mfbt/BloomFilter.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/mfbt/BloomFilter.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,234 @@
     1.4 +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* vim: set ts=8 sts=2 et sw=2 tw=80: */
     1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +/*
    1.11 + * A counting Bloom filter implementation.  This allows consumers to
    1.12 + * do fast probabilistic "is item X in set Y?" testing which will
    1.13 + * never answer "no" when the correct answer is "yes" (but might
    1.14 + * incorrectly answer "yes" when the correct answer is "no").
    1.15 + */
    1.16 +
    1.17 +#ifndef mozilla_BloomFilter_h
    1.18 +#define mozilla_BloomFilter_h
    1.19 +
    1.20 +#include "mozilla/Assertions.h"
    1.21 +#include "mozilla/Likely.h"
    1.22 +
    1.23 +#include <stdint.h>
    1.24 +#include <string.h>
    1.25 +
    1.26 +namespace mozilla {
    1.27 +
    1.28 +/*
    1.29 + * This class implements a counting Bloom filter as described at
    1.30 + * <http://en.wikipedia.org/wiki/Bloom_filter#Counting_filters>, with
    1.31 + * 8-bit counters.  This allows quick probabilistic answers to the
    1.32 + * question "is object X in set Y?" where the contents of Y might not
    1.33 + * be time-invariant.  The probabilistic nature of the test means that
    1.34 + * sometimes the answer will be "yes" when it should be "no".  If the
    1.35 + * answer is "no", then X is guaranteed not to be in Y.
    1.36 + *
    1.37 + * The filter is parametrized on KeySize, which is the size of the key
    1.38 + * generated by each of hash functions used by the filter, in bits,
    1.39 + * and the type of object T being added and removed.  T must implement
    1.40 + * a |uint32_t hash() const| method which returns a uint32_t hash key
    1.41 + * that will be used to generate the two separate hash functions for
    1.42 + * the Bloom filter.  This hash key MUST be well-distributed for good
    1.43 + * results!  KeySize is not allowed to be larger than 16.
    1.44 + *
    1.45 + * The filter uses exactly 2**KeySize bytes of memory.  From now on we
    1.46 + * will refer to the memory used by the filter as M.
    1.47 + *
    1.48 + * The expected rate of incorrect "yes" answers depends on M and on
    1.49 + * the number N of objects in set Y.  As long as N is small compared
    1.50 + * to M, the rate of such answers is expected to be approximately
    1.51 + * 4*(N/M)**2 for this filter.  In practice, if Y has a few hundred
    1.52 + * elements then using a KeySize of 12 gives a reasonably low
    1.53 + * incorrect answer rate.  A KeySize of 12 has the additional benefit
    1.54 + * of using exactly one page for the filter in typical hardware
    1.55 + * configurations.
    1.56 + */
    1.57 +
    1.58 +template<unsigned KeySize, class T>
    1.59 +class BloomFilter
    1.60 +{
    1.61 +    /*
    1.62 +     * A counting Bloom filter with 8-bit counters.  For now we assume
    1.63 +     * that having two hash functions is enough, but we may revisit that
    1.64 +     * decision later.
    1.65 +     *
    1.66 +     * The filter uses an array with 2**KeySize entries.
    1.67 +     *
    1.68 +     * Assuming a well-distributed hash function, a Bloom filter with
    1.69 +     * array size M containing N elements and
    1.70 +     * using k hash function has expected false positive rate exactly
    1.71 +     *
    1.72 +     * $  (1 - (1 - 1/M)^{kN})^k  $
    1.73 +     *
    1.74 +     * because each array slot has a
    1.75 +     *
    1.76 +     * $  (1 - 1/M)^{kN}  $
    1.77 +     *
    1.78 +     * chance of being 0, and the expected false positive rate is the
    1.79 +     * probability that all of the k hash functions will hit a nonzero
    1.80 +     * slot.
    1.81 +     *
    1.82 +     * For reasonable assumptions (M large, kN large, which should both
    1.83 +     * hold if we're worried about false positives) about M and kN this
    1.84 +     * becomes approximately
    1.85 +     *
    1.86 +     * $$  (1 - \exp(-kN/M))^k   $$
    1.87 +     *
    1.88 +     * For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
    1.89 +     * or in other words
    1.90 +     *
    1.91 +     * $$    N/M = -0.5 * \ln(1 - \sqrt(r))   $$
    1.92 +     *
    1.93 +     * where r is the false positive rate.  This can be used to compute
    1.94 +     * the desired KeySize for a given load N and false positive rate r.
    1.95 +     *
    1.96 +     * If N/M is assumed small, then the false positive rate can
    1.97 +     * further be approximated as 4*N^2/M^2.  So increasing KeySize by
    1.98 +     * 1, which doubles M, reduces the false positive rate by about a
    1.99 +     * factor of 4, and a false positive rate of 1% corresponds to
   1.100 +     * about M/N == 20.
   1.101 +     *
   1.102 +     * What this means in practice is that for a few hundred keys using a
   1.103 +     * KeySize of 12 gives false positive rates on the order of 0.25-4%.
   1.104 +     *
   1.105 +     * Similarly, using a KeySize of 10 would lead to a 4% false
   1.106 +     * positive rate for N == 100 and to quite bad false positive
   1.107 +     * rates for larger N.
   1.108 +     */
   1.109 +  public:
   1.110 +    BloomFilter() {
   1.111 +        static_assert(KeySize <= keyShift, "KeySize too big");
   1.112 +
   1.113 +        // Should we have a custom operator new using calloc instead and
   1.114 +        // require that we're allocated via the operator?
   1.115 +        clear();
   1.116 +    }
   1.117 +
   1.118 +    /*
   1.119 +     * Clear the filter.  This should be done before reusing it, because
   1.120 +     * just removing all items doesn't clear counters that hit the upper
   1.121 +     * bound.
   1.122 +     */
   1.123 +    void clear();
   1.124 +
   1.125 +    /*
   1.126 +     * Add an item to the filter.
   1.127 +     */
   1.128 +    void add(const T* t);
   1.129 +
   1.130 +    /*
   1.131 +     * Remove an item from the filter.
   1.132 +     */
   1.133 +    void remove(const T* t);
   1.134 +
   1.135 +    /*
   1.136 +     * Check whether the filter might contain an item.  This can
   1.137 +     * sometimes return true even if the item is not in the filter,
   1.138 +     * but will never return false for items that are actually in the
   1.139 +     * filter.
   1.140 +     */
   1.141 +    bool mightContain(const T* t) const;
   1.142 +
   1.143 +    /*
   1.144 +     * Methods for add/remove/contain when we already have a hash computed
   1.145 +     */
   1.146 +    void add(uint32_t hash);
   1.147 +    void remove(uint32_t hash);
   1.148 +    bool mightContain(uint32_t hash) const;
   1.149 +
   1.150 +  private:
   1.151 +    static const size_t arraySize = (1 << KeySize);
   1.152 +    static const uint32_t keyMask = (1 << KeySize) - 1;
   1.153 +    static const uint32_t keyShift = 16;
   1.154 +
   1.155 +    static uint32_t hash1(uint32_t hash) { return hash & keyMask; }
   1.156 +    static uint32_t hash2(uint32_t hash) { return (hash >> keyShift) & keyMask; }
   1.157 +
   1.158 +    uint8_t& firstSlot(uint32_t hash) { return counters[hash1(hash)]; }
   1.159 +    uint8_t& secondSlot(uint32_t hash) { return counters[hash2(hash)]; }
   1.160 +    const uint8_t& firstSlot(uint32_t hash) const { return counters[hash1(hash)]; }
   1.161 +    const uint8_t& secondSlot(uint32_t hash) const { return counters[hash2(hash)]; }
   1.162 +
   1.163 +    static bool full(const uint8_t& slot) { return slot == UINT8_MAX; }
   1.164 +
   1.165 +    uint8_t counters[arraySize];
   1.166 +};
   1.167 +
   1.168 +template<unsigned KeySize, class T>
   1.169 +inline void
   1.170 +BloomFilter<KeySize, T>::clear()
   1.171 +{
   1.172 +  memset(counters, 0, arraySize);
   1.173 +}
   1.174 +
   1.175 +template<unsigned KeySize, class T>
   1.176 +inline void
   1.177 +BloomFilter<KeySize, T>::add(uint32_t hash)
   1.178 +{
   1.179 +  uint8_t& slot1 = firstSlot(hash);
   1.180 +  if (MOZ_LIKELY(!full(slot1)))
   1.181 +    ++slot1;
   1.182 +
   1.183 +  uint8_t& slot2 = secondSlot(hash);
   1.184 +  if (MOZ_LIKELY(!full(slot2)))
   1.185 +    ++slot2;
   1.186 +}
   1.187 +
   1.188 +template<unsigned KeySize, class T>
   1.189 +MOZ_ALWAYS_INLINE void
   1.190 +BloomFilter<KeySize, T>::add(const T* t)
   1.191 +{
   1.192 +  uint32_t hash = t->hash();
   1.193 +  return add(hash);
   1.194 +}
   1.195 +
   1.196 +template<unsigned KeySize, class T>
   1.197 +inline void
   1.198 +BloomFilter<KeySize, T>::remove(uint32_t hash)
   1.199 +{
   1.200 +  // If the slots are full, we don't know whether we bumped them to be
   1.201 +  // there when we added or not, so just leave them full.
   1.202 +  uint8_t& slot1 = firstSlot(hash);
   1.203 +  if (MOZ_LIKELY(!full(slot1)))
   1.204 +    --slot1;
   1.205 +
   1.206 +  uint8_t& slot2 = secondSlot(hash);
   1.207 +  if (MOZ_LIKELY(!full(slot2)))
   1.208 +    --slot2;
   1.209 +}
   1.210 +
   1.211 +template<unsigned KeySize, class T>
   1.212 +MOZ_ALWAYS_INLINE void
   1.213 +BloomFilter<KeySize, T>::remove(const T* t)
   1.214 +{
   1.215 +  uint32_t hash = t->hash();
   1.216 +  remove(hash);
   1.217 +}
   1.218 +
   1.219 +template<unsigned KeySize, class T>
   1.220 +MOZ_ALWAYS_INLINE bool
   1.221 +BloomFilter<KeySize, T>::mightContain(uint32_t hash) const
   1.222 +{
   1.223 +  // Check that all the slots for this hash contain something
   1.224 +  return firstSlot(hash) && secondSlot(hash);
   1.225 +}
   1.226 +
   1.227 +template<unsigned KeySize, class T>
   1.228 +MOZ_ALWAYS_INLINE bool
   1.229 +BloomFilter<KeySize, T>::mightContain(const T* t) const
   1.230 +{
   1.231 +  uint32_t hash = t->hash();
   1.232 +  return mightContain(hash);
   1.233 +}
   1.234 +
   1.235 +} // namespace mozilla
   1.236 +
   1.237 +#endif /* mozilla_BloomFilter_h */

mercurial