1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/mfbt/double-conversion/fast-dtoa.cc Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,664 @@ 1.4 +// Copyright 2012 the V8 project authors. All rights reserved. 1.5 +// Redistribution and use in source and binary forms, with or without 1.6 +// modification, are permitted provided that the following conditions are 1.7 +// met: 1.8 +// 1.9 +// * Redistributions of source code must retain the above copyright 1.10 +// notice, this list of conditions and the following disclaimer. 1.11 +// * Redistributions in binary form must reproduce the above 1.12 +// copyright notice, this list of conditions and the following 1.13 +// disclaimer in the documentation and/or other materials provided 1.14 +// with the distribution. 1.15 +// * Neither the name of Google Inc. nor the names of its 1.16 +// contributors may be used to endorse or promote products derived 1.17 +// from this software without specific prior written permission. 1.18 +// 1.19 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1.20 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1.21 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1.22 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1.23 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1.24 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1.25 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1.26 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1.27 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1.28 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1.29 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1.30 + 1.31 +#include "fast-dtoa.h" 1.32 + 1.33 +#include "cached-powers.h" 1.34 +#include "diy-fp.h" 1.35 +#include "ieee.h" 1.36 + 1.37 +namespace double_conversion { 1.38 + 1.39 +// The minimal and maximal target exponent define the range of w's binary 1.40 +// exponent, where 'w' is the result of multiplying the input by a cached power 1.41 +// of ten. 1.42 +// 1.43 +// A different range might be chosen on a different platform, to optimize digit 1.44 +// generation, but a smaller range requires more powers of ten to be cached. 1.45 +static const int kMinimalTargetExponent = -60; 1.46 +static const int kMaximalTargetExponent = -32; 1.47 + 1.48 + 1.49 +// Adjusts the last digit of the generated number, and screens out generated 1.50 +// solutions that may be inaccurate. A solution may be inaccurate if it is 1.51 +// outside the safe interval, or if we cannot prove that it is closer to the 1.52 +// input than a neighboring representation of the same length. 1.53 +// 1.54 +// Input: * buffer containing the digits of too_high / 10^kappa 1.55 +// * the buffer's length 1.56 +// * distance_too_high_w == (too_high - w).f() * unit 1.57 +// * unsafe_interval == (too_high - too_low).f() * unit 1.58 +// * rest = (too_high - buffer * 10^kappa).f() * unit 1.59 +// * ten_kappa = 10^kappa * unit 1.60 +// * unit = the common multiplier 1.61 +// Output: returns true if the buffer is guaranteed to contain the closest 1.62 +// representable number to the input. 1.63 +// Modifies the generated digits in the buffer to approach (round towards) w. 1.64 +static bool RoundWeed(Vector<char> buffer, 1.65 + int length, 1.66 + uint64_t distance_too_high_w, 1.67 + uint64_t unsafe_interval, 1.68 + uint64_t rest, 1.69 + uint64_t ten_kappa, 1.70 + uint64_t unit) { 1.71 + uint64_t small_distance = distance_too_high_w - unit; 1.72 + uint64_t big_distance = distance_too_high_w + unit; 1.73 + // Let w_low = too_high - big_distance, and 1.74 + // w_high = too_high - small_distance. 1.75 + // Note: w_low < w < w_high 1.76 + // 1.77 + // The real w (* unit) must lie somewhere inside the interval 1.78 + // ]w_low; w_high[ (often written as "(w_low; w_high)") 1.79 + 1.80 + // Basically the buffer currently contains a number in the unsafe interval 1.81 + // ]too_low; too_high[ with too_low < w < too_high 1.82 + // 1.83 + // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.84 + // ^v 1 unit ^ ^ ^ ^ 1.85 + // boundary_high --------------------- . . . . 1.86 + // ^v 1 unit . . . . 1.87 + // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . 1.88 + // . . ^ . . 1.89 + // . big_distance . . . 1.90 + // . . . . rest 1.91 + // small_distance . . . . 1.92 + // v . . . . 1.93 + // w_high - - - - - - - - - - - - - - - - - - . . . . 1.94 + // ^v 1 unit . . . . 1.95 + // w ---------------------------------------- . . . . 1.96 + // ^v 1 unit v . . . 1.97 + // w_low - - - - - - - - - - - - - - - - - - - - - . . . 1.98 + // . . v 1.99 + // buffer --------------------------------------------------+-------+-------- 1.100 + // . . 1.101 + // safe_interval . 1.102 + // v . 1.103 + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 1.104 + // ^v 1 unit . 1.105 + // boundary_low ------------------------- unsafe_interval 1.106 + // ^v 1 unit v 1.107 + // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.108 + // 1.109 + // 1.110 + // Note that the value of buffer could lie anywhere inside the range too_low 1.111 + // to too_high. 1.112 + // 1.113 + // boundary_low, boundary_high and w are approximations of the real boundaries 1.114 + // and v (the input number). They are guaranteed to be precise up to one unit. 1.115 + // In fact the error is guaranteed to be strictly less than one unit. 1.116 + // 1.117 + // Anything that lies outside the unsafe interval is guaranteed not to round 1.118 + // to v when read again. 1.119 + // Anything that lies inside the safe interval is guaranteed to round to v 1.120 + // when read again. 1.121 + // If the number inside the buffer lies inside the unsafe interval but not 1.122 + // inside the safe interval then we simply do not know and bail out (returning 1.123 + // false). 1.124 + // 1.125 + // Similarly we have to take into account the imprecision of 'w' when finding 1.126 + // the closest representation of 'w'. If we have two potential 1.127 + // representations, and one is closer to both w_low and w_high, then we know 1.128 + // it is closer to the actual value v. 1.129 + // 1.130 + // By generating the digits of too_high we got the largest (closest to 1.131 + // too_high) buffer that is still in the unsafe interval. In the case where 1.132 + // w_high < buffer < too_high we try to decrement the buffer. 1.133 + // This way the buffer approaches (rounds towards) w. 1.134 + // There are 3 conditions that stop the decrementation process: 1.135 + // 1) the buffer is already below w_high 1.136 + // 2) decrementing the buffer would make it leave the unsafe interval 1.137 + // 3) decrementing the buffer would yield a number below w_high and farther 1.138 + // away than the current number. In other words: 1.139 + // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high 1.140 + // Instead of using the buffer directly we use its distance to too_high. 1.141 + // Conceptually rest ~= too_high - buffer 1.142 + // We need to do the following tests in this order to avoid over- and 1.143 + // underflows. 1.144 + ASSERT(rest <= unsafe_interval); 1.145 + while (rest < small_distance && // Negated condition 1 1.146 + unsafe_interval - rest >= ten_kappa && // Negated condition 2 1.147 + (rest + ten_kappa < small_distance || // buffer{-1} > w_high 1.148 + small_distance - rest >= rest + ten_kappa - small_distance)) { 1.149 + buffer[length - 1]--; 1.150 + rest += ten_kappa; 1.151 + } 1.152 + 1.153 + // We have approached w+ as much as possible. We now test if approaching w- 1.154 + // would require changing the buffer. If yes, then we have two possible 1.155 + // representations close to w, but we cannot decide which one is closer. 1.156 + if (rest < big_distance && 1.157 + unsafe_interval - rest >= ten_kappa && 1.158 + (rest + ten_kappa < big_distance || 1.159 + big_distance - rest > rest + ten_kappa - big_distance)) { 1.160 + return false; 1.161 + } 1.162 + 1.163 + // Weeding test. 1.164 + // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] 1.165 + // Since too_low = too_high - unsafe_interval this is equivalent to 1.166 + // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] 1.167 + // Conceptually we have: rest ~= too_high - buffer 1.168 + return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); 1.169 +} 1.170 + 1.171 + 1.172 +// Rounds the buffer upwards if the result is closer to v by possibly adding 1.173 +// 1 to the buffer. If the precision of the calculation is not sufficient to 1.174 +// round correctly, return false. 1.175 +// The rounding might shift the whole buffer in which case the kappa is 1.176 +// adjusted. For example "99", kappa = 3 might become "10", kappa = 4. 1.177 +// 1.178 +// If 2*rest > ten_kappa then the buffer needs to be round up. 1.179 +// rest can have an error of +/- 1 unit. This function accounts for the 1.180 +// imprecision and returns false, if the rounding direction cannot be 1.181 +// unambiguously determined. 1.182 +// 1.183 +// Precondition: rest < ten_kappa. 1.184 +static bool RoundWeedCounted(Vector<char> buffer, 1.185 + int length, 1.186 + uint64_t rest, 1.187 + uint64_t ten_kappa, 1.188 + uint64_t unit, 1.189 + int* kappa) { 1.190 + ASSERT(rest < ten_kappa); 1.191 + // The following tests are done in a specific order to avoid overflows. They 1.192 + // will work correctly with any uint64 values of rest < ten_kappa and unit. 1.193 + // 1.194 + // If the unit is too big, then we don't know which way to round. For example 1.195 + // a unit of 50 means that the real number lies within rest +/- 50. If 1.196 + // 10^kappa == 40 then there is no way to tell which way to round. 1.197 + if (unit >= ten_kappa) return false; 1.198 + // Even if unit is just half the size of 10^kappa we are already completely 1.199 + // lost. (And after the previous test we know that the expression will not 1.200 + // over/underflow.) 1.201 + if (ten_kappa - unit <= unit) return false; 1.202 + // If 2 * (rest + unit) <= 10^kappa we can safely round down. 1.203 + if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { 1.204 + return true; 1.205 + } 1.206 + // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. 1.207 + if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { 1.208 + // Increment the last digit recursively until we find a non '9' digit. 1.209 + buffer[length - 1]++; 1.210 + for (int i = length - 1; i > 0; --i) { 1.211 + if (buffer[i] != '0' + 10) break; 1.212 + buffer[i] = '0'; 1.213 + buffer[i - 1]++; 1.214 + } 1.215 + // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the 1.216 + // exception of the first digit all digits are now '0'. Simply switch the 1.217 + // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and 1.218 + // the power (the kappa) is increased. 1.219 + if (buffer[0] == '0' + 10) { 1.220 + buffer[0] = '1'; 1.221 + (*kappa) += 1; 1.222 + } 1.223 + return true; 1.224 + } 1.225 + return false; 1.226 +} 1.227 + 1.228 +// Returns the biggest power of ten that is less than or equal to the given 1.229 +// number. We furthermore receive the maximum number of bits 'number' has. 1.230 +// 1.231 +// Returns power == 10^(exponent_plus_one-1) such that 1.232 +// power <= number < power * 10. 1.233 +// If number_bits == 0 then 0^(0-1) is returned. 1.234 +// The number of bits must be <= 32. 1.235 +// Precondition: number < (1 << (number_bits + 1)). 1.236 + 1.237 +// Inspired by the method for finding an integer log base 10 from here: 1.238 +// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 1.239 +static unsigned int const kSmallPowersOfTen[] = 1.240 + {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1.241 + 1000000000}; 1.242 + 1.243 +static void BiggestPowerTen(uint32_t number, 1.244 + int number_bits, 1.245 + uint32_t* power, 1.246 + int* exponent_plus_one) { 1.247 + ASSERT(number < (1u << (number_bits + 1))); 1.248 + // 1233/4096 is approximately 1/lg(10). 1.249 + int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); 1.250 + // We increment to skip over the first entry in the kPowersOf10 table. 1.251 + // Note: kPowersOf10[i] == 10^(i-1). 1.252 + exponent_plus_one_guess++; 1.253 + // We don't have any guarantees that 2^number_bits <= number. 1.254 + // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see 1.255 + // number < (2^number_bits - 1), but I haven't encountered 1.256 + // number < (2^number_bits - 2) yet. 1.257 + while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { 1.258 + exponent_plus_one_guess--; 1.259 + } 1.260 + *power = kSmallPowersOfTen[exponent_plus_one_guess]; 1.261 + *exponent_plus_one = exponent_plus_one_guess; 1.262 +} 1.263 + 1.264 +// Generates the digits of input number w. 1.265 +// w is a floating-point number (DiyFp), consisting of a significand and an 1.266 +// exponent. Its exponent is bounded by kMinimalTargetExponent and 1.267 +// kMaximalTargetExponent. 1.268 +// Hence -60 <= w.e() <= -32. 1.269 +// 1.270 +// Returns false if it fails, in which case the generated digits in the buffer 1.271 +// should not be used. 1.272 +// Preconditions: 1.273 +// * low, w and high are correct up to 1 ulp (unit in the last place). That 1.274 +// is, their error must be less than a unit of their last digits. 1.275 +// * low.e() == w.e() == high.e() 1.276 +// * low < w < high, and taking into account their error: low~ <= high~ 1.277 +// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 1.278 +// Postconditions: returns false if procedure fails. 1.279 +// otherwise: 1.280 +// * buffer is not null-terminated, but len contains the number of digits. 1.281 +// * buffer contains the shortest possible decimal digit-sequence 1.282 +// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the 1.283 +// correct values of low and high (without their error). 1.284 +// * if more than one decimal representation gives the minimal number of 1.285 +// decimal digits then the one closest to W (where W is the correct value 1.286 +// of w) is chosen. 1.287 +// Remark: this procedure takes into account the imprecision of its input 1.288 +// numbers. If the precision is not enough to guarantee all the postconditions 1.289 +// then false is returned. This usually happens rarely (~0.5%). 1.290 +// 1.291 +// Say, for the sake of example, that 1.292 +// w.e() == -48, and w.f() == 0x1234567890abcdef 1.293 +// w's value can be computed by w.f() * 2^w.e() 1.294 +// We can obtain w's integral digits by simply shifting w.f() by -w.e(). 1.295 +// -> w's integral part is 0x1234 1.296 +// w's fractional part is therefore 0x567890abcdef. 1.297 +// Printing w's integral part is easy (simply print 0x1234 in decimal). 1.298 +// In order to print its fraction we repeatedly multiply the fraction by 10 and 1.299 +// get each digit. Example the first digit after the point would be computed by 1.300 +// (0x567890abcdef * 10) >> 48. -> 3 1.301 +// The whole thing becomes slightly more complicated because we want to stop 1.302 +// once we have enough digits. That is, once the digits inside the buffer 1.303 +// represent 'w' we can stop. Everything inside the interval low - high 1.304 +// represents w. However we have to pay attention to low, high and w's 1.305 +// imprecision. 1.306 +static bool DigitGen(DiyFp low, 1.307 + DiyFp w, 1.308 + DiyFp high, 1.309 + Vector<char> buffer, 1.310 + int* length, 1.311 + int* kappa) { 1.312 + ASSERT(low.e() == w.e() && w.e() == high.e()); 1.313 + ASSERT(low.f() + 1 <= high.f() - 1); 1.314 + ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 1.315 + // low, w and high are imprecise, but by less than one ulp (unit in the last 1.316 + // place). 1.317 + // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that 1.318 + // the new numbers are outside of the interval we want the final 1.319 + // representation to lie in. 1.320 + // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield 1.321 + // numbers that are certain to lie in the interval. We will use this fact 1.322 + // later on. 1.323 + // We will now start by generating the digits within the uncertain 1.324 + // interval. Later we will weed out representations that lie outside the safe 1.325 + // interval and thus _might_ lie outside the correct interval. 1.326 + uint64_t unit = 1; 1.327 + DiyFp too_low = DiyFp(low.f() - unit, low.e()); 1.328 + DiyFp too_high = DiyFp(high.f() + unit, high.e()); 1.329 + // too_low and too_high are guaranteed to lie outside the interval we want the 1.330 + // generated number in. 1.331 + DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); 1.332 + // We now cut the input number into two parts: the integral digits and the 1.333 + // fractionals. We will not write any decimal separator though, but adapt 1.334 + // kappa instead. 1.335 + // Reminder: we are currently computing the digits (stored inside the buffer) 1.336 + // such that: too_low < buffer * 10^kappa < too_high 1.337 + // We use too_high for the digit_generation and stop as soon as possible. 1.338 + // If we stop early we effectively round down. 1.339 + DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 1.340 + // Division by one is a shift. 1.341 + uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); 1.342 + // Modulo by one is an and. 1.343 + uint64_t fractionals = too_high.f() & (one.f() - 1); 1.344 + uint32_t divisor; 1.345 + int divisor_exponent_plus_one; 1.346 + BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 1.347 + &divisor, &divisor_exponent_plus_one); 1.348 + *kappa = divisor_exponent_plus_one; 1.349 + *length = 0; 1.350 + // Loop invariant: buffer = too_high / 10^kappa (integer division) 1.351 + // The invariant holds for the first iteration: kappa has been initialized 1.352 + // with the divisor exponent + 1. And the divisor is the biggest power of ten 1.353 + // that is smaller than integrals. 1.354 + while (*kappa > 0) { 1.355 + int digit = integrals / divisor; 1.356 + buffer[*length] = '0' + digit; 1.357 + (*length)++; 1.358 + integrals %= divisor; 1.359 + (*kappa)--; 1.360 + // Note that kappa now equals the exponent of the divisor and that the 1.361 + // invariant thus holds again. 1.362 + uint64_t rest = 1.363 + (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 1.364 + // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) 1.365 + // Reminder: unsafe_interval.e() == one.e() 1.366 + if (rest < unsafe_interval.f()) { 1.367 + // Rounding down (by not emitting the remaining digits) yields a number 1.368 + // that lies within the unsafe interval. 1.369 + return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), 1.370 + unsafe_interval.f(), rest, 1.371 + static_cast<uint64_t>(divisor) << -one.e(), unit); 1.372 + } 1.373 + divisor /= 10; 1.374 + } 1.375 + 1.376 + // The integrals have been generated. We are at the point of the decimal 1.377 + // separator. In the following loop we simply multiply the remaining digits by 1.378 + // 10 and divide by one. We just need to pay attention to multiply associated 1.379 + // data (like the interval or 'unit'), too. 1.380 + // Note that the multiplication by 10 does not overflow, because w.e >= -60 1.381 + // and thus one.e >= -60. 1.382 + ASSERT(one.e() >= -60); 1.383 + ASSERT(fractionals < one.f()); 1.384 + ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 1.385 + while (true) { 1.386 + fractionals *= 10; 1.387 + unit *= 10; 1.388 + unsafe_interval.set_f(unsafe_interval.f() * 10); 1.389 + // Integer division by one. 1.390 + int digit = static_cast<int>(fractionals >> -one.e()); 1.391 + buffer[*length] = '0' + digit; 1.392 + (*length)++; 1.393 + fractionals &= one.f() - 1; // Modulo by one. 1.394 + (*kappa)--; 1.395 + if (fractionals < unsafe_interval.f()) { 1.396 + return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, 1.397 + unsafe_interval.f(), fractionals, one.f(), unit); 1.398 + } 1.399 + } 1.400 +} 1.401 + 1.402 + 1.403 + 1.404 +// Generates (at most) requested_digits digits of input number w. 1.405 +// w is a floating-point number (DiyFp), consisting of a significand and an 1.406 +// exponent. Its exponent is bounded by kMinimalTargetExponent and 1.407 +// kMaximalTargetExponent. 1.408 +// Hence -60 <= w.e() <= -32. 1.409 +// 1.410 +// Returns false if it fails, in which case the generated digits in the buffer 1.411 +// should not be used. 1.412 +// Preconditions: 1.413 +// * w is correct up to 1 ulp (unit in the last place). That 1.414 +// is, its error must be strictly less than a unit of its last digit. 1.415 +// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 1.416 +// 1.417 +// Postconditions: returns false if procedure fails. 1.418 +// otherwise: 1.419 +// * buffer is not null-terminated, but length contains the number of 1.420 +// digits. 1.421 +// * the representation in buffer is the most precise representation of 1.422 +// requested_digits digits. 1.423 +// * buffer contains at most requested_digits digits of w. If there are less 1.424 +// than requested_digits digits then some trailing '0's have been removed. 1.425 +// * kappa is such that 1.426 +// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. 1.427 +// 1.428 +// Remark: This procedure takes into account the imprecision of its input 1.429 +// numbers. If the precision is not enough to guarantee all the postconditions 1.430 +// then false is returned. This usually happens rarely, but the failure-rate 1.431 +// increases with higher requested_digits. 1.432 +static bool DigitGenCounted(DiyFp w, 1.433 + int requested_digits, 1.434 + Vector<char> buffer, 1.435 + int* length, 1.436 + int* kappa) { 1.437 + ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 1.438 + ASSERT(kMinimalTargetExponent >= -60); 1.439 + ASSERT(kMaximalTargetExponent <= -32); 1.440 + // w is assumed to have an error less than 1 unit. Whenever w is scaled we 1.441 + // also scale its error. 1.442 + uint64_t w_error = 1; 1.443 + // We cut the input number into two parts: the integral digits and the 1.444 + // fractional digits. We don't emit any decimal separator, but adapt kappa 1.445 + // instead. Example: instead of writing "1.2" we put "12" into the buffer and 1.446 + // increase kappa by 1. 1.447 + DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 1.448 + // Division by one is a shift. 1.449 + uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); 1.450 + // Modulo by one is an and. 1.451 + uint64_t fractionals = w.f() & (one.f() - 1); 1.452 + uint32_t divisor; 1.453 + int divisor_exponent_plus_one; 1.454 + BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 1.455 + &divisor, &divisor_exponent_plus_one); 1.456 + *kappa = divisor_exponent_plus_one; 1.457 + *length = 0; 1.458 + 1.459 + // Loop invariant: buffer = w / 10^kappa (integer division) 1.460 + // The invariant holds for the first iteration: kappa has been initialized 1.461 + // with the divisor exponent + 1. And the divisor is the biggest power of ten 1.462 + // that is smaller than 'integrals'. 1.463 + while (*kappa > 0) { 1.464 + int digit = integrals / divisor; 1.465 + buffer[*length] = '0' + digit; 1.466 + (*length)++; 1.467 + requested_digits--; 1.468 + integrals %= divisor; 1.469 + (*kappa)--; 1.470 + // Note that kappa now equals the exponent of the divisor and that the 1.471 + // invariant thus holds again. 1.472 + if (requested_digits == 0) break; 1.473 + divisor /= 10; 1.474 + } 1.475 + 1.476 + if (requested_digits == 0) { 1.477 + uint64_t rest = 1.478 + (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 1.479 + return RoundWeedCounted(buffer, *length, rest, 1.480 + static_cast<uint64_t>(divisor) << -one.e(), w_error, 1.481 + kappa); 1.482 + } 1.483 + 1.484 + // The integrals have been generated. We are at the point of the decimal 1.485 + // separator. In the following loop we simply multiply the remaining digits by 1.486 + // 10 and divide by one. We just need to pay attention to multiply associated 1.487 + // data (the 'unit'), too. 1.488 + // Note that the multiplication by 10 does not overflow, because w.e >= -60 1.489 + // and thus one.e >= -60. 1.490 + ASSERT(one.e() >= -60); 1.491 + ASSERT(fractionals < one.f()); 1.492 + ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 1.493 + while (requested_digits > 0 && fractionals > w_error) { 1.494 + fractionals *= 10; 1.495 + w_error *= 10; 1.496 + // Integer division by one. 1.497 + int digit = static_cast<int>(fractionals >> -one.e()); 1.498 + buffer[*length] = '0' + digit; 1.499 + (*length)++; 1.500 + requested_digits--; 1.501 + fractionals &= one.f() - 1; // Modulo by one. 1.502 + (*kappa)--; 1.503 + } 1.504 + if (requested_digits != 0) return false; 1.505 + return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, 1.506 + kappa); 1.507 +} 1.508 + 1.509 + 1.510 +// Provides a decimal representation of v. 1.511 +// Returns true if it succeeds, otherwise the result cannot be trusted. 1.512 +// There will be *length digits inside the buffer (not null-terminated). 1.513 +// If the function returns true then 1.514 +// v == (double) (buffer * 10^decimal_exponent). 1.515 +// The digits in the buffer are the shortest representation possible: no 1.516 +// 0.09999999999999999 instead of 0.1. The shorter representation will even be 1.517 +// chosen even if the longer one would be closer to v. 1.518 +// The last digit will be closest to the actual v. That is, even if several 1.519 +// digits might correctly yield 'v' when read again, the closest will be 1.520 +// computed. 1.521 +static bool Grisu3(double v, 1.522 + FastDtoaMode mode, 1.523 + Vector<char> buffer, 1.524 + int* length, 1.525 + int* decimal_exponent) { 1.526 + DiyFp w = Double(v).AsNormalizedDiyFp(); 1.527 + // boundary_minus and boundary_plus are the boundaries between v and its 1.528 + // closest floating-point neighbors. Any number strictly between 1.529 + // boundary_minus and boundary_plus will round to v when convert to a double. 1.530 + // Grisu3 will never output representations that lie exactly on a boundary. 1.531 + DiyFp boundary_minus, boundary_plus; 1.532 + if (mode == FAST_DTOA_SHORTEST) { 1.533 + Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); 1.534 + } else { 1.535 + ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE); 1.536 + float single_v = static_cast<float>(v); 1.537 + Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus); 1.538 + } 1.539 + ASSERT(boundary_plus.e() == w.e()); 1.540 + DiyFp ten_mk; // Cached power of ten: 10^-k 1.541 + int mk; // -k 1.542 + int ten_mk_minimal_binary_exponent = 1.543 + kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 1.544 + int ten_mk_maximal_binary_exponent = 1.545 + kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 1.546 + PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 1.547 + ten_mk_minimal_binary_exponent, 1.548 + ten_mk_maximal_binary_exponent, 1.549 + &ten_mk, &mk); 1.550 + ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 1.551 + DiyFp::kSignificandSize) && 1.552 + (kMaximalTargetExponent >= w.e() + ten_mk.e() + 1.553 + DiyFp::kSignificandSize)); 1.554 + // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 1.555 + // 64 bit significand and ten_mk is thus only precise up to 64 bits. 1.556 + 1.557 + // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 1.558 + // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 1.559 + // off by a small amount. 1.560 + // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 1.561 + // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 1.562 + // (f-1) * 2^e < w*10^k < (f+1) * 2^e 1.563 + DiyFp scaled_w = DiyFp::Times(w, ten_mk); 1.564 + ASSERT(scaled_w.e() == 1.565 + boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); 1.566 + // In theory it would be possible to avoid some recomputations by computing 1.567 + // the difference between w and boundary_minus/plus (a power of 2) and to 1.568 + // compute scaled_boundary_minus/plus by subtracting/adding from 1.569 + // scaled_w. However the code becomes much less readable and the speed 1.570 + // enhancements are not terriffic. 1.571 + DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); 1.572 + DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); 1.573 + 1.574 + // DigitGen will generate the digits of scaled_w. Therefore we have 1.575 + // v == (double) (scaled_w * 10^-mk). 1.576 + // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an 1.577 + // integer than it will be updated. For instance if scaled_w == 1.23 then 1.578 + // the buffer will be filled with "123" und the decimal_exponent will be 1.579 + // decreased by 2. 1.580 + int kappa; 1.581 + bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, 1.582 + buffer, length, &kappa); 1.583 + *decimal_exponent = -mk + kappa; 1.584 + return result; 1.585 +} 1.586 + 1.587 + 1.588 +// The "counted" version of grisu3 (see above) only generates requested_digits 1.589 +// number of digits. This version does not generate the shortest representation, 1.590 +// and with enough requested digits 0.1 will at some point print as 0.9999999... 1.591 +// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and 1.592 +// therefore the rounding strategy for halfway cases is irrelevant. 1.593 +static bool Grisu3Counted(double v, 1.594 + int requested_digits, 1.595 + Vector<char> buffer, 1.596 + int* length, 1.597 + int* decimal_exponent) { 1.598 + DiyFp w = Double(v).AsNormalizedDiyFp(); 1.599 + DiyFp ten_mk; // Cached power of ten: 10^-k 1.600 + int mk; // -k 1.601 + int ten_mk_minimal_binary_exponent = 1.602 + kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 1.603 + int ten_mk_maximal_binary_exponent = 1.604 + kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 1.605 + PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 1.606 + ten_mk_minimal_binary_exponent, 1.607 + ten_mk_maximal_binary_exponent, 1.608 + &ten_mk, &mk); 1.609 + ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 1.610 + DiyFp::kSignificandSize) && 1.611 + (kMaximalTargetExponent >= w.e() + ten_mk.e() + 1.612 + DiyFp::kSignificandSize)); 1.613 + // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 1.614 + // 64 bit significand and ten_mk is thus only precise up to 64 bits. 1.615 + 1.616 + // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 1.617 + // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 1.618 + // off by a small amount. 1.619 + // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 1.620 + // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 1.621 + // (f-1) * 2^e < w*10^k < (f+1) * 2^e 1.622 + DiyFp scaled_w = DiyFp::Times(w, ten_mk); 1.623 + 1.624 + // We now have (double) (scaled_w * 10^-mk). 1.625 + // DigitGen will generate the first requested_digits digits of scaled_w and 1.626 + // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It 1.627 + // will not always be exactly the same since DigitGenCounted only produces a 1.628 + // limited number of digits.) 1.629 + int kappa; 1.630 + bool result = DigitGenCounted(scaled_w, requested_digits, 1.631 + buffer, length, &kappa); 1.632 + *decimal_exponent = -mk + kappa; 1.633 + return result; 1.634 +} 1.635 + 1.636 + 1.637 +bool FastDtoa(double v, 1.638 + FastDtoaMode mode, 1.639 + int requested_digits, 1.640 + Vector<char> buffer, 1.641 + int* length, 1.642 + int* decimal_point) { 1.643 + ASSERT(v > 0); 1.644 + ASSERT(!Double(v).IsSpecial()); 1.645 + 1.646 + bool result = false; 1.647 + int decimal_exponent = 0; 1.648 + switch (mode) { 1.649 + case FAST_DTOA_SHORTEST: 1.650 + case FAST_DTOA_SHORTEST_SINGLE: 1.651 + result = Grisu3(v, mode, buffer, length, &decimal_exponent); 1.652 + break; 1.653 + case FAST_DTOA_PRECISION: 1.654 + result = Grisu3Counted(v, requested_digits, 1.655 + buffer, length, &decimal_exponent); 1.656 + break; 1.657 + default: 1.658 + UNREACHABLE(); 1.659 + } 1.660 + if (result) { 1.661 + *decimal_point = *length + decimal_exponent; 1.662 + buffer[*length] = '\0'; 1.663 + } 1.664 + return result; 1.665 +} 1.666 + 1.667 +} // namespace double_conversion