security/nss/lib/freebl/aeskeywrap.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/aeskeywrap.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,383 @@
     1.4 +/*
     1.5 + * aeskeywrap.c - implement AES Key Wrap algorithm from RFC 3394
     1.6 + *
     1.7 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.8 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.9 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    1.10 +
    1.11 +#ifdef FREEBL_NO_DEPEND
    1.12 +#include "stubs.h"
    1.13 +#endif
    1.14 +
    1.15 +#include "prcpucfg.h"
    1.16 +#if defined(IS_LITTLE_ENDIAN) || defined(SHA_NO_LONG_LONG)
    1.17 +#define BIG_ENDIAN_WITH_64_BIT_REGISTERS 0
    1.18 +#else
    1.19 +#define BIG_ENDIAN_WITH_64_BIT_REGISTERS 1
    1.20 +#endif
    1.21 +#include "prtypes.h"	/* for PRUintXX */
    1.22 +#include "secport.h"	/* for PORT_XXX */
    1.23 +#include "secerr.h"
    1.24 +#include "blapi.h"	/* for AES_ functions */
    1.25 +#include "rijndael.h"
    1.26 +
    1.27 +struct AESKeyWrapContextStr {
    1.28 +     unsigned char iv[AES_KEY_WRAP_IV_BYTES];
    1.29 +     AESContext    aescx;
    1.30 +};
    1.31 +
    1.32 +/******************************************/
    1.33 +/*
    1.34 +** AES key wrap algorithm, RFC 3394
    1.35 +*/
    1.36 +
    1.37 +AESKeyWrapContext * 
    1.38 +AESKeyWrap_AllocateContext(void)
    1.39 +{
    1.40 +    AESKeyWrapContext * cx = PORT_New(AESKeyWrapContext);
    1.41 +    return cx;
    1.42 +}
    1.43 +
    1.44 +SECStatus  
    1.45 +AESKeyWrap_InitContext(AESKeyWrapContext *cx, 
    1.46 +		       const unsigned char *key, 
    1.47 +		       unsigned int keylen,
    1.48 +		       const unsigned char *iv, 
    1.49 +		       int x1,
    1.50 +		       unsigned int encrypt,
    1.51 +		       unsigned int x2)
    1.52 +{
    1.53 +    SECStatus rv = SECFailure;
    1.54 +    if (!cx) {
    1.55 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
    1.56 +    	return SECFailure;
    1.57 +    }
    1.58 +    if (iv) {
    1.59 +    	memcpy(cx->iv, iv, sizeof cx->iv);
    1.60 +    } else {
    1.61 +	memset(cx->iv, 0xA6, sizeof cx->iv);
    1.62 +    }
    1.63 +    rv = AES_InitContext(&cx->aescx, key, keylen, NULL, NSS_AES, encrypt, 
    1.64 +                                  AES_BLOCK_SIZE);
    1.65 +    return rv;
    1.66 +}
    1.67 +
    1.68 +/*
    1.69 +** Create a new AES context suitable for AES encryption/decryption.
    1.70 +** 	"key" raw key data
    1.71 +** 	"keylen" the number of bytes of key data (16, 24, or 32)
    1.72 +*/
    1.73 +extern AESKeyWrapContext *
    1.74 +AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv, 
    1.75 +                         int encrypt, unsigned int keylen)
    1.76 +{
    1.77 +    SECStatus rv;
    1.78 +    AESKeyWrapContext * cx = AESKeyWrap_AllocateContext();
    1.79 +    if (!cx) 
    1.80 +    	return NULL;	/* error is already set */
    1.81 +    rv = AESKeyWrap_InitContext(cx, key, keylen, iv, 0, encrypt, 0);
    1.82 +    if (rv != SECSuccess) {
    1.83 +        PORT_Free(cx);
    1.84 +	cx = NULL; 	/* error should already be set */
    1.85 +    }
    1.86 +    return cx;
    1.87 +}
    1.88 +
    1.89 +/*
    1.90 +** Destroy a AES KeyWrap context.
    1.91 +**	"cx" the context
    1.92 +**	"freeit" if PR_TRUE then free the object as well as its sub-objects
    1.93 +*/
    1.94 +extern void 
    1.95 +AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit)
    1.96 +{
    1.97 +    if (cx) {
    1.98 +	AES_DestroyContext(&cx->aescx, PR_FALSE);
    1.99 +/*	memset(cx, 0, sizeof *cx); */
   1.100 +	if (freeit)
   1.101 +	    PORT_Free(cx);
   1.102 +    }
   1.103 +}
   1.104 +
   1.105 +#if !BIG_ENDIAN_WITH_64_BIT_REGISTERS
   1.106 +
   1.107 +/* The AES Key Wrap algorithm has 64-bit values that are ALWAYS big-endian
   1.108 +** (Most significant byte first) in memory.  The only ALU operations done
   1.109 +** on them are increment, decrement, and XOR.  So, on little-endian CPUs,
   1.110 +** and on CPUs that lack 64-bit registers, these big-endian 64-bit operations
   1.111 +** are simulated in the following code.  This is thought to be faster and
   1.112 +** simpler than trying to convert the data to little-endian and back.
   1.113 +*/
   1.114 +
   1.115 +/* A and T point to two 64-bit values stored most signficant byte first
   1.116 +** (big endian).  This function increments the 64-bit value T, and then
   1.117 +** XORs it with A, changing A.
   1.118 +*/ 
   1.119 +static void
   1.120 +increment_and_xor(unsigned char *A, unsigned char *T)
   1.121 +{
   1.122 +    if (!++T[7])
   1.123 +        if (!++T[6])
   1.124 +	    if (!++T[5])
   1.125 +		if (!++T[4])
   1.126 +		    if (!++T[3])
   1.127 +			if (!++T[2])
   1.128 +			    if (!++T[1])
   1.129 +				 ++T[0];
   1.130 +
   1.131 +    A[0] ^= T[0];
   1.132 +    A[1] ^= T[1];
   1.133 +    A[2] ^= T[2];
   1.134 +    A[3] ^= T[3];
   1.135 +    A[4] ^= T[4];
   1.136 +    A[5] ^= T[5];
   1.137 +    A[6] ^= T[6];
   1.138 +    A[7] ^= T[7];
   1.139 +}
   1.140 +
   1.141 +/* A and T point to two 64-bit values stored most signficant byte first
   1.142 +** (big endian).  This function XORs T with A, giving a new A, then 
   1.143 +** decrements the 64-bit value T.
   1.144 +*/ 
   1.145 +static void
   1.146 +xor_and_decrement(unsigned char *A, unsigned char *T)
   1.147 +{
   1.148 +    A[0] ^= T[0];
   1.149 +    A[1] ^= T[1];
   1.150 +    A[2] ^= T[2];
   1.151 +    A[3] ^= T[3];
   1.152 +    A[4] ^= T[4];
   1.153 +    A[5] ^= T[5];
   1.154 +    A[6] ^= T[6];
   1.155 +    A[7] ^= T[7];
   1.156 +
   1.157 +    if (!T[7]--)
   1.158 +        if (!T[6]--)
   1.159 +	    if (!T[5]--)
   1.160 +		if (!T[4]--)
   1.161 +		    if (!T[3]--)
   1.162 +			if (!T[2]--)
   1.163 +			    if (!T[1]--)
   1.164 +				 T[0]--;
   1.165 +
   1.166 +}
   1.167 +
   1.168 +/* Given an unsigned long t (in host byte order), store this value as a
   1.169 +** 64-bit big-endian value (MSB first) in *pt.
   1.170 +*/
   1.171 +static void
   1.172 +set_t(unsigned char *pt, unsigned long t)
   1.173 +{
   1.174 +    pt[7] = (unsigned char)t; t >>= 8;
   1.175 +    pt[6] = (unsigned char)t; t >>= 8;
   1.176 +    pt[5] = (unsigned char)t; t >>= 8;
   1.177 +    pt[4] = (unsigned char)t; t >>= 8;
   1.178 +    pt[3] = (unsigned char)t; t >>= 8;
   1.179 +    pt[2] = (unsigned char)t; t >>= 8;
   1.180 +    pt[1] = (unsigned char)t; t >>= 8;
   1.181 +    pt[0] = (unsigned char)t;
   1.182 +}
   1.183 +
   1.184 +#endif
   1.185 +
   1.186 +/*
   1.187 +** Perform AES key wrap.
   1.188 +**	"cx" the context
   1.189 +**	"output" the output buffer to store the encrypted data.
   1.190 +**	"outputLen" how much data is stored in "output". Set by the routine
   1.191 +**	   after some data is stored in output.
   1.192 +**	"maxOutputLen" the maximum amount of data that can ever be
   1.193 +**	   stored in "output"
   1.194 +**	"input" the input data
   1.195 +**	"inputLen" the amount of input data
   1.196 +*/
   1.197 +extern SECStatus 
   1.198 +AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output,
   1.199 +            unsigned int *pOutputLen, unsigned int maxOutputLen,
   1.200 +            const unsigned char *input, unsigned int inputLen)
   1.201 +{
   1.202 +    PRUint64 *     R          = NULL;
   1.203 +    unsigned int   nBlocks;
   1.204 +    unsigned int   i, j;
   1.205 +    unsigned int   aesLen     = AES_BLOCK_SIZE;
   1.206 +    unsigned int   outLen     = inputLen + AES_KEY_WRAP_BLOCK_SIZE;
   1.207 +    SECStatus      s          = SECFailure;
   1.208 +    /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */
   1.209 +    PRUint64       t;
   1.210 +    PRUint64       B[2];
   1.211 +
   1.212 +#define A B[0]
   1.213 +
   1.214 +    /* Check args */
   1.215 +    if (!inputLen || 0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) {
   1.216 +	PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.217 +	return s;
   1.218 +    }
   1.219 +#ifdef maybe
   1.220 +    if (!output && pOutputLen) {	/* caller is asking for output size */
   1.221 +    	*pOutputLen = outLen;
   1.222 +	return SECSuccess;
   1.223 +    }
   1.224 +#endif
   1.225 +    if (maxOutputLen < outLen) {
   1.226 +	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.227 +	return s;
   1.228 +    }
   1.229 +    if (cx == NULL || output == NULL || input == NULL) {
   1.230 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.231 +	return s;
   1.232 +    }
   1.233 +    nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE;
   1.234 +    R = PORT_NewArray(PRUint64, nBlocks + 1);
   1.235 +    if (!R)
   1.236 +    	return s;	/* error is already set. */
   1.237 +    /* 
   1.238 +    ** 1) Initialize variables.
   1.239 +    */
   1.240 +    memcpy(&A, cx->iv, AES_KEY_WRAP_IV_BYTES);
   1.241 +    memcpy(&R[1], input, inputLen);
   1.242 +#if BIG_ENDIAN_WITH_64_BIT_REGISTERS
   1.243 +    t = 0;
   1.244 +#else
   1.245 +    memset(&t, 0, sizeof t);
   1.246 +#endif
   1.247 +    /* 
   1.248 +    ** 2) Calculate intermediate values.
   1.249 +    */
   1.250 +    for (j = 0; j < 6; ++j) {
   1.251 +    	for (i = 1; i <= nBlocks; ++i) {
   1.252 +	    B[1] = R[i];
   1.253 +	    s = AES_Encrypt(&cx->aescx, (unsigned char *)B, &aesLen, 
   1.254 +	                    sizeof B,  (unsigned char *)B, sizeof B);
   1.255 +	    if (s != SECSuccess) 
   1.256 +	        break;
   1.257 +	    R[i] = B[1];
   1.258 +	    /* here, increment t and XOR A with t (in big endian order); */
   1.259 +#if BIG_ENDIAN_WITH_64_BIT_REGISTERS
   1.260 +   	    A ^= ++t; 
   1.261 +#else
   1.262 +	    increment_and_xor((unsigned char *)&A, (unsigned char *)&t);
   1.263 +#endif
   1.264 +	}
   1.265 +    }
   1.266 +    /* 
   1.267 +    ** 3) Output the results.
   1.268 +    */
   1.269 +    if (s == SECSuccess) {
   1.270 +    	R[0] =  A;
   1.271 +	memcpy(output, &R[0], outLen);
   1.272 +	if (pOutputLen)
   1.273 +	    *pOutputLen = outLen;
   1.274 +    } else if (pOutputLen) {
   1.275 +    	*pOutputLen = 0;
   1.276 +    }
   1.277 +    PORT_ZFree(R, outLen);
   1.278 +    return s;
   1.279 +}
   1.280 +#undef A
   1.281 +
   1.282 +/*
   1.283 +** Perform AES key unwrap.
   1.284 +**	"cx" the context
   1.285 +**	"output" the output buffer to store the decrypted data.
   1.286 +**	"outputLen" how much data is stored in "output". Set by the routine
   1.287 +**	   after some data is stored in output.
   1.288 +**	"maxOutputLen" the maximum amount of data that can ever be
   1.289 +**	   stored in "output"
   1.290 +**	"input" the input data
   1.291 +**	"inputLen" the amount of input data
   1.292 +*/
   1.293 +extern SECStatus 
   1.294 +AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output,
   1.295 +            unsigned int *pOutputLen, unsigned int maxOutputLen,
   1.296 +            const unsigned char *input, unsigned int inputLen)
   1.297 +{
   1.298 +    PRUint64 *     R          = NULL;
   1.299 +    unsigned int   nBlocks;
   1.300 +    unsigned int   i, j;
   1.301 +    unsigned int   aesLen     = AES_BLOCK_SIZE;
   1.302 +    unsigned int   outLen;
   1.303 +    SECStatus      s          = SECFailure;
   1.304 +    /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */
   1.305 +    PRUint64       t;
   1.306 +    PRUint64       B[2];
   1.307 +
   1.308 +#define A B[0]
   1.309 +
   1.310 +    /* Check args */
   1.311 +    if (inputLen < 3 * AES_KEY_WRAP_BLOCK_SIZE || 
   1.312 +        0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) {
   1.313 +	PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.314 +	return s;
   1.315 +    }
   1.316 +    outLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE;
   1.317 +#ifdef maybe
   1.318 +    if (!output && pOutputLen) {	/* caller is asking for output size */
   1.319 +    	*pOutputLen = outLen;
   1.320 +	return SECSuccess;
   1.321 +    }
   1.322 +#endif
   1.323 +    if (maxOutputLen < outLen) {
   1.324 +	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.325 +	return s;
   1.326 +    }
   1.327 +    if (cx == NULL || output == NULL || input == NULL) {
   1.328 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.329 +	return s;
   1.330 +    }
   1.331 +    nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE;
   1.332 +    R = PORT_NewArray(PRUint64, nBlocks);
   1.333 +    if (!R)
   1.334 +    	return s;	/* error is already set. */
   1.335 +    nBlocks--;
   1.336 +    /* 
   1.337 +    ** 1) Initialize variables.
   1.338 +    */
   1.339 +    memcpy(&R[0], input, inputLen);
   1.340 +    A = R[0];
   1.341 +#if BIG_ENDIAN_WITH_64_BIT_REGISTERS
   1.342 +    t = 6UL * nBlocks;
   1.343 +#else
   1.344 +    set_t((unsigned char *)&t, 6UL * nBlocks);
   1.345 +#endif
   1.346 +    /* 
   1.347 +    ** 2) Calculate intermediate values.
   1.348 +    */
   1.349 +    for (j = 0; j < 6; ++j) {
   1.350 +    	for (i = nBlocks; i; --i) {
   1.351 +	    /* here, XOR A with t (in big endian order) and decrement t; */
   1.352 +#if BIG_ENDIAN_WITH_64_BIT_REGISTERS
   1.353 +   	    A ^= t--; 
   1.354 +#else
   1.355 +	    xor_and_decrement((unsigned char *)&A, (unsigned char *)&t);
   1.356 +#endif
   1.357 +	    B[1] = R[i];
   1.358 +	    s = AES_Decrypt(&cx->aescx, (unsigned char *)B, &aesLen, 
   1.359 +	                    sizeof B,  (unsigned char *)B, sizeof B);
   1.360 +	    if (s != SECSuccess) 
   1.361 +	        break;
   1.362 +	    R[i] = B[1];
   1.363 +	}
   1.364 +    }
   1.365 +    /* 
   1.366 +    ** 3) Output the results.
   1.367 +    */
   1.368 +    if (s == SECSuccess) {
   1.369 +	int bad = memcmp(&A, cx->iv, AES_KEY_WRAP_IV_BYTES);
   1.370 +	if (!bad) {
   1.371 +	    memcpy(output, &R[1], outLen);
   1.372 +	    if (pOutputLen)
   1.373 +		*pOutputLen = outLen;
   1.374 +	} else {
   1.375 +	    s = SECFailure;
   1.376 +	    PORT_SetError(SEC_ERROR_BAD_DATA);
   1.377 +	    if (pOutputLen) 
   1.378 +		*pOutputLen = 0;
   1.379 +    	}
   1.380 +    } else if (pOutputLen) {
   1.381 +    	*pOutputLen = 0;
   1.382 +    }
   1.383 +    PORT_ZFree(R, inputLen);
   1.384 +    return s;
   1.385 +}
   1.386 +#undef A

mercurial