modules/zlib/src/crc32.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/modules/zlib/src/crc32.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,425 @@
     1.4 +/* crc32.c -- compute the CRC-32 of a data stream
     1.5 + * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
     1.6 + * For conditions of distribution and use, see copyright notice in zlib.h
     1.7 + *
     1.8 + * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
     1.9 + * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
    1.10 + * tables for updating the shift register in one step with three exclusive-ors
    1.11 + * instead of four steps with four exclusive-ors.  This results in about a
    1.12 + * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
    1.13 + */
    1.14 +
    1.15 +/* @(#) $Id$ */
    1.16 +
    1.17 +/*
    1.18 +  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
    1.19 +  protection on the static variables used to control the first-use generation
    1.20 +  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
    1.21 +  first call get_crc_table() to initialize the tables before allowing more than
    1.22 +  one thread to use crc32().
    1.23 +
    1.24 +  DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
    1.25 + */
    1.26 +
    1.27 +#ifdef MAKECRCH
    1.28 +#  include <stdio.h>
    1.29 +#  ifndef DYNAMIC_CRC_TABLE
    1.30 +#    define DYNAMIC_CRC_TABLE
    1.31 +#  endif /* !DYNAMIC_CRC_TABLE */
    1.32 +#endif /* MAKECRCH */
    1.33 +
    1.34 +#include "zutil.h"      /* for STDC and FAR definitions */
    1.35 +
    1.36 +#define local static
    1.37 +
    1.38 +/* Definitions for doing the crc four data bytes at a time. */
    1.39 +#if !defined(NOBYFOUR) && defined(Z_U4)
    1.40 +#  define BYFOUR
    1.41 +#endif
    1.42 +#ifdef BYFOUR
    1.43 +   local unsigned long crc32_little OF((unsigned long,
    1.44 +                        const unsigned char FAR *, unsigned));
    1.45 +   local unsigned long crc32_big OF((unsigned long,
    1.46 +                        const unsigned char FAR *, unsigned));
    1.47 +#  define TBLS 8
    1.48 +#else
    1.49 +#  define TBLS 1
    1.50 +#endif /* BYFOUR */
    1.51 +
    1.52 +/* Local functions for crc concatenation */
    1.53 +local unsigned long gf2_matrix_times OF((unsigned long *mat,
    1.54 +                                         unsigned long vec));
    1.55 +local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
    1.56 +local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
    1.57 +
    1.58 +
    1.59 +#ifdef DYNAMIC_CRC_TABLE
    1.60 +
    1.61 +local volatile int crc_table_empty = 1;
    1.62 +local z_crc_t FAR crc_table[TBLS][256];
    1.63 +local void make_crc_table OF((void));
    1.64 +#ifdef MAKECRCH
    1.65 +   local void write_table OF((FILE *, const z_crc_t FAR *));
    1.66 +#endif /* MAKECRCH */
    1.67 +/*
    1.68 +  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
    1.69 +  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
    1.70 +
    1.71 +  Polynomials over GF(2) are represented in binary, one bit per coefficient,
    1.72 +  with the lowest powers in the most significant bit.  Then adding polynomials
    1.73 +  is just exclusive-or, and multiplying a polynomial by x is a right shift by
    1.74 +  one.  If we call the above polynomial p, and represent a byte as the
    1.75 +  polynomial q, also with the lowest power in the most significant bit (so the
    1.76 +  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
    1.77 +  where a mod b means the remainder after dividing a by b.
    1.78 +
    1.79 +  This calculation is done using the shift-register method of multiplying and
    1.80 +  taking the remainder.  The register is initialized to zero, and for each
    1.81 +  incoming bit, x^32 is added mod p to the register if the bit is a one (where
    1.82 +  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
    1.83 +  x (which is shifting right by one and adding x^32 mod p if the bit shifted
    1.84 +  out is a one).  We start with the highest power (least significant bit) of
    1.85 +  q and repeat for all eight bits of q.
    1.86 +
    1.87 +  The first table is simply the CRC of all possible eight bit values.  This is
    1.88 +  all the information needed to generate CRCs on data a byte at a time for all
    1.89 +  combinations of CRC register values and incoming bytes.  The remaining tables
    1.90 +  allow for word-at-a-time CRC calculation for both big-endian and little-
    1.91 +  endian machines, where a word is four bytes.
    1.92 +*/
    1.93 +local void make_crc_table()
    1.94 +{
    1.95 +    z_crc_t c;
    1.96 +    int n, k;
    1.97 +    z_crc_t poly;                       /* polynomial exclusive-or pattern */
    1.98 +    /* terms of polynomial defining this crc (except x^32): */
    1.99 +    static volatile int first = 1;      /* flag to limit concurrent making */
   1.100 +    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
   1.101 +
   1.102 +    /* See if another task is already doing this (not thread-safe, but better
   1.103 +       than nothing -- significantly reduces duration of vulnerability in
   1.104 +       case the advice about DYNAMIC_CRC_TABLE is ignored) */
   1.105 +    if (first) {
   1.106 +        first = 0;
   1.107 +
   1.108 +        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
   1.109 +        poly = 0;
   1.110 +        for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
   1.111 +            poly |= (z_crc_t)1 << (31 - p[n]);
   1.112 +
   1.113 +        /* generate a crc for every 8-bit value */
   1.114 +        for (n = 0; n < 256; n++) {
   1.115 +            c = (z_crc_t)n;
   1.116 +            for (k = 0; k < 8; k++)
   1.117 +                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
   1.118 +            crc_table[0][n] = c;
   1.119 +        }
   1.120 +
   1.121 +#ifdef BYFOUR
   1.122 +        /* generate crc for each value followed by one, two, and three zeros,
   1.123 +           and then the byte reversal of those as well as the first table */
   1.124 +        for (n = 0; n < 256; n++) {
   1.125 +            c = crc_table[0][n];
   1.126 +            crc_table[4][n] = ZSWAP32(c);
   1.127 +            for (k = 1; k < 4; k++) {
   1.128 +                c = crc_table[0][c & 0xff] ^ (c >> 8);
   1.129 +                crc_table[k][n] = c;
   1.130 +                crc_table[k + 4][n] = ZSWAP32(c);
   1.131 +            }
   1.132 +        }
   1.133 +#endif /* BYFOUR */
   1.134 +
   1.135 +        crc_table_empty = 0;
   1.136 +    }
   1.137 +    else {      /* not first */
   1.138 +        /* wait for the other guy to finish (not efficient, but rare) */
   1.139 +        while (crc_table_empty)
   1.140 +            ;
   1.141 +    }
   1.142 +
   1.143 +#ifdef MAKECRCH
   1.144 +    /* write out CRC tables to crc32.h */
   1.145 +    {
   1.146 +        FILE *out;
   1.147 +
   1.148 +        out = fopen("crc32.h", "w");
   1.149 +        if (out == NULL) return;
   1.150 +        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
   1.151 +        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
   1.152 +        fprintf(out, "local const z_crc_t FAR ");
   1.153 +        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
   1.154 +        write_table(out, crc_table[0]);
   1.155 +#  ifdef BYFOUR
   1.156 +        fprintf(out, "#ifdef BYFOUR\n");
   1.157 +        for (k = 1; k < 8; k++) {
   1.158 +            fprintf(out, "  },\n  {\n");
   1.159 +            write_table(out, crc_table[k]);
   1.160 +        }
   1.161 +        fprintf(out, "#endif\n");
   1.162 +#  endif /* BYFOUR */
   1.163 +        fprintf(out, "  }\n};\n");
   1.164 +        fclose(out);
   1.165 +    }
   1.166 +#endif /* MAKECRCH */
   1.167 +}
   1.168 +
   1.169 +#ifdef MAKECRCH
   1.170 +local void write_table(out, table)
   1.171 +    FILE *out;
   1.172 +    const z_crc_t FAR *table;
   1.173 +{
   1.174 +    int n;
   1.175 +
   1.176 +    for (n = 0; n < 256; n++)
   1.177 +        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
   1.178 +                (unsigned long)(table[n]),
   1.179 +                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
   1.180 +}
   1.181 +#endif /* MAKECRCH */
   1.182 +
   1.183 +#else /* !DYNAMIC_CRC_TABLE */
   1.184 +/* ========================================================================
   1.185 + * Tables of CRC-32s of all single-byte values, made by make_crc_table().
   1.186 + */
   1.187 +#include "crc32.h"
   1.188 +#endif /* DYNAMIC_CRC_TABLE */
   1.189 +
   1.190 +/* =========================================================================
   1.191 + * This function can be used by asm versions of crc32()
   1.192 + */
   1.193 +const z_crc_t FAR * ZEXPORT get_crc_table()
   1.194 +{
   1.195 +#ifdef DYNAMIC_CRC_TABLE
   1.196 +    if (crc_table_empty)
   1.197 +        make_crc_table();
   1.198 +#endif /* DYNAMIC_CRC_TABLE */
   1.199 +    return (const z_crc_t FAR *)crc_table;
   1.200 +}
   1.201 +
   1.202 +/* ========================================================================= */
   1.203 +#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
   1.204 +#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
   1.205 +
   1.206 +/* ========================================================================= */
   1.207 +unsigned long ZEXPORT crc32(crc, buf, len)
   1.208 +    unsigned long crc;
   1.209 +    const unsigned char FAR *buf;
   1.210 +    uInt len;
   1.211 +{
   1.212 +    if (buf == Z_NULL) return 0UL;
   1.213 +
   1.214 +#ifdef DYNAMIC_CRC_TABLE
   1.215 +    if (crc_table_empty)
   1.216 +        make_crc_table();
   1.217 +#endif /* DYNAMIC_CRC_TABLE */
   1.218 +
   1.219 +#ifdef BYFOUR
   1.220 +    if (sizeof(void *) == sizeof(ptrdiff_t)) {
   1.221 +        z_crc_t endian;
   1.222 +
   1.223 +        endian = 1;
   1.224 +        if (*((unsigned char *)(&endian)))
   1.225 +            return crc32_little(crc, buf, len);
   1.226 +        else
   1.227 +            return crc32_big(crc, buf, len);
   1.228 +    }
   1.229 +#endif /* BYFOUR */
   1.230 +    crc = crc ^ 0xffffffffUL;
   1.231 +    while (len >= 8) {
   1.232 +        DO8;
   1.233 +        len -= 8;
   1.234 +    }
   1.235 +    if (len) do {
   1.236 +        DO1;
   1.237 +    } while (--len);
   1.238 +    return crc ^ 0xffffffffUL;
   1.239 +}
   1.240 +
   1.241 +#ifdef BYFOUR
   1.242 +
   1.243 +/* ========================================================================= */
   1.244 +#define DOLIT4 c ^= *buf4++; \
   1.245 +        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
   1.246 +            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
   1.247 +#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
   1.248 +
   1.249 +/* ========================================================================= */
   1.250 +local unsigned long crc32_little(crc, buf, len)
   1.251 +    unsigned long crc;
   1.252 +    const unsigned char FAR *buf;
   1.253 +    unsigned len;
   1.254 +{
   1.255 +    register z_crc_t c;
   1.256 +    register const z_crc_t FAR *buf4;
   1.257 +
   1.258 +    c = (z_crc_t)crc;
   1.259 +    c = ~c;
   1.260 +    while (len && ((ptrdiff_t)buf & 3)) {
   1.261 +        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
   1.262 +        len--;
   1.263 +    }
   1.264 +
   1.265 +    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
   1.266 +    while (len >= 32) {
   1.267 +        DOLIT32;
   1.268 +        len -= 32;
   1.269 +    }
   1.270 +    while (len >= 4) {
   1.271 +        DOLIT4;
   1.272 +        len -= 4;
   1.273 +    }
   1.274 +    buf = (const unsigned char FAR *)buf4;
   1.275 +
   1.276 +    if (len) do {
   1.277 +        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
   1.278 +    } while (--len);
   1.279 +    c = ~c;
   1.280 +    return (unsigned long)c;
   1.281 +}
   1.282 +
   1.283 +/* ========================================================================= */
   1.284 +#define DOBIG4 c ^= *++buf4; \
   1.285 +        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
   1.286 +            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
   1.287 +#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
   1.288 +
   1.289 +/* ========================================================================= */
   1.290 +local unsigned long crc32_big(crc, buf, len)
   1.291 +    unsigned long crc;
   1.292 +    const unsigned char FAR *buf;
   1.293 +    unsigned len;
   1.294 +{
   1.295 +    register z_crc_t c;
   1.296 +    register const z_crc_t FAR *buf4;
   1.297 +
   1.298 +    c = ZSWAP32((z_crc_t)crc);
   1.299 +    c = ~c;
   1.300 +    while (len && ((ptrdiff_t)buf & 3)) {
   1.301 +        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
   1.302 +        len--;
   1.303 +    }
   1.304 +
   1.305 +    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
   1.306 +    buf4--;
   1.307 +    while (len >= 32) {
   1.308 +        DOBIG32;
   1.309 +        len -= 32;
   1.310 +    }
   1.311 +    while (len >= 4) {
   1.312 +        DOBIG4;
   1.313 +        len -= 4;
   1.314 +    }
   1.315 +    buf4++;
   1.316 +    buf = (const unsigned char FAR *)buf4;
   1.317 +
   1.318 +    if (len) do {
   1.319 +        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
   1.320 +    } while (--len);
   1.321 +    c = ~c;
   1.322 +    return (unsigned long)(ZSWAP32(c));
   1.323 +}
   1.324 +
   1.325 +#endif /* BYFOUR */
   1.326 +
   1.327 +#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
   1.328 +
   1.329 +/* ========================================================================= */
   1.330 +local unsigned long gf2_matrix_times(mat, vec)
   1.331 +    unsigned long *mat;
   1.332 +    unsigned long vec;
   1.333 +{
   1.334 +    unsigned long sum;
   1.335 +
   1.336 +    sum = 0;
   1.337 +    while (vec) {
   1.338 +        if (vec & 1)
   1.339 +            sum ^= *mat;
   1.340 +        vec >>= 1;
   1.341 +        mat++;
   1.342 +    }
   1.343 +    return sum;
   1.344 +}
   1.345 +
   1.346 +/* ========================================================================= */
   1.347 +local void gf2_matrix_square(square, mat)
   1.348 +    unsigned long *square;
   1.349 +    unsigned long *mat;
   1.350 +{
   1.351 +    int n;
   1.352 +
   1.353 +    for (n = 0; n < GF2_DIM; n++)
   1.354 +        square[n] = gf2_matrix_times(mat, mat[n]);
   1.355 +}
   1.356 +
   1.357 +/* ========================================================================= */
   1.358 +local uLong crc32_combine_(crc1, crc2, len2)
   1.359 +    uLong crc1;
   1.360 +    uLong crc2;
   1.361 +    z_off64_t len2;
   1.362 +{
   1.363 +    int n;
   1.364 +    unsigned long row;
   1.365 +    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
   1.366 +    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
   1.367 +
   1.368 +    /* degenerate case (also disallow negative lengths) */
   1.369 +    if (len2 <= 0)
   1.370 +        return crc1;
   1.371 +
   1.372 +    /* put operator for one zero bit in odd */
   1.373 +    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
   1.374 +    row = 1;
   1.375 +    for (n = 1; n < GF2_DIM; n++) {
   1.376 +        odd[n] = row;
   1.377 +        row <<= 1;
   1.378 +    }
   1.379 +
   1.380 +    /* put operator for two zero bits in even */
   1.381 +    gf2_matrix_square(even, odd);
   1.382 +
   1.383 +    /* put operator for four zero bits in odd */
   1.384 +    gf2_matrix_square(odd, even);
   1.385 +
   1.386 +    /* apply len2 zeros to crc1 (first square will put the operator for one
   1.387 +       zero byte, eight zero bits, in even) */
   1.388 +    do {
   1.389 +        /* apply zeros operator for this bit of len2 */
   1.390 +        gf2_matrix_square(even, odd);
   1.391 +        if (len2 & 1)
   1.392 +            crc1 = gf2_matrix_times(even, crc1);
   1.393 +        len2 >>= 1;
   1.394 +
   1.395 +        /* if no more bits set, then done */
   1.396 +        if (len2 == 0)
   1.397 +            break;
   1.398 +
   1.399 +        /* another iteration of the loop with odd and even swapped */
   1.400 +        gf2_matrix_square(odd, even);
   1.401 +        if (len2 & 1)
   1.402 +            crc1 = gf2_matrix_times(odd, crc1);
   1.403 +        len2 >>= 1;
   1.404 +
   1.405 +        /* if no more bits set, then done */
   1.406 +    } while (len2 != 0);
   1.407 +
   1.408 +    /* return combined crc */
   1.409 +    crc1 ^= crc2;
   1.410 +    return crc1;
   1.411 +}
   1.412 +
   1.413 +/* ========================================================================= */
   1.414 +uLong ZEXPORT crc32_combine(crc1, crc2, len2)
   1.415 +    uLong crc1;
   1.416 +    uLong crc2;
   1.417 +    z_off_t len2;
   1.418 +{
   1.419 +    return crc32_combine_(crc1, crc2, len2);
   1.420 +}
   1.421 +
   1.422 +uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
   1.423 +    uLong crc1;
   1.424 +    uLong crc2;
   1.425 +    z_off64_t len2;
   1.426 +{
   1.427 +    return crc32_combine_(crc1, crc2, len2);
   1.428 +}

mercurial