mfbt/double-conversion/ieee.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/mfbt/double-conversion/ieee.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,398 @@
     1.4 +// Copyright 2012 the V8 project authors. All rights reserved.
     1.5 +// Redistribution and use in source and binary forms, with or without
     1.6 +// modification, are permitted provided that the following conditions are
     1.7 +// met:
     1.8 +//
     1.9 +//     * Redistributions of source code must retain the above copyright
    1.10 +//       notice, this list of conditions and the following disclaimer.
    1.11 +//     * Redistributions in binary form must reproduce the above
    1.12 +//       copyright notice, this list of conditions and the following
    1.13 +//       disclaimer in the documentation and/or other materials provided
    1.14 +//       with the distribution.
    1.15 +//     * Neither the name of Google Inc. nor the names of its
    1.16 +//       contributors may be used to endorse or promote products derived
    1.17 +//       from this software without specific prior written permission.
    1.18 +//
    1.19 +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    1.20 +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    1.21 +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    1.22 +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    1.23 +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    1.24 +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    1.25 +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    1.26 +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    1.27 +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    1.28 +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    1.29 +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    1.30 +
    1.31 +#ifndef DOUBLE_CONVERSION_DOUBLE_H_
    1.32 +#define DOUBLE_CONVERSION_DOUBLE_H_
    1.33 +
    1.34 +#include "diy-fp.h"
    1.35 +
    1.36 +namespace double_conversion {
    1.37 +
    1.38 +// We assume that doubles and uint64_t have the same endianness.
    1.39 +static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
    1.40 +static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
    1.41 +static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
    1.42 +static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
    1.43 +
    1.44 +// Helper functions for doubles.
    1.45 +class Double {
    1.46 + public:
    1.47 +  static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
    1.48 +  static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
    1.49 +  static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
    1.50 +  static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
    1.51 +  static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
    1.52 +  static const int kSignificandSize = 53;
    1.53 +
    1.54 +  Double() : d64_(0) {}
    1.55 +  explicit Double(double d) : d64_(double_to_uint64(d)) {}
    1.56 +  explicit Double(uint64_t d64) : d64_(d64) {}
    1.57 +  explicit Double(DiyFp diy_fp)
    1.58 +    : d64_(DiyFpToUint64(diy_fp)) {}
    1.59 +
    1.60 +  // The value encoded by this Double must be greater or equal to +0.0.
    1.61 +  // It must not be special (infinity, or NaN).
    1.62 +  DiyFp AsDiyFp() const {
    1.63 +    ASSERT(Sign() > 0);
    1.64 +    ASSERT(!IsSpecial());
    1.65 +    return DiyFp(Significand(), Exponent());
    1.66 +  }
    1.67 +
    1.68 +  // The value encoded by this Double must be strictly greater than 0.
    1.69 +  DiyFp AsNormalizedDiyFp() const {
    1.70 +    ASSERT(value() > 0.0);
    1.71 +    uint64_t f = Significand();
    1.72 +    int e = Exponent();
    1.73 +
    1.74 +    // The current double could be a denormal.
    1.75 +    while ((f & kHiddenBit) == 0) {
    1.76 +      f <<= 1;
    1.77 +      e--;
    1.78 +    }
    1.79 +    // Do the final shifts in one go.
    1.80 +    f <<= DiyFp::kSignificandSize - kSignificandSize;
    1.81 +    e -= DiyFp::kSignificandSize - kSignificandSize;
    1.82 +    return DiyFp(f, e);
    1.83 +  }
    1.84 +
    1.85 +  // Returns the double's bit as uint64.
    1.86 +  uint64_t AsUint64() const {
    1.87 +    return d64_;
    1.88 +  }
    1.89 +
    1.90 +  // Returns the next greater double. Returns +infinity on input +infinity.
    1.91 +  double NextDouble() const {
    1.92 +    if (d64_ == kInfinity) return Double(kInfinity).value();
    1.93 +    if (Sign() < 0 && Significand() == 0) {
    1.94 +      // -0.0
    1.95 +      return 0.0;
    1.96 +    }
    1.97 +    if (Sign() < 0) {
    1.98 +      return Double(d64_ - 1).value();
    1.99 +    } else {
   1.100 +      return Double(d64_ + 1).value();
   1.101 +    }
   1.102 +  }
   1.103 +
   1.104 +  double PreviousDouble() const {
   1.105 +    if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
   1.106 +    if (Sign() < 0) {
   1.107 +      return Double(d64_ + 1).value();
   1.108 +    } else {
   1.109 +      if (Significand() == 0) return -0.0;
   1.110 +      return Double(d64_ - 1).value();
   1.111 +    }
   1.112 +  }
   1.113 +
   1.114 +  int Exponent() const {
   1.115 +    if (IsDenormal()) return kDenormalExponent;
   1.116 +
   1.117 +    uint64_t d64 = AsUint64();
   1.118 +    int biased_e =
   1.119 +        static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
   1.120 +    return biased_e - kExponentBias;
   1.121 +  }
   1.122 +
   1.123 +  uint64_t Significand() const {
   1.124 +    uint64_t d64 = AsUint64();
   1.125 +    uint64_t significand = d64 & kSignificandMask;
   1.126 +    if (!IsDenormal()) {
   1.127 +      return significand + kHiddenBit;
   1.128 +    } else {
   1.129 +      return significand;
   1.130 +    }
   1.131 +  }
   1.132 +
   1.133 +  // Returns true if the double is a denormal.
   1.134 +  bool IsDenormal() const {
   1.135 +    uint64_t d64 = AsUint64();
   1.136 +    return (d64 & kExponentMask) == 0;
   1.137 +  }
   1.138 +
   1.139 +  // We consider denormals not to be special.
   1.140 +  // Hence only Infinity and NaN are special.
   1.141 +  bool IsSpecial() const {
   1.142 +    uint64_t d64 = AsUint64();
   1.143 +    return (d64 & kExponentMask) == kExponentMask;
   1.144 +  }
   1.145 +
   1.146 +  bool IsNan() const {
   1.147 +    uint64_t d64 = AsUint64();
   1.148 +    return ((d64 & kExponentMask) == kExponentMask) &&
   1.149 +        ((d64 & kSignificandMask) != 0);
   1.150 +  }
   1.151 +
   1.152 +  bool IsInfinite() const {
   1.153 +    uint64_t d64 = AsUint64();
   1.154 +    return ((d64 & kExponentMask) == kExponentMask) &&
   1.155 +        ((d64 & kSignificandMask) == 0);
   1.156 +  }
   1.157 +
   1.158 +  int Sign() const {
   1.159 +    uint64_t d64 = AsUint64();
   1.160 +    return (d64 & kSignMask) == 0? 1: -1;
   1.161 +  }
   1.162 +
   1.163 +  // Precondition: the value encoded by this Double must be greater or equal
   1.164 +  // than +0.0.
   1.165 +  DiyFp UpperBoundary() const {
   1.166 +    ASSERT(Sign() > 0);
   1.167 +    return DiyFp(Significand() * 2 + 1, Exponent() - 1);
   1.168 +  }
   1.169 +
   1.170 +  // Computes the two boundaries of this.
   1.171 +  // The bigger boundary (m_plus) is normalized. The lower boundary has the same
   1.172 +  // exponent as m_plus.
   1.173 +  // Precondition: the value encoded by this Double must be greater than 0.
   1.174 +  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
   1.175 +    ASSERT(value() > 0.0);
   1.176 +    DiyFp v = this->AsDiyFp();
   1.177 +    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
   1.178 +    DiyFp m_minus;
   1.179 +    if (LowerBoundaryIsCloser()) {
   1.180 +      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
   1.181 +    } else {
   1.182 +      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
   1.183 +    }
   1.184 +    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
   1.185 +    m_minus.set_e(m_plus.e());
   1.186 +    *out_m_plus = m_plus;
   1.187 +    *out_m_minus = m_minus;
   1.188 +  }
   1.189 +
   1.190 +  bool LowerBoundaryIsCloser() const {
   1.191 +    // The boundary is closer if the significand is of the form f == 2^p-1 then
   1.192 +    // the lower boundary is closer.
   1.193 +    // Think of v = 1000e10 and v- = 9999e9.
   1.194 +    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
   1.195 +    // at a distance of 1e8.
   1.196 +    // The only exception is for the smallest normal: the largest denormal is
   1.197 +    // at the same distance as its successor.
   1.198 +    // Note: denormals have the same exponent as the smallest normals.
   1.199 +    bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
   1.200 +    return physical_significand_is_zero && (Exponent() != kDenormalExponent);
   1.201 +  }
   1.202 +
   1.203 +  double value() const { return uint64_to_double(d64_); }
   1.204 +
   1.205 +  // Returns the significand size for a given order of magnitude.
   1.206 +  // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
   1.207 +  // This function returns the number of significant binary digits v will have
   1.208 +  // once it's encoded into a double. In almost all cases this is equal to
   1.209 +  // kSignificandSize. The only exceptions are denormals. They start with
   1.210 +  // leading zeroes and their effective significand-size is hence smaller.
   1.211 +  static int SignificandSizeForOrderOfMagnitude(int order) {
   1.212 +    if (order >= (kDenormalExponent + kSignificandSize)) {
   1.213 +      return kSignificandSize;
   1.214 +    }
   1.215 +    if (order <= kDenormalExponent) return 0;
   1.216 +    return order - kDenormalExponent;
   1.217 +  }
   1.218 +
   1.219 +  static double Infinity() {
   1.220 +    return Double(kInfinity).value();
   1.221 +  }
   1.222 +
   1.223 +  static double NaN() {
   1.224 +    return Double(kNaN).value();
   1.225 +  }
   1.226 +
   1.227 + private:
   1.228 +  static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
   1.229 +  static const int kDenormalExponent = -kExponentBias + 1;
   1.230 +  static const int kMaxExponent = 0x7FF - kExponentBias;
   1.231 +  static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
   1.232 +  static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
   1.233 +
   1.234 +  const uint64_t d64_;
   1.235 +
   1.236 +  static uint64_t DiyFpToUint64(DiyFp diy_fp) {
   1.237 +    uint64_t significand = diy_fp.f();
   1.238 +    int exponent = diy_fp.e();
   1.239 +    while (significand > kHiddenBit + kSignificandMask) {
   1.240 +      significand >>= 1;
   1.241 +      exponent++;
   1.242 +    }
   1.243 +    if (exponent >= kMaxExponent) {
   1.244 +      return kInfinity;
   1.245 +    }
   1.246 +    if (exponent < kDenormalExponent) {
   1.247 +      return 0;
   1.248 +    }
   1.249 +    while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
   1.250 +      significand <<= 1;
   1.251 +      exponent--;
   1.252 +    }
   1.253 +    uint64_t biased_exponent;
   1.254 +    if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
   1.255 +      biased_exponent = 0;
   1.256 +    } else {
   1.257 +      biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
   1.258 +    }
   1.259 +    return (significand & kSignificandMask) |
   1.260 +        (biased_exponent << kPhysicalSignificandSize);
   1.261 +  }
   1.262 +};
   1.263 +
   1.264 +class Single {
   1.265 + public:
   1.266 +  static const uint32_t kSignMask = 0x80000000;
   1.267 +  static const uint32_t kExponentMask = 0x7F800000;
   1.268 +  static const uint32_t kSignificandMask = 0x007FFFFF;
   1.269 +  static const uint32_t kHiddenBit = 0x00800000;
   1.270 +  static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
   1.271 +  static const int kSignificandSize = 24;
   1.272 +
   1.273 +  Single() : d32_(0) {}
   1.274 +  explicit Single(float f) : d32_(float_to_uint32(f)) {}
   1.275 +  explicit Single(uint32_t d32) : d32_(d32) {}
   1.276 +
   1.277 +  // The value encoded by this Single must be greater or equal to +0.0.
   1.278 +  // It must not be special (infinity, or NaN).
   1.279 +  DiyFp AsDiyFp() const {
   1.280 +    ASSERT(Sign() > 0);
   1.281 +    ASSERT(!IsSpecial());
   1.282 +    return DiyFp(Significand(), Exponent());
   1.283 +  }
   1.284 +
   1.285 +  // Returns the single's bit as uint64.
   1.286 +  uint32_t AsUint32() const {
   1.287 +    return d32_;
   1.288 +  }
   1.289 +
   1.290 +  int Exponent() const {
   1.291 +    if (IsDenormal()) return kDenormalExponent;
   1.292 +
   1.293 +    uint32_t d32 = AsUint32();
   1.294 +    int biased_e =
   1.295 +        static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
   1.296 +    return biased_e - kExponentBias;
   1.297 +  }
   1.298 +
   1.299 +  uint32_t Significand() const {
   1.300 +    uint32_t d32 = AsUint32();
   1.301 +    uint32_t significand = d32 & kSignificandMask;
   1.302 +    if (!IsDenormal()) {
   1.303 +      return significand + kHiddenBit;
   1.304 +    } else {
   1.305 +      return significand;
   1.306 +    }
   1.307 +  }
   1.308 +
   1.309 +  // Returns true if the single is a denormal.
   1.310 +  bool IsDenormal() const {
   1.311 +    uint32_t d32 = AsUint32();
   1.312 +    return (d32 & kExponentMask) == 0;
   1.313 +  }
   1.314 +
   1.315 +  // We consider denormals not to be special.
   1.316 +  // Hence only Infinity and NaN are special.
   1.317 +  bool IsSpecial() const {
   1.318 +    uint32_t d32 = AsUint32();
   1.319 +    return (d32 & kExponentMask) == kExponentMask;
   1.320 +  }
   1.321 +
   1.322 +  bool IsNan() const {
   1.323 +    uint32_t d32 = AsUint32();
   1.324 +    return ((d32 & kExponentMask) == kExponentMask) &&
   1.325 +        ((d32 & kSignificandMask) != 0);
   1.326 +  }
   1.327 +
   1.328 +  bool IsInfinite() const {
   1.329 +    uint32_t d32 = AsUint32();
   1.330 +    return ((d32 & kExponentMask) == kExponentMask) &&
   1.331 +        ((d32 & kSignificandMask) == 0);
   1.332 +  }
   1.333 +
   1.334 +  int Sign() const {
   1.335 +    uint32_t d32 = AsUint32();
   1.336 +    return (d32 & kSignMask) == 0? 1: -1;
   1.337 +  }
   1.338 +
   1.339 +  // Computes the two boundaries of this.
   1.340 +  // The bigger boundary (m_plus) is normalized. The lower boundary has the same
   1.341 +  // exponent as m_plus.
   1.342 +  // Precondition: the value encoded by this Single must be greater than 0.
   1.343 +  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
   1.344 +    ASSERT(value() > 0.0);
   1.345 +    DiyFp v = this->AsDiyFp();
   1.346 +    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
   1.347 +    DiyFp m_minus;
   1.348 +    if (LowerBoundaryIsCloser()) {
   1.349 +      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
   1.350 +    } else {
   1.351 +      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
   1.352 +    }
   1.353 +    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
   1.354 +    m_minus.set_e(m_plus.e());
   1.355 +    *out_m_plus = m_plus;
   1.356 +    *out_m_minus = m_minus;
   1.357 +  }
   1.358 +
   1.359 +  // Precondition: the value encoded by this Single must be greater or equal
   1.360 +  // than +0.0.
   1.361 +  DiyFp UpperBoundary() const {
   1.362 +    ASSERT(Sign() > 0);
   1.363 +    return DiyFp(Significand() * 2 + 1, Exponent() - 1);
   1.364 +  }
   1.365 +
   1.366 +  bool LowerBoundaryIsCloser() const {
   1.367 +    // The boundary is closer if the significand is of the form f == 2^p-1 then
   1.368 +    // the lower boundary is closer.
   1.369 +    // Think of v = 1000e10 and v- = 9999e9.
   1.370 +    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
   1.371 +    // at a distance of 1e8.
   1.372 +    // The only exception is for the smallest normal: the largest denormal is
   1.373 +    // at the same distance as its successor.
   1.374 +    // Note: denormals have the same exponent as the smallest normals.
   1.375 +    bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
   1.376 +    return physical_significand_is_zero && (Exponent() != kDenormalExponent);
   1.377 +  }
   1.378 +
   1.379 +  float value() const { return uint32_to_float(d32_); }
   1.380 +
   1.381 +  static float Infinity() {
   1.382 +    return Single(kInfinity).value();
   1.383 +  }
   1.384 +
   1.385 +  static float NaN() {
   1.386 +    return Single(kNaN).value();
   1.387 +  }
   1.388 +
   1.389 + private:
   1.390 +  static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
   1.391 +  static const int kDenormalExponent = -kExponentBias + 1;
   1.392 +  static const int kMaxExponent = 0xFF - kExponentBias;
   1.393 +  static const uint32_t kInfinity = 0x7F800000;
   1.394 +  static const uint32_t kNaN = 0x7FC00000;
   1.395 +
   1.396 +  const uint32_t d32_;
   1.397 +};
   1.398 +
   1.399 +}  // namespace double_conversion
   1.400 +
   1.401 +#endif  // DOUBLE_CONVERSION_DOUBLE_H_

mercurial