)) + "-byte object "));
   1.582 +  EXPECT_TRUE(
   1.583 +      HasPrefix(Print(&Foo::MyVirtualMethod),
   1.584 +                Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
   1.585 +  int (Foo::*p)(char) = NULL;  // NOLINT
   1.586 +  EXPECT_TRUE(HasPrefix(Print(p),
   1.587 +                        Print(sizeof(p)) + "-byte object "));
   1.588 +}
   1.589 +
   1.590 +// Tests printing C arrays.
   1.591 +
   1.592 +// The difference between this and Print() is that it ensures that the
   1.593 +// argument is a reference to an array.
   1.594 +template <typename T, size_t N>
   1.595 +string PrintArrayHelper(T (&a)[N]) {
   1.596 +  return Print(a);
   1.597 +}
   1.598 +
   1.599 +// One-dimensional array.
   1.600 +TEST(PrintArrayTest, OneDimensionalArray) {
   1.601 +  int a[5] = { 1, 2, 3, 4, 5 };
   1.602 +  EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
   1.603 +}
   1.604 +
   1.605 +// Two-dimensional array.
   1.606 +TEST(PrintArrayTest, TwoDimensionalArray) {
   1.607 +  int a[2][5] = {
   1.608 +    { 1, 2, 3, 4, 5 },
   1.609 +    { 6, 7, 8, 9, 0 }
   1.610 +  };
   1.611 +  EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
   1.612 +}
   1.613 +
   1.614 +// Array of const elements.
   1.615 +TEST(PrintArrayTest, ConstArray) {
   1.616 +  const bool a[1] = { false };
   1.617 +  EXPECT_EQ("{ false }", PrintArrayHelper(a));
   1.618 +}
   1.619 +
   1.620 +// char array without terminating NUL.
   1.621 +TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
   1.622 +  // Array a contains '\0' in the middle and doesn't end with '\0'.
   1.623 +  char a[] = { 'H', '\0', 'i' };
   1.624 +  EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
   1.625 +}
   1.626 +
   1.627 +// const char array with terminating NUL.
   1.628 +TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
   1.629 +  const char a[] = "\0Hi";
   1.630 +  EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
   1.631 +}
   1.632 +
   1.633 +// const wchar_t array without terminating NUL.
   1.634 +TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
   1.635 +  // Array a contains '\0' in the middle and doesn't end with '\0'.
   1.636 +  const wchar_t a[] = { L'H', L'\0', L'i' };
   1.637 +  EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
   1.638 +}
   1.639 +
   1.640 +// wchar_t array with terminating NUL.
   1.641 +TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
   1.642 +  const wchar_t a[] = L"\0Hi";
   1.643 +  EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
   1.644 +}
   1.645 +
   1.646 +// Array of objects.
   1.647 +TEST(PrintArrayTest, ObjectArray) {
   1.648 +  string a[3] = { "Hi", "Hello", "Ni hao" };
   1.649 +  EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
   1.650 +}
   1.651 +
   1.652 +// Array with many elements.
   1.653 +TEST(PrintArrayTest, BigArray) {
   1.654 +  int a[100] = { 1, 2, 3 };
   1.655 +  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
   1.656 +            PrintArrayHelper(a));
   1.657 +}
   1.658 +
   1.659 +// Tests printing ::string and ::std::string.
   1.660 +
   1.661 +#if GTEST_HAS_GLOBAL_STRING
   1.662 +// ::string.
   1.663 +TEST(PrintStringTest, StringInGlobalNamespace) {
   1.664 +  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
   1.665 +  const ::string str(s, sizeof(s));
   1.666 +  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
   1.667 +            Print(str));
   1.668 +}
   1.669 +#endif  // GTEST_HAS_GLOBAL_STRING
   1.670 +
   1.671 +// ::std::string.
   1.672 +TEST(PrintStringTest, StringInStdNamespace) {
   1.673 +  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
   1.674 +  const ::std::string str(s, sizeof(s));
   1.675 +  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
   1.676 +            Print(str));
   1.677 +}
   1.678 +
   1.679 +TEST(PrintStringTest, StringAmbiguousHex) {
   1.680 +  // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
   1.681 +  // '\x6', '\x6B', or '\x6BA'.
   1.682 +
   1.683 +  // a hex escaping sequence following by a decimal digit
   1.684 +  EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
   1.685 +  // a hex escaping sequence following by a hex digit (lower-case)
   1.686 +  EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
   1.687 +  // a hex escaping sequence following by a hex digit (upper-case)
   1.688 +  EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
   1.689 +  // a hex escaping sequence following by a non-xdigit
   1.690 +  EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
   1.691 +}
   1.692 +
   1.693 +// Tests printing ::wstring and ::std::wstring.
   1.694 +
   1.695 +#if GTEST_HAS_GLOBAL_WSTRING
   1.696 +// ::wstring.
   1.697 +TEST(PrintWideStringTest, StringInGlobalNamespace) {
   1.698 +  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
   1.699 +  const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
   1.700 +  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
   1.701 +            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
   1.702 +            Print(str));
   1.703 +}
   1.704 +#endif  // GTEST_HAS_GLOBAL_WSTRING
   1.705 +
   1.706 +#if GTEST_HAS_STD_WSTRING
   1.707 +// ::std::wstring.
   1.708 +TEST(PrintWideStringTest, StringInStdNamespace) {
   1.709 +  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
   1.710 +  const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
   1.711 +  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
   1.712 +            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
   1.713 +            Print(str));
   1.714 +}
   1.715 +
   1.716 +TEST(PrintWideStringTest, StringAmbiguousHex) {
   1.717 +  // same for wide strings.
   1.718 +  EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
   1.719 +  EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
   1.720 +            Print(::std::wstring(L"mm\x6" L"bananas")));
   1.721 +  EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
   1.722 +            Print(::std::wstring(L"NOM\x6" L"BANANA")));
   1.723 +  EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
   1.724 +}
   1.725 +#endif  // GTEST_HAS_STD_WSTRING
   1.726 +
   1.727 +// Tests printing types that support generic streaming (i.e. streaming
   1.728 +// to std::basic_ostream<Char, CharTraits> for any valid Char and
   1.729 +// CharTraits types).
   1.730 +
   1.731 +// Tests printing a non-template type that supports generic streaming.
   1.732 +
   1.733 +class AllowsGenericStreaming {};
   1.734 +
   1.735 +template <typename Char, typename CharTraits>
   1.736 +std::basic_ostream<Char, CharTraits>& operator<<(
   1.737 +    std::basic_ostream<Char, CharTraits>& os,
   1.738 +    const AllowsGenericStreaming& /* a */) {
   1.739 +  return os << "AllowsGenericStreaming";
   1.740 +}
   1.741 +
   1.742 +TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
   1.743 +  AllowsGenericStreaming a;
   1.744 +  EXPECT_EQ("AllowsGenericStreaming", Print(a));
   1.745 +}
   1.746 +
   1.747 +// Tests printing a template type that supports generic streaming.
   1.748 +
   1.749 +template <typename T>
   1.750 +class AllowsGenericStreamingTemplate {};
   1.751 +
   1.752 +template <typename Char, typename CharTraits, typename T>
   1.753 +std::basic_ostream<Char, CharTraits>& operator<<(
   1.754 +    std::basic_ostream<Char, CharTraits>& os,
   1.755 +    const AllowsGenericStreamingTemplate<T>& /* a */) {
   1.756 +  return os << "AllowsGenericStreamingTemplate";
   1.757 +}
   1.758 +
   1.759 +TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
   1.760 +  AllowsGenericStreamingTemplate<int> a;
   1.761 +  EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
   1.762 +}
   1.763 +
   1.764 +// Tests printing a type that supports generic streaming and can be
   1.765 +// implicitly converted to another printable type.
   1.766 +
   1.767 +template <typename T>
   1.768 +class AllowsGenericStreamingAndImplicitConversionTemplate {
   1.769 + public:
   1.770 +  operator bool() const { return false; }
   1.771 +};
   1.772 +
   1.773 +template <typename Char, typename CharTraits, typename T>
   1.774 +std::basic_ostream<Char, CharTraits>& operator<<(
   1.775 +    std::basic_ostream<Char, CharTraits>& os,
   1.776 +    const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
   1.777 +  return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
   1.778 +}
   1.779 +
   1.780 +TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
   1.781 +  AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
   1.782 +  EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
   1.783 +}
   1.784 +
   1.785 +#if GTEST_HAS_STRING_PIECE_
   1.786 +
   1.787 +// Tests printing StringPiece.
   1.788 +
   1.789 +TEST(PrintStringPieceTest, SimpleStringPiece) {
   1.790 +  const StringPiece sp = "Hello";
   1.791 +  EXPECT_EQ("\"Hello\"", Print(sp));
   1.792 +}
   1.793 +
   1.794 +TEST(PrintStringPieceTest, UnprintableCharacters) {
   1.795 +  const char str[] = "NUL (\0) and \r\t";
   1.796 +  const StringPiece sp(str, sizeof(str) - 1);
   1.797 +  EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
   1.798 +}
   1.799 +
   1.800 +#endif  // GTEST_HAS_STRING_PIECE_
   1.801 +
   1.802 +// Tests printing STL containers.
   1.803 +
   1.804 +TEST(PrintStlContainerTest, EmptyDeque) {
   1.805 +  deque<char> empty;
   1.806 +  EXPECT_EQ("{}", Print(empty));
   1.807 +}
   1.808 +
   1.809 +TEST(PrintStlContainerTest, NonEmptyDeque) {
   1.810 +  deque<int> non_empty;
   1.811 +  non_empty.push_back(1);
   1.812 +  non_empty.push_back(3);
   1.813 +  EXPECT_EQ("{ 1, 3 }", Print(non_empty));
   1.814 +}
   1.815 +
   1.816 +#if GTEST_HAS_HASH_MAP_
   1.817 +
   1.818 +TEST(PrintStlContainerTest, OneElementHashMap) {
   1.819 +  hash_map<int, char> map1;
   1.820 +  map1[1] = 'a';
   1.821 +  EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
   1.822 +}
   1.823 +
   1.824 +TEST(PrintStlContainerTest, HashMultiMap) {
   1.825 +  hash_multimap<int, bool> map1;
   1.826 +  map1.insert(make_pair(5, true));
   1.827 +  map1.insert(make_pair(5, false));
   1.828 +
   1.829 +  // Elements of hash_multimap can be printed in any order.
   1.830 +  const string result = Print(map1);
   1.831 +  EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
   1.832 +              result == "{ (5, false), (5, true) }")
   1.833 +                  << " where Print(map1) returns \"" << result << "\".";
   1.834 +}
   1.835 +
   1.836 +#endif  // GTEST_HAS_HASH_MAP_
   1.837 +
   1.838 +#if GTEST_HAS_HASH_SET_
   1.839 +
   1.840 +TEST(PrintStlContainerTest, HashSet) {
   1.841 +  hash_set<string> set1;
   1.842 +  set1.insert("hello");
   1.843 +  EXPECT_EQ("{ \"hello\" }", Print(set1));
   1.844 +}
   1.845 +
   1.846 +TEST(PrintStlContainerTest, HashMultiSet) {
   1.847 +  const int kSize = 5;
   1.848 +  int a[kSize] = { 1, 1, 2, 5, 1 };
   1.849 +  hash_multiset<int> set1(a, a + kSize);
   1.850 +
   1.851 +  // Elements of hash_multiset can be printed in any order.
   1.852 +  const string result = Print(set1);
   1.853 +  const string expected_pattern = "{ d, d, d, d, d }";  // d means a digit.
   1.854 +
   1.855 +  // Verifies the result matches the expected pattern; also extracts
   1.856 +  // the numbers in the result.
   1.857 +  ASSERT_EQ(expected_pattern.length(), result.length());
   1.858 +  std::vector<int> numbers;
   1.859 +  for (size_t i = 0; i != result.length(); i++) {
   1.860 +    if (expected_pattern[i] == 'd') {
   1.861 +      ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
   1.862 +      numbers.push_back(result[i] - '0');
   1.863 +    } else {
   1.864 +      EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
   1.865 +                                                << result;
   1.866 +    }
   1.867 +  }
   1.868 +
   1.869 +  // Makes sure the result contains the right numbers.
   1.870 +  std::sort(numbers.begin(), numbers.end());
   1.871 +  std::sort(a, a + kSize);
   1.872 +  EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
   1.873 +}
   1.874 +
   1.875 +#endif  // GTEST_HAS_HASH_SET_
   1.876 +
   1.877 +TEST(PrintStlContainerTest, List) {
   1.878 +  const string a[] = {
   1.879 +    "hello",
   1.880 +    "world"
   1.881 +  };
   1.882 +  const list<string> strings(a, a + 2);
   1.883 +  EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
   1.884 +}
   1.885 +
   1.886 +TEST(PrintStlContainerTest, Map) {
   1.887 +  map<int, bool> map1;
   1.888 +  map1[1] = true;
   1.889 +  map1[5] = false;
   1.890 +  map1[3] = true;
   1.891 +  EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
   1.892 +}
   1.893 +
   1.894 +TEST(PrintStlContainerTest, MultiMap) {
   1.895 +  multimap<bool, int> map1;
   1.896 +  // The make_pair template function would deduce the type as
   1.897 +  // pair<bool, int> here, and since the key part in a multimap has to
   1.898 +  // be constant, without a templated ctor in the pair class (as in
   1.899 +  // libCstd on Solaris), make_pair call would fail to compile as no
   1.900 +  // implicit conversion is found.  Thus explicit typename is used
   1.901 +  // here instead.
   1.902 +  map1.insert(pair<const bool, int>(true, 0));
   1.903 +  map1.insert(pair<const bool, int>(true, 1));
   1.904 +  map1.insert(pair<const bool, int>(false, 2));
   1.905 +  EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
   1.906 +}
   1.907 +
   1.908 +TEST(PrintStlContainerTest, Set) {
   1.909 +  const unsigned int a[] = { 3, 0, 5 };
   1.910 +  set<unsigned int> set1(a, a + 3);
   1.911 +  EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
   1.912 +}
   1.913 +
   1.914 +TEST(PrintStlContainerTest, MultiSet) {
   1.915 +  const int a[] = { 1, 1, 2, 5, 1 };
   1.916 +  multiset<int> set1(a, a + 5);
   1.917 +  EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
   1.918 +}
   1.919 +
   1.920 +TEST(PrintStlContainerTest, Pair) {
   1.921 +  pair<const bool, int> p(true, 5);
   1.922 +  EXPECT_EQ("(true, 5)", Print(p));
   1.923 +}
   1.924 +
   1.925 +TEST(PrintStlContainerTest, Vector) {
   1.926 +  vector<int> v;
   1.927 +  v.push_back(1);
   1.928 +  v.push_back(2);
   1.929 +  EXPECT_EQ("{ 1, 2 }", Print(v));
   1.930 +}
   1.931 +
   1.932 +TEST(PrintStlContainerTest, LongSequence) {
   1.933 +  const int a[100] = { 1, 2, 3 };
   1.934 +  const vector<int> v(a, a + 100);
   1.935 +  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
   1.936 +            "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
   1.937 +}
   1.938 +
   1.939 +TEST(PrintStlContainerTest, NestedContainer) {
   1.940 +  const int a1[] = { 1, 2 };
   1.941 +  const int a2[] = { 3, 4, 5 };
   1.942 +  const list<int> l1(a1, a1 + 2);
   1.943 +  const list<int> l2(a2, a2 + 3);
   1.944 +
   1.945 +  vector<list<int> > v;
   1.946 +  v.push_back(l1);
   1.947 +  v.push_back(l2);
   1.948 +  EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
   1.949 +}
   1.950 +
   1.951 +TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
   1.952 +  const int a[3] = { 1, 2, 3 };
   1.953 +  NativeArray<int> b(a, 3, kReference);
   1.954 +  EXPECT_EQ("{ 1, 2, 3 }", Print(b));
   1.955 +}
   1.956 +
   1.957 +TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
   1.958 +  const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
   1.959 +  NativeArray<int[3]> b(a, 2, kReference);
   1.960 +  EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
   1.961 +}
   1.962 +
   1.963 +// Tests that a class named iterator isn't treated as a container.
   1.964 +
   1.965 +struct iterator {
   1.966 +  char x;
   1.967 +};
   1.968 +
   1.969 +TEST(PrintStlContainerTest, Iterator) {
   1.970 +  iterator it = {};
   1.971 +  EXPECT_EQ("1-byte object <00>", Print(it));
   1.972 +}
   1.973 +
   1.974 +// Tests that a class named const_iterator isn't treated as a container.
   1.975 +
   1.976 +struct const_iterator {
   1.977 +  char x;
   1.978 +};
   1.979 +
   1.980 +TEST(PrintStlContainerTest, ConstIterator) {
   1.981 +  const_iterator it = {};
   1.982 +  EXPECT_EQ("1-byte object <00>", Print(it));
   1.983 +}
   1.984 +
   1.985 +#if GTEST_HAS_TR1_TUPLE
   1.986 +// Tests printing tuples.
   1.987 +
   1.988 +// Tuples of various arities.
   1.989 +TEST(PrintTupleTest, VariousSizes) {
   1.990 +  tuple<> t0;
   1.991 +  EXPECT_EQ("()", Print(t0));
   1.992 +
   1.993 +  tuple<int> t1(5);
   1.994 +  EXPECT_EQ("(5)", Print(t1));
   1.995 +
   1.996 +  tuple<char, bool> t2('a', true);
   1.997 +  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
   1.998 +
   1.999 +  tuple<bool, int, int> t3(false, 2, 3);
  1.1000 +  EXPECT_EQ("(false, 2, 3)", Print(t3));
  1.1001 +
  1.1002 +  tuple<bool, int, int, int> t4(false, 2, 3, 4);
  1.1003 +  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
  1.1004 +
  1.1005 +  tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
  1.1006 +  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
  1.1007 +
  1.1008 +  tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
  1.1009 +  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
  1.1010 +
  1.1011 +  tuple<bool, int, int, int, bool, int, int> t7(false, 2, 3, 4, true, 6, 7);
  1.1012 +  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
  1.1013 +
  1.1014 +  tuple<bool, int, int, int, bool, int, int, bool> t8(
  1.1015 +      false, 2, 3, 4, true, 6, 7, true);
  1.1016 +  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
  1.1017 +
  1.1018 +  tuple<bool, int, int, int, bool, int, int, bool, int> t9(
  1.1019 +      false, 2, 3, 4, true, 6, 7, true, 9);
  1.1020 +  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
  1.1021 +
  1.1022 +  const char* const str = "8";
  1.1023 +  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
  1.1024 +  // an explicit type cast of NULL to be used.
  1.1025 +  tuple<bool, char, short, testing::internal::Int32,  // NOLINT
  1.1026 +      testing::internal::Int64, float, double, const char*, void*, string>
  1.1027 +      t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
  1.1028 +          ImplicitCast_<void*>(NULL), "10");
  1.1029 +  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
  1.1030 +            " pointing to \"8\", NULL, \"10\")",
  1.1031 +            Print(t10));
  1.1032 +}
  1.1033 +
  1.1034 +// Nested tuples.
  1.1035 +TEST(PrintTupleTest, NestedTuple) {
  1.1036 +  tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a');
  1.1037 +  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
  1.1038 +}
  1.1039 +
  1.1040 +#endif  // GTEST_HAS_TR1_TUPLE
  1.1041 +
  1.1042 +// Tests printing user-defined unprintable types.
  1.1043 +
  1.1044 +// Unprintable types in the global namespace.
  1.1045 +TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
  1.1046 +  EXPECT_EQ("1-byte object <00>",
  1.1047 +            Print(UnprintableTemplateInGlobal<char>()));
  1.1048 +}
  1.1049 +
  1.1050 +// Unprintable types in a user namespace.
  1.1051 +TEST(PrintUnprintableTypeTest, InUserNamespace) {
  1.1052 +  EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
  1.1053 +            Print(::foo::UnprintableInFoo()));
  1.1054 +}
  1.1055 +
  1.1056 +// Unprintable types are that too big to be printed completely.
  1.1057 +
  1.1058 +struct Big {
  1.1059 +  Big() { memset(array, 0, sizeof(array)); }
  1.1060 +  char array[257];
  1.1061 +};
  1.1062 +
  1.1063 +TEST(PrintUnpritableTypeTest, BigObject) {
  1.1064 +  EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
  1.1065 +            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
  1.1066 +            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
  1.1067 +            "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
  1.1068 +            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
  1.1069 +            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
  1.1070 +            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
  1.1071 +            Print(Big()));
  1.1072 +}
  1.1073 +
  1.1074 +// Tests printing user-defined streamable types.
  1.1075 +
  1.1076 +// Streamable types in the global namespace.
  1.1077 +TEST(PrintStreamableTypeTest, InGlobalNamespace) {
  1.1078 +  StreamableInGlobal x;
  1.1079 +  EXPECT_EQ("StreamableInGlobal", Print(x));
  1.1080 +  EXPECT_EQ("StreamableInGlobal*", Print(&x));
  1.1081 +}
  1.1082 +
  1.1083 +// Printable template types in a user namespace.
  1.1084 +TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
  1.1085 +  EXPECT_EQ("StreamableTemplateInFoo: 0",
  1.1086 +            Print(::foo::StreamableTemplateInFoo<int>()));
  1.1087 +}
  1.1088 +
  1.1089 +// Tests printing user-defined types that have a PrintTo() function.
  1.1090 +TEST(PrintPrintableTypeTest, InUserNamespace) {
  1.1091 +  EXPECT_EQ("PrintableViaPrintTo: 0",
  1.1092 +            Print(::foo::PrintableViaPrintTo()));
  1.1093 +}
  1.1094 +
  1.1095 +// Tests printing a pointer to a user-defined type that has a <<
  1.1096 +// operator for its pointer.
  1.1097 +TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
  1.1098 +  ::foo::PointerPrintable x;
  1.1099 +  EXPECT_EQ("PointerPrintable*", Print(&x));
  1.1100 +}
  1.1101 +
  1.1102 +// Tests printing user-defined class template that have a PrintTo() function.
  1.1103 +TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
  1.1104 +  EXPECT_EQ("PrintableViaPrintToTemplate: 5",
  1.1105 +            Print(::foo::PrintableViaPrintToTemplate<int>(5)));
  1.1106 +}
  1.1107 +
  1.1108 +#if GTEST_HAS_PROTOBUF_
  1.1109 +
  1.1110 +// Tests printing a protocol message.
  1.1111 +TEST(PrintProtocolMessageTest, PrintsShortDebugString) {
  1.1112 +  testing::internal::TestMessage msg;
  1.1113 +  msg.set_member("yes");
  1.1114 +  EXPECT_EQ("<member:\"yes\">", Print(msg));
  1.1115 +}
  1.1116 +
  1.1117 +// Tests printing a short proto2 message.
  1.1118 +TEST(PrintProto2MessageTest, PrintsShortDebugStringWhenItIsShort) {
  1.1119 +  testing::internal::FooMessage msg;
  1.1120 +  msg.set_int_field(2);
  1.1121 +  msg.set_string_field("hello");
  1.1122 +  EXPECT_PRED2(RE::FullMatch, Print(msg),
  1.1123 +               "<int_field:\\s*2\\s+string_field:\\s*\"hello\">");
  1.1124 +}
  1.1125 +
  1.1126 +// Tests printing a long proto2 message.
  1.1127 +TEST(PrintProto2MessageTest, PrintsDebugStringWhenItIsLong) {
  1.1128 +  testing::internal::FooMessage msg;
  1.1129 +  msg.set_int_field(2);
  1.1130 +  msg.set_string_field("hello");
  1.1131 +  msg.add_names("peter");
  1.1132 +  msg.add_names("paul");
  1.1133 +  msg.add_names("mary");
  1.1134 +  EXPECT_PRED2(RE::FullMatch, Print(msg),
  1.1135 +               "<\n"
  1.1136 +               "int_field:\\s*2\n"
  1.1137 +               "string_field:\\s*\"hello\"\n"
  1.1138 +               "names:\\s*\"peter\"\n"
  1.1139 +               "names:\\s*\"paul\"\n"
  1.1140 +               "names:\\s*\"mary\"\n"
  1.1141 +               ">");
  1.1142 +}
  1.1143 +
  1.1144 +#endif  // GTEST_HAS_PROTOBUF_
  1.1145 +
  1.1146 +// Tests that the universal printer prints both the address and the
  1.1147 +// value of a reference.
  1.1148 +TEST(PrintReferenceTest, PrintsAddressAndValue) {
  1.1149 +  int n = 5;
  1.1150 +  EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
  1.1151 +
  1.1152 +  int a[2][3] = {
  1.1153 +    { 0, 1, 2 },
  1.1154 +    { 3, 4, 5 }
  1.1155 +  };
  1.1156 +  EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
  1.1157 +            PrintByRef(a));
  1.1158 +
  1.1159 +  const ::foo::UnprintableInFoo x;
  1.1160 +  EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
  1.1161 +            "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
  1.1162 +            PrintByRef(x));
  1.1163 +}
  1.1164 +
  1.1165 +// Tests that the universal printer prints a function pointer passed by
  1.1166 +// reference.
  1.1167 +TEST(PrintReferenceTest, HandlesFunctionPointer) {
  1.1168 +  void (*fp)(int n) = &MyFunction;
  1.1169 +  const string fp_pointer_string =
  1.1170 +      PrintPointer(reinterpret_cast<const void*>(&fp));
  1.1171 +  // We cannot directly cast &MyFunction to const void* because the
  1.1172 +  // standard disallows casting between pointers to functions and
  1.1173 +  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
  1.1174 +  // this limitation.
  1.1175 +  const string fp_string = PrintPointer(reinterpret_cast<const void*>(
  1.1176 +      reinterpret_cast<internal::BiggestInt>(fp)));
  1.1177 +  EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
  1.1178 +            PrintByRef(fp));
  1.1179 +}
  1.1180 +
  1.1181 +// Tests that the universal printer prints a member function pointer
  1.1182 +// passed by reference.
  1.1183 +TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
  1.1184 +  int (Foo::*p)(char ch) = &Foo::MyMethod;
  1.1185 +  EXPECT_TRUE(HasPrefix(
  1.1186 +      PrintByRef(p),
  1.1187 +      "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
  1.1188 +          Print(sizeof(p)) + "-byte object "));
  1.1189 +
  1.1190 +  char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
  1.1191 +  EXPECT_TRUE(HasPrefix(
  1.1192 +      PrintByRef(p2),
  1.1193 +      "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
  1.1194 +          Print(sizeof(p2)) + "-byte object "));
  1.1195 +}
  1.1196 +
  1.1197 +// Tests that the universal printer prints a member variable pointer
  1.1198 +// passed by reference.
  1.1199 +TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
  1.1200 +  int (Foo::*p) = &Foo::value;  // NOLINT
  1.1201 +  EXPECT_TRUE(HasPrefix(
  1.1202 +      PrintByRef(p),
  1.1203 +      "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
  1.1204 +}
  1.1205 +
  1.1206 +// Tests that FormatForComparisonFailureMessage(), which is used to print
  1.1207 +// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
  1.1208 +// fails, formats the operand in the desired way.
  1.1209 +
  1.1210 +// scalar
  1.1211 +TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
  1.1212 +  EXPECT_STREQ("123",
  1.1213 +               FormatForComparisonFailureMessage(123, 124).c_str());
  1.1214 +}
  1.1215 +
  1.1216 +// non-char pointer
  1.1217 +TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
  1.1218 +  int n = 0;
  1.1219 +  EXPECT_EQ(PrintPointer(&n),
  1.1220 +            FormatForComparisonFailureMessage(&n, &n).c_str());
  1.1221 +}
  1.1222 +
  1.1223 +// non-char array
  1.1224 +TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
  1.1225 +  // In expression 'array == x', 'array' is compared by pointer.
  1.1226 +  // Therefore we want to print an array operand as a pointer.
  1.1227 +  int n[] = { 1, 2, 3 };
  1.1228 +  EXPECT_EQ(PrintPointer(n),
  1.1229 +            FormatForComparisonFailureMessage(n, n).c_str());
  1.1230 +}
  1.1231 +
  1.1232 +// Tests formatting a char pointer when it's compared with another pointer.
  1.1233 +// In this case we want to print it as a raw pointer, as the comparision is by
  1.1234 +// pointer.
  1.1235 +
  1.1236 +// char pointer vs pointer
  1.1237 +TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
  1.1238 +  // In expression 'p == x', where 'p' and 'x' are (const or not) char
  1.1239 +  // pointers, the operands are compared by pointer.  Therefore we
  1.1240 +  // want to print 'p' as a pointer instead of a C string (we don't
  1.1241 +  // even know if it's supposed to point to a valid C string).
  1.1242 +
  1.1243 +  // const char*
  1.1244 +  const char* s = "hello";
  1.1245 +  EXPECT_EQ(PrintPointer(s),
  1.1246 +            FormatForComparisonFailureMessage(s, s).c_str());
  1.1247 +
  1.1248 +  // char*
  1.1249 +  char ch = 'a';
  1.1250 +  EXPECT_EQ(PrintPointer(&ch),
  1.1251 +            FormatForComparisonFailureMessage(&ch, &ch).c_str());
  1.1252 +}
  1.1253 +
  1.1254 +// wchar_t pointer vs pointer
  1.1255 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
  1.1256 +  // In expression 'p == x', where 'p' and 'x' are (const or not) char
  1.1257 +  // pointers, the operands are compared by pointer.  Therefore we
  1.1258 +  // want to print 'p' as a pointer instead of a wide C string (we don't
  1.1259 +  // even know if it's supposed to point to a valid wide C string).
  1.1260 +
  1.1261 +  // const wchar_t*
  1.1262 +  const wchar_t* s = L"hello";
  1.1263 +  EXPECT_EQ(PrintPointer(s),
  1.1264 +            FormatForComparisonFailureMessage(s, s).c_str());
  1.1265 +
  1.1266 +  // wchar_t*
  1.1267 +  wchar_t ch = L'a';
  1.1268 +  EXPECT_EQ(PrintPointer(&ch),
  1.1269 +            FormatForComparisonFailureMessage(&ch, &ch).c_str());
  1.1270 +}
  1.1271 +
  1.1272 +// Tests formatting a char pointer when it's compared to a string object.
  1.1273 +// In this case we want to print the char pointer as a C string.
  1.1274 +
  1.1275 +#if GTEST_HAS_GLOBAL_STRING
  1.1276 +// char pointer vs ::string
  1.1277 +TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
  1.1278 +  const char* s = "hello \"world";
  1.1279 +  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
  1.1280 +               FormatForComparisonFailureMessage(s, ::string()).c_str());
  1.1281 +
  1.1282 +  // char*
  1.1283 +  char str[] = "hi\1";
  1.1284 +  char* p = str;
  1.1285 +  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
  1.1286 +               FormatForComparisonFailureMessage(p, ::string()).c_str());
  1.1287 +}
  1.1288 +#endif
  1.1289 +
  1.1290 +// char pointer vs std::string
  1.1291 +TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
  1.1292 +  const char* s = "hello \"world";
  1.1293 +  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
  1.1294 +               FormatForComparisonFailureMessage(s, ::std::string()).c_str());
  1.1295 +
  1.1296 +  // char*
  1.1297 +  char str[] = "hi\1";
  1.1298 +  char* p = str;
  1.1299 +  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
  1.1300 +               FormatForComparisonFailureMessage(p, ::std::string()).c_str());
  1.1301 +}
  1.1302 +
  1.1303 +#if GTEST_HAS_GLOBAL_WSTRING
  1.1304 +// wchar_t pointer vs ::wstring
  1.1305 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
  1.1306 +  const wchar_t* s = L"hi \"world";
  1.1307 +  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
  1.1308 +               FormatForComparisonFailureMessage(s, ::wstring()).c_str());
  1.1309 +
  1.1310 +  // wchar_t*
  1.1311 +  wchar_t str[] = L"hi\1";
  1.1312 +  wchar_t* p = str;
  1.1313 +  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
  1.1314 +               FormatForComparisonFailureMessage(p, ::wstring()).c_str());
  1.1315 +}
  1.1316 +#endif
  1.1317 +
  1.1318 +#if GTEST_HAS_STD_WSTRING
  1.1319 +// wchar_t pointer vs std::wstring
  1.1320 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
  1.1321 +  const wchar_t* s = L"hi \"world";
  1.1322 +  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
  1.1323 +               FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
  1.1324 +
  1.1325 +  // wchar_t*
  1.1326 +  wchar_t str[] = L"hi\1";
  1.1327 +  wchar_t* p = str;
  1.1328 +  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
  1.1329 +               FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
  1.1330 +}
  1.1331 +#endif
  1.1332 +
  1.1333 +// Tests formatting a char array when it's compared with a pointer or array.
  1.1334 +// In this case we want to print the array as a row pointer, as the comparison
  1.1335 +// is by pointer.
  1.1336 +
  1.1337 +// char array vs pointer
  1.1338 +TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
  1.1339 +  char str[] = "hi \"world\"";
  1.1340 +  char* p = NULL;
  1.1341 +  EXPECT_EQ(PrintPointer(str),
  1.1342 +            FormatForComparisonFailureMessage(str, p).c_str());
  1.1343 +}
  1.1344 +
  1.1345 +// char array vs char array
  1.1346 +TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
  1.1347 +  const char str[] = "hi \"world\"";
  1.1348 +  EXPECT_EQ(PrintPointer(str),
  1.1349 +            FormatForComparisonFailureMessage(str, str).c_str());
  1.1350 +}
  1.1351 +
  1.1352 +// wchar_t array vs pointer
  1.1353 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
  1.1354 +  wchar_t str[] = L"hi \"world\"";
  1.1355 +  wchar_t* p = NULL;
  1.1356 +  EXPECT_EQ(PrintPointer(str),
  1.1357 +            FormatForComparisonFailureMessage(str, p).c_str());
  1.1358 +}
  1.1359 +
  1.1360 +// wchar_t array vs wchar_t array
  1.1361 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
  1.1362 +  const wchar_t str[] = L"hi \"world\"";
  1.1363 +  EXPECT_EQ(PrintPointer(str),
  1.1364 +            FormatForComparisonFailureMessage(str, str).c_str());
  1.1365 +}
  1.1366 +
  1.1367 +// Tests formatting a char array when it's compared with a string object.
  1.1368 +// In this case we want to print the array as a C string.
  1.1369 +
  1.1370 +#if GTEST_HAS_GLOBAL_STRING
  1.1371 +// char array vs string
  1.1372 +TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
  1.1373 +  const char str[] = "hi \"w\0rld\"";
  1.1374 +  EXPECT_STREQ("\"hi \\\"w\"",  // The content should be escaped.
  1.1375 +                                // Embedded NUL terminates the string.
  1.1376 +               FormatForComparisonFailureMessage(str, ::string()).c_str());
  1.1377 +}
  1.1378 +#endif
  1.1379 +
  1.1380 +// char array vs std::string
  1.1381 +TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
  1.1382 +  const char str[] = "hi \"world\"";
  1.1383 +  EXPECT_STREQ("\"hi \\\"world\\\"\"",  // The content should be escaped.
  1.1384 +               FormatForComparisonFailureMessage(str, ::std::string()).c_str());
  1.1385 +}
  1.1386 +
  1.1387 +#if GTEST_HAS_GLOBAL_WSTRING
  1.1388 +// wchar_t array vs wstring
  1.1389 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
  1.1390 +  const wchar_t str[] = L"hi \"world\"";
  1.1391 +  EXPECT_STREQ("L\"hi \\\"world\\\"\"",  // The content should be escaped.
  1.1392 +               FormatForComparisonFailureMessage(str, ::wstring()).c_str());
  1.1393 +}
  1.1394 +#endif
  1.1395 +
  1.1396 +#if GTEST_HAS_STD_WSTRING
  1.1397 +// wchar_t array vs std::wstring
  1.1398 +TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
  1.1399 +  const wchar_t str[] = L"hi \"w\0rld\"";
  1.1400 +  EXPECT_STREQ(
  1.1401 +      "L\"hi \\\"w\"",  // The content should be escaped.
  1.1402 +                        // Embedded NUL terminates the string.
  1.1403 +      FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
  1.1404 +}
  1.1405 +#endif
  1.1406 +
  1.1407 +// Useful for testing PrintToString().  We cannot use EXPECT_EQ()
  1.1408 +// there as its implementation uses PrintToString().  The caller must
  1.1409 +// ensure that 'value' has no side effect.
  1.1410 +#define EXPECT_PRINT_TO_STRING_(value, expected_string)         \
  1.1411 +  EXPECT_TRUE(PrintToString(value) == (expected_string))        \
  1.1412 +      << " where " #value " prints as " << (PrintToString(value))
  1.1413 +
  1.1414 +TEST(PrintToStringTest, WorksForScalar) {
  1.1415 +  EXPECT_PRINT_TO_STRING_(123, "123");
  1.1416 +}
  1.1417 +
  1.1418 +TEST(PrintToStringTest, WorksForPointerToConstChar) {
  1.1419 +  const char* p = "hello";
  1.1420 +  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
  1.1421 +}
  1.1422 +
  1.1423 +TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
  1.1424 +  char s[] = "hello";
  1.1425 +  char* p = s;
  1.1426 +  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
  1.1427 +}
  1.1428 +
  1.1429 +TEST(PrintToStringTest, EscapesForPointerToConstChar) {
  1.1430 +  const char* p = "hello\n";
  1.1431 +  EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
  1.1432 +}
  1.1433 +
  1.1434 +TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
  1.1435 +  char s[] = "hello\1";
  1.1436 +  char* p = s;
  1.1437 +  EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
  1.1438 +}
  1.1439 +
  1.1440 +TEST(PrintToStringTest, WorksForArray) {
  1.1441 +  int n[3] = { 1, 2, 3 };
  1.1442 +  EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
  1.1443 +}
  1.1444 +
  1.1445 +TEST(PrintToStringTest, WorksForCharArray) {
  1.1446 +  char s[] = "hello";
  1.1447 +  EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
  1.1448 +}
  1.1449 +
  1.1450 +TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
  1.1451 +  const char str_with_nul[] = "hello\0 world";
  1.1452 +  EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
  1.1453 +
  1.1454 +  char mutable_str_with_nul[] = "hello\0 world";
  1.1455 +  EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
  1.1456 +}
  1.1457 +
  1.1458 +#undef EXPECT_PRINT_TO_STRING_
  1.1459 +
  1.1460 +TEST(UniversalTersePrintTest, WorksForNonReference) {
  1.1461 +  ::std::stringstream ss;
  1.1462 +  UniversalTersePrint(123, &ss);
  1.1463 +  EXPECT_EQ("123", ss.str());
  1.1464 +}
  1.1465 +
  1.1466 +TEST(UniversalTersePrintTest, WorksForReference) {
  1.1467 +  const int& n = 123;
  1.1468 +  ::std::stringstream ss;
  1.1469 +  UniversalTersePrint(n, &ss);
  1.1470 +  EXPECT_EQ("123", ss.str());
  1.1471 +}
  1.1472 +
  1.1473 +TEST(UniversalTersePrintTest, WorksForCString) {
  1.1474 +  const char* s1 = "abc";
  1.1475 +  ::std::stringstream ss1;
  1.1476 +  UniversalTersePrint(s1, &ss1);
  1.1477 +  EXPECT_EQ("\"abc\"", ss1.str());
  1.1478 +
  1.1479 +  char* s2 = const_cast<char*>(s1);
  1.1480 +  ::std::stringstream ss2;
  1.1481 +  UniversalTersePrint(s2, &ss2);
  1.1482 +  EXPECT_EQ("\"abc\"", ss2.str());
  1.1483 +
  1.1484 +  const char* s3 = NULL;
  1.1485 +  ::std::stringstream ss3;
  1.1486 +  UniversalTersePrint(s3, &ss3);
  1.1487 +  EXPECT_EQ("NULL", ss3.str());
  1.1488 +}
  1.1489 +
  1.1490 +TEST(UniversalPrintTest, WorksForNonReference) {
  1.1491 +  ::std::stringstream ss;
  1.1492 +  UniversalPrint(123, &ss);
  1.1493 +  EXPECT_EQ("123", ss.str());
  1.1494 +}
  1.1495 +
  1.1496 +TEST(UniversalPrintTest, WorksForReference) {
  1.1497 +  const int& n = 123;
  1.1498 +  ::std::stringstream ss;
  1.1499 +  UniversalPrint(n, &ss);
  1.1500 +  EXPECT_EQ("123", ss.str());
  1.1501 +}
  1.1502 +
  1.1503 +TEST(UniversalPrintTest, WorksForCString) {
  1.1504 +  const char* s1 = "abc";
  1.1505 +  ::std::stringstream ss1;
  1.1506 +  UniversalPrint(s1, &ss1);
  1.1507 +  EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
  1.1508 +
  1.1509 +  char* s2 = const_cast<char*>(s1);
  1.1510 +  ::std::stringstream ss2;
  1.1511 +  UniversalPrint(s2, &ss2);
  1.1512 +  EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
  1.1513 +
  1.1514 +  const char* s3 = NULL;
  1.1515 +  ::std::stringstream ss3;
  1.1516 +  UniversalPrint(s3, &ss3);
  1.1517 +  EXPECT_EQ("NULL", ss3.str());
  1.1518 +}
  1.1519 +
  1.1520 +TEST(UniversalPrintTest, WorksForCharArray) {
  1.1521 +  const char str[] = "\"Line\0 1\"\nLine 2";
  1.1522 +  ::std::stringstream ss1;
  1.1523 +  UniversalPrint(str, &ss1);
  1.1524 +  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
  1.1525 +
  1.1526 +  const char mutable_str[] = "\"Line\0 1\"\nLine 2";
  1.1527 +  ::std::stringstream ss2;
  1.1528 +  UniversalPrint(mutable_str, &ss2);
  1.1529 +  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
  1.1530 +}
  1.1531 +
  1.1532 +#if GTEST_HAS_TR1_TUPLE
  1.1533 +
  1.1534 +TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsEmptyTuple) {
  1.1535 +  Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple());
  1.1536 +  EXPECT_EQ(0u, result.size());
  1.1537 +}
  1.1538 +
  1.1539 +TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsOneTuple) {
  1.1540 +  Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1));
  1.1541 +  ASSERT_EQ(1u, result.size());
  1.1542 +  EXPECT_EQ("1", result[0]);
  1.1543 +}
  1.1544 +
  1.1545 +TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTwoTuple) {
  1.1546 +  Strings result = UniversalTersePrintTupleFieldsToStrings(make_tuple(1, 'a'));
  1.1547 +  ASSERT_EQ(2u, result.size());
  1.1548 +  EXPECT_EQ("1", result[0]);
  1.1549 +  EXPECT_EQ("'a' (97, 0x61)", result[1]);
  1.1550 +}
  1.1551 +
  1.1552 +TEST(UniversalTersePrintTupleFieldsToStringsTest, PrintsTersely) {
  1.1553 +  const int n = 1;
  1.1554 +  Strings result = UniversalTersePrintTupleFieldsToStrings(
  1.1555 +      tuple<const int&, const char*>(n, "a"));
  1.1556 +  ASSERT_EQ(2u, result.size());
  1.1557 +  EXPECT_EQ("1", result[0]);
  1.1558 +  EXPECT_EQ("\"a\"", result[1]);
  1.1559 +}
  1.1560 +
  1.1561 +#endif  // GTEST_HAS_TR1_TUPLE
  1.1562 +
  1.1563 +}  // namespace gtest_printers_test
  1.1564 +}  // namespace testing

mercurial