mfbt/double-conversion/double-conversion.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/mfbt/double-conversion/double-conversion.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,538 @@
     1.4 +// Copyright 2012 the V8 project authors. All rights reserved.
     1.5 +// Redistribution and use in source and binary forms, with or without
     1.6 +// modification, are permitted provided that the following conditions are
     1.7 +// met:
     1.8 +//
     1.9 +//     * Redistributions of source code must retain the above copyright
    1.10 +//       notice, this list of conditions and the following disclaimer.
    1.11 +//     * Redistributions in binary form must reproduce the above
    1.12 +//       copyright notice, this list of conditions and the following
    1.13 +//       disclaimer in the documentation and/or other materials provided
    1.14 +//       with the distribution.
    1.15 +//     * Neither the name of Google Inc. nor the names of its
    1.16 +//       contributors may be used to endorse or promote products derived
    1.17 +//       from this software without specific prior written permission.
    1.18 +//
    1.19 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    1.20 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    1.21 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.22 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    1.23 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    1.24 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    1.25 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    1.26 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    1.27 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    1.28 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    1.29 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.30 +
    1.31 +#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
    1.32 +#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
    1.33 +
    1.34 +#include "mozilla/Types.h"
    1.35 +#include "utils.h"
    1.36 +
    1.37 +namespace double_conversion {
    1.38 +
    1.39 +class DoubleToStringConverter {
    1.40 + public:
    1.41 +  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
    1.42 +  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
    1.43 +  // function returns false.
    1.44 +  static const int kMaxFixedDigitsBeforePoint = 60;
    1.45 +  static const int kMaxFixedDigitsAfterPoint = 60;
    1.46 +
    1.47 +  // When calling ToExponential with a requested_digits
    1.48 +  // parameter > kMaxExponentialDigits then the function returns false.
    1.49 +  static const int kMaxExponentialDigits = 120;
    1.50 +
    1.51 +  // When calling ToPrecision with a requested_digits
    1.52 +  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
    1.53 +  // then the function returns false.
    1.54 +  static const int kMinPrecisionDigits = 1;
    1.55 +  static const int kMaxPrecisionDigits = 120;
    1.56 +
    1.57 +  enum Flags {
    1.58 +    NO_FLAGS = 0,
    1.59 +    EMIT_POSITIVE_EXPONENT_SIGN = 1,
    1.60 +    EMIT_TRAILING_DECIMAL_POINT = 2,
    1.61 +    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
    1.62 +    UNIQUE_ZERO = 8
    1.63 +  };
    1.64 +
    1.65 +  // Flags should be a bit-or combination of the possible Flags-enum.
    1.66 +  //  - NO_FLAGS: no special flags.
    1.67 +  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
    1.68 +  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
    1.69 +  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
    1.70 +  //    converted into decimal format then a trailing decimal point is appended.
    1.71 +  //    Example: 2345.0 is converted to "2345.".
    1.72 +  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
    1.73 +  //    emits a trailing '0'-character. This flag requires the
    1.74 +  //    EXMIT_TRAILING_DECIMAL_POINT flag.
    1.75 +  //    Example: 2345.0 is converted to "2345.0".
    1.76 +  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
    1.77 +  //
    1.78 +  // Infinity symbol and nan_symbol provide the string representation for these
    1.79 +  // special values. If the string is NULL and the special value is encountered
    1.80 +  // then the conversion functions return false.
    1.81 +  //
    1.82 +  // The exponent_character is used in exponential representations. It is
    1.83 +  // usually 'e' or 'E'.
    1.84 +  //
    1.85 +  // When converting to the shortest representation the converter will
    1.86 +  // represent input numbers in decimal format if they are in the interval
    1.87 +  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
    1.88 +  //    (lower boundary included, greater boundary excluded).
    1.89 +  // Example: with decimal_in_shortest_low = -6 and
    1.90 +  //               decimal_in_shortest_high = 21:
    1.91 +  //   ToShortest(0.000001)  -> "0.000001"
    1.92 +  //   ToShortest(0.0000001) -> "1e-7"
    1.93 +  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
    1.94 +  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
    1.95 +  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
    1.96 +  //
    1.97 +  // When converting to precision mode the converter may add
    1.98 +  // max_leading_padding_zeroes before returning the number in exponential
    1.99 +  // format.
   1.100 +  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
   1.101 +  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
   1.102 +  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
   1.103 +  // Similarily the converter may add up to
   1.104 +  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   1.105 +  // returning an exponential representation. A zero added by the
   1.106 +  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
   1.107 +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
   1.108 +  //   ToPrecision(230.0, 2) -> "230"
   1.109 +  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
   1.110 +  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
   1.111 +  DoubleToStringConverter(int flags,
   1.112 +                          const char* infinity_symbol,
   1.113 +                          const char* nan_symbol,
   1.114 +                          char exponent_character,
   1.115 +                          int decimal_in_shortest_low,
   1.116 +                          int decimal_in_shortest_high,
   1.117 +                          int max_leading_padding_zeroes_in_precision_mode,
   1.118 +                          int max_trailing_padding_zeroes_in_precision_mode)
   1.119 +      : flags_(flags),
   1.120 +        infinity_symbol_(infinity_symbol),
   1.121 +        nan_symbol_(nan_symbol),
   1.122 +        exponent_character_(exponent_character),
   1.123 +        decimal_in_shortest_low_(decimal_in_shortest_low),
   1.124 +        decimal_in_shortest_high_(decimal_in_shortest_high),
   1.125 +        max_leading_padding_zeroes_in_precision_mode_(
   1.126 +            max_leading_padding_zeroes_in_precision_mode),
   1.127 +        max_trailing_padding_zeroes_in_precision_mode_(
   1.128 +            max_trailing_padding_zeroes_in_precision_mode) {
   1.129 +    // When 'trailing zero after the point' is set, then 'trailing point'
   1.130 +    // must be set too.
   1.131 +    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
   1.132 +        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
   1.133 +  }
   1.134 +
   1.135 +  // Returns a converter following the EcmaScript specification.
   1.136 +  static MFBT_API const DoubleToStringConverter& EcmaScriptConverter();
   1.137 +
   1.138 +  // Computes the shortest string of digits that correctly represent the input
   1.139 +  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
   1.140 +  // (see constructor) it then either returns a decimal representation, or an
   1.141 +  // exponential representation.
   1.142 +  // Example with decimal_in_shortest_low = -6,
   1.143 +  //              decimal_in_shortest_high = 21,
   1.144 +  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
   1.145 +  //              EMIT_TRAILING_DECIMAL_POINT deactived:
   1.146 +  //   ToShortest(0.000001)  -> "0.000001"
   1.147 +  //   ToShortest(0.0000001) -> "1e-7"
   1.148 +  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
   1.149 +  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
   1.150 +  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
   1.151 +  //
   1.152 +  // Note: the conversion may round the output if the returned string
   1.153 +  // is accurate enough to uniquely identify the input-number.
   1.154 +  // For example the most precise representation of the double 9e59 equals
   1.155 +  // "899999999999999918767229449717619953810131273674690656206848", but
   1.156 +  // the converter will return the shorter (but still correct) "9e59".
   1.157 +  //
   1.158 +  // Returns true if the conversion succeeds. The conversion always succeeds
   1.159 +  // except when the input value is special and no infinity_symbol or
   1.160 +  // nan_symbol has been given to the constructor.
   1.161 +  bool ToShortest(double value, StringBuilder* result_builder) const {
   1.162 +    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
   1.163 +  }
   1.164 +
   1.165 +  // Same as ToShortest, but for single-precision floats.
   1.166 +  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
   1.167 +    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
   1.168 +  }
   1.169 +
   1.170 +
   1.171 +  // Computes a decimal representation with a fixed number of digits after the
   1.172 +  // decimal point. The last emitted digit is rounded.
   1.173 +  //
   1.174 +  // Examples:
   1.175 +  //   ToFixed(3.12, 1) -> "3.1"
   1.176 +  //   ToFixed(3.1415, 3) -> "3.142"
   1.177 +  //   ToFixed(1234.56789, 4) -> "1234.5679"
   1.178 +  //   ToFixed(1.23, 5) -> "1.23000"
   1.179 +  //   ToFixed(0.1, 4) -> "0.1000"
   1.180 +  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
   1.181 +  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
   1.182 +  //   ToFixed(0.1, 17) -> "0.10000000000000001"
   1.183 +  //
   1.184 +  // If requested_digits equals 0, then the tail of the result depends on
   1.185 +  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
   1.186 +  // Examples, for requested_digits == 0,
   1.187 +  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
   1.188 +  //    - false and false: then 123.45 -> 123
   1.189 +  //                             0.678 -> 1
   1.190 +  //    - true and false: then 123.45 -> 123.
   1.191 +  //                            0.678 -> 1.
   1.192 +  //    - true and true: then 123.45 -> 123.0
   1.193 +  //                           0.678 -> 1.0
   1.194 +  //
   1.195 +  // Returns true if the conversion succeeds. The conversion always succeeds
   1.196 +  // except for the following cases:
   1.197 +  //   - the input value is special and no infinity_symbol or nan_symbol has
   1.198 +  //     been provided to the constructor,
   1.199 +  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
   1.200 +  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
   1.201 +  // The last two conditions imply that the result will never contain more than
   1.202 +  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
   1.203 +  // (one additional character for the sign, and one for the decimal point).
   1.204 +  MFBT_API bool ToFixed(double value,
   1.205 +               int requested_digits,
   1.206 +               StringBuilder* result_builder) const;
   1.207 +
   1.208 +  // Computes a representation in exponential format with requested_digits
   1.209 +  // after the decimal point. The last emitted digit is rounded.
   1.210 +  // If requested_digits equals -1, then the shortest exponential representation
   1.211 +  // is computed.
   1.212 +  //
   1.213 +  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
   1.214 +  //               exponent_character set to 'e'.
   1.215 +  //   ToExponential(3.12, 1) -> "3.1e0"
   1.216 +  //   ToExponential(5.0, 3) -> "5.000e0"
   1.217 +  //   ToExponential(0.001, 2) -> "1.00e-3"
   1.218 +  //   ToExponential(3.1415, -1) -> "3.1415e0"
   1.219 +  //   ToExponential(3.1415, 4) -> "3.1415e0"
   1.220 +  //   ToExponential(3.1415, 3) -> "3.142e0"
   1.221 +  //   ToExponential(123456789000000, 3) -> "1.235e14"
   1.222 +  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
   1.223 +  //   ToExponential(1000000000000000019884624838656.0, 32) ->
   1.224 +  //                     "1.00000000000000001988462483865600e30"
   1.225 +  //   ToExponential(1234, 0) -> "1e3"
   1.226 +  //
   1.227 +  // Returns true if the conversion succeeds. The conversion always succeeds
   1.228 +  // except for the following cases:
   1.229 +  //   - the input value is special and no infinity_symbol or nan_symbol has
   1.230 +  //     been provided to the constructor,
   1.231 +  //   - 'requested_digits' > kMaxExponentialDigits.
   1.232 +  // The last condition implies that the result will never contain more than
   1.233 +  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
   1.234 +  // decimal point, the decimal point, the exponent character, the
   1.235 +  // exponent's sign, and at most 3 exponent digits).
   1.236 +  MFBT_API bool ToExponential(double value,
   1.237 +                     int requested_digits,
   1.238 +                     StringBuilder* result_builder) const;
   1.239 +
   1.240 +  // Computes 'precision' leading digits of the given 'value' and returns them
   1.241 +  // either in exponential or decimal format, depending on
   1.242 +  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
   1.243 +  // constructor).
   1.244 +  // The last computed digit is rounded.
   1.245 +  //
   1.246 +  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
   1.247 +  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
   1.248 +  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
   1.249 +  // Similarily the converter may add up to
   1.250 +  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
   1.251 +  // returning an exponential representation. A zero added by the
   1.252 +  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
   1.253 +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
   1.254 +  //   ToPrecision(230.0, 2) -> "230"
   1.255 +  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
   1.256 +  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
   1.257 +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
   1.258 +  //    EMIT_TRAILING_ZERO_AFTER_POINT:
   1.259 +  //   ToPrecision(123450.0, 6) -> "123450"
   1.260 +  //   ToPrecision(123450.0, 5) -> "123450"
   1.261 +  //   ToPrecision(123450.0, 4) -> "123500"
   1.262 +  //   ToPrecision(123450.0, 3) -> "123000"
   1.263 +  //   ToPrecision(123450.0, 2) -> "1.2e5"
   1.264 +  //
   1.265 +  // Returns true if the conversion succeeds. The conversion always succeeds
   1.266 +  // except for the following cases:
   1.267 +  //   - the input value is special and no infinity_symbol or nan_symbol has
   1.268 +  //     been provided to the constructor,
   1.269 +  //   - precision < kMinPericisionDigits
   1.270 +  //   - precision > kMaxPrecisionDigits
   1.271 +  // The last condition implies that the result will never contain more than
   1.272 +  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
   1.273 +  // exponent character, the exponent's sign, and at most 3 exponent digits).
   1.274 +  MFBT_API bool ToPrecision(double value,
   1.275 +                   int precision,
   1.276 +                   bool* used_exponential_notation,
   1.277 +                   StringBuilder* result_builder) const;
   1.278 +
   1.279 +  enum DtoaMode {
   1.280 +    // Produce the shortest correct representation.
   1.281 +    // For example the output of 0.299999999999999988897 is (the less accurate
   1.282 +    // but correct) 0.3.
   1.283 +    SHORTEST,
   1.284 +    // Same as SHORTEST, but for single-precision floats.
   1.285 +    SHORTEST_SINGLE,
   1.286 +    // Produce a fixed number of digits after the decimal point.
   1.287 +    // For instance fixed(0.1, 4) becomes 0.1000
   1.288 +    // If the input number is big, the output will be big.
   1.289 +    FIXED,
   1.290 +    // Fixed number of digits (independent of the decimal point).
   1.291 +    PRECISION
   1.292 +  };
   1.293 +
   1.294 +  // The maximal number of digits that are needed to emit a double in base 10.
   1.295 +  // A higher precision can be achieved by using more digits, but the shortest
   1.296 +  // accurate representation of any double will never use more digits than
   1.297 +  // kBase10MaximalLength.
   1.298 +  // Note that DoubleToAscii null-terminates its input. So the given buffer
   1.299 +  // should be at least kBase10MaximalLength + 1 characters long.
   1.300 +  static const MFBT_DATA int kBase10MaximalLength = 17;
   1.301 +
   1.302 +  // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
   1.303 +  // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
   1.304 +  // after it has been casted to a single-precision float. That is, in this
   1.305 +  // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
   1.306 +  //
   1.307 +  // The result should be interpreted as buffer * 10^(point-length).
   1.308 +  //
   1.309 +  // The output depends on the given mode:
   1.310 +  //  - SHORTEST: produce the least amount of digits for which the internal
   1.311 +  //   identity requirement is still satisfied. If the digits are printed
   1.312 +  //   (together with the correct exponent) then reading this number will give
   1.313 +  //   'v' again. The buffer will choose the representation that is closest to
   1.314 +  //   'v'. If there are two at the same distance, than the one farther away
   1.315 +  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
   1.316 +  //   In this mode the 'requested_digits' parameter is ignored.
   1.317 +  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
   1.318 +  //  - FIXED: produces digits necessary to print a given number with
   1.319 +  //   'requested_digits' digits after the decimal point. The produced digits
   1.320 +  //   might be too short in which case the caller has to fill the remainder
   1.321 +  //   with '0's.
   1.322 +  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
   1.323 +  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
   1.324 +  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
   1.325 +  //   The returned buffer may contain digits that would be truncated from the
   1.326 +  //   shortest representation of the input.
   1.327 +  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
   1.328 +  //   Even though the length of produced digits usually equals
   1.329 +  //   'requested_digits', the function is allowed to return fewer digits, in
   1.330 +  //   which case the caller has to fill the missing digits with '0's.
   1.331 +  //   Halfway cases are again rounded away from 0.
   1.332 +  // DoubleToAscii expects the given buffer to be big enough to hold all
   1.333 +  // digits and a terminating null-character. In SHORTEST-mode it expects a
   1.334 +  // buffer of at least kBase10MaximalLength + 1. In all other modes the
   1.335 +  // requested_digits parameter and the padding-zeroes limit the size of the
   1.336 +  // output. Don't forget the decimal point, the exponent character and the
   1.337 +  // terminating null-character when computing the maximal output size.
   1.338 +  // The given length is only used in debug mode to ensure the buffer is big
   1.339 +  // enough.
   1.340 +  static MFBT_API void DoubleToAscii(double v,
   1.341 +                            DtoaMode mode,
   1.342 +                            int requested_digits,
   1.343 +                            char* buffer,
   1.344 +                            int buffer_length,
   1.345 +                            bool* sign,
   1.346 +                            int* length,
   1.347 +                            int* point);
   1.348 +
   1.349 + private:
   1.350 +  // Implementation for ToShortest and ToShortestSingle.
   1.351 +  MFBT_API bool ToShortestIeeeNumber(double value,
   1.352 +                            StringBuilder* result_builder,
   1.353 +                            DtoaMode mode) const;
   1.354 +
   1.355 +  // If the value is a special value (NaN or Infinity) constructs the
   1.356 +  // corresponding string using the configured infinity/nan-symbol.
   1.357 +  // If either of them is NULL or the value is not special then the
   1.358 +  // function returns false.
   1.359 +  MFBT_API bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
   1.360 +  // Constructs an exponential representation (i.e. 1.234e56).
   1.361 +  // The given exponent assumes a decimal point after the first decimal digit.
   1.362 +  MFBT_API void CreateExponentialRepresentation(const char* decimal_digits,
   1.363 +                                       int length,
   1.364 +                                       int exponent,
   1.365 +                                       StringBuilder* result_builder) const;
   1.366 +  // Creates a decimal representation (i.e 1234.5678).
   1.367 +  MFBT_API void CreateDecimalRepresentation(const char* decimal_digits,
   1.368 +                                   int length,
   1.369 +                                   int decimal_point,
   1.370 +                                   int digits_after_point,
   1.371 +                                   StringBuilder* result_builder) const;
   1.372 +
   1.373 +  const int flags_;
   1.374 +  const char* const infinity_symbol_;
   1.375 +  const char* const nan_symbol_;
   1.376 +  const char exponent_character_;
   1.377 +  const int decimal_in_shortest_low_;
   1.378 +  const int decimal_in_shortest_high_;
   1.379 +  const int max_leading_padding_zeroes_in_precision_mode_;
   1.380 +  const int max_trailing_padding_zeroes_in_precision_mode_;
   1.381 +
   1.382 +  DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
   1.383 +};
   1.384 +
   1.385 +
   1.386 +class StringToDoubleConverter {
   1.387 + public:
   1.388 +  // Enumeration for allowing octals and ignoring junk when converting
   1.389 +  // strings to numbers.
   1.390 +  enum Flags {
   1.391 +    NO_FLAGS = 0,
   1.392 +    ALLOW_HEX = 1,
   1.393 +    ALLOW_OCTALS = 2,
   1.394 +    ALLOW_TRAILING_JUNK = 4,
   1.395 +    ALLOW_LEADING_SPACES = 8,
   1.396 +    ALLOW_TRAILING_SPACES = 16,
   1.397 +    ALLOW_SPACES_AFTER_SIGN = 32
   1.398 +  };
   1.399 +
   1.400 +  // Flags should be a bit-or combination of the possible Flags-enum.
   1.401 +  //  - NO_FLAGS: no special flags.
   1.402 +  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
   1.403 +  //      Ex: StringToDouble("0x1234") -> 4660.0
   1.404 +  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
   1.405 +  //          junk. The result of the call is hence dependent on
   1.406 +  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
   1.407 +  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
   1.408 +  //      the string will not be parsed as "0" followed by junk.
   1.409 +  //
   1.410 +  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
   1.411 +  //      If a sequence of octal digits starts with '0', then the number is
   1.412 +  //      read as octal integer. Octal numbers may only be integers.
   1.413 +  //      Ex: StringToDouble("01234") -> 668.0
   1.414 +  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
   1.415 +  //                                               // digits.
   1.416 +  //          In StringToDouble("01234.56") the characters ".56" are trailing
   1.417 +  //          junk. The result of the call is hence dependent on
   1.418 +  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
   1.419 +  //          In StringToDouble("01234e56") the characters "e56" are trailing
   1.420 +  //          junk, too.
   1.421 +  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
   1.422 +  //      a double literal.
   1.423 +  //  - ALLOW_LEADING_SPACES: skip over leading spaces.
   1.424 +  //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
   1.425 +  //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
   1.426 +  //       Ex: StringToDouble("-   123.2") -> -123.2.
   1.427 +  //           StringToDouble("+   123.2") -> 123.2
   1.428 +  //
   1.429 +  // empty_string_value is returned when an empty string is given as input.
   1.430 +  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
   1.431 +  // containing only spaces is converted to the 'empty_string_value', too.
   1.432 +  //
   1.433 +  // junk_string_value is returned when
   1.434 +  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
   1.435 +  //     part of a double-literal) is found.
   1.436 +  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
   1.437 +  //     double literal.
   1.438 +  //
   1.439 +  // infinity_symbol and nan_symbol are strings that are used to detect
   1.440 +  // inputs that represent infinity and NaN. They can be null, in which case
   1.441 +  // they are ignored.
   1.442 +  // The conversion routine first reads any possible signs. Then it compares the
   1.443 +  // following character of the input-string with the first character of
   1.444 +  // the infinity, and nan-symbol. If either matches, the function assumes, that
   1.445 +  // a match has been found, and expects the following input characters to match
   1.446 +  // the remaining characters of the special-value symbol.
   1.447 +  // This means that the following restrictions apply to special-value symbols:
   1.448 +  //  - they must not start with signs ('+', or '-'),
   1.449 +  //  - they must not have the same first character.
   1.450 +  //  - they must not start with digits.
   1.451 +  //
   1.452 +  // Examples:
   1.453 +  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
   1.454 +  //  empty_string_value = 0.0,
   1.455 +  //  junk_string_value = NaN,
   1.456 +  //  infinity_symbol = "infinity",
   1.457 +  //  nan_symbol = "nan":
   1.458 +  //    StringToDouble("0x1234") -> 4660.0.
   1.459 +  //    StringToDouble("0x1234K") -> 4660.0.
   1.460 +  //    StringToDouble("") -> 0.0  // empty_string_value.
   1.461 +  //    StringToDouble(" ") -> NaN  // junk_string_value.
   1.462 +  //    StringToDouble(" 1") -> NaN  // junk_string_value.
   1.463 +  //    StringToDouble("0x") -> NaN  // junk_string_value.
   1.464 +  //    StringToDouble("-123.45") -> -123.45.
   1.465 +  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
   1.466 +  //    StringToDouble("123e45") -> 123e45.
   1.467 +  //    StringToDouble("123E45") -> 123e45.
   1.468 +  //    StringToDouble("123e+45") -> 123e45.
   1.469 +  //    StringToDouble("123E-45") -> 123e-45.
   1.470 +  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
   1.471 +  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
   1.472 +  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
   1.473 +  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
   1.474 +  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
   1.475 +  //
   1.476 +  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
   1.477 +  //  empty_string_value = 0.0,
   1.478 +  //  junk_string_value = NaN,
   1.479 +  //  infinity_symbol = NULL,
   1.480 +  //  nan_symbol = NULL:
   1.481 +  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
   1.482 +  //    StringToDouble("01234") -> 668.0.
   1.483 +  //    StringToDouble("") -> 0.0  // empty_string_value.
   1.484 +  //    StringToDouble(" ") -> 0.0  // empty_string_value.
   1.485 +  //    StringToDouble(" 1") -> 1.0
   1.486 +  //    StringToDouble("0x") -> NaN  // junk_string_value.
   1.487 +  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
   1.488 +  //    StringToDouble("01239E45") -> 1239e45.
   1.489 +  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
   1.490 +  //    StringToDouble("NaN") -> NaN  // junk_string_value.
   1.491 +  StringToDoubleConverter(int flags,
   1.492 +                          double empty_string_value,
   1.493 +                          double junk_string_value,
   1.494 +                          const char* infinity_symbol,
   1.495 +                          const char* nan_symbol)
   1.496 +      : flags_(flags),
   1.497 +        empty_string_value_(empty_string_value),
   1.498 +        junk_string_value_(junk_string_value),
   1.499 +        infinity_symbol_(infinity_symbol),
   1.500 +        nan_symbol_(nan_symbol) {
   1.501 +  }
   1.502 +
   1.503 +  // Performs the conversion.
   1.504 +  // The output parameter 'processed_characters_count' is set to the number
   1.505 +  // of characters that have been processed to read the number.
   1.506 +  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
   1.507 +  // in the 'processed_characters_count'. Trailing junk is never included.
   1.508 +  double StringToDouble(const char* buffer,
   1.509 +                        int length,
   1.510 +                        int* processed_characters_count) const {
   1.511 +    return StringToIeee(buffer, length, processed_characters_count, true);
   1.512 +  }
   1.513 +
   1.514 +  // Same as StringToDouble but reads a float.
   1.515 +  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
   1.516 +  // due to potential double-rounding.
   1.517 +  float StringToFloat(const char* buffer,
   1.518 +                      int length,
   1.519 +                      int* processed_characters_count) const {
   1.520 +    return static_cast<float>(StringToIeee(buffer, length,
   1.521 +                                           processed_characters_count, false));
   1.522 +  }
   1.523 +
   1.524 + private:
   1.525 +  const int flags_;
   1.526 +  const double empty_string_value_;
   1.527 +  const double junk_string_value_;
   1.528 +  const char* const infinity_symbol_;
   1.529 +  const char* const nan_symbol_;
   1.530 +
   1.531 +  double StringToIeee(const char* buffer,
   1.532 +                      int length,
   1.533 +                      int* processed_characters_count,
   1.534 +                      bool read_as_double) const;
   1.535 +
   1.536 +  DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
   1.537 +};
   1.538 +
   1.539 +}  // namespace double_conversion
   1.540 +
   1.541 +#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_

mercurial