1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/nsprpub/pr/src/misc/prdtoa.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,3522 @@ 1.4 +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ 1.5 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.8 + 1.9 +/* 1.10 + * This file is based on the third-party code dtoa.c. We minimize our 1.11 + * modifications to third-party code to make it easy to merge new versions. 1.12 + * The author of dtoa.c was not willing to add the parentheses suggested by 1.13 + * GCC, so we suppress these warnings. 1.14 + */ 1.15 +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) 1.16 +#pragma GCC diagnostic ignored "-Wparentheses" 1.17 +#endif 1.18 + 1.19 +#include "primpl.h" 1.20 +#include "prbit.h" 1.21 + 1.22 +#define MULTIPLE_THREADS 1.23 +#define ACQUIRE_DTOA_LOCK(n) PR_Lock(dtoa_lock[n]) 1.24 +#define FREE_DTOA_LOCK(n) PR_Unlock(dtoa_lock[n]) 1.25 + 1.26 +static PRLock *dtoa_lock[2]; 1.27 + 1.28 +void _PR_InitDtoa(void) 1.29 +{ 1.30 + dtoa_lock[0] = PR_NewLock(); 1.31 + dtoa_lock[1] = PR_NewLock(); 1.32 +} 1.33 + 1.34 +void _PR_CleanupDtoa(void) 1.35 +{ 1.36 + PR_DestroyLock(dtoa_lock[0]); 1.37 + dtoa_lock[0] = NULL; 1.38 + PR_DestroyLock(dtoa_lock[1]); 1.39 + dtoa_lock[1] = NULL; 1.40 + 1.41 + /* FIXME: deal with freelist and p5s. */ 1.42 +} 1.43 + 1.44 +#if !defined(__ARM_EABI__) \ 1.45 + && (defined(__arm) || defined(__arm__) || defined(__arm26__) \ 1.46 + || defined(__arm32__)) 1.47 +#define IEEE_ARM 1.48 +#elif defined(IS_LITTLE_ENDIAN) 1.49 +#define IEEE_8087 1.50 +#else 1.51 +#define IEEE_MC68k 1.52 +#endif 1.53 + 1.54 +#define Long PRInt32 1.55 +#define ULong PRUint32 1.56 +#define NO_LONG_LONG 1.57 + 1.58 +#define No_Hex_NaN 1.59 + 1.60 +/**************************************************************** 1.61 + * 1.62 + * The author of this software is David M. Gay. 1.63 + * 1.64 + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. 1.65 + * 1.66 + * Permission to use, copy, modify, and distribute this software for any 1.67 + * purpose without fee is hereby granted, provided that this entire notice 1.68 + * is included in all copies of any software which is or includes a copy 1.69 + * or modification of this software and in all copies of the supporting 1.70 + * documentation for such software. 1.71 + * 1.72 + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED 1.73 + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY 1.74 + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY 1.75 + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. 1.76 + * 1.77 + ***************************************************************/ 1.78 + 1.79 +/* Please send bug reports to David M. Gay (dmg at acm dot org, 1.80 + * with " at " changed at "@" and " dot " changed to "."). */ 1.81 + 1.82 +/* On a machine with IEEE extended-precision registers, it is 1.83 + * necessary to specify double-precision (53-bit) rounding precision 1.84 + * before invoking strtod or dtoa. If the machine uses (the equivalent 1.85 + * of) Intel 80x87 arithmetic, the call 1.86 + * _control87(PC_53, MCW_PC); 1.87 + * does this with many compilers. Whether this or another call is 1.88 + * appropriate depends on the compiler; for this to work, it may be 1.89 + * necessary to #include "float.h" or another system-dependent header 1.90 + * file. 1.91 + */ 1.92 + 1.93 +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 1.94 + * 1.95 + * This strtod returns a nearest machine number to the input decimal 1.96 + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 1.97 + * broken by the IEEE round-even rule. Otherwise ties are broken by 1.98 + * biased rounding (add half and chop). 1.99 + * 1.100 + * Inspired loosely by William D. Clinger's paper "How to Read Floating 1.101 + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. 1.102 + * 1.103 + * Modifications: 1.104 + * 1.105 + * 1. We only require IEEE, IBM, or VAX double-precision 1.106 + * arithmetic (not IEEE double-extended). 1.107 + * 2. We get by with floating-point arithmetic in a case that 1.108 + * Clinger missed -- when we're computing d * 10^n 1.109 + * for a small integer d and the integer n is not too 1.110 + * much larger than 22 (the maximum integer k for which 1.111 + * we can represent 10^k exactly), we may be able to 1.112 + * compute (d*10^k) * 10^(e-k) with just one roundoff. 1.113 + * 3. Rather than a bit-at-a-time adjustment of the binary 1.114 + * result in the hard case, we use floating-point 1.115 + * arithmetic to determine the adjustment to within 1.116 + * one bit; only in really hard cases do we need to 1.117 + * compute a second residual. 1.118 + * 4. Because of 3., we don't need a large table of powers of 10 1.119 + * for ten-to-e (just some small tables, e.g. of 10^k 1.120 + * for 0 <= k <= 22). 1.121 + */ 1.122 + 1.123 +/* 1.124 + * #define IEEE_8087 for IEEE-arithmetic machines where the least 1.125 + * significant byte has the lowest address. 1.126 + * #define IEEE_MC68k for IEEE-arithmetic machines where the most 1.127 + * significant byte has the lowest address. 1.128 + * #define IEEE_ARM for IEEE-arithmetic machines where the two words 1.129 + * in a double are stored in big endian order but the two shorts 1.130 + * in a word are still stored in little endian order. 1.131 + * #define Long int on machines with 32-bit ints and 64-bit longs. 1.132 + * #define IBM for IBM mainframe-style floating-point arithmetic. 1.133 + * #define VAX for VAX-style floating-point arithmetic (D_floating). 1.134 + * #define No_leftright to omit left-right logic in fast floating-point 1.135 + * computation of dtoa. 1.136 + * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 1.137 + * and strtod and dtoa should round accordingly. 1.138 + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 1.139 + * and Honor_FLT_ROUNDS is not #defined. 1.140 + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 1.141 + * that use extended-precision instructions to compute rounded 1.142 + * products and quotients) with IBM. 1.143 + * #define ROUND_BIASED for IEEE-format with biased rounding. 1.144 + * #define Inaccurate_Divide for IEEE-format with correctly rounded 1.145 + * products but inaccurate quotients, e.g., for Intel i860. 1.146 + * #define NO_LONG_LONG on machines that do not have a "long long" 1.147 + * integer type (of >= 64 bits). On such machines, you can 1.148 + * #define Just_16 to store 16 bits per 32-bit Long when doing 1.149 + * high-precision integer arithmetic. Whether this speeds things 1.150 + * up or slows things down depends on the machine and the number 1.151 + * being converted. If long long is available and the name is 1.152 + * something other than "long long", #define Llong to be the name, 1.153 + * and if "unsigned Llong" does not work as an unsigned version of 1.154 + * Llong, #define #ULLong to be the corresponding unsigned type. 1.155 + * #define KR_headers for old-style C function headers. 1.156 + * #define Bad_float_h if your system lacks a float.h or if it does not 1.157 + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 1.158 + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 1.159 + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 1.160 + * if memory is available and otherwise does something you deem 1.161 + * appropriate. If MALLOC is undefined, malloc will be invoked 1.162 + * directly -- and assumed always to succeed. Similarly, if you 1.163 + * want something other than the system's free() to be called to 1.164 + * recycle memory acquired from MALLOC, #define FREE to be the 1.165 + * name of the alternate routine. (FREE or free is only called in 1.166 + * pathological cases, e.g., in a dtoa call after a dtoa return in 1.167 + * mode 3 with thousands of digits requested.) 1.168 + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 1.169 + * memory allocations from a private pool of memory when possible. 1.170 + * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 1.171 + * unless #defined to be a different length. This default length 1.172 + * suffices to get rid of MALLOC calls except for unusual cases, 1.173 + * such as decimal-to-binary conversion of a very long string of 1.174 + * digits. The longest string dtoa can return is about 751 bytes 1.175 + * long. For conversions by strtod of strings of 800 digits and 1.176 + * all dtoa conversions in single-threaded executions with 8-byte 1.177 + * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte 1.178 + * pointers, PRIVATE_MEM >= 7112 appears adequate. 1.179 + * #define INFNAN_CHECK on IEEE systems to cause strtod to check for 1.180 + * Infinity and NaN (case insensitively). On some systems (e.g., 1.181 + * some HP systems), it may be necessary to #define NAN_WORD0 1.182 + * appropriately -- to the most significant word of a quiet NaN. 1.183 + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 1.184 + * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 1.185 + * strtod also accepts (case insensitively) strings of the form 1.186 + * NaN(x), where x is a string of hexadecimal digits and spaces; 1.187 + * if there is only one string of hexadecimal digits, it is taken 1.188 + * for the 52 fraction bits of the resulting NaN; if there are two 1.189 + * or more strings of hex digits, the first is for the high 20 bits, 1.190 + * the second and subsequent for the low 32 bits, with intervening 1.191 + * white space ignored; but if this results in none of the 52 1.192 + * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 1.193 + * and NAN_WORD1 are used instead. 1.194 + * #define MULTIPLE_THREADS if the system offers preemptively scheduled 1.195 + * multiple threads. In this case, you must provide (or suitably 1.196 + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 1.197 + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 1.198 + * in pow5mult, ensures lazy evaluation of only one copy of high 1.199 + * powers of 5; omitting this lock would introduce a small 1.200 + * probability of wasting memory, but would otherwise be harmless.) 1.201 + * You must also invoke freedtoa(s) to free the value s returned by 1.202 + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 1.203 + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that 1.204 + * avoids underflows on inputs whose result does not underflow. 1.205 + * If you #define NO_IEEE_Scale on a machine that uses IEEE-format 1.206 + * floating-point numbers and flushes underflows to zero rather 1.207 + * than implementing gradual underflow, then you must also #define 1.208 + * Sudden_Underflow. 1.209 + * #define USE_LOCALE to use the current locale's decimal_point value. 1.210 + * #define SET_INEXACT if IEEE arithmetic is being used and extra 1.211 + * computation should be done to set the inexact flag when the 1.212 + * result is inexact and avoid setting inexact when the result 1.213 + * is exact. In this case, dtoa.c must be compiled in 1.214 + * an environment, perhaps provided by #include "dtoa.c" in a 1.215 + * suitable wrapper, that defines two functions, 1.216 + * int get_inexact(void); 1.217 + * void clear_inexact(void); 1.218 + * such that get_inexact() returns a nonzero value if the 1.219 + * inexact bit is already set, and clear_inexact() sets the 1.220 + * inexact bit to 0. When SET_INEXACT is #defined, strtod 1.221 + * also does extra computations to set the underflow and overflow 1.222 + * flags when appropriate (i.e., when the result is tiny and 1.223 + * inexact or when it is a numeric value rounded to +-infinity). 1.224 + * #define NO_ERRNO if strtod should not assign errno = ERANGE when 1.225 + * the result overflows to +-Infinity or underflows to 0. 1.226 + */ 1.227 + 1.228 +#ifndef Long 1.229 +#define Long long 1.230 +#endif 1.231 +#ifndef ULong 1.232 +typedef unsigned Long ULong; 1.233 +#endif 1.234 + 1.235 +#ifdef DEBUG 1.236 +#include "stdio.h" 1.237 +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 1.238 +#endif 1.239 + 1.240 +#include "stdlib.h" 1.241 +#include "string.h" 1.242 + 1.243 +#ifdef USE_LOCALE 1.244 +#include "locale.h" 1.245 +#endif 1.246 + 1.247 +#ifdef MALLOC 1.248 +#ifdef KR_headers 1.249 +extern char *MALLOC(); 1.250 +#else 1.251 +extern void *MALLOC(size_t); 1.252 +#endif 1.253 +#else 1.254 +#define MALLOC malloc 1.255 +#endif 1.256 + 1.257 +#ifndef Omit_Private_Memory 1.258 +#ifndef PRIVATE_MEM 1.259 +#define PRIVATE_MEM 2304 1.260 +#endif 1.261 +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) 1.262 +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; 1.263 +#endif 1.264 + 1.265 +#undef IEEE_Arith 1.266 +#undef Avoid_Underflow 1.267 +#ifdef IEEE_MC68k 1.268 +#define IEEE_Arith 1.269 +#endif 1.270 +#ifdef IEEE_8087 1.271 +#define IEEE_Arith 1.272 +#endif 1.273 +#ifdef IEEE_ARM 1.274 +#define IEEE_Arith 1.275 +#endif 1.276 + 1.277 +#include "errno.h" 1.278 + 1.279 +#ifdef Bad_float_h 1.280 + 1.281 +#ifdef IEEE_Arith 1.282 +#define DBL_DIG 15 1.283 +#define DBL_MAX_10_EXP 308 1.284 +#define DBL_MAX_EXP 1024 1.285 +#define FLT_RADIX 2 1.286 +#endif /*IEEE_Arith*/ 1.287 + 1.288 +#ifdef IBM 1.289 +#define DBL_DIG 16 1.290 +#define DBL_MAX_10_EXP 75 1.291 +#define DBL_MAX_EXP 63 1.292 +#define FLT_RADIX 16 1.293 +#define DBL_MAX 7.2370055773322621e+75 1.294 +#endif 1.295 + 1.296 +#ifdef VAX 1.297 +#define DBL_DIG 16 1.298 +#define DBL_MAX_10_EXP 38 1.299 +#define DBL_MAX_EXP 127 1.300 +#define FLT_RADIX 2 1.301 +#define DBL_MAX 1.7014118346046923e+38 1.302 +#endif 1.303 + 1.304 +#ifndef LONG_MAX 1.305 +#define LONG_MAX 2147483647 1.306 +#endif 1.307 + 1.308 +#else /* ifndef Bad_float_h */ 1.309 +#include "float.h" 1.310 +/* 1.311 + * MacOS 10.2 defines the macro FLT_ROUNDS to an internal function 1.312 + * which does not exist on 10.1. We can safely #define it to 1 here 1.313 + * to allow 10.2 builds to run on 10.1, since we can't use fesetround() 1.314 + * (which does not exist on 10.1 either). 1.315 + */ 1.316 +#if defined(XP_MACOSX) && (!defined(MAC_OS_X_VERSION_10_2) || \ 1.317 + MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_2) 1.318 +#undef FLT_ROUNDS 1.319 +#define FLT_ROUNDS 1 1.320 +#endif /* DT < 10.2 */ 1.321 +#endif /* Bad_float_h */ 1.322 + 1.323 +#ifndef __MATH_H__ 1.324 +#include "math.h" 1.325 +#endif 1.326 + 1.327 +#ifdef __cplusplus 1.328 +extern "C" { 1.329 +#endif 1.330 + 1.331 +#ifndef CONST 1.332 +#ifdef KR_headers 1.333 +#define CONST /* blank */ 1.334 +#else 1.335 +#define CONST const 1.336 +#endif 1.337 +#endif 1.338 + 1.339 +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) + defined(VAX) + defined(IBM) != 1 1.340 +Exactly one of IEEE_8087, IEEE_MC68k, IEEE_ARM, VAX, or IBM should be defined. 1.341 +#endif 1.342 + 1.343 +typedef union { double d; ULong L[2]; } U; 1.344 + 1.345 +#define dval(x) (x).d 1.346 +#ifdef IEEE_8087 1.347 +#define word0(x) (x).L[1] 1.348 +#define word1(x) (x).L[0] 1.349 +#else 1.350 +#define word0(x) (x).L[0] 1.351 +#define word1(x) (x).L[1] 1.352 +#endif 1.353 + 1.354 +/* The following definition of Storeinc is appropriate for MIPS processors. 1.355 + * An alternative that might be better on some machines is 1.356 + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 1.357 + */ 1.358 +#if defined(IEEE_8087) + defined(IEEE_ARM) + defined(VAX) 1.359 +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 1.360 +((unsigned short *)a)[0] = (unsigned short)c, a++) 1.361 +#else 1.362 +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 1.363 +((unsigned short *)a)[1] = (unsigned short)c, a++) 1.364 +#endif 1.365 + 1.366 +/* #define P DBL_MANT_DIG */ 1.367 +/* Ten_pmax = floor(P*log(2)/log(5)) */ 1.368 +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 1.369 +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 1.370 +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 1.371 + 1.372 +#ifdef IEEE_Arith 1.373 +#define Exp_shift 20 1.374 +#define Exp_shift1 20 1.375 +#define Exp_msk1 0x100000 1.376 +#define Exp_msk11 0x100000 1.377 +#define Exp_mask 0x7ff00000 1.378 +#define P 53 1.379 +#define Bias 1023 1.380 +#define Emin (-1022) 1.381 +#define Exp_1 0x3ff00000 1.382 +#define Exp_11 0x3ff00000 1.383 +#define Ebits 11 1.384 +#define Frac_mask 0xfffff 1.385 +#define Frac_mask1 0xfffff 1.386 +#define Ten_pmax 22 1.387 +#define Bletch 0x10 1.388 +#define Bndry_mask 0xfffff 1.389 +#define Bndry_mask1 0xfffff 1.390 +#define LSB 1 1.391 +#define Sign_bit 0x80000000 1.392 +#define Log2P 1 1.393 +#define Tiny0 0 1.394 +#define Tiny1 1 1.395 +#define Quick_max 14 1.396 +#define Int_max 14 1.397 +#ifndef NO_IEEE_Scale 1.398 +#define Avoid_Underflow 1.399 +#ifdef Flush_Denorm /* debugging option */ 1.400 +#undef Sudden_Underflow 1.401 +#endif 1.402 +#endif 1.403 + 1.404 +#ifndef Flt_Rounds 1.405 +#ifdef FLT_ROUNDS 1.406 +#define Flt_Rounds FLT_ROUNDS 1.407 +#else 1.408 +#define Flt_Rounds 1 1.409 +#endif 1.410 +#endif /*Flt_Rounds*/ 1.411 + 1.412 +#ifdef Honor_FLT_ROUNDS 1.413 +#define Rounding rounding 1.414 +#undef Check_FLT_ROUNDS 1.415 +#define Check_FLT_ROUNDS 1.416 +#else 1.417 +#define Rounding Flt_Rounds 1.418 +#endif 1.419 + 1.420 +#else /* ifndef IEEE_Arith */ 1.421 +#undef Check_FLT_ROUNDS 1.422 +#undef Honor_FLT_ROUNDS 1.423 +#undef SET_INEXACT 1.424 +#undef Sudden_Underflow 1.425 +#define Sudden_Underflow 1.426 +#ifdef IBM 1.427 +#undef Flt_Rounds 1.428 +#define Flt_Rounds 0 1.429 +#define Exp_shift 24 1.430 +#define Exp_shift1 24 1.431 +#define Exp_msk1 0x1000000 1.432 +#define Exp_msk11 0x1000000 1.433 +#define Exp_mask 0x7f000000 1.434 +#define P 14 1.435 +#define Bias 65 1.436 +#define Exp_1 0x41000000 1.437 +#define Exp_11 0x41000000 1.438 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 1.439 +#define Frac_mask 0xffffff 1.440 +#define Frac_mask1 0xffffff 1.441 +#define Bletch 4 1.442 +#define Ten_pmax 22 1.443 +#define Bndry_mask 0xefffff 1.444 +#define Bndry_mask1 0xffffff 1.445 +#define LSB 1 1.446 +#define Sign_bit 0x80000000 1.447 +#define Log2P 4 1.448 +#define Tiny0 0x100000 1.449 +#define Tiny1 0 1.450 +#define Quick_max 14 1.451 +#define Int_max 15 1.452 +#else /* VAX */ 1.453 +#undef Flt_Rounds 1.454 +#define Flt_Rounds 1 1.455 +#define Exp_shift 23 1.456 +#define Exp_shift1 7 1.457 +#define Exp_msk1 0x80 1.458 +#define Exp_msk11 0x800000 1.459 +#define Exp_mask 0x7f80 1.460 +#define P 56 1.461 +#define Bias 129 1.462 +#define Exp_1 0x40800000 1.463 +#define Exp_11 0x4080 1.464 +#define Ebits 8 1.465 +#define Frac_mask 0x7fffff 1.466 +#define Frac_mask1 0xffff007f 1.467 +#define Ten_pmax 24 1.468 +#define Bletch 2 1.469 +#define Bndry_mask 0xffff007f 1.470 +#define Bndry_mask1 0xffff007f 1.471 +#define LSB 0x10000 1.472 +#define Sign_bit 0x8000 1.473 +#define Log2P 1 1.474 +#define Tiny0 0x80 1.475 +#define Tiny1 0 1.476 +#define Quick_max 15 1.477 +#define Int_max 15 1.478 +#endif /* IBM, VAX */ 1.479 +#endif /* IEEE_Arith */ 1.480 + 1.481 +#ifndef IEEE_Arith 1.482 +#define ROUND_BIASED 1.483 +#endif 1.484 + 1.485 +#ifdef RND_PRODQUOT 1.486 +#define rounded_product(a,b) a = rnd_prod(a, b) 1.487 +#define rounded_quotient(a,b) a = rnd_quot(a, b) 1.488 +#ifdef KR_headers 1.489 +extern double rnd_prod(), rnd_quot(); 1.490 +#else 1.491 +extern double rnd_prod(double, double), rnd_quot(double, double); 1.492 +#endif 1.493 +#else 1.494 +#define rounded_product(a,b) a *= b 1.495 +#define rounded_quotient(a,b) a /= b 1.496 +#endif 1.497 + 1.498 +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 1.499 +#define Big1 0xffffffff 1.500 + 1.501 +#ifndef Pack_32 1.502 +#define Pack_32 1.503 +#endif 1.504 + 1.505 +#ifdef KR_headers 1.506 +#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) 1.507 +#else 1.508 +#define FFFFFFFF 0xffffffffUL 1.509 +#endif 1.510 + 1.511 +#ifdef NO_LONG_LONG 1.512 +#undef ULLong 1.513 +#ifdef Just_16 1.514 +#undef Pack_32 1.515 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 1.516 + * This makes some inner loops simpler and sometimes saves work 1.517 + * during multiplications, but it often seems to make things slightly 1.518 + * slower. Hence the default is now to store 32 bits per Long. 1.519 + */ 1.520 +#endif 1.521 +#else /* long long available */ 1.522 +#ifndef Llong 1.523 +#define Llong long long 1.524 +#endif 1.525 +#ifndef ULLong 1.526 +#define ULLong unsigned Llong 1.527 +#endif 1.528 +#endif /* NO_LONG_LONG */ 1.529 + 1.530 +#ifndef MULTIPLE_THREADS 1.531 +#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 1.532 +#define FREE_DTOA_LOCK(n) /*nothing*/ 1.533 +#endif 1.534 + 1.535 +#define Kmax 7 1.536 + 1.537 + struct 1.538 +Bigint { 1.539 + struct Bigint *next; 1.540 + int k, maxwds, sign, wds; 1.541 + ULong x[1]; 1.542 + }; 1.543 + 1.544 + typedef struct Bigint Bigint; 1.545 + 1.546 + static Bigint *freelist[Kmax+1]; 1.547 + 1.548 + static Bigint * 1.549 +Balloc 1.550 +#ifdef KR_headers 1.551 + (k) int k; 1.552 +#else 1.553 + (int k) 1.554 +#endif 1.555 +{ 1.556 + int x; 1.557 + Bigint *rv; 1.558 +#ifndef Omit_Private_Memory 1.559 + unsigned int len; 1.560 +#endif 1.561 + 1.562 + ACQUIRE_DTOA_LOCK(0); 1.563 + /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ 1.564 + /* but this case seems very unlikely. */ 1.565 + if (k <= Kmax && (rv = freelist[k])) 1.566 + freelist[k] = rv->next; 1.567 + else { 1.568 + x = 1 << k; 1.569 +#ifdef Omit_Private_Memory 1.570 + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); 1.571 +#else 1.572 + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) 1.573 + /sizeof(double); 1.574 + if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { 1.575 + rv = (Bigint*)pmem_next; 1.576 + pmem_next += len; 1.577 + } 1.578 + else 1.579 + rv = (Bigint*)MALLOC(len*sizeof(double)); 1.580 +#endif 1.581 + rv->k = k; 1.582 + rv->maxwds = x; 1.583 + } 1.584 + FREE_DTOA_LOCK(0); 1.585 + rv->sign = rv->wds = 0; 1.586 + return rv; 1.587 + } 1.588 + 1.589 + static void 1.590 +Bfree 1.591 +#ifdef KR_headers 1.592 + (v) Bigint *v; 1.593 +#else 1.594 + (Bigint *v) 1.595 +#endif 1.596 +{ 1.597 + if (v) { 1.598 + if (v->k > Kmax) 1.599 +#ifdef FREE 1.600 + FREE((void*)v); 1.601 +#else 1.602 + free((void*)v); 1.603 +#endif 1.604 + else { 1.605 + ACQUIRE_DTOA_LOCK(0); 1.606 + v->next = freelist[v->k]; 1.607 + freelist[v->k] = v; 1.608 + FREE_DTOA_LOCK(0); 1.609 + } 1.610 + } 1.611 + } 1.612 + 1.613 +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ 1.614 +y->wds*sizeof(Long) + 2*sizeof(int)) 1.615 + 1.616 + static Bigint * 1.617 +multadd 1.618 +#ifdef KR_headers 1.619 + (b, m, a) Bigint *b; int m, a; 1.620 +#else 1.621 + (Bigint *b, int m, int a) /* multiply by m and add a */ 1.622 +#endif 1.623 +{ 1.624 + int i, wds; 1.625 +#ifdef ULLong 1.626 + ULong *x; 1.627 + ULLong carry, y; 1.628 +#else 1.629 + ULong carry, *x, y; 1.630 +#ifdef Pack_32 1.631 + ULong xi, z; 1.632 +#endif 1.633 +#endif 1.634 + Bigint *b1; 1.635 + 1.636 + wds = b->wds; 1.637 + x = b->x; 1.638 + i = 0; 1.639 + carry = a; 1.640 + do { 1.641 +#ifdef ULLong 1.642 + y = *x * (ULLong)m + carry; 1.643 + carry = y >> 32; 1.644 + *x++ = y & FFFFFFFF; 1.645 +#else 1.646 +#ifdef Pack_32 1.647 + xi = *x; 1.648 + y = (xi & 0xffff) * m + carry; 1.649 + z = (xi >> 16) * m + (y >> 16); 1.650 + carry = z >> 16; 1.651 + *x++ = (z << 16) + (y & 0xffff); 1.652 +#else 1.653 + y = *x * m + carry; 1.654 + carry = y >> 16; 1.655 + *x++ = y & 0xffff; 1.656 +#endif 1.657 +#endif 1.658 + } 1.659 + while(++i < wds); 1.660 + if (carry) { 1.661 + if (wds >= b->maxwds) { 1.662 + b1 = Balloc(b->k+1); 1.663 + Bcopy(b1, b); 1.664 + Bfree(b); 1.665 + b = b1; 1.666 + } 1.667 + b->x[wds++] = carry; 1.668 + b->wds = wds; 1.669 + } 1.670 + return b; 1.671 + } 1.672 + 1.673 + static Bigint * 1.674 +s2b 1.675 +#ifdef KR_headers 1.676 + (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9; 1.677 +#else 1.678 + (CONST char *s, int nd0, int nd, ULong y9) 1.679 +#endif 1.680 +{ 1.681 + Bigint *b; 1.682 + int i, k; 1.683 + Long x, y; 1.684 + 1.685 + x = (nd + 8) / 9; 1.686 + for(k = 0, y = 1; x > y; y <<= 1, k++) ; 1.687 +#ifdef Pack_32 1.688 + b = Balloc(k); 1.689 + b->x[0] = y9; 1.690 + b->wds = 1; 1.691 +#else 1.692 + b = Balloc(k+1); 1.693 + b->x[0] = y9 & 0xffff; 1.694 + b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; 1.695 +#endif 1.696 + 1.697 + i = 9; 1.698 + if (9 < nd0) { 1.699 + s += 9; 1.700 + do b = multadd(b, 10, *s++ - '0'); 1.701 + while(++i < nd0); 1.702 + s++; 1.703 + } 1.704 + else 1.705 + s += 10; 1.706 + for(; i < nd; i++) 1.707 + b = multadd(b, 10, *s++ - '0'); 1.708 + return b; 1.709 + } 1.710 + 1.711 + static int 1.712 +hi0bits 1.713 +#ifdef KR_headers 1.714 + (x) register ULong x; 1.715 +#else 1.716 + (register ULong x) 1.717 +#endif 1.718 +{ 1.719 +#ifdef PR_HAVE_BUILTIN_BITSCAN32 1.720 + return( (!x) ? 32 : pr_bitscan_clz32(x) ); 1.721 +#else 1.722 + register int k = 0; 1.723 + 1.724 + if (!(x & 0xffff0000)) { 1.725 + k = 16; 1.726 + x <<= 16; 1.727 + } 1.728 + if (!(x & 0xff000000)) { 1.729 + k += 8; 1.730 + x <<= 8; 1.731 + } 1.732 + if (!(x & 0xf0000000)) { 1.733 + k += 4; 1.734 + x <<= 4; 1.735 + } 1.736 + if (!(x & 0xc0000000)) { 1.737 + k += 2; 1.738 + x <<= 2; 1.739 + } 1.740 + if (!(x & 0x80000000)) { 1.741 + k++; 1.742 + if (!(x & 0x40000000)) 1.743 + return 32; 1.744 + } 1.745 + return k; 1.746 +#endif /* PR_HAVE_BUILTIN_BITSCAN32 */ 1.747 + } 1.748 + 1.749 + static int 1.750 +lo0bits 1.751 +#ifdef KR_headers 1.752 + (y) ULong *y; 1.753 +#else 1.754 + (ULong *y) 1.755 +#endif 1.756 +{ 1.757 +#ifdef PR_HAVE_BUILTIN_BITSCAN32 1.758 + int k; 1.759 + ULong x = *y; 1.760 + 1.761 + if (x>1) 1.762 + *y = ( x >> (k = pr_bitscan_ctz32(x)) ); 1.763 + else 1.764 + k = ((x ^ 1) << 5); 1.765 +#else 1.766 + register int k; 1.767 + register ULong x = *y; 1.768 + 1.769 + if (x & 7) { 1.770 + if (x & 1) 1.771 + return 0; 1.772 + if (x & 2) { 1.773 + *y = x >> 1; 1.774 + return 1; 1.775 + } 1.776 + *y = x >> 2; 1.777 + return 2; 1.778 + } 1.779 + k = 0; 1.780 + if (!(x & 0xffff)) { 1.781 + k = 16; 1.782 + x >>= 16; 1.783 + } 1.784 + if (!(x & 0xff)) { 1.785 + k += 8; 1.786 + x >>= 8; 1.787 + } 1.788 + if (!(x & 0xf)) { 1.789 + k += 4; 1.790 + x >>= 4; 1.791 + } 1.792 + if (!(x & 0x3)) { 1.793 + k += 2; 1.794 + x >>= 2; 1.795 + } 1.796 + if (!(x & 1)) { 1.797 + k++; 1.798 + x >>= 1; 1.799 + if (!x) 1.800 + return 32; 1.801 + } 1.802 + *y = x; 1.803 +#endif /* PR_HAVE_BUILTIN_BITSCAN32 */ 1.804 + return k; 1.805 + } 1.806 + 1.807 + static Bigint * 1.808 +i2b 1.809 +#ifdef KR_headers 1.810 + (i) int i; 1.811 +#else 1.812 + (int i) 1.813 +#endif 1.814 +{ 1.815 + Bigint *b; 1.816 + 1.817 + b = Balloc(1); 1.818 + b->x[0] = i; 1.819 + b->wds = 1; 1.820 + return b; 1.821 + } 1.822 + 1.823 + static Bigint * 1.824 +mult 1.825 +#ifdef KR_headers 1.826 + (a, b) Bigint *a, *b; 1.827 +#else 1.828 + (Bigint *a, Bigint *b) 1.829 +#endif 1.830 +{ 1.831 + Bigint *c; 1.832 + int k, wa, wb, wc; 1.833 + ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; 1.834 + ULong y; 1.835 +#ifdef ULLong 1.836 + ULLong carry, z; 1.837 +#else 1.838 + ULong carry, z; 1.839 +#ifdef Pack_32 1.840 + ULong z2; 1.841 +#endif 1.842 +#endif 1.843 + 1.844 + if (a->wds < b->wds) { 1.845 + c = a; 1.846 + a = b; 1.847 + b = c; 1.848 + } 1.849 + k = a->k; 1.850 + wa = a->wds; 1.851 + wb = b->wds; 1.852 + wc = wa + wb; 1.853 + if (wc > a->maxwds) 1.854 + k++; 1.855 + c = Balloc(k); 1.856 + for(x = c->x, xa = x + wc; x < xa; x++) 1.857 + *x = 0; 1.858 + xa = a->x; 1.859 + xae = xa + wa; 1.860 + xb = b->x; 1.861 + xbe = xb + wb; 1.862 + xc0 = c->x; 1.863 +#ifdef ULLong 1.864 + for(; xb < xbe; xc0++) { 1.865 + if (y = *xb++) { 1.866 + x = xa; 1.867 + xc = xc0; 1.868 + carry = 0; 1.869 + do { 1.870 + z = *x++ * (ULLong)y + *xc + carry; 1.871 + carry = z >> 32; 1.872 + *xc++ = z & FFFFFFFF; 1.873 + } 1.874 + while(x < xae); 1.875 + *xc = carry; 1.876 + } 1.877 + } 1.878 +#else 1.879 +#ifdef Pack_32 1.880 + for(; xb < xbe; xb++, xc0++) { 1.881 + if (y = *xb & 0xffff) { 1.882 + x = xa; 1.883 + xc = xc0; 1.884 + carry = 0; 1.885 + do { 1.886 + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; 1.887 + carry = z >> 16; 1.888 + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; 1.889 + carry = z2 >> 16; 1.890 + Storeinc(xc, z2, z); 1.891 + } 1.892 + while(x < xae); 1.893 + *xc = carry; 1.894 + } 1.895 + if (y = *xb >> 16) { 1.896 + x = xa; 1.897 + xc = xc0; 1.898 + carry = 0; 1.899 + z2 = *xc; 1.900 + do { 1.901 + z = (*x & 0xffff) * y + (*xc >> 16) + carry; 1.902 + carry = z >> 16; 1.903 + Storeinc(xc, z, z2); 1.904 + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; 1.905 + carry = z2 >> 16; 1.906 + } 1.907 + while(x < xae); 1.908 + *xc = z2; 1.909 + } 1.910 + } 1.911 +#else 1.912 + for(; xb < xbe; xc0++) { 1.913 + if (y = *xb++) { 1.914 + x = xa; 1.915 + xc = xc0; 1.916 + carry = 0; 1.917 + do { 1.918 + z = *x++ * y + *xc + carry; 1.919 + carry = z >> 16; 1.920 + *xc++ = z & 0xffff; 1.921 + } 1.922 + while(x < xae); 1.923 + *xc = carry; 1.924 + } 1.925 + } 1.926 +#endif 1.927 +#endif 1.928 + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; 1.929 + c->wds = wc; 1.930 + return c; 1.931 + } 1.932 + 1.933 + static Bigint *p5s; 1.934 + 1.935 + static Bigint * 1.936 +pow5mult 1.937 +#ifdef KR_headers 1.938 + (b, k) Bigint *b; int k; 1.939 +#else 1.940 + (Bigint *b, int k) 1.941 +#endif 1.942 +{ 1.943 + Bigint *b1, *p5, *p51; 1.944 + int i; 1.945 + static int p05[3] = { 5, 25, 125 }; 1.946 + 1.947 + if (i = k & 3) 1.948 + b = multadd(b, p05[i-1], 0); 1.949 + 1.950 + if (!(k >>= 2)) 1.951 + return b; 1.952 + if (!(p5 = p5s)) { 1.953 + /* first time */ 1.954 +#ifdef MULTIPLE_THREADS 1.955 + ACQUIRE_DTOA_LOCK(1); 1.956 + if (!(p5 = p5s)) { 1.957 + p5 = p5s = i2b(625); 1.958 + p5->next = 0; 1.959 + } 1.960 + FREE_DTOA_LOCK(1); 1.961 +#else 1.962 + p5 = p5s = i2b(625); 1.963 + p5->next = 0; 1.964 +#endif 1.965 + } 1.966 + for(;;) { 1.967 + if (k & 1) { 1.968 + b1 = mult(b, p5); 1.969 + Bfree(b); 1.970 + b = b1; 1.971 + } 1.972 + if (!(k >>= 1)) 1.973 + break; 1.974 + if (!(p51 = p5->next)) { 1.975 +#ifdef MULTIPLE_THREADS 1.976 + ACQUIRE_DTOA_LOCK(1); 1.977 + if (!(p51 = p5->next)) { 1.978 + p51 = p5->next = mult(p5,p5); 1.979 + p51->next = 0; 1.980 + } 1.981 + FREE_DTOA_LOCK(1); 1.982 +#else 1.983 + p51 = p5->next = mult(p5,p5); 1.984 + p51->next = 0; 1.985 +#endif 1.986 + } 1.987 + p5 = p51; 1.988 + } 1.989 + return b; 1.990 + } 1.991 + 1.992 + static Bigint * 1.993 +lshift 1.994 +#ifdef KR_headers 1.995 + (b, k) Bigint *b; int k; 1.996 +#else 1.997 + (Bigint *b, int k) 1.998 +#endif 1.999 +{ 1.1000 + int i, k1, n, n1; 1.1001 + Bigint *b1; 1.1002 + ULong *x, *x1, *xe, z; 1.1003 + 1.1004 +#ifdef Pack_32 1.1005 + n = k >> 5; 1.1006 +#else 1.1007 + n = k >> 4; 1.1008 +#endif 1.1009 + k1 = b->k; 1.1010 + n1 = n + b->wds + 1; 1.1011 + for(i = b->maxwds; n1 > i; i <<= 1) 1.1012 + k1++; 1.1013 + b1 = Balloc(k1); 1.1014 + x1 = b1->x; 1.1015 + for(i = 0; i < n; i++) 1.1016 + *x1++ = 0; 1.1017 + x = b->x; 1.1018 + xe = x + b->wds; 1.1019 +#ifdef Pack_32 1.1020 + if (k &= 0x1f) { 1.1021 + k1 = 32 - k; 1.1022 + z = 0; 1.1023 + do { 1.1024 + *x1++ = *x << k | z; 1.1025 + z = *x++ >> k1; 1.1026 + } 1.1027 + while(x < xe); 1.1028 + if (*x1 = z) 1.1029 + ++n1; 1.1030 + } 1.1031 +#else 1.1032 + if (k &= 0xf) { 1.1033 + k1 = 16 - k; 1.1034 + z = 0; 1.1035 + do { 1.1036 + *x1++ = *x << k & 0xffff | z; 1.1037 + z = *x++ >> k1; 1.1038 + } 1.1039 + while(x < xe); 1.1040 + if (*x1 = z) 1.1041 + ++n1; 1.1042 + } 1.1043 +#endif 1.1044 + else do 1.1045 + *x1++ = *x++; 1.1046 + while(x < xe); 1.1047 + b1->wds = n1 - 1; 1.1048 + Bfree(b); 1.1049 + return b1; 1.1050 + } 1.1051 + 1.1052 + static int 1.1053 +cmp 1.1054 +#ifdef KR_headers 1.1055 + (a, b) Bigint *a, *b; 1.1056 +#else 1.1057 + (Bigint *a, Bigint *b) 1.1058 +#endif 1.1059 +{ 1.1060 + ULong *xa, *xa0, *xb, *xb0; 1.1061 + int i, j; 1.1062 + 1.1063 + i = a->wds; 1.1064 + j = b->wds; 1.1065 +#ifdef DEBUG 1.1066 + if (i > 1 && !a->x[i-1]) 1.1067 + Bug("cmp called with a->x[a->wds-1] == 0"); 1.1068 + if (j > 1 && !b->x[j-1]) 1.1069 + Bug("cmp called with b->x[b->wds-1] == 0"); 1.1070 +#endif 1.1071 + if (i -= j) 1.1072 + return i; 1.1073 + xa0 = a->x; 1.1074 + xa = xa0 + j; 1.1075 + xb0 = b->x; 1.1076 + xb = xb0 + j; 1.1077 + for(;;) { 1.1078 + if (*--xa != *--xb) 1.1079 + return *xa < *xb ? -1 : 1; 1.1080 + if (xa <= xa0) 1.1081 + break; 1.1082 + } 1.1083 + return 0; 1.1084 + } 1.1085 + 1.1086 + static Bigint * 1.1087 +diff 1.1088 +#ifdef KR_headers 1.1089 + (a, b) Bigint *a, *b; 1.1090 +#else 1.1091 + (Bigint *a, Bigint *b) 1.1092 +#endif 1.1093 +{ 1.1094 + Bigint *c; 1.1095 + int i, wa, wb; 1.1096 + ULong *xa, *xae, *xb, *xbe, *xc; 1.1097 +#ifdef ULLong 1.1098 + ULLong borrow, y; 1.1099 +#else 1.1100 + ULong borrow, y; 1.1101 +#ifdef Pack_32 1.1102 + ULong z; 1.1103 +#endif 1.1104 +#endif 1.1105 + 1.1106 + i = cmp(a,b); 1.1107 + if (!i) { 1.1108 + c = Balloc(0); 1.1109 + c->wds = 1; 1.1110 + c->x[0] = 0; 1.1111 + return c; 1.1112 + } 1.1113 + if (i < 0) { 1.1114 + c = a; 1.1115 + a = b; 1.1116 + b = c; 1.1117 + i = 1; 1.1118 + } 1.1119 + else 1.1120 + i = 0; 1.1121 + c = Balloc(a->k); 1.1122 + c->sign = i; 1.1123 + wa = a->wds; 1.1124 + xa = a->x; 1.1125 + xae = xa + wa; 1.1126 + wb = b->wds; 1.1127 + xb = b->x; 1.1128 + xbe = xb + wb; 1.1129 + xc = c->x; 1.1130 + borrow = 0; 1.1131 +#ifdef ULLong 1.1132 + do { 1.1133 + y = (ULLong)*xa++ - *xb++ - borrow; 1.1134 + borrow = y >> 32 & (ULong)1; 1.1135 + *xc++ = y & FFFFFFFF; 1.1136 + } 1.1137 + while(xb < xbe); 1.1138 + while(xa < xae) { 1.1139 + y = *xa++ - borrow; 1.1140 + borrow = y >> 32 & (ULong)1; 1.1141 + *xc++ = y & FFFFFFFF; 1.1142 + } 1.1143 +#else 1.1144 +#ifdef Pack_32 1.1145 + do { 1.1146 + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; 1.1147 + borrow = (y & 0x10000) >> 16; 1.1148 + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; 1.1149 + borrow = (z & 0x10000) >> 16; 1.1150 + Storeinc(xc, z, y); 1.1151 + } 1.1152 + while(xb < xbe); 1.1153 + while(xa < xae) { 1.1154 + y = (*xa & 0xffff) - borrow; 1.1155 + borrow = (y & 0x10000) >> 16; 1.1156 + z = (*xa++ >> 16) - borrow; 1.1157 + borrow = (z & 0x10000) >> 16; 1.1158 + Storeinc(xc, z, y); 1.1159 + } 1.1160 +#else 1.1161 + do { 1.1162 + y = *xa++ - *xb++ - borrow; 1.1163 + borrow = (y & 0x10000) >> 16; 1.1164 + *xc++ = y & 0xffff; 1.1165 + } 1.1166 + while(xb < xbe); 1.1167 + while(xa < xae) { 1.1168 + y = *xa++ - borrow; 1.1169 + borrow = (y & 0x10000) >> 16; 1.1170 + *xc++ = y & 0xffff; 1.1171 + } 1.1172 +#endif 1.1173 +#endif 1.1174 + while(!*--xc) 1.1175 + wa--; 1.1176 + c->wds = wa; 1.1177 + return c; 1.1178 + } 1.1179 + 1.1180 + static double 1.1181 +ulp 1.1182 +#ifdef KR_headers 1.1183 + (dx) double dx; 1.1184 +#else 1.1185 + (double dx) 1.1186 +#endif 1.1187 +{ 1.1188 + register Long L; 1.1189 + U x, a; 1.1190 + 1.1191 + dval(x) = dx; 1.1192 + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; 1.1193 +#ifndef Avoid_Underflow 1.1194 +#ifndef Sudden_Underflow 1.1195 + if (L > 0) { 1.1196 +#endif 1.1197 +#endif 1.1198 +#ifdef IBM 1.1199 + L |= Exp_msk1 >> 4; 1.1200 +#endif 1.1201 + word0(a) = L; 1.1202 + word1(a) = 0; 1.1203 +#ifndef Avoid_Underflow 1.1204 +#ifndef Sudden_Underflow 1.1205 + } 1.1206 + else { 1.1207 + L = -L >> Exp_shift; 1.1208 + if (L < Exp_shift) { 1.1209 + word0(a) = 0x80000 >> L; 1.1210 + word1(a) = 0; 1.1211 + } 1.1212 + else { 1.1213 + word0(a) = 0; 1.1214 + L -= Exp_shift; 1.1215 + word1(a) = L >= 31 ? 1 : 1 << 31 - L; 1.1216 + } 1.1217 + } 1.1218 +#endif 1.1219 +#endif 1.1220 + return dval(a); 1.1221 + } 1.1222 + 1.1223 + static double 1.1224 +b2d 1.1225 +#ifdef KR_headers 1.1226 + (a, e) Bigint *a; int *e; 1.1227 +#else 1.1228 + (Bigint *a, int *e) 1.1229 +#endif 1.1230 +{ 1.1231 + ULong *xa, *xa0, w, y, z; 1.1232 + int k; 1.1233 + U d; 1.1234 +#ifdef VAX 1.1235 + ULong d0, d1; 1.1236 +#else 1.1237 +#define d0 word0(d) 1.1238 +#define d1 word1(d) 1.1239 +#endif 1.1240 + 1.1241 + xa0 = a->x; 1.1242 + xa = xa0 + a->wds; 1.1243 + y = *--xa; 1.1244 +#ifdef DEBUG 1.1245 + if (!y) Bug("zero y in b2d"); 1.1246 +#endif 1.1247 + k = hi0bits(y); 1.1248 + *e = 32 - k; 1.1249 +#ifdef Pack_32 1.1250 + if (k < Ebits) { 1.1251 + d0 = Exp_1 | y >> Ebits - k; 1.1252 + w = xa > xa0 ? *--xa : 0; 1.1253 + d1 = y << (32-Ebits) + k | w >> Ebits - k; 1.1254 + goto ret_d; 1.1255 + } 1.1256 + z = xa > xa0 ? *--xa : 0; 1.1257 + if (k -= Ebits) { 1.1258 + d0 = Exp_1 | y << k | z >> 32 - k; 1.1259 + y = xa > xa0 ? *--xa : 0; 1.1260 + d1 = z << k | y >> 32 - k; 1.1261 + } 1.1262 + else { 1.1263 + d0 = Exp_1 | y; 1.1264 + d1 = z; 1.1265 + } 1.1266 +#else 1.1267 + if (k < Ebits + 16) { 1.1268 + z = xa > xa0 ? *--xa : 0; 1.1269 + d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; 1.1270 + w = xa > xa0 ? *--xa : 0; 1.1271 + y = xa > xa0 ? *--xa : 0; 1.1272 + d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; 1.1273 + goto ret_d; 1.1274 + } 1.1275 + z = xa > xa0 ? *--xa : 0; 1.1276 + w = xa > xa0 ? *--xa : 0; 1.1277 + k -= Ebits + 16; 1.1278 + d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; 1.1279 + y = xa > xa0 ? *--xa : 0; 1.1280 + d1 = w << k + 16 | y << k; 1.1281 +#endif 1.1282 + ret_d: 1.1283 +#ifdef VAX 1.1284 + word0(d) = d0 >> 16 | d0 << 16; 1.1285 + word1(d) = d1 >> 16 | d1 << 16; 1.1286 +#else 1.1287 +#undef d0 1.1288 +#undef d1 1.1289 +#endif 1.1290 + return dval(d); 1.1291 + } 1.1292 + 1.1293 + static Bigint * 1.1294 +d2b 1.1295 +#ifdef KR_headers 1.1296 + (dd, e, bits) double dd; int *e, *bits; 1.1297 +#else 1.1298 + (double dd, int *e, int *bits) 1.1299 +#endif 1.1300 +{ 1.1301 + U d; 1.1302 + Bigint *b; 1.1303 + int de, k; 1.1304 + ULong *x, y, z; 1.1305 +#ifndef Sudden_Underflow 1.1306 + int i; 1.1307 +#endif 1.1308 +#ifdef VAX 1.1309 + ULong d0, d1; 1.1310 +#endif 1.1311 + 1.1312 + dval(d) = dd; 1.1313 +#ifdef VAX 1.1314 + d0 = word0(d) >> 16 | word0(d) << 16; 1.1315 + d1 = word1(d) >> 16 | word1(d) << 16; 1.1316 +#else 1.1317 +#define d0 word0(d) 1.1318 +#define d1 word1(d) 1.1319 +#endif 1.1320 + 1.1321 +#ifdef Pack_32 1.1322 + b = Balloc(1); 1.1323 +#else 1.1324 + b = Balloc(2); 1.1325 +#endif 1.1326 + x = b->x; 1.1327 + 1.1328 + z = d0 & Frac_mask; 1.1329 + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ 1.1330 +#ifdef Sudden_Underflow 1.1331 + de = (int)(d0 >> Exp_shift); 1.1332 +#ifndef IBM 1.1333 + z |= Exp_msk11; 1.1334 +#endif 1.1335 +#else 1.1336 + if (de = (int)(d0 >> Exp_shift)) 1.1337 + z |= Exp_msk1; 1.1338 +#endif 1.1339 +#ifdef Pack_32 1.1340 + if (y = d1) { 1.1341 + if (k = lo0bits(&y)) { 1.1342 + x[0] = y | z << 32 - k; 1.1343 + z >>= k; 1.1344 + } 1.1345 + else 1.1346 + x[0] = y; 1.1347 +#ifndef Sudden_Underflow 1.1348 + i = 1.1349 +#endif 1.1350 + b->wds = (x[1] = z) ? 2 : 1; 1.1351 + } 1.1352 + else { 1.1353 + k = lo0bits(&z); 1.1354 + x[0] = z; 1.1355 +#ifndef Sudden_Underflow 1.1356 + i = 1.1357 +#endif 1.1358 + b->wds = 1; 1.1359 + k += 32; 1.1360 + } 1.1361 +#else 1.1362 + if (y = d1) { 1.1363 + if (k = lo0bits(&y)) 1.1364 + if (k >= 16) { 1.1365 + x[0] = y | z << 32 - k & 0xffff; 1.1366 + x[1] = z >> k - 16 & 0xffff; 1.1367 + x[2] = z >> k; 1.1368 + i = 2; 1.1369 + } 1.1370 + else { 1.1371 + x[0] = y & 0xffff; 1.1372 + x[1] = y >> 16 | z << 16 - k & 0xffff; 1.1373 + x[2] = z >> k & 0xffff; 1.1374 + x[3] = z >> k+16; 1.1375 + i = 3; 1.1376 + } 1.1377 + else { 1.1378 + x[0] = y & 0xffff; 1.1379 + x[1] = y >> 16; 1.1380 + x[2] = z & 0xffff; 1.1381 + x[3] = z >> 16; 1.1382 + i = 3; 1.1383 + } 1.1384 + } 1.1385 + else { 1.1386 +#ifdef DEBUG 1.1387 + if (!z) 1.1388 + Bug("Zero passed to d2b"); 1.1389 +#endif 1.1390 + k = lo0bits(&z); 1.1391 + if (k >= 16) { 1.1392 + x[0] = z; 1.1393 + i = 0; 1.1394 + } 1.1395 + else { 1.1396 + x[0] = z & 0xffff; 1.1397 + x[1] = z >> 16; 1.1398 + i = 1; 1.1399 + } 1.1400 + k += 32; 1.1401 + } 1.1402 + while(!x[i]) 1.1403 + --i; 1.1404 + b->wds = i + 1; 1.1405 +#endif 1.1406 +#ifndef Sudden_Underflow 1.1407 + if (de) { 1.1408 +#endif 1.1409 +#ifdef IBM 1.1410 + *e = (de - Bias - (P-1) << 2) + k; 1.1411 + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); 1.1412 +#else 1.1413 + *e = de - Bias - (P-1) + k; 1.1414 + *bits = P - k; 1.1415 +#endif 1.1416 +#ifndef Sudden_Underflow 1.1417 + } 1.1418 + else { 1.1419 + *e = de - Bias - (P-1) + 1 + k; 1.1420 +#ifdef Pack_32 1.1421 + *bits = 32*i - hi0bits(x[i-1]); 1.1422 +#else 1.1423 + *bits = (i+2)*16 - hi0bits(x[i]); 1.1424 +#endif 1.1425 + } 1.1426 +#endif 1.1427 + return b; 1.1428 + } 1.1429 +#undef d0 1.1430 +#undef d1 1.1431 + 1.1432 + static double 1.1433 +ratio 1.1434 +#ifdef KR_headers 1.1435 + (a, b) Bigint *a, *b; 1.1436 +#else 1.1437 + (Bigint *a, Bigint *b) 1.1438 +#endif 1.1439 +{ 1.1440 + U da, db; 1.1441 + int k, ka, kb; 1.1442 + 1.1443 + dval(da) = b2d(a, &ka); 1.1444 + dval(db) = b2d(b, &kb); 1.1445 +#ifdef Pack_32 1.1446 + k = ka - kb + 32*(a->wds - b->wds); 1.1447 +#else 1.1448 + k = ka - kb + 16*(a->wds - b->wds); 1.1449 +#endif 1.1450 +#ifdef IBM 1.1451 + if (k > 0) { 1.1452 + word0(da) += (k >> 2)*Exp_msk1; 1.1453 + if (k &= 3) 1.1454 + dval(da) *= 1 << k; 1.1455 + } 1.1456 + else { 1.1457 + k = -k; 1.1458 + word0(db) += (k >> 2)*Exp_msk1; 1.1459 + if (k &= 3) 1.1460 + dval(db) *= 1 << k; 1.1461 + } 1.1462 +#else 1.1463 + if (k > 0) 1.1464 + word0(da) += k*Exp_msk1; 1.1465 + else { 1.1466 + k = -k; 1.1467 + word0(db) += k*Exp_msk1; 1.1468 + } 1.1469 +#endif 1.1470 + return dval(da) / dval(db); 1.1471 + } 1.1472 + 1.1473 + static CONST double 1.1474 +tens[] = { 1.1475 + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1.1476 + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1.1477 + 1e20, 1e21, 1e22 1.1478 +#ifdef VAX 1.1479 + , 1e23, 1e24 1.1480 +#endif 1.1481 + }; 1.1482 + 1.1483 + static CONST double 1.1484 +#ifdef IEEE_Arith 1.1485 +bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; 1.1486 +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1.1487 +#ifdef Avoid_Underflow 1.1488 + 9007199254740992.*9007199254740992.e-256 1.1489 + /* = 2^106 * 1e-53 */ 1.1490 +#else 1.1491 + 1e-256 1.1492 +#endif 1.1493 + }; 1.1494 +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ 1.1495 +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ 1.1496 +#define Scale_Bit 0x10 1.1497 +#define n_bigtens 5 1.1498 +#else 1.1499 +#ifdef IBM 1.1500 +bigtens[] = { 1e16, 1e32, 1e64 }; 1.1501 +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; 1.1502 +#define n_bigtens 3 1.1503 +#else 1.1504 +bigtens[] = { 1e16, 1e32 }; 1.1505 +static CONST double tinytens[] = { 1e-16, 1e-32 }; 1.1506 +#define n_bigtens 2 1.1507 +#endif 1.1508 +#endif 1.1509 + 1.1510 +#ifndef IEEE_Arith 1.1511 +#undef INFNAN_CHECK 1.1512 +#endif 1.1513 + 1.1514 +#ifdef INFNAN_CHECK 1.1515 + 1.1516 +#ifndef NAN_WORD0 1.1517 +#define NAN_WORD0 0x7ff80000 1.1518 +#endif 1.1519 + 1.1520 +#ifndef NAN_WORD1 1.1521 +#define NAN_WORD1 0 1.1522 +#endif 1.1523 + 1.1524 + static int 1.1525 +match 1.1526 +#ifdef KR_headers 1.1527 + (sp, t) char **sp, *t; 1.1528 +#else 1.1529 + (CONST char **sp, char *t) 1.1530 +#endif 1.1531 +{ 1.1532 + int c, d; 1.1533 + CONST char *s = *sp; 1.1534 + 1.1535 + while(d = *t++) { 1.1536 + if ((c = *++s) >= 'A' && c <= 'Z') 1.1537 + c += 'a' - 'A'; 1.1538 + if (c != d) 1.1539 + return 0; 1.1540 + } 1.1541 + *sp = s + 1; 1.1542 + return 1; 1.1543 + } 1.1544 + 1.1545 +#ifndef No_Hex_NaN 1.1546 + static void 1.1547 +hexnan 1.1548 +#ifdef KR_headers 1.1549 + (rvp, sp) double *rvp; CONST char **sp; 1.1550 +#else 1.1551 + (double *rvp, CONST char **sp) 1.1552 +#endif 1.1553 +{ 1.1554 + ULong c, x[2]; 1.1555 + CONST char *s; 1.1556 + int havedig, udx0, xshift; 1.1557 + 1.1558 + x[0] = x[1] = 0; 1.1559 + havedig = xshift = 0; 1.1560 + udx0 = 1; 1.1561 + s = *sp; 1.1562 + while(c = *(CONST unsigned char*)++s) { 1.1563 + if (c >= '0' && c <= '9') 1.1564 + c -= '0'; 1.1565 + else if (c >= 'a' && c <= 'f') 1.1566 + c += 10 - 'a'; 1.1567 + else if (c >= 'A' && c <= 'F') 1.1568 + c += 10 - 'A'; 1.1569 + else if (c <= ' ') { 1.1570 + if (udx0 && havedig) { 1.1571 + udx0 = 0; 1.1572 + xshift = 1; 1.1573 + } 1.1574 + continue; 1.1575 + } 1.1576 + else if (/*(*/ c == ')' && havedig) { 1.1577 + *sp = s + 1; 1.1578 + break; 1.1579 + } 1.1580 + else 1.1581 + return; /* invalid form: don't change *sp */ 1.1582 + havedig = 1; 1.1583 + if (xshift) { 1.1584 + xshift = 0; 1.1585 + x[0] = x[1]; 1.1586 + x[1] = 0; 1.1587 + } 1.1588 + if (udx0) 1.1589 + x[0] = (x[0] << 4) | (x[1] >> 28); 1.1590 + x[1] = (x[1] << 4) | c; 1.1591 + } 1.1592 + if ((x[0] &= 0xfffff) || x[1]) { 1.1593 + word0(*rvp) = Exp_mask | x[0]; 1.1594 + word1(*rvp) = x[1]; 1.1595 + } 1.1596 + } 1.1597 +#endif /*No_Hex_NaN*/ 1.1598 +#endif /* INFNAN_CHECK */ 1.1599 + 1.1600 + PR_IMPLEMENT(double) 1.1601 +PR_strtod 1.1602 +#ifdef KR_headers 1.1603 + (s00, se) CONST char *s00; char **se; 1.1604 +#else 1.1605 + (CONST char *s00, char **se) 1.1606 +#endif 1.1607 +{ 1.1608 +#ifdef Avoid_Underflow 1.1609 + int scale; 1.1610 +#endif 1.1611 + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, 1.1612 + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; 1.1613 + CONST char *s, *s0, *s1; 1.1614 + double aadj, aadj1, adj; 1.1615 + U aadj2, rv, rv0; 1.1616 + Long L; 1.1617 + ULong y, z; 1.1618 + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; 1.1619 +#ifdef SET_INEXACT 1.1620 + int inexact, oldinexact; 1.1621 +#endif 1.1622 +#ifdef Honor_FLT_ROUNDS 1.1623 + int rounding; 1.1624 +#endif 1.1625 +#ifdef USE_LOCALE 1.1626 + CONST char *s2; 1.1627 +#endif 1.1628 + 1.1629 + if (!_pr_initialized) _PR_ImplicitInitialization(); 1.1630 + 1.1631 + sign = nz0 = nz = 0; 1.1632 + dval(rv) = 0.; 1.1633 + for(s = s00;;s++) switch(*s) { 1.1634 + case '-': 1.1635 + sign = 1; 1.1636 + /* no break */ 1.1637 + case '+': 1.1638 + if (*++s) 1.1639 + goto break2; 1.1640 + /* no break */ 1.1641 + case 0: 1.1642 + goto ret0; 1.1643 + case '\t': 1.1644 + case '\n': 1.1645 + case '\v': 1.1646 + case '\f': 1.1647 + case '\r': 1.1648 + case ' ': 1.1649 + continue; 1.1650 + default: 1.1651 + goto break2; 1.1652 + } 1.1653 + break2: 1.1654 + if (*s == '0') { 1.1655 + nz0 = 1; 1.1656 + while(*++s == '0') ; 1.1657 + if (!*s) 1.1658 + goto ret; 1.1659 + } 1.1660 + s0 = s; 1.1661 + y = z = 0; 1.1662 + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) 1.1663 + if (nd < 9) 1.1664 + y = 10*y + c - '0'; 1.1665 + else if (nd < 16) 1.1666 + z = 10*z + c - '0'; 1.1667 + nd0 = nd; 1.1668 +#ifdef USE_LOCALE 1.1669 + s1 = localeconv()->decimal_point; 1.1670 + if (c == *s1) { 1.1671 + c = '.'; 1.1672 + if (*++s1) { 1.1673 + s2 = s; 1.1674 + for(;;) { 1.1675 + if (*++s2 != *s1) { 1.1676 + c = 0; 1.1677 + break; 1.1678 + } 1.1679 + if (!*++s1) { 1.1680 + s = s2; 1.1681 + break; 1.1682 + } 1.1683 + } 1.1684 + } 1.1685 + } 1.1686 +#endif 1.1687 + if (c == '.') { 1.1688 + c = *++s; 1.1689 + if (!nd) { 1.1690 + for(; c == '0'; c = *++s) 1.1691 + nz++; 1.1692 + if (c > '0' && c <= '9') { 1.1693 + s0 = s; 1.1694 + nf += nz; 1.1695 + nz = 0; 1.1696 + goto have_dig; 1.1697 + } 1.1698 + goto dig_done; 1.1699 + } 1.1700 + for(; c >= '0' && c <= '9'; c = *++s) { 1.1701 + have_dig: 1.1702 + nz++; 1.1703 + if (c -= '0') { 1.1704 + nf += nz; 1.1705 + for(i = 1; i < nz; i++) 1.1706 + if (nd++ < 9) 1.1707 + y *= 10; 1.1708 + else if (nd <= DBL_DIG + 1) 1.1709 + z *= 10; 1.1710 + if (nd++ < 9) 1.1711 + y = 10*y + c; 1.1712 + else if (nd <= DBL_DIG + 1) 1.1713 + z = 10*z + c; 1.1714 + nz = 0; 1.1715 + } 1.1716 + } 1.1717 + } 1.1718 + dig_done: 1.1719 + if (nd > 64 * 1024) 1.1720 + goto ret0; 1.1721 + e = 0; 1.1722 + if (c == 'e' || c == 'E') { 1.1723 + if (!nd && !nz && !nz0) { 1.1724 + goto ret0; 1.1725 + } 1.1726 + s00 = s; 1.1727 + esign = 0; 1.1728 + switch(c = *++s) { 1.1729 + case '-': 1.1730 + esign = 1; 1.1731 + case '+': 1.1732 + c = *++s; 1.1733 + } 1.1734 + if (c >= '0' && c <= '9') { 1.1735 + while(c == '0') 1.1736 + c = *++s; 1.1737 + if (c > '0' && c <= '9') { 1.1738 + L = c - '0'; 1.1739 + s1 = s; 1.1740 + while((c = *++s) >= '0' && c <= '9') 1.1741 + L = 10*L + c - '0'; 1.1742 + if (s - s1 > 8 || L > 19999) 1.1743 + /* Avoid confusion from exponents 1.1744 + * so large that e might overflow. 1.1745 + */ 1.1746 + e = 19999; /* safe for 16 bit ints */ 1.1747 + else 1.1748 + e = (int)L; 1.1749 + if (esign) 1.1750 + e = -e; 1.1751 + } 1.1752 + else 1.1753 + e = 0; 1.1754 + } 1.1755 + else 1.1756 + s = s00; 1.1757 + } 1.1758 + if (!nd) { 1.1759 + if (!nz && !nz0) { 1.1760 +#ifdef INFNAN_CHECK 1.1761 + /* Check for Nan and Infinity */ 1.1762 + switch(c) { 1.1763 + case 'i': 1.1764 + case 'I': 1.1765 + if (match(&s,"nf")) { 1.1766 + --s; 1.1767 + if (!match(&s,"inity")) 1.1768 + ++s; 1.1769 + word0(rv) = 0x7ff00000; 1.1770 + word1(rv) = 0; 1.1771 + goto ret; 1.1772 + } 1.1773 + break; 1.1774 + case 'n': 1.1775 + case 'N': 1.1776 + if (match(&s, "an")) { 1.1777 + word0(rv) = NAN_WORD0; 1.1778 + word1(rv) = NAN_WORD1; 1.1779 +#ifndef No_Hex_NaN 1.1780 + if (*s == '(') /*)*/ 1.1781 + hexnan(&rv, &s); 1.1782 +#endif 1.1783 + goto ret; 1.1784 + } 1.1785 + } 1.1786 +#endif /* INFNAN_CHECK */ 1.1787 + ret0: 1.1788 + s = s00; 1.1789 + sign = 0; 1.1790 + } 1.1791 + goto ret; 1.1792 + } 1.1793 + e1 = e -= nf; 1.1794 + 1.1795 + /* Now we have nd0 digits, starting at s0, followed by a 1.1796 + * decimal point, followed by nd-nd0 digits. The number we're 1.1797 + * after is the integer represented by those digits times 1.1798 + * 10**e */ 1.1799 + 1.1800 + if (!nd0) 1.1801 + nd0 = nd; 1.1802 + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; 1.1803 + dval(rv) = y; 1.1804 + if (k > 9) { 1.1805 +#ifdef SET_INEXACT 1.1806 + if (k > DBL_DIG) 1.1807 + oldinexact = get_inexact(); 1.1808 +#endif 1.1809 + dval(rv) = tens[k - 9] * dval(rv) + z; 1.1810 + } 1.1811 + bd0 = 0; 1.1812 + if (nd <= DBL_DIG 1.1813 +#ifndef RND_PRODQUOT 1.1814 +#ifndef Honor_FLT_ROUNDS 1.1815 + && Flt_Rounds == 1 1.1816 +#endif 1.1817 +#endif 1.1818 + ) { 1.1819 + if (!e) 1.1820 + goto ret; 1.1821 + if (e > 0) { 1.1822 + if (e <= Ten_pmax) { 1.1823 +#ifdef VAX 1.1824 + goto vax_ovfl_check; 1.1825 +#else 1.1826 +#ifdef Honor_FLT_ROUNDS 1.1827 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1828 + if (sign) { 1.1829 + rv = -rv; 1.1830 + sign = 0; 1.1831 + } 1.1832 +#endif 1.1833 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1834 + goto ret; 1.1835 +#endif 1.1836 + } 1.1837 + i = DBL_DIG - nd; 1.1838 + if (e <= Ten_pmax + i) { 1.1839 + /* A fancier test would sometimes let us do 1.1840 + * this for larger i values. 1.1841 + */ 1.1842 +#ifdef Honor_FLT_ROUNDS 1.1843 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1844 + if (sign) { 1.1845 + rv = -rv; 1.1846 + sign = 0; 1.1847 + } 1.1848 +#endif 1.1849 + e -= i; 1.1850 + dval(rv) *= tens[i]; 1.1851 +#ifdef VAX 1.1852 + /* VAX exponent range is so narrow we must 1.1853 + * worry about overflow here... 1.1854 + */ 1.1855 + vax_ovfl_check: 1.1856 + word0(rv) -= P*Exp_msk1; 1.1857 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1858 + if ((word0(rv) & Exp_mask) 1.1859 + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) 1.1860 + goto ovfl; 1.1861 + word0(rv) += P*Exp_msk1; 1.1862 +#else 1.1863 + /* rv = */ rounded_product(dval(rv), tens[e]); 1.1864 +#endif 1.1865 + goto ret; 1.1866 + } 1.1867 + } 1.1868 +#ifndef Inaccurate_Divide 1.1869 + else if (e >= -Ten_pmax) { 1.1870 +#ifdef Honor_FLT_ROUNDS 1.1871 + /* round correctly FLT_ROUNDS = 2 or 3 */ 1.1872 + if (sign) { 1.1873 + rv = -rv; 1.1874 + sign = 0; 1.1875 + } 1.1876 +#endif 1.1877 + /* rv = */ rounded_quotient(dval(rv), tens[-e]); 1.1878 + goto ret; 1.1879 + } 1.1880 +#endif 1.1881 + } 1.1882 + e1 += nd - k; 1.1883 + 1.1884 +#ifdef IEEE_Arith 1.1885 +#ifdef SET_INEXACT 1.1886 + inexact = 1; 1.1887 + if (k <= DBL_DIG) 1.1888 + oldinexact = get_inexact(); 1.1889 +#endif 1.1890 +#ifdef Avoid_Underflow 1.1891 + scale = 0; 1.1892 +#endif 1.1893 +#ifdef Honor_FLT_ROUNDS 1.1894 + if ((rounding = Flt_Rounds) >= 2) { 1.1895 + if (sign) 1.1896 + rounding = rounding == 2 ? 0 : 2; 1.1897 + else 1.1898 + if (rounding != 2) 1.1899 + rounding = 0; 1.1900 + } 1.1901 +#endif 1.1902 +#endif /*IEEE_Arith*/ 1.1903 + 1.1904 + /* Get starting approximation = rv * 10**e1 */ 1.1905 + 1.1906 + if (e1 > 0) { 1.1907 + if (i = e1 & 15) 1.1908 + dval(rv) *= tens[i]; 1.1909 + if (e1 &= ~15) { 1.1910 + if (e1 > DBL_MAX_10_EXP) { 1.1911 + ovfl: 1.1912 +#ifndef NO_ERRNO 1.1913 + PR_SetError(PR_RANGE_ERROR, 0); 1.1914 +#endif 1.1915 + /* Can't trust HUGE_VAL */ 1.1916 +#ifdef IEEE_Arith 1.1917 +#ifdef Honor_FLT_ROUNDS 1.1918 + switch(rounding) { 1.1919 + case 0: /* toward 0 */ 1.1920 + case 3: /* toward -infinity */ 1.1921 + word0(rv) = Big0; 1.1922 + word1(rv) = Big1; 1.1923 + break; 1.1924 + default: 1.1925 + word0(rv) = Exp_mask; 1.1926 + word1(rv) = 0; 1.1927 + } 1.1928 +#else /*Honor_FLT_ROUNDS*/ 1.1929 + word0(rv) = Exp_mask; 1.1930 + word1(rv) = 0; 1.1931 +#endif /*Honor_FLT_ROUNDS*/ 1.1932 +#ifdef SET_INEXACT 1.1933 + /* set overflow bit */ 1.1934 + dval(rv0) = 1e300; 1.1935 + dval(rv0) *= dval(rv0); 1.1936 +#endif 1.1937 +#else /*IEEE_Arith*/ 1.1938 + word0(rv) = Big0; 1.1939 + word1(rv) = Big1; 1.1940 +#endif /*IEEE_Arith*/ 1.1941 + if (bd0) 1.1942 + goto retfree; 1.1943 + goto ret; 1.1944 + } 1.1945 + e1 >>= 4; 1.1946 + for(j = 0; e1 > 1; j++, e1 >>= 1) 1.1947 + if (e1 & 1) 1.1948 + dval(rv) *= bigtens[j]; 1.1949 + /* The last multiplication could overflow. */ 1.1950 + word0(rv) -= P*Exp_msk1; 1.1951 + dval(rv) *= bigtens[j]; 1.1952 + if ((z = word0(rv) & Exp_mask) 1.1953 + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) 1.1954 + goto ovfl; 1.1955 + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { 1.1956 + /* set to largest number */ 1.1957 + /* (Can't trust DBL_MAX) */ 1.1958 + word0(rv) = Big0; 1.1959 + word1(rv) = Big1; 1.1960 + } 1.1961 + else 1.1962 + word0(rv) += P*Exp_msk1; 1.1963 + } 1.1964 + } 1.1965 + else if (e1 < 0) { 1.1966 + e1 = -e1; 1.1967 + if (i = e1 & 15) 1.1968 + dval(rv) /= tens[i]; 1.1969 + if (e1 >>= 4) { 1.1970 + if (e1 >= 1 << n_bigtens) 1.1971 + goto undfl; 1.1972 +#ifdef Avoid_Underflow 1.1973 + if (e1 & Scale_Bit) 1.1974 + scale = 2*P; 1.1975 + for(j = 0; e1 > 0; j++, e1 >>= 1) 1.1976 + if (e1 & 1) 1.1977 + dval(rv) *= tinytens[j]; 1.1978 + if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) 1.1979 + >> Exp_shift)) > 0) { 1.1980 + /* scaled rv is denormal; zap j low bits */ 1.1981 + if (j >= 32) { 1.1982 + word1(rv) = 0; 1.1983 + if (j >= 53) 1.1984 + word0(rv) = (P+2)*Exp_msk1; 1.1985 + else 1.1986 + word0(rv) &= 0xffffffff << j-32; 1.1987 + } 1.1988 + else 1.1989 + word1(rv) &= 0xffffffff << j; 1.1990 + } 1.1991 +#else 1.1992 + for(j = 0; e1 > 1; j++, e1 >>= 1) 1.1993 + if (e1 & 1) 1.1994 + dval(rv) *= tinytens[j]; 1.1995 + /* The last multiplication could underflow. */ 1.1996 + dval(rv0) = dval(rv); 1.1997 + dval(rv) *= tinytens[j]; 1.1998 + if (!dval(rv)) { 1.1999 + dval(rv) = 2.*dval(rv0); 1.2000 + dval(rv) *= tinytens[j]; 1.2001 +#endif 1.2002 + if (!dval(rv)) { 1.2003 + undfl: 1.2004 + dval(rv) = 0.; 1.2005 +#ifndef NO_ERRNO 1.2006 + PR_SetError(PR_RANGE_ERROR, 0); 1.2007 +#endif 1.2008 + if (bd0) 1.2009 + goto retfree; 1.2010 + goto ret; 1.2011 + } 1.2012 +#ifndef Avoid_Underflow 1.2013 + word0(rv) = Tiny0; 1.2014 + word1(rv) = Tiny1; 1.2015 + /* The refinement below will clean 1.2016 + * this approximation up. 1.2017 + */ 1.2018 + } 1.2019 +#endif 1.2020 + } 1.2021 + } 1.2022 + 1.2023 + /* Now the hard part -- adjusting rv to the correct value.*/ 1.2024 + 1.2025 + /* Put digits into bd: true value = bd * 10^e */ 1.2026 + 1.2027 + bd0 = s2b(s0, nd0, nd, y); 1.2028 + 1.2029 + for(;;) { 1.2030 + bd = Balloc(bd0->k); 1.2031 + Bcopy(bd, bd0); 1.2032 + bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */ 1.2033 + bs = i2b(1); 1.2034 + 1.2035 + if (e >= 0) { 1.2036 + bb2 = bb5 = 0; 1.2037 + bd2 = bd5 = e; 1.2038 + } 1.2039 + else { 1.2040 + bb2 = bb5 = -e; 1.2041 + bd2 = bd5 = 0; 1.2042 + } 1.2043 + if (bbe >= 0) 1.2044 + bb2 += bbe; 1.2045 + else 1.2046 + bd2 -= bbe; 1.2047 + bs2 = bb2; 1.2048 +#ifdef Honor_FLT_ROUNDS 1.2049 + if (rounding != 1) 1.2050 + bs2++; 1.2051 +#endif 1.2052 +#ifdef Avoid_Underflow 1.2053 + j = bbe - scale; 1.2054 + i = j + bbbits - 1; /* logb(rv) */ 1.2055 + if (i < Emin) /* denormal */ 1.2056 + j += P - Emin; 1.2057 + else 1.2058 + j = P + 1 - bbbits; 1.2059 +#else /*Avoid_Underflow*/ 1.2060 +#ifdef Sudden_Underflow 1.2061 +#ifdef IBM 1.2062 + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); 1.2063 +#else 1.2064 + j = P + 1 - bbbits; 1.2065 +#endif 1.2066 +#else /*Sudden_Underflow*/ 1.2067 + j = bbe; 1.2068 + i = j + bbbits - 1; /* logb(rv) */ 1.2069 + if (i < Emin) /* denormal */ 1.2070 + j += P - Emin; 1.2071 + else 1.2072 + j = P + 1 - bbbits; 1.2073 +#endif /*Sudden_Underflow*/ 1.2074 +#endif /*Avoid_Underflow*/ 1.2075 + bb2 += j; 1.2076 + bd2 += j; 1.2077 +#ifdef Avoid_Underflow 1.2078 + bd2 += scale; 1.2079 +#endif 1.2080 + i = bb2 < bd2 ? bb2 : bd2; 1.2081 + if (i > bs2) 1.2082 + i = bs2; 1.2083 + if (i > 0) { 1.2084 + bb2 -= i; 1.2085 + bd2 -= i; 1.2086 + bs2 -= i; 1.2087 + } 1.2088 + if (bb5 > 0) { 1.2089 + bs = pow5mult(bs, bb5); 1.2090 + bb1 = mult(bs, bb); 1.2091 + Bfree(bb); 1.2092 + bb = bb1; 1.2093 + } 1.2094 + if (bb2 > 0) 1.2095 + bb = lshift(bb, bb2); 1.2096 + if (bd5 > 0) 1.2097 + bd = pow5mult(bd, bd5); 1.2098 + if (bd2 > 0) 1.2099 + bd = lshift(bd, bd2); 1.2100 + if (bs2 > 0) 1.2101 + bs = lshift(bs, bs2); 1.2102 + delta = diff(bb, bd); 1.2103 + dsign = delta->sign; 1.2104 + delta->sign = 0; 1.2105 + i = cmp(delta, bs); 1.2106 +#ifdef Honor_FLT_ROUNDS 1.2107 + if (rounding != 1) { 1.2108 + if (i < 0) { 1.2109 + /* Error is less than an ulp */ 1.2110 + if (!delta->x[0] && delta->wds <= 1) { 1.2111 + /* exact */ 1.2112 +#ifdef SET_INEXACT 1.2113 + inexact = 0; 1.2114 +#endif 1.2115 + break; 1.2116 + } 1.2117 + if (rounding) { 1.2118 + if (dsign) { 1.2119 + adj = 1.; 1.2120 + goto apply_adj; 1.2121 + } 1.2122 + } 1.2123 + else if (!dsign) { 1.2124 + adj = -1.; 1.2125 + if (!word1(rv) 1.2126 + && !(word0(rv) & Frac_mask)) { 1.2127 + y = word0(rv) & Exp_mask; 1.2128 +#ifdef Avoid_Underflow 1.2129 + if (!scale || y > 2*P*Exp_msk1) 1.2130 +#else 1.2131 + if (y) 1.2132 +#endif 1.2133 + { 1.2134 + delta = lshift(delta,Log2P); 1.2135 + if (cmp(delta, bs) <= 0) 1.2136 + adj = -0.5; 1.2137 + } 1.2138 + } 1.2139 + apply_adj: 1.2140 +#ifdef Avoid_Underflow 1.2141 + if (scale && (y = word0(rv) & Exp_mask) 1.2142 + <= 2*P*Exp_msk1) 1.2143 + word0(adj) += (2*P+1)*Exp_msk1 - y; 1.2144 +#else 1.2145 +#ifdef Sudden_Underflow 1.2146 + if ((word0(rv) & Exp_mask) <= 1.2147 + P*Exp_msk1) { 1.2148 + word0(rv) += P*Exp_msk1; 1.2149 + dval(rv) += adj*ulp(dval(rv)); 1.2150 + word0(rv) -= P*Exp_msk1; 1.2151 + } 1.2152 + else 1.2153 +#endif /*Sudden_Underflow*/ 1.2154 +#endif /*Avoid_Underflow*/ 1.2155 + dval(rv) += adj*ulp(dval(rv)); 1.2156 + } 1.2157 + break; 1.2158 + } 1.2159 + adj = ratio(delta, bs); 1.2160 + if (adj < 1.) 1.2161 + adj = 1.; 1.2162 + if (adj <= 0x7ffffffe) { 1.2163 + /* adj = rounding ? ceil(adj) : floor(adj); */ 1.2164 + y = adj; 1.2165 + if (y != adj) { 1.2166 + if (!((rounding>>1) ^ dsign)) 1.2167 + y++; 1.2168 + adj = y; 1.2169 + } 1.2170 + } 1.2171 +#ifdef Avoid_Underflow 1.2172 + if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) 1.2173 + word0(adj) += (2*P+1)*Exp_msk1 - y; 1.2174 +#else 1.2175 +#ifdef Sudden_Underflow 1.2176 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { 1.2177 + word0(rv) += P*Exp_msk1; 1.2178 + adj *= ulp(dval(rv)); 1.2179 + if (dsign) 1.2180 + dval(rv) += adj; 1.2181 + else 1.2182 + dval(rv) -= adj; 1.2183 + word0(rv) -= P*Exp_msk1; 1.2184 + goto cont; 1.2185 + } 1.2186 +#endif /*Sudden_Underflow*/ 1.2187 +#endif /*Avoid_Underflow*/ 1.2188 + adj *= ulp(dval(rv)); 1.2189 + if (dsign) 1.2190 + dval(rv) += adj; 1.2191 + else 1.2192 + dval(rv) -= adj; 1.2193 + goto cont; 1.2194 + } 1.2195 +#endif /*Honor_FLT_ROUNDS*/ 1.2196 + 1.2197 + if (i < 0) { 1.2198 + /* Error is less than half an ulp -- check for 1.2199 + * special case of mantissa a power of two. 1.2200 + */ 1.2201 + if (dsign || word1(rv) || word0(rv) & Bndry_mask 1.2202 +#ifdef IEEE_Arith 1.2203 +#ifdef Avoid_Underflow 1.2204 + || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 1.2205 +#else 1.2206 + || (word0(rv) & Exp_mask) <= Exp_msk1 1.2207 +#endif 1.2208 +#endif 1.2209 + ) { 1.2210 +#ifdef SET_INEXACT 1.2211 + if (!delta->x[0] && delta->wds <= 1) 1.2212 + inexact = 0; 1.2213 +#endif 1.2214 + break; 1.2215 + } 1.2216 + if (!delta->x[0] && delta->wds <= 1) { 1.2217 + /* exact result */ 1.2218 +#ifdef SET_INEXACT 1.2219 + inexact = 0; 1.2220 +#endif 1.2221 + break; 1.2222 + } 1.2223 + delta = lshift(delta,Log2P); 1.2224 + if (cmp(delta, bs) > 0) 1.2225 + goto drop_down; 1.2226 + break; 1.2227 + } 1.2228 + if (i == 0) { 1.2229 + /* exactly half-way between */ 1.2230 + if (dsign) { 1.2231 + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 1.2232 + && word1(rv) == ( 1.2233 +#ifdef Avoid_Underflow 1.2234 + (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) 1.2235 + ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : 1.2236 +#endif 1.2237 + 0xffffffff)) { 1.2238 + /*boundary case -- increment exponent*/ 1.2239 + word0(rv) = (word0(rv) & Exp_mask) 1.2240 + + Exp_msk1 1.2241 +#ifdef IBM 1.2242 + | Exp_msk1 >> 4 1.2243 +#endif 1.2244 + ; 1.2245 + word1(rv) = 0; 1.2246 +#ifdef Avoid_Underflow 1.2247 + dsign = 0; 1.2248 +#endif 1.2249 + break; 1.2250 + } 1.2251 + } 1.2252 + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { 1.2253 + drop_down: 1.2254 + /* boundary case -- decrement exponent */ 1.2255 +#ifdef Sudden_Underflow /*{{*/ 1.2256 + L = word0(rv) & Exp_mask; 1.2257 +#ifdef IBM 1.2258 + if (L < Exp_msk1) 1.2259 +#else 1.2260 +#ifdef Avoid_Underflow 1.2261 + if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) 1.2262 +#else 1.2263 + if (L <= Exp_msk1) 1.2264 +#endif /*Avoid_Underflow*/ 1.2265 +#endif /*IBM*/ 1.2266 + goto undfl; 1.2267 + L -= Exp_msk1; 1.2268 +#else /*Sudden_Underflow}{*/ 1.2269 +#ifdef Avoid_Underflow 1.2270 + if (scale) { 1.2271 + L = word0(rv) & Exp_mask; 1.2272 + if (L <= (2*P+1)*Exp_msk1) { 1.2273 + if (L > (P+2)*Exp_msk1) 1.2274 + /* round even ==> */ 1.2275 + /* accept rv */ 1.2276 + break; 1.2277 + /* rv = smallest denormal */ 1.2278 + goto undfl; 1.2279 + } 1.2280 + } 1.2281 +#endif /*Avoid_Underflow*/ 1.2282 + L = (word0(rv) & Exp_mask) - Exp_msk1; 1.2283 +#endif /*Sudden_Underflow}}*/ 1.2284 + word0(rv) = L | Bndry_mask1; 1.2285 + word1(rv) = 0xffffffff; 1.2286 +#ifdef IBM 1.2287 + goto cont; 1.2288 +#else 1.2289 + break; 1.2290 +#endif 1.2291 + } 1.2292 +#ifndef ROUND_BIASED 1.2293 + if (!(word1(rv) & LSB)) 1.2294 + break; 1.2295 +#endif 1.2296 + if (dsign) 1.2297 + dval(rv) += ulp(dval(rv)); 1.2298 +#ifndef ROUND_BIASED 1.2299 + else { 1.2300 + dval(rv) -= ulp(dval(rv)); 1.2301 +#ifndef Sudden_Underflow 1.2302 + if (!dval(rv)) 1.2303 + goto undfl; 1.2304 +#endif 1.2305 + } 1.2306 +#ifdef Avoid_Underflow 1.2307 + dsign = 1 - dsign; 1.2308 +#endif 1.2309 +#endif 1.2310 + break; 1.2311 + } 1.2312 + if ((aadj = ratio(delta, bs)) <= 2.) { 1.2313 + if (dsign) 1.2314 + aadj = aadj1 = 1.; 1.2315 + else if (word1(rv) || word0(rv) & Bndry_mask) { 1.2316 +#ifndef Sudden_Underflow 1.2317 + if (word1(rv) == Tiny1 && !word0(rv)) 1.2318 + goto undfl; 1.2319 +#endif 1.2320 + aadj = 1.; 1.2321 + aadj1 = -1.; 1.2322 + } 1.2323 + else { 1.2324 + /* special case -- power of FLT_RADIX to be */ 1.2325 + /* rounded down... */ 1.2326 + 1.2327 + if (aadj < 2./FLT_RADIX) 1.2328 + aadj = 1./FLT_RADIX; 1.2329 + else 1.2330 + aadj *= 0.5; 1.2331 + aadj1 = -aadj; 1.2332 + } 1.2333 + } 1.2334 + else { 1.2335 + aadj *= 0.5; 1.2336 + aadj1 = dsign ? aadj : -aadj; 1.2337 +#ifdef Check_FLT_ROUNDS 1.2338 + switch(Rounding) { 1.2339 + case 2: /* towards +infinity */ 1.2340 + aadj1 -= 0.5; 1.2341 + break; 1.2342 + case 0: /* towards 0 */ 1.2343 + case 3: /* towards -infinity */ 1.2344 + aadj1 += 0.5; 1.2345 + } 1.2346 +#else 1.2347 + if (Flt_Rounds == 0) 1.2348 + aadj1 += 0.5; 1.2349 +#endif /*Check_FLT_ROUNDS*/ 1.2350 + } 1.2351 + y = word0(rv) & Exp_mask; 1.2352 + 1.2353 + /* Check for overflow */ 1.2354 + 1.2355 + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { 1.2356 + dval(rv0) = dval(rv); 1.2357 + word0(rv) -= P*Exp_msk1; 1.2358 + adj = aadj1 * ulp(dval(rv)); 1.2359 + dval(rv) += adj; 1.2360 + if ((word0(rv) & Exp_mask) >= 1.2361 + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { 1.2362 + if (word0(rv0) == Big0 && word1(rv0) == Big1) 1.2363 + goto ovfl; 1.2364 + word0(rv) = Big0; 1.2365 + word1(rv) = Big1; 1.2366 + goto cont; 1.2367 + } 1.2368 + else 1.2369 + word0(rv) += P*Exp_msk1; 1.2370 + } 1.2371 + else { 1.2372 +#ifdef Avoid_Underflow 1.2373 + if (scale && y <= 2*P*Exp_msk1) { 1.2374 + if (aadj <= 0x7fffffff) { 1.2375 + if ((z = aadj) <= 0) 1.2376 + z = 1; 1.2377 + aadj = z; 1.2378 + aadj1 = dsign ? aadj : -aadj; 1.2379 + } 1.2380 + dval(aadj2) = aadj1; 1.2381 + word0(aadj2) += (2*P+1)*Exp_msk1 - y; 1.2382 + aadj1 = dval(aadj2); 1.2383 + } 1.2384 + adj = aadj1 * ulp(dval(rv)); 1.2385 + dval(rv) += adj; 1.2386 +#else 1.2387 +#ifdef Sudden_Underflow 1.2388 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { 1.2389 + dval(rv0) = dval(rv); 1.2390 + word0(rv) += P*Exp_msk1; 1.2391 + adj = aadj1 * ulp(dval(rv)); 1.2392 + dval(rv) += adj; 1.2393 +#ifdef IBM 1.2394 + if ((word0(rv) & Exp_mask) < P*Exp_msk1) 1.2395 +#else 1.2396 + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) 1.2397 +#endif 1.2398 + { 1.2399 + if (word0(rv0) == Tiny0 1.2400 + && word1(rv0) == Tiny1) 1.2401 + goto undfl; 1.2402 + word0(rv) = Tiny0; 1.2403 + word1(rv) = Tiny1; 1.2404 + goto cont; 1.2405 + } 1.2406 + else 1.2407 + word0(rv) -= P*Exp_msk1; 1.2408 + } 1.2409 + else { 1.2410 + adj = aadj1 * ulp(dval(rv)); 1.2411 + dval(rv) += adj; 1.2412 + } 1.2413 +#else /*Sudden_Underflow*/ 1.2414 + /* Compute adj so that the IEEE rounding rules will 1.2415 + * correctly round rv + adj in some half-way cases. 1.2416 + * If rv * ulp(rv) is denormalized (i.e., 1.2417 + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid 1.2418 + * trouble from bits lost to denormalization; 1.2419 + * example: 1.2e-307 . 1.2420 + */ 1.2421 + if (y <= (P-1)*Exp_msk1 && aadj > 1.) { 1.2422 + aadj1 = (double)(int)(aadj + 0.5); 1.2423 + if (!dsign) 1.2424 + aadj1 = -aadj1; 1.2425 + } 1.2426 + adj = aadj1 * ulp(dval(rv)); 1.2427 + dval(rv) += adj; 1.2428 +#endif /*Sudden_Underflow*/ 1.2429 +#endif /*Avoid_Underflow*/ 1.2430 + } 1.2431 + z = word0(rv) & Exp_mask; 1.2432 +#ifndef SET_INEXACT 1.2433 +#ifdef Avoid_Underflow 1.2434 + if (!scale) 1.2435 +#endif 1.2436 + if (y == z) { 1.2437 + /* Can we stop now? */ 1.2438 + L = (Long)aadj; 1.2439 + aadj -= L; 1.2440 + /* The tolerances below are conservative. */ 1.2441 + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { 1.2442 + if (aadj < .4999999 || aadj > .5000001) 1.2443 + break; 1.2444 + } 1.2445 + else if (aadj < .4999999/FLT_RADIX) 1.2446 + break; 1.2447 + } 1.2448 +#endif 1.2449 + cont: 1.2450 + Bfree(bb); 1.2451 + Bfree(bd); 1.2452 + Bfree(bs); 1.2453 + Bfree(delta); 1.2454 + } 1.2455 +#ifdef SET_INEXACT 1.2456 + if (inexact) { 1.2457 + if (!oldinexact) { 1.2458 + word0(rv0) = Exp_1 + (70 << Exp_shift); 1.2459 + word1(rv0) = 0; 1.2460 + dval(rv0) += 1.; 1.2461 + } 1.2462 + } 1.2463 + else if (!oldinexact) 1.2464 + clear_inexact(); 1.2465 +#endif 1.2466 +#ifdef Avoid_Underflow 1.2467 + if (scale) { 1.2468 + word0(rv0) = Exp_1 - 2*P*Exp_msk1; 1.2469 + word1(rv0) = 0; 1.2470 + dval(rv) *= dval(rv0); 1.2471 +#ifndef NO_ERRNO 1.2472 + /* try to avoid the bug of testing an 8087 register value */ 1.2473 + if (word0(rv) == 0 && word1(rv) == 0) 1.2474 + PR_SetError(PR_RANGE_ERROR, 0); 1.2475 +#endif 1.2476 + } 1.2477 +#endif /* Avoid_Underflow */ 1.2478 +#ifdef SET_INEXACT 1.2479 + if (inexact && !(word0(rv) & Exp_mask)) { 1.2480 + /* set underflow bit */ 1.2481 + dval(rv0) = 1e-300; 1.2482 + dval(rv0) *= dval(rv0); 1.2483 + } 1.2484 +#endif 1.2485 + retfree: 1.2486 + Bfree(bb); 1.2487 + Bfree(bd); 1.2488 + Bfree(bs); 1.2489 + Bfree(bd0); 1.2490 + Bfree(delta); 1.2491 + ret: 1.2492 + if (se) 1.2493 + *se = (char *)s; 1.2494 + return sign ? -dval(rv) : dval(rv); 1.2495 + } 1.2496 + 1.2497 + static int 1.2498 +quorem 1.2499 +#ifdef KR_headers 1.2500 + (b, S) Bigint *b, *S; 1.2501 +#else 1.2502 + (Bigint *b, Bigint *S) 1.2503 +#endif 1.2504 +{ 1.2505 + int n; 1.2506 + ULong *bx, *bxe, q, *sx, *sxe; 1.2507 +#ifdef ULLong 1.2508 + ULLong borrow, carry, y, ys; 1.2509 +#else 1.2510 + ULong borrow, carry, y, ys; 1.2511 +#ifdef Pack_32 1.2512 + ULong si, z, zs; 1.2513 +#endif 1.2514 +#endif 1.2515 + 1.2516 + n = S->wds; 1.2517 +#ifdef DEBUG 1.2518 + /*debug*/ if (b->wds > n) 1.2519 + /*debug*/ Bug("oversize b in quorem"); 1.2520 +#endif 1.2521 + if (b->wds < n) 1.2522 + return 0; 1.2523 + sx = S->x; 1.2524 + sxe = sx + --n; 1.2525 + bx = b->x; 1.2526 + bxe = bx + n; 1.2527 + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ 1.2528 +#ifdef DEBUG 1.2529 + /*debug*/ if (q > 9) 1.2530 + /*debug*/ Bug("oversized quotient in quorem"); 1.2531 +#endif 1.2532 + if (q) { 1.2533 + borrow = 0; 1.2534 + carry = 0; 1.2535 + do { 1.2536 +#ifdef ULLong 1.2537 + ys = *sx++ * (ULLong)q + carry; 1.2538 + carry = ys >> 32; 1.2539 + y = *bx - (ys & FFFFFFFF) - borrow; 1.2540 + borrow = y >> 32 & (ULong)1; 1.2541 + *bx++ = y & FFFFFFFF; 1.2542 +#else 1.2543 +#ifdef Pack_32 1.2544 + si = *sx++; 1.2545 + ys = (si & 0xffff) * q + carry; 1.2546 + zs = (si >> 16) * q + (ys >> 16); 1.2547 + carry = zs >> 16; 1.2548 + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 1.2549 + borrow = (y & 0x10000) >> 16; 1.2550 + z = (*bx >> 16) - (zs & 0xffff) - borrow; 1.2551 + borrow = (z & 0x10000) >> 16; 1.2552 + Storeinc(bx, z, y); 1.2553 +#else 1.2554 + ys = *sx++ * q + carry; 1.2555 + carry = ys >> 16; 1.2556 + y = *bx - (ys & 0xffff) - borrow; 1.2557 + borrow = (y & 0x10000) >> 16; 1.2558 + *bx++ = y & 0xffff; 1.2559 +#endif 1.2560 +#endif 1.2561 + } 1.2562 + while(sx <= sxe); 1.2563 + if (!*bxe) { 1.2564 + bx = b->x; 1.2565 + while(--bxe > bx && !*bxe) 1.2566 + --n; 1.2567 + b->wds = n; 1.2568 + } 1.2569 + } 1.2570 + if (cmp(b, S) >= 0) { 1.2571 + q++; 1.2572 + borrow = 0; 1.2573 + carry = 0; 1.2574 + bx = b->x; 1.2575 + sx = S->x; 1.2576 + do { 1.2577 +#ifdef ULLong 1.2578 + ys = *sx++ + carry; 1.2579 + carry = ys >> 32; 1.2580 + y = *bx - (ys & FFFFFFFF) - borrow; 1.2581 + borrow = y >> 32 & (ULong)1; 1.2582 + *bx++ = y & FFFFFFFF; 1.2583 +#else 1.2584 +#ifdef Pack_32 1.2585 + si = *sx++; 1.2586 + ys = (si & 0xffff) + carry; 1.2587 + zs = (si >> 16) + (ys >> 16); 1.2588 + carry = zs >> 16; 1.2589 + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 1.2590 + borrow = (y & 0x10000) >> 16; 1.2591 + z = (*bx >> 16) - (zs & 0xffff) - borrow; 1.2592 + borrow = (z & 0x10000) >> 16; 1.2593 + Storeinc(bx, z, y); 1.2594 +#else 1.2595 + ys = *sx++ + carry; 1.2596 + carry = ys >> 16; 1.2597 + y = *bx - (ys & 0xffff) - borrow; 1.2598 + borrow = (y & 0x10000) >> 16; 1.2599 + *bx++ = y & 0xffff; 1.2600 +#endif 1.2601 +#endif 1.2602 + } 1.2603 + while(sx <= sxe); 1.2604 + bx = b->x; 1.2605 + bxe = bx + n; 1.2606 + if (!*bxe) { 1.2607 + while(--bxe > bx && !*bxe) 1.2608 + --n; 1.2609 + b->wds = n; 1.2610 + } 1.2611 + } 1.2612 + return q; 1.2613 + } 1.2614 + 1.2615 +#ifndef MULTIPLE_THREADS 1.2616 + static char *dtoa_result; 1.2617 +#endif 1.2618 + 1.2619 + static char * 1.2620 +#ifdef KR_headers 1.2621 +rv_alloc(i) int i; 1.2622 +#else 1.2623 +rv_alloc(int i) 1.2624 +#endif 1.2625 +{ 1.2626 + int j, k, *r; 1.2627 + 1.2628 + j = sizeof(ULong); 1.2629 + for(k = 0; 1.2630 + sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; 1.2631 + j <<= 1) 1.2632 + k++; 1.2633 + r = (int*)Balloc(k); 1.2634 + *r = k; 1.2635 + return 1.2636 +#ifndef MULTIPLE_THREADS 1.2637 + dtoa_result = 1.2638 +#endif 1.2639 + (char *)(r+1); 1.2640 + } 1.2641 + 1.2642 + static char * 1.2643 +#ifdef KR_headers 1.2644 +nrv_alloc(s, rve, n) char *s, **rve; int n; 1.2645 +#else 1.2646 +nrv_alloc(char *s, char **rve, int n) 1.2647 +#endif 1.2648 +{ 1.2649 + char *rv, *t; 1.2650 + 1.2651 + t = rv = rv_alloc(n); 1.2652 + while(*t = *s++) t++; 1.2653 + if (rve) 1.2654 + *rve = t; 1.2655 + return rv; 1.2656 + } 1.2657 + 1.2658 +/* freedtoa(s) must be used to free values s returned by dtoa 1.2659 + * when MULTIPLE_THREADS is #defined. It should be used in all cases, 1.2660 + * but for consistency with earlier versions of dtoa, it is optional 1.2661 + * when MULTIPLE_THREADS is not defined. 1.2662 + */ 1.2663 + 1.2664 + static void 1.2665 +#ifdef KR_headers 1.2666 +freedtoa(s) char *s; 1.2667 +#else 1.2668 +freedtoa(char *s) 1.2669 +#endif 1.2670 +{ 1.2671 + Bigint *b = (Bigint *)((int *)s - 1); 1.2672 + b->maxwds = 1 << (b->k = *(int*)b); 1.2673 + Bfree(b); 1.2674 +#ifndef MULTIPLE_THREADS 1.2675 + if (s == dtoa_result) 1.2676 + dtoa_result = 0; 1.2677 +#endif 1.2678 + } 1.2679 + 1.2680 +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. 1.2681 + * 1.2682 + * Inspired by "How to Print Floating-Point Numbers Accurately" by 1.2683 + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. 1.2684 + * 1.2685 + * Modifications: 1.2686 + * 1. Rather than iterating, we use a simple numeric overestimate 1.2687 + * to determine k = floor(log10(d)). We scale relevant 1.2688 + * quantities using O(log2(k)) rather than O(k) multiplications. 1.2689 + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't 1.2690 + * try to generate digits strictly left to right. Instead, we 1.2691 + * compute with fewer bits and propagate the carry if necessary 1.2692 + * when rounding the final digit up. This is often faster. 1.2693 + * 3. Under the assumption that input will be rounded nearest, 1.2694 + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. 1.2695 + * That is, we allow equality in stopping tests when the 1.2696 + * round-nearest rule will give the same floating-point value 1.2697 + * as would satisfaction of the stopping test with strict 1.2698 + * inequality. 1.2699 + * 4. We remove common factors of powers of 2 from relevant 1.2700 + * quantities. 1.2701 + * 5. When converting floating-point integers less than 1e16, 1.2702 + * we use floating-point arithmetic rather than resorting 1.2703 + * to multiple-precision integers. 1.2704 + * 6. When asked to produce fewer than 15 digits, we first try 1.2705 + * to get by with floating-point arithmetic; we resort to 1.2706 + * multiple-precision integer arithmetic only if we cannot 1.2707 + * guarantee that the floating-point calculation has given 1.2708 + * the correctly rounded result. For k requested digits and 1.2709 + * "uniformly" distributed input, the probability is 1.2710 + * something like 10^(k-15) that we must resort to the Long 1.2711 + * calculation. 1.2712 + */ 1.2713 + 1.2714 + static char * 1.2715 +dtoa 1.2716 +#ifdef KR_headers 1.2717 + (dd, mode, ndigits, decpt, sign, rve) 1.2718 + double dd; int mode, ndigits, *decpt, *sign; char **rve; 1.2719 +#else 1.2720 + (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) 1.2721 +#endif 1.2722 +{ 1.2723 + /* Arguments ndigits, decpt, sign are similar to those 1.2724 + of ecvt and fcvt; trailing zeros are suppressed from 1.2725 + the returned string. If not null, *rve is set to point 1.2726 + to the end of the return value. If d is +-Infinity or NaN, 1.2727 + then *decpt is set to 9999. 1.2728 + 1.2729 + mode: 1.2730 + 0 ==> shortest string that yields d when read in 1.2731 + and rounded to nearest. 1.2732 + 1 ==> like 0, but with Steele & White stopping rule; 1.2733 + e.g. with IEEE P754 arithmetic , mode 0 gives 1.2734 + 1e23 whereas mode 1 gives 9.999999999999999e22. 1.2735 + 2 ==> max(1,ndigits) significant digits. This gives a 1.2736 + return value similar to that of ecvt, except 1.2737 + that trailing zeros are suppressed. 1.2738 + 3 ==> through ndigits past the decimal point. This 1.2739 + gives a return value similar to that from fcvt, 1.2740 + except that trailing zeros are suppressed, and 1.2741 + ndigits can be negative. 1.2742 + 4,5 ==> similar to 2 and 3, respectively, but (in 1.2743 + round-nearest mode) with the tests of mode 0 to 1.2744 + possibly return a shorter string that rounds to d. 1.2745 + With IEEE arithmetic and compilation with 1.2746 + -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same 1.2747 + as modes 2 and 3 when FLT_ROUNDS != 1. 1.2748 + 6-9 ==> Debugging modes similar to mode - 4: don't try 1.2749 + fast floating-point estimate (if applicable). 1.2750 + 1.2751 + Values of mode other than 0-9 are treated as mode 0. 1.2752 + 1.2753 + Sufficient space is allocated to the return value 1.2754 + to hold the suppressed trailing zeros. 1.2755 + */ 1.2756 + 1.2757 + int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, 1.2758 + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, 1.2759 + spec_case, try_quick; 1.2760 + Long L; 1.2761 +#ifndef Sudden_Underflow 1.2762 + int denorm; 1.2763 + ULong x; 1.2764 +#endif 1.2765 + Bigint *b, *b1, *delta, *mlo, *mhi, *S; 1.2766 + U d, d2, eps; 1.2767 + double ds; 1.2768 + char *s, *s0; 1.2769 +#ifdef Honor_FLT_ROUNDS 1.2770 + int rounding; 1.2771 +#endif 1.2772 +#ifdef SET_INEXACT 1.2773 + int inexact, oldinexact; 1.2774 +#endif 1.2775 + 1.2776 +#ifndef MULTIPLE_THREADS 1.2777 + if (dtoa_result) { 1.2778 + freedtoa(dtoa_result); 1.2779 + dtoa_result = 0; 1.2780 + } 1.2781 +#endif 1.2782 + 1.2783 + dval(d) = dd; 1.2784 + if (word0(d) & Sign_bit) { 1.2785 + /* set sign for everything, including 0's and NaNs */ 1.2786 + *sign = 1; 1.2787 + word0(d) &= ~Sign_bit; /* clear sign bit */ 1.2788 + } 1.2789 + else 1.2790 + *sign = 0; 1.2791 + 1.2792 +#if defined(IEEE_Arith) + defined(VAX) 1.2793 +#ifdef IEEE_Arith 1.2794 + if ((word0(d) & Exp_mask) == Exp_mask) 1.2795 +#else 1.2796 + if (word0(d) == 0x8000) 1.2797 +#endif 1.2798 + { 1.2799 + /* Infinity or NaN */ 1.2800 + *decpt = 9999; 1.2801 +#ifdef IEEE_Arith 1.2802 + if (!word1(d) && !(word0(d) & 0xfffff)) 1.2803 + return nrv_alloc("Infinity", rve, 8); 1.2804 +#endif 1.2805 + return nrv_alloc("NaN", rve, 3); 1.2806 + } 1.2807 +#endif 1.2808 +#ifdef IBM 1.2809 + dval(d) += 0; /* normalize */ 1.2810 +#endif 1.2811 + if (!dval(d)) { 1.2812 + *decpt = 1; 1.2813 + return nrv_alloc("0", rve, 1); 1.2814 + } 1.2815 + 1.2816 +#ifdef SET_INEXACT 1.2817 + try_quick = oldinexact = get_inexact(); 1.2818 + inexact = 1; 1.2819 +#endif 1.2820 +#ifdef Honor_FLT_ROUNDS 1.2821 + if ((rounding = Flt_Rounds) >= 2) { 1.2822 + if (*sign) 1.2823 + rounding = rounding == 2 ? 0 : 2; 1.2824 + else 1.2825 + if (rounding != 2) 1.2826 + rounding = 0; 1.2827 + } 1.2828 +#endif 1.2829 + 1.2830 + b = d2b(dval(d), &be, &bbits); 1.2831 +#ifdef Sudden_Underflow 1.2832 + i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); 1.2833 +#else 1.2834 + if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) { 1.2835 +#endif 1.2836 + dval(d2) = dval(d); 1.2837 + word0(d2) &= Frac_mask1; 1.2838 + word0(d2) |= Exp_11; 1.2839 +#ifdef IBM 1.2840 + if (j = 11 - hi0bits(word0(d2) & Frac_mask)) 1.2841 + dval(d2) /= 1 << j; 1.2842 +#endif 1.2843 + 1.2844 + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 1.2845 + * log10(x) = log(x) / log(10) 1.2846 + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) 1.2847 + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) 1.2848 + * 1.2849 + * This suggests computing an approximation k to log10(d) by 1.2850 + * 1.2851 + * k = (i - Bias)*0.301029995663981 1.2852 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); 1.2853 + * 1.2854 + * We want k to be too large rather than too small. 1.2855 + * The error in the first-order Taylor series approximation 1.2856 + * is in our favor, so we just round up the constant enough 1.2857 + * to compensate for any error in the multiplication of 1.2858 + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, 1.2859 + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, 1.2860 + * adding 1e-13 to the constant term more than suffices. 1.2861 + * Hence we adjust the constant term to 0.1760912590558. 1.2862 + * (We could get a more accurate k by invoking log10, 1.2863 + * but this is probably not worthwhile.) 1.2864 + */ 1.2865 + 1.2866 + i -= Bias; 1.2867 +#ifdef IBM 1.2868 + i <<= 2; 1.2869 + i += j; 1.2870 +#endif 1.2871 +#ifndef Sudden_Underflow 1.2872 + denorm = 0; 1.2873 + } 1.2874 + else { 1.2875 + /* d is denormalized */ 1.2876 + 1.2877 + i = bbits + be + (Bias + (P-1) - 1); 1.2878 + x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 1.2879 + : word1(d) << 32 - i; 1.2880 + dval(d2) = x; 1.2881 + word0(d2) -= 31*Exp_msk1; /* adjust exponent */ 1.2882 + i -= (Bias + (P-1) - 1) + 1; 1.2883 + denorm = 1; 1.2884 + } 1.2885 +#endif 1.2886 + ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; 1.2887 + k = (int)ds; 1.2888 + if (ds < 0. && ds != k) 1.2889 + k--; /* want k = floor(ds) */ 1.2890 + k_check = 1; 1.2891 + if (k >= 0 && k <= Ten_pmax) { 1.2892 + if (dval(d) < tens[k]) 1.2893 + k--; 1.2894 + k_check = 0; 1.2895 + } 1.2896 + j = bbits - i - 1; 1.2897 + if (j >= 0) { 1.2898 + b2 = 0; 1.2899 + s2 = j; 1.2900 + } 1.2901 + else { 1.2902 + b2 = -j; 1.2903 + s2 = 0; 1.2904 + } 1.2905 + if (k >= 0) { 1.2906 + b5 = 0; 1.2907 + s5 = k; 1.2908 + s2 += k; 1.2909 + } 1.2910 + else { 1.2911 + b2 -= k; 1.2912 + b5 = -k; 1.2913 + s5 = 0; 1.2914 + } 1.2915 + if (mode < 0 || mode > 9) 1.2916 + mode = 0; 1.2917 + 1.2918 +#ifndef SET_INEXACT 1.2919 +#ifdef Check_FLT_ROUNDS 1.2920 + try_quick = Rounding == 1; 1.2921 +#else 1.2922 + try_quick = 1; 1.2923 +#endif 1.2924 +#endif /*SET_INEXACT*/ 1.2925 + 1.2926 + if (mode > 5) { 1.2927 + mode -= 4; 1.2928 + try_quick = 0; 1.2929 + } 1.2930 + leftright = 1; 1.2931 + switch(mode) { 1.2932 + case 0: 1.2933 + case 1: 1.2934 + ilim = ilim1 = -1; 1.2935 + i = 18; 1.2936 + ndigits = 0; 1.2937 + break; 1.2938 + case 2: 1.2939 + leftright = 0; 1.2940 + /* no break */ 1.2941 + case 4: 1.2942 + if (ndigits <= 0) 1.2943 + ndigits = 1; 1.2944 + ilim = ilim1 = i = ndigits; 1.2945 + break; 1.2946 + case 3: 1.2947 + leftright = 0; 1.2948 + /* no break */ 1.2949 + case 5: 1.2950 + i = ndigits + k + 1; 1.2951 + ilim = i; 1.2952 + ilim1 = i - 1; 1.2953 + if (i <= 0) 1.2954 + i = 1; 1.2955 + } 1.2956 + s = s0 = rv_alloc(i); 1.2957 + 1.2958 +#ifdef Honor_FLT_ROUNDS 1.2959 + if (mode > 1 && rounding != 1) 1.2960 + leftright = 0; 1.2961 +#endif 1.2962 + 1.2963 + if (ilim >= 0 && ilim <= Quick_max && try_quick) { 1.2964 + 1.2965 + /* Try to get by with floating-point arithmetic. */ 1.2966 + 1.2967 + i = 0; 1.2968 + dval(d2) = dval(d); 1.2969 + k0 = k; 1.2970 + ilim0 = ilim; 1.2971 + ieps = 2; /* conservative */ 1.2972 + if (k > 0) { 1.2973 + ds = tens[k&0xf]; 1.2974 + j = k >> 4; 1.2975 + if (j & Bletch) { 1.2976 + /* prevent overflows */ 1.2977 + j &= Bletch - 1; 1.2978 + dval(d) /= bigtens[n_bigtens-1]; 1.2979 + ieps++; 1.2980 + } 1.2981 + for(; j; j >>= 1, i++) 1.2982 + if (j & 1) { 1.2983 + ieps++; 1.2984 + ds *= bigtens[i]; 1.2985 + } 1.2986 + dval(d) /= ds; 1.2987 + } 1.2988 + else if (j1 = -k) { 1.2989 + dval(d) *= tens[j1 & 0xf]; 1.2990 + for(j = j1 >> 4; j; j >>= 1, i++) 1.2991 + if (j & 1) { 1.2992 + ieps++; 1.2993 + dval(d) *= bigtens[i]; 1.2994 + } 1.2995 + } 1.2996 + if (k_check && dval(d) < 1. && ilim > 0) { 1.2997 + if (ilim1 <= 0) 1.2998 + goto fast_failed; 1.2999 + ilim = ilim1; 1.3000 + k--; 1.3001 + dval(d) *= 10.; 1.3002 + ieps++; 1.3003 + } 1.3004 + dval(eps) = ieps*dval(d) + 7.; 1.3005 + word0(eps) -= (P-1)*Exp_msk1; 1.3006 + if (ilim == 0) { 1.3007 + S = mhi = 0; 1.3008 + dval(d) -= 5.; 1.3009 + if (dval(d) > dval(eps)) 1.3010 + goto one_digit; 1.3011 + if (dval(d) < -dval(eps)) 1.3012 + goto no_digits; 1.3013 + goto fast_failed; 1.3014 + } 1.3015 +#ifndef No_leftright 1.3016 + if (leftright) { 1.3017 + /* Use Steele & White method of only 1.3018 + * generating digits needed. 1.3019 + */ 1.3020 + dval(eps) = 0.5/tens[ilim-1] - dval(eps); 1.3021 + for(i = 0;;) { 1.3022 + L = dval(d); 1.3023 + dval(d) -= L; 1.3024 + *s++ = '0' + (int)L; 1.3025 + if (dval(d) < dval(eps)) 1.3026 + goto ret1; 1.3027 + if (1. - dval(d) < dval(eps)) 1.3028 + goto bump_up; 1.3029 + if (++i >= ilim) 1.3030 + break; 1.3031 + dval(eps) *= 10.; 1.3032 + dval(d) *= 10.; 1.3033 + } 1.3034 + } 1.3035 + else { 1.3036 +#endif 1.3037 + /* Generate ilim digits, then fix them up. */ 1.3038 + dval(eps) *= tens[ilim-1]; 1.3039 + for(i = 1;; i++, dval(d) *= 10.) { 1.3040 + L = (Long)(dval(d)); 1.3041 + if (!(dval(d) -= L)) 1.3042 + ilim = i; 1.3043 + *s++ = '0' + (int)L; 1.3044 + if (i == ilim) { 1.3045 + if (dval(d) > 0.5 + dval(eps)) 1.3046 + goto bump_up; 1.3047 + else if (dval(d) < 0.5 - dval(eps)) { 1.3048 + while(*--s == '0'); 1.3049 + s++; 1.3050 + goto ret1; 1.3051 + } 1.3052 + break; 1.3053 + } 1.3054 + } 1.3055 +#ifndef No_leftright 1.3056 + } 1.3057 +#endif 1.3058 + fast_failed: 1.3059 + s = s0; 1.3060 + dval(d) = dval(d2); 1.3061 + k = k0; 1.3062 + ilim = ilim0; 1.3063 + } 1.3064 + 1.3065 + /* Do we have a "small" integer? */ 1.3066 + 1.3067 + if (be >= 0 && k <= Int_max) { 1.3068 + /* Yes. */ 1.3069 + ds = tens[k]; 1.3070 + if (ndigits < 0 && ilim <= 0) { 1.3071 + S = mhi = 0; 1.3072 + if (ilim < 0 || dval(d) <= 5*ds) 1.3073 + goto no_digits; 1.3074 + goto one_digit; 1.3075 + } 1.3076 + for(i = 1; i <= k+1; i++, dval(d) *= 10.) { 1.3077 + L = (Long)(dval(d) / ds); 1.3078 + dval(d) -= L*ds; 1.3079 +#ifdef Check_FLT_ROUNDS 1.3080 + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ 1.3081 + if (dval(d) < 0) { 1.3082 + L--; 1.3083 + dval(d) += ds; 1.3084 + } 1.3085 +#endif 1.3086 + *s++ = '0' + (int)L; 1.3087 + if (!dval(d)) { 1.3088 +#ifdef SET_INEXACT 1.3089 + inexact = 0; 1.3090 +#endif 1.3091 + break; 1.3092 + } 1.3093 + if (i == ilim) { 1.3094 +#ifdef Honor_FLT_ROUNDS 1.3095 + if (mode > 1) 1.3096 + switch(rounding) { 1.3097 + case 0: goto ret1; 1.3098 + case 2: goto bump_up; 1.3099 + } 1.3100 +#endif 1.3101 + dval(d) += dval(d); 1.3102 + if (dval(d) > ds || dval(d) == ds && L & 1) { 1.3103 + bump_up: 1.3104 + while(*--s == '9') 1.3105 + if (s == s0) { 1.3106 + k++; 1.3107 + *s = '0'; 1.3108 + break; 1.3109 + } 1.3110 + ++*s++; 1.3111 + } 1.3112 + break; 1.3113 + } 1.3114 + } 1.3115 + goto ret1; 1.3116 + } 1.3117 + 1.3118 + m2 = b2; 1.3119 + m5 = b5; 1.3120 + mhi = mlo = 0; 1.3121 + if (leftright) { 1.3122 + i = 1.3123 +#ifndef Sudden_Underflow 1.3124 + denorm ? be + (Bias + (P-1) - 1 + 1) : 1.3125 +#endif 1.3126 +#ifdef IBM 1.3127 + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); 1.3128 +#else 1.3129 + 1 + P - bbits; 1.3130 +#endif 1.3131 + b2 += i; 1.3132 + s2 += i; 1.3133 + mhi = i2b(1); 1.3134 + } 1.3135 + if (m2 > 0 && s2 > 0) { 1.3136 + i = m2 < s2 ? m2 : s2; 1.3137 + b2 -= i; 1.3138 + m2 -= i; 1.3139 + s2 -= i; 1.3140 + } 1.3141 + if (b5 > 0) { 1.3142 + if (leftright) { 1.3143 + if (m5 > 0) { 1.3144 + mhi = pow5mult(mhi, m5); 1.3145 + b1 = mult(mhi, b); 1.3146 + Bfree(b); 1.3147 + b = b1; 1.3148 + } 1.3149 + if (j = b5 - m5) 1.3150 + b = pow5mult(b, j); 1.3151 + } 1.3152 + else 1.3153 + b = pow5mult(b, b5); 1.3154 + } 1.3155 + S = i2b(1); 1.3156 + if (s5 > 0) 1.3157 + S = pow5mult(S, s5); 1.3158 + 1.3159 + /* Check for special case that d is a normalized power of 2. */ 1.3160 + 1.3161 + spec_case = 0; 1.3162 + if ((mode < 2 || leftright) 1.3163 +#ifdef Honor_FLT_ROUNDS 1.3164 + && rounding == 1 1.3165 +#endif 1.3166 + ) { 1.3167 + if (!word1(d) && !(word0(d) & Bndry_mask) 1.3168 +#ifndef Sudden_Underflow 1.3169 + && word0(d) & (Exp_mask & ~Exp_msk1) 1.3170 +#endif 1.3171 + ) { 1.3172 + /* The special case */ 1.3173 + b2 += Log2P; 1.3174 + s2 += Log2P; 1.3175 + spec_case = 1; 1.3176 + } 1.3177 + } 1.3178 + 1.3179 + /* Arrange for convenient computation of quotients: 1.3180 + * shift left if necessary so divisor has 4 leading 0 bits. 1.3181 + * 1.3182 + * Perhaps we should just compute leading 28 bits of S once 1.3183 + * and for all and pass them and a shift to quorem, so it 1.3184 + * can do shifts and ors to compute the numerator for q. 1.3185 + */ 1.3186 +#ifdef Pack_32 1.3187 + if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) 1.3188 + i = 32 - i; 1.3189 +#else 1.3190 + if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) 1.3191 + i = 16 - i; 1.3192 +#endif 1.3193 + if (i > 4) { 1.3194 + i -= 4; 1.3195 + b2 += i; 1.3196 + m2 += i; 1.3197 + s2 += i; 1.3198 + } 1.3199 + else if (i < 4) { 1.3200 + i += 28; 1.3201 + b2 += i; 1.3202 + m2 += i; 1.3203 + s2 += i; 1.3204 + } 1.3205 + if (b2 > 0) 1.3206 + b = lshift(b, b2); 1.3207 + if (s2 > 0) 1.3208 + S = lshift(S, s2); 1.3209 + if (k_check) { 1.3210 + if (cmp(b,S) < 0) { 1.3211 + k--; 1.3212 + b = multadd(b, 10, 0); /* we botched the k estimate */ 1.3213 + if (leftright) 1.3214 + mhi = multadd(mhi, 10, 0); 1.3215 + ilim = ilim1; 1.3216 + } 1.3217 + } 1.3218 + if (ilim <= 0 && (mode == 3 || mode == 5)) { 1.3219 + if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { 1.3220 + /* no digits, fcvt style */ 1.3221 + no_digits: 1.3222 + k = -1 - ndigits; 1.3223 + goto ret; 1.3224 + } 1.3225 + one_digit: 1.3226 + *s++ = '1'; 1.3227 + k++; 1.3228 + goto ret; 1.3229 + } 1.3230 + if (leftright) { 1.3231 + if (m2 > 0) 1.3232 + mhi = lshift(mhi, m2); 1.3233 + 1.3234 + /* Compute mlo -- check for special case 1.3235 + * that d is a normalized power of 2. 1.3236 + */ 1.3237 + 1.3238 + mlo = mhi; 1.3239 + if (spec_case) { 1.3240 + mhi = Balloc(mhi->k); 1.3241 + Bcopy(mhi, mlo); 1.3242 + mhi = lshift(mhi, Log2P); 1.3243 + } 1.3244 + 1.3245 + for(i = 1;;i++) { 1.3246 + dig = quorem(b,S) + '0'; 1.3247 + /* Do we yet have the shortest decimal string 1.3248 + * that will round to d? 1.3249 + */ 1.3250 + j = cmp(b, mlo); 1.3251 + delta = diff(S, mhi); 1.3252 + j1 = delta->sign ? 1 : cmp(b, delta); 1.3253 + Bfree(delta); 1.3254 +#ifndef ROUND_BIASED 1.3255 + if (j1 == 0 && mode != 1 && !(word1(d) & 1) 1.3256 +#ifdef Honor_FLT_ROUNDS 1.3257 + && rounding >= 1 1.3258 +#endif 1.3259 + ) { 1.3260 + if (dig == '9') 1.3261 + goto round_9_up; 1.3262 + if (j > 0) 1.3263 + dig++; 1.3264 +#ifdef SET_INEXACT 1.3265 + else if (!b->x[0] && b->wds <= 1) 1.3266 + inexact = 0; 1.3267 +#endif 1.3268 + *s++ = dig; 1.3269 + goto ret; 1.3270 + } 1.3271 +#endif 1.3272 + if (j < 0 || j == 0 && mode != 1 1.3273 +#ifndef ROUND_BIASED 1.3274 + && !(word1(d) & 1) 1.3275 +#endif 1.3276 + ) { 1.3277 + if (!b->x[0] && b->wds <= 1) { 1.3278 +#ifdef SET_INEXACT 1.3279 + inexact = 0; 1.3280 +#endif 1.3281 + goto accept_dig; 1.3282 + } 1.3283 +#ifdef Honor_FLT_ROUNDS 1.3284 + if (mode > 1) 1.3285 + switch(rounding) { 1.3286 + case 0: goto accept_dig; 1.3287 + case 2: goto keep_dig; 1.3288 + } 1.3289 +#endif /*Honor_FLT_ROUNDS*/ 1.3290 + if (j1 > 0) { 1.3291 + b = lshift(b, 1); 1.3292 + j1 = cmp(b, S); 1.3293 + if ((j1 > 0 || j1 == 0 && dig & 1) 1.3294 + && dig++ == '9') 1.3295 + goto round_9_up; 1.3296 + } 1.3297 + accept_dig: 1.3298 + *s++ = dig; 1.3299 + goto ret; 1.3300 + } 1.3301 + if (j1 > 0) { 1.3302 +#ifdef Honor_FLT_ROUNDS 1.3303 + if (!rounding) 1.3304 + goto accept_dig; 1.3305 +#endif 1.3306 + if (dig == '9') { /* possible if i == 1 */ 1.3307 + round_9_up: 1.3308 + *s++ = '9'; 1.3309 + goto roundoff; 1.3310 + } 1.3311 + *s++ = dig + 1; 1.3312 + goto ret; 1.3313 + } 1.3314 +#ifdef Honor_FLT_ROUNDS 1.3315 + keep_dig: 1.3316 +#endif 1.3317 + *s++ = dig; 1.3318 + if (i == ilim) 1.3319 + break; 1.3320 + b = multadd(b, 10, 0); 1.3321 + if (mlo == mhi) 1.3322 + mlo = mhi = multadd(mhi, 10, 0); 1.3323 + else { 1.3324 + mlo = multadd(mlo, 10, 0); 1.3325 + mhi = multadd(mhi, 10, 0); 1.3326 + } 1.3327 + } 1.3328 + } 1.3329 + else 1.3330 + for(i = 1;; i++) { 1.3331 + *s++ = dig = quorem(b,S) + '0'; 1.3332 + if (!b->x[0] && b->wds <= 1) { 1.3333 +#ifdef SET_INEXACT 1.3334 + inexact = 0; 1.3335 +#endif 1.3336 + goto ret; 1.3337 + } 1.3338 + if (i >= ilim) 1.3339 + break; 1.3340 + b = multadd(b, 10, 0); 1.3341 + } 1.3342 + 1.3343 + /* Round off last digit */ 1.3344 + 1.3345 +#ifdef Honor_FLT_ROUNDS 1.3346 + switch(rounding) { 1.3347 + case 0: goto trimzeros; 1.3348 + case 2: goto roundoff; 1.3349 + } 1.3350 +#endif 1.3351 + b = lshift(b, 1); 1.3352 + j = cmp(b, S); 1.3353 + if (j > 0 || j == 0 && dig & 1) { 1.3354 + roundoff: 1.3355 + while(*--s == '9') 1.3356 + if (s == s0) { 1.3357 + k++; 1.3358 + *s++ = '1'; 1.3359 + goto ret; 1.3360 + } 1.3361 + ++*s++; 1.3362 + } 1.3363 + else { 1.3364 +#ifdef Honor_FLT_ROUNDS 1.3365 + trimzeros: 1.3366 +#endif 1.3367 + while(*--s == '0'); 1.3368 + s++; 1.3369 + } 1.3370 + ret: 1.3371 + Bfree(S); 1.3372 + if (mhi) { 1.3373 + if (mlo && mlo != mhi) 1.3374 + Bfree(mlo); 1.3375 + Bfree(mhi); 1.3376 + } 1.3377 + ret1: 1.3378 +#ifdef SET_INEXACT 1.3379 + if (inexact) { 1.3380 + if (!oldinexact) { 1.3381 + word0(d) = Exp_1 + (70 << Exp_shift); 1.3382 + word1(d) = 0; 1.3383 + dval(d) += 1.; 1.3384 + } 1.3385 + } 1.3386 + else if (!oldinexact) 1.3387 + clear_inexact(); 1.3388 +#endif 1.3389 + Bfree(b); 1.3390 + *s = 0; 1.3391 + *decpt = k + 1; 1.3392 + if (rve) 1.3393 + *rve = s; 1.3394 + return s0; 1.3395 + } 1.3396 +#ifdef __cplusplus 1.3397 +} 1.3398 +#endif 1.3399 + 1.3400 +PR_IMPLEMENT(PRStatus) 1.3401 +PR_dtoa(PRFloat64 d, PRIntn mode, PRIntn ndigits, 1.3402 + PRIntn *decpt, PRIntn *sign, char **rve, char *buf, PRSize bufsize) 1.3403 +{ 1.3404 + char *result; 1.3405 + PRSize resultlen; 1.3406 + PRStatus rv = PR_FAILURE; 1.3407 + 1.3408 + if (!_pr_initialized) _PR_ImplicitInitialization(); 1.3409 + 1.3410 + if (mode < 0 || mode > 3) { 1.3411 + PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0); 1.3412 + return rv; 1.3413 + } 1.3414 + result = dtoa(d, mode, ndigits, decpt, sign, rve); 1.3415 + if (!result) { 1.3416 + PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0); 1.3417 + return rv; 1.3418 + } 1.3419 + resultlen = strlen(result)+1; 1.3420 + if (bufsize < resultlen) { 1.3421 + PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0); 1.3422 + } else { 1.3423 + memcpy(buf, result, resultlen); 1.3424 + if (rve) { 1.3425 + *rve = buf + (*rve - result); 1.3426 + } 1.3427 + rv = PR_SUCCESS; 1.3428 + } 1.3429 + freedtoa(result); 1.3430 + return rv; 1.3431 +} 1.3432 + 1.3433 +/* 1.3434 +** conversion routines for floating point 1.3435 +** prcsn - number of digits of precision to generate floating 1.3436 +** point value. 1.3437 +** This should be reparameterized so that you can send in a 1.3438 +** prcn for the positive and negative ranges. For now, 1.3439 +** conform to the ECMA JavaScript spec which says numbers 1.3440 +** less than 1e-6 are in scientific notation. 1.3441 +** Also, the ECMA spec says that there should always be a 1.3442 +** '+' or '-' after the 'e' in scientific notation 1.3443 +*/ 1.3444 +PR_IMPLEMENT(void) 1.3445 +PR_cnvtf(char *buf, int bufsz, int prcsn, double dfval) 1.3446 +{ 1.3447 + PRIntn decpt, sign, numdigits; 1.3448 + char *num, *nump; 1.3449 + char *bufp = buf; 1.3450 + char *endnum; 1.3451 + U fval; 1.3452 + 1.3453 + dval(fval) = dfval; 1.3454 + /* If anything fails, we store an empty string in 'buf' */ 1.3455 + num = (char*)PR_MALLOC(bufsz); 1.3456 + if (num == NULL) { 1.3457 + buf[0] = '\0'; 1.3458 + return; 1.3459 + } 1.3460 + /* XXX Why use mode 1? */ 1.3461 + if (PR_dtoa(dval(fval),1,prcsn,&decpt,&sign,&endnum,num,bufsz) 1.3462 + == PR_FAILURE) { 1.3463 + buf[0] = '\0'; 1.3464 + goto done; 1.3465 + } 1.3466 + numdigits = endnum - num; 1.3467 + nump = num; 1.3468 + 1.3469 + if (sign && 1.3470 + !(word0(fval) == Sign_bit && word1(fval) == 0) && 1.3471 + !((word0(fval) & Exp_mask) == Exp_mask && 1.3472 + (word1(fval) || (word0(fval) & 0xfffff)))) { 1.3473 + *bufp++ = '-'; 1.3474 + } 1.3475 + 1.3476 + if (decpt == 9999) { 1.3477 + while ((*bufp++ = *nump++) != 0) {} /* nothing to execute */ 1.3478 + goto done; 1.3479 + } 1.3480 + 1.3481 + if (decpt > (prcsn+1) || decpt < -(prcsn-1) || decpt < -5) { 1.3482 + *bufp++ = *nump++; 1.3483 + if (numdigits != 1) { 1.3484 + *bufp++ = '.'; 1.3485 + } 1.3486 + 1.3487 + while (*nump != '\0') { 1.3488 + *bufp++ = *nump++; 1.3489 + } 1.3490 + *bufp++ = 'e'; 1.3491 + PR_snprintf(bufp, bufsz - (bufp - buf), "%+d", decpt-1); 1.3492 + } else if (decpt >= 0) { 1.3493 + if (decpt == 0) { 1.3494 + *bufp++ = '0'; 1.3495 + } else { 1.3496 + while (decpt--) { 1.3497 + if (*nump != '\0') { 1.3498 + *bufp++ = *nump++; 1.3499 + } else { 1.3500 + *bufp++ = '0'; 1.3501 + } 1.3502 + } 1.3503 + } 1.3504 + if (*nump != '\0') { 1.3505 + *bufp++ = '.'; 1.3506 + while (*nump != '\0') { 1.3507 + *bufp++ = *nump++; 1.3508 + } 1.3509 + } 1.3510 + *bufp++ = '\0'; 1.3511 + } else if (decpt < 0) { 1.3512 + *bufp++ = '0'; 1.3513 + *bufp++ = '.'; 1.3514 + while (decpt++) { 1.3515 + *bufp++ = '0'; 1.3516 + } 1.3517 + 1.3518 + while (*nump != '\0') { 1.3519 + *bufp++ = *nump++; 1.3520 + } 1.3521 + *bufp++ = '\0'; 1.3522 + } 1.3523 +done: 1.3524 + PR_DELETE(num); 1.3525 +}