mfbt/SHA1.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/mfbt/SHA1.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,327 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "mozilla/Assertions.h"
     1.9 +#include "mozilla/Endian.h"
    1.10 +#include "mozilla/SHA1.h"
    1.11 +
    1.12 +#include <string.h>
    1.13 +
    1.14 +using mozilla::NativeEndian;
    1.15 +using mozilla::SHA1Sum;
    1.16 +
    1.17 +static inline uint32_t
    1.18 +SHA_ROTL(uint32_t t, uint32_t n)
    1.19 +{
    1.20 +  MOZ_ASSERT(n < 32);
    1.21 +  return (t << n) | (t >> (32 - n));
    1.22 +}
    1.23 +
    1.24 +static void
    1.25 +shaCompress(volatile unsigned* X, const uint32_t* datain);
    1.26 +
    1.27 +#define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
    1.28 +#define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z))
    1.29 +#define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y))))
    1.30 +#define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z))
    1.31 +
    1.32 +#define SHA_MIX(n, a, b, c)    XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^XW(n), 1)
    1.33 +
    1.34 +SHA1Sum::SHA1Sum()
    1.35 +  : size(0), mDone(false)
    1.36 +{
    1.37 +  // Initialize H with constants from FIPS180-1.
    1.38 +  H[0] = 0x67452301L;
    1.39 +  H[1] = 0xefcdab89L;
    1.40 +  H[2] = 0x98badcfeL;
    1.41 +  H[3] = 0x10325476L;
    1.42 +  H[4] = 0xc3d2e1f0L;
    1.43 +}
    1.44 +
    1.45 +/*
    1.46 + * Explanation of H array and index values:
    1.47 + *
    1.48 + * The context's H array is actually the concatenation of two arrays
    1.49 + * defined by SHA1, the H array of state variables (5 elements),
    1.50 + * and the W array of intermediate values, of which there are 16 elements.
    1.51 + * The W array starts at H[5], that is W[0] is H[5].
    1.52 + * Although these values are defined as 32-bit values, we use 64-bit
    1.53 + * variables to hold them because the AMD64 stores 64 bit values in
    1.54 + * memory MUCH faster than it stores any smaller values.
    1.55 + *
    1.56 + * Rather than passing the context structure to shaCompress, we pass
    1.57 + * this combined array of H and W values.  We do not pass the address
    1.58 + * of the first element of this array, but rather pass the address of an
    1.59 + * element in the middle of the array, element X.  Presently X[0] is H[11].
    1.60 + * So we pass the address of H[11] as the address of array X to shaCompress.
    1.61 + * Then shaCompress accesses the members of the array using positive AND
    1.62 + * negative indexes.
    1.63 + *
    1.64 + * Pictorially: (each element is 8 bytes)
    1.65 + * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
    1.66 + * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
    1.67 + *
    1.68 + * The byte offset from X[0] to any member of H and W is always
    1.69 + * representable in a signed 8-bit value, which will be encoded
    1.70 + * as a single byte offset in the X86-64 instruction set.
    1.71 + * If we didn't pass the address of H[11], and instead passed the
    1.72 + * address of H[0], the offsets to elements H[16] and above would be
    1.73 + * greater than 127, not representable in a signed 8-bit value, and the
    1.74 + * x86-64 instruction set would encode every such offset as a 32-bit
    1.75 + * signed number in each instruction that accessed element H[16] or
    1.76 + * higher.  This results in much bigger and slower code.
    1.77 + */
    1.78 +#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
    1.79 +#define W2X  6 /* X[0] is W[6],  and W[0] is X[-6]  */
    1.80 +
    1.81 +/*
    1.82 + *  SHA: Add data to context.
    1.83 + */
    1.84 +void
    1.85 +SHA1Sum::update(const void* dataIn, uint32_t len)
    1.86 +{
    1.87 +  MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
    1.88 +
    1.89 +  const uint8_t* data = static_cast<const uint8_t*>(dataIn);
    1.90 +
    1.91 +  if (len == 0)
    1.92 +    return;
    1.93 +
    1.94 +  /* Accumulate the byte count. */
    1.95 +  unsigned int lenB = static_cast<unsigned int>(size) & 63U;
    1.96 +
    1.97 +  size += len;
    1.98 +
    1.99 +  /* Read the data into W and process blocks as they get full. */
   1.100 +  unsigned int togo;
   1.101 +  if (lenB > 0) {
   1.102 +    togo = 64U - lenB;
   1.103 +    if (len < togo)
   1.104 +      togo = len;
   1.105 +    memcpy(u.b + lenB, data, togo);
   1.106 +    len -= togo;
   1.107 +    data += togo;
   1.108 +    lenB = (lenB + togo) & 63U;
   1.109 +    if (!lenB)
   1.110 +      shaCompress(&H[H2X], u.w);
   1.111 +  }
   1.112 +
   1.113 +  while (len >= 64U) {
   1.114 +    len -= 64U;
   1.115 +    shaCompress(&H[H2X], reinterpret_cast<const uint32_t*>(data));
   1.116 +    data += 64U;
   1.117 +  }
   1.118 +
   1.119 +  if (len > 0)
   1.120 +    memcpy(u.b, data, len);
   1.121 +}
   1.122 +
   1.123 +
   1.124 +/*
   1.125 + *  SHA: Generate hash value
   1.126 + */
   1.127 +void
   1.128 +SHA1Sum::finish(SHA1Sum::Hash& hashOut)
   1.129 +{
   1.130 +  MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
   1.131 +
   1.132 +  uint64_t size2 = size;
   1.133 +  uint32_t lenB = uint32_t(size2) & 63;
   1.134 +
   1.135 +  static const uint8_t bulk_pad[64] =
   1.136 +    { 0x80,0,0,0,0,0,0,0,0,0,
   1.137 +      0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   1.138 +      0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
   1.139 +
   1.140 +  /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits. */
   1.141 +  update(bulk_pad, (((55 + 64) - lenB) & 63) + 1);
   1.142 +  MOZ_ASSERT((uint32_t(size) & 63) == 56);
   1.143 +
   1.144 +  /* Convert size from bytes to bits. */
   1.145 +  size2 <<= 3;
   1.146 +  u.w[14] = NativeEndian::swapToBigEndian(uint32_t(size2 >> 32));
   1.147 +  u.w[15] = NativeEndian::swapToBigEndian(uint32_t(size2));
   1.148 +  shaCompress(&H[H2X], u.w);
   1.149 +
   1.150 +  /* Output hash. */
   1.151 +  u.w[0] = NativeEndian::swapToBigEndian(H[0]);
   1.152 +  u.w[1] = NativeEndian::swapToBigEndian(H[1]);
   1.153 +  u.w[2] = NativeEndian::swapToBigEndian(H[2]);
   1.154 +  u.w[3] = NativeEndian::swapToBigEndian(H[3]);
   1.155 +  u.w[4] = NativeEndian::swapToBigEndian(H[4]);
   1.156 +  memcpy(hashOut, u.w, 20);
   1.157 +  mDone = true;
   1.158 +}
   1.159 +
   1.160 +/*
   1.161 + *  SHA: Compression function, unrolled.
   1.162 + *
   1.163 + * Some operations in shaCompress are done as 5 groups of 16 operations.
   1.164 + * Others are done as 4 groups of 20 operations.
   1.165 + * The code below shows that structure.
   1.166 + *
   1.167 + * The functions that compute the new values of the 5 state variables
   1.168 + * A-E are done in 4 groups of 20 operations (or you may also think
   1.169 + * of them as being done in 16 groups of 5 operations).  They are
   1.170 + * done by the SHA_RNDx macros below, in the right column.
   1.171 + *
   1.172 + * The functions that set the 16 values of the W array are done in
   1.173 + * 5 groups of 16 operations.  The first group is done by the
   1.174 + * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
   1.175 + * in the left column.
   1.176 + *
   1.177 + * gcc's optimizer observes that each member of the W array is assigned
   1.178 + * a value 5 times in this code.  It reduces the number of store
   1.179 + * operations done to the W array in the context (that is, in the X array)
   1.180 + * by creating a W array on the stack, and storing the W values there for
   1.181 + * the first 4 groups of operations on W, and storing the values in the
   1.182 + * context's W array only in the fifth group.  This is undesirable.
   1.183 + * It is MUCH bigger code than simply using the context's W array, because
   1.184 + * all the offsets to the W array in the stack are 32-bit signed offsets,
   1.185 + * and it is no faster than storing the values in the context's W array.
   1.186 + *
   1.187 + * The original code for sha_fast.c prevented this creation of a separate
   1.188 + * W array in the stack by creating a W array of 80 members, each of
   1.189 + * whose elements is assigned only once. It also separated the computations
   1.190 + * of the W array values and the computations of the values for the 5
   1.191 + * state variables into two separate passes, W's, then A-E's so that the 
   1.192 + * second pass could be done all in registers (except for accessing the W
   1.193 + * array) on machines with fewer registers.  The method is suboptimal
   1.194 + * for machines with enough registers to do it all in one pass, and it
   1.195 + * necessitates using many instructions with 32-bit offsets.
   1.196 + *
   1.197 + * This code eliminates the separate W array on the stack by a completely
   1.198 + * different means: by declaring the X array volatile.  This prevents
   1.199 + * the optimizer from trying to reduce the use of the X array by the
   1.200 + * creation of a MORE expensive W array on the stack. The result is
   1.201 + * that all instructions use signed 8-bit offsets and not 32-bit offsets.
   1.202 + *
   1.203 + * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
   1.204 + * results in code that is 3 times faster than the previous NSS sha_fast
   1.205 + * code on AMD64.
   1.206 + */
   1.207 +static void
   1.208 +shaCompress(volatile unsigned *X, const uint32_t *inbuf)
   1.209 +{
   1.210 +  unsigned A, B, C, D, E;
   1.211 +
   1.212 +#define XH(n) X[n - H2X]
   1.213 +#define XW(n) X[n - W2X]
   1.214 +
   1.215 +#define K0 0x5a827999L
   1.216 +#define K1 0x6ed9eba1L
   1.217 +#define K2 0x8f1bbcdcL
   1.218 +#define K3 0xca62c1d6L
   1.219 +
   1.220 +#define SHA_RND1(a, b, c, d, e, n) \
   1.221 +  a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; c = SHA_ROTL(c, 30)
   1.222 +#define SHA_RND2(a, b, c, d, e, n) \
   1.223 +  a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; c = SHA_ROTL(c, 30)
   1.224 +#define SHA_RND3(a, b, c, d, e, n) \
   1.225 +  a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; c = SHA_ROTL(c, 30)
   1.226 +#define SHA_RND4(a, b, c, d, e, n) \
   1.227 +  a = SHA_ROTL(b ,5) + SHA_F4(c, d, e) + a + XW(n) + K3; c = SHA_ROTL(c, 30)
   1.228 +
   1.229 +#define LOAD(n) XW(n) = NativeEndian::swapToBigEndian(inbuf[n])
   1.230 +
   1.231 +  A = XH(0);
   1.232 +  B = XH(1);
   1.233 +  C = XH(2);
   1.234 +  D = XH(3);
   1.235 +  E = XH(4);
   1.236 +
   1.237 +  LOAD(0);		   SHA_RND1(E,A,B,C,D, 0);
   1.238 +  LOAD(1);		   SHA_RND1(D,E,A,B,C, 1);
   1.239 +  LOAD(2);		   SHA_RND1(C,D,E,A,B, 2);
   1.240 +  LOAD(3);		   SHA_RND1(B,C,D,E,A, 3);
   1.241 +  LOAD(4);		   SHA_RND1(A,B,C,D,E, 4);
   1.242 +  LOAD(5);		   SHA_RND1(E,A,B,C,D, 5);
   1.243 +  LOAD(6);		   SHA_RND1(D,E,A,B,C, 6);
   1.244 +  LOAD(7);		   SHA_RND1(C,D,E,A,B, 7);
   1.245 +  LOAD(8);		   SHA_RND1(B,C,D,E,A, 8);
   1.246 +  LOAD(9);		   SHA_RND1(A,B,C,D,E, 9);
   1.247 +  LOAD(10);		   SHA_RND1(E,A,B,C,D,10);
   1.248 +  LOAD(11);		   SHA_RND1(D,E,A,B,C,11);
   1.249 +  LOAD(12);		   SHA_RND1(C,D,E,A,B,12);
   1.250 +  LOAD(13);		   SHA_RND1(B,C,D,E,A,13);
   1.251 +  LOAD(14);		   SHA_RND1(A,B,C,D,E,14);
   1.252 +  LOAD(15);		   SHA_RND1(E,A,B,C,D,15);
   1.253 +
   1.254 +  SHA_MIX( 0, 13,  8,  2); SHA_RND1(D,E,A,B,C, 0);
   1.255 +  SHA_MIX( 1, 14,  9,  3); SHA_RND1(C,D,E,A,B, 1);
   1.256 +  SHA_MIX( 2, 15, 10,  4); SHA_RND1(B,C,D,E,A, 2);
   1.257 +  SHA_MIX( 3,  0, 11,  5); SHA_RND1(A,B,C,D,E, 3);
   1.258 +
   1.259 +  SHA_MIX( 4,  1, 12,  6); SHA_RND2(E,A,B,C,D, 4);
   1.260 +  SHA_MIX( 5,  2, 13,  7); SHA_RND2(D,E,A,B,C, 5);
   1.261 +  SHA_MIX( 6,  3, 14,  8); SHA_RND2(C,D,E,A,B, 6);
   1.262 +  SHA_MIX( 7,  4, 15,  9); SHA_RND2(B,C,D,E,A, 7);
   1.263 +  SHA_MIX( 8,  5,  0, 10); SHA_RND2(A,B,C,D,E, 8);
   1.264 +  SHA_MIX( 9,  6,  1, 11); SHA_RND2(E,A,B,C,D, 9);
   1.265 +  SHA_MIX(10,  7,  2, 12); SHA_RND2(D,E,A,B,C,10);
   1.266 +  SHA_MIX(11,  8,  3, 13); SHA_RND2(C,D,E,A,B,11);
   1.267 +  SHA_MIX(12,  9,  4, 14); SHA_RND2(B,C,D,E,A,12);
   1.268 +  SHA_MIX(13, 10,  5, 15); SHA_RND2(A,B,C,D,E,13);
   1.269 +  SHA_MIX(14, 11,  6,  0); SHA_RND2(E,A,B,C,D,14);
   1.270 +  SHA_MIX(15, 12,  7,  1); SHA_RND2(D,E,A,B,C,15);
   1.271 +
   1.272 +  SHA_MIX( 0, 13,  8,  2); SHA_RND2(C,D,E,A,B, 0);
   1.273 +  SHA_MIX( 1, 14,  9,  3); SHA_RND2(B,C,D,E,A, 1);
   1.274 +  SHA_MIX( 2, 15, 10,  4); SHA_RND2(A,B,C,D,E, 2);
   1.275 +  SHA_MIX( 3,  0, 11,  5); SHA_RND2(E,A,B,C,D, 3);
   1.276 +  SHA_MIX( 4,  1, 12,  6); SHA_RND2(D,E,A,B,C, 4);
   1.277 +  SHA_MIX( 5,  2, 13,  7); SHA_RND2(C,D,E,A,B, 5);
   1.278 +  SHA_MIX( 6,  3, 14,  8); SHA_RND2(B,C,D,E,A, 6);
   1.279 +  SHA_MIX( 7,  4, 15,  9); SHA_RND2(A,B,C,D,E, 7);
   1.280 +
   1.281 +  SHA_MIX( 8,  5,  0, 10); SHA_RND3(E,A,B,C,D, 8);
   1.282 +  SHA_MIX( 9,  6,  1, 11); SHA_RND3(D,E,A,B,C, 9);
   1.283 +  SHA_MIX(10,  7,  2, 12); SHA_RND3(C,D,E,A,B,10);
   1.284 +  SHA_MIX(11,  8,  3, 13); SHA_RND3(B,C,D,E,A,11);
   1.285 +  SHA_MIX(12,  9,  4, 14); SHA_RND3(A,B,C,D,E,12);
   1.286 +  SHA_MIX(13, 10,  5, 15); SHA_RND3(E,A,B,C,D,13);
   1.287 +  SHA_MIX(14, 11,  6,  0); SHA_RND3(D,E,A,B,C,14);
   1.288 +  SHA_MIX(15, 12,  7,  1); SHA_RND3(C,D,E,A,B,15);
   1.289 +
   1.290 +  SHA_MIX( 0, 13,  8,  2); SHA_RND3(B,C,D,E,A, 0);
   1.291 +  SHA_MIX( 1, 14,  9,  3); SHA_RND3(A,B,C,D,E, 1);
   1.292 +  SHA_MIX( 2, 15, 10,  4); SHA_RND3(E,A,B,C,D, 2);
   1.293 +  SHA_MIX( 3,  0, 11,  5); SHA_RND3(D,E,A,B,C, 3);
   1.294 +  SHA_MIX( 4,  1, 12,  6); SHA_RND3(C,D,E,A,B, 4);
   1.295 +  SHA_MIX( 5,  2, 13,  7); SHA_RND3(B,C,D,E,A, 5);
   1.296 +  SHA_MIX( 6,  3, 14,  8); SHA_RND3(A,B,C,D,E, 6);
   1.297 +  SHA_MIX( 7,  4, 15,  9); SHA_RND3(E,A,B,C,D, 7);
   1.298 +  SHA_MIX( 8,  5,  0, 10); SHA_RND3(D,E,A,B,C, 8);
   1.299 +  SHA_MIX( 9,  6,  1, 11); SHA_RND3(C,D,E,A,B, 9);
   1.300 +  SHA_MIX(10,  7,  2, 12); SHA_RND3(B,C,D,E,A,10);
   1.301 +  SHA_MIX(11,  8,  3, 13); SHA_RND3(A,B,C,D,E,11);
   1.302 +
   1.303 +  SHA_MIX(12,  9,  4, 14); SHA_RND4(E,A,B,C,D,12);
   1.304 +  SHA_MIX(13, 10,  5, 15); SHA_RND4(D,E,A,B,C,13);
   1.305 +  SHA_MIX(14, 11,  6,  0); SHA_RND4(C,D,E,A,B,14);
   1.306 +  SHA_MIX(15, 12,  7,  1); SHA_RND4(B,C,D,E,A,15);
   1.307 +
   1.308 +  SHA_MIX( 0, 13,  8,  2); SHA_RND4(A,B,C,D,E, 0);
   1.309 +  SHA_MIX( 1, 14,  9,  3); SHA_RND4(E,A,B,C,D, 1);
   1.310 +  SHA_MIX( 2, 15, 10,  4); SHA_RND4(D,E,A,B,C, 2);
   1.311 +  SHA_MIX( 3,  0, 11,  5); SHA_RND4(C,D,E,A,B, 3);
   1.312 +  SHA_MIX( 4,  1, 12,  6); SHA_RND4(B,C,D,E,A, 4);
   1.313 +  SHA_MIX( 5,  2, 13,  7); SHA_RND4(A,B,C,D,E, 5);
   1.314 +  SHA_MIX( 6,  3, 14,  8); SHA_RND4(E,A,B,C,D, 6);
   1.315 +  SHA_MIX( 7,  4, 15,  9); SHA_RND4(D,E,A,B,C, 7);
   1.316 +  SHA_MIX( 8,  5,  0, 10); SHA_RND4(C,D,E,A,B, 8);
   1.317 +  SHA_MIX( 9,  6,  1, 11); SHA_RND4(B,C,D,E,A, 9);
   1.318 +  SHA_MIX(10,  7,  2, 12); SHA_RND4(A,B,C,D,E,10);
   1.319 +  SHA_MIX(11,  8,  3, 13); SHA_RND4(E,A,B,C,D,11);
   1.320 +  SHA_MIX(12,  9,  4, 14); SHA_RND4(D,E,A,B,C,12);
   1.321 +  SHA_MIX(13, 10,  5, 15); SHA_RND4(C,D,E,A,B,13);
   1.322 +  SHA_MIX(14, 11,  6,  0); SHA_RND4(B,C,D,E,A,14);
   1.323 +  SHA_MIX(15, 12,  7,  1); SHA_RND4(A,B,C,D,E,15);
   1.324 +
   1.325 +  XH(0) += A;
   1.326 +  XH(1) += B;
   1.327 +  XH(2) += C;
   1.328 +  XH(3) += D;
   1.329 +  XH(4) += E;
   1.330 +}

mercurial