security/nss/lib/freebl/alg2268.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/alg2268.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,485 @@
     1.4 +/*
     1.5 + * alg2268.c - implementation of the algorithm in RFC 2268
     1.6 + *
     1.7 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.8 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.9 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    1.10 +
    1.11 +#ifdef FREEBL_NO_DEPEND
    1.12 +#include "stubs.h"
    1.13 +#endif
    1.14 +
    1.15 +#include "blapi.h"
    1.16 +#include "secerr.h"
    1.17 +#ifdef XP_UNIX_XXX
    1.18 +#include <stddef.h>	/* for ptrdiff_t */
    1.19 +#endif
    1.20 +
    1.21 +/*
    1.22 +** RC2 symmetric block cypher
    1.23 +*/
    1.24 +
    1.25 +typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output,
    1.26 +		           const unsigned char *input, unsigned int inputLen);
    1.27 +
    1.28 +/* forward declarations */
    1.29 +static rc2Func rc2_EncryptECB;
    1.30 +static rc2Func rc2_DecryptECB;
    1.31 +static rc2Func rc2_EncryptCBC;
    1.32 +static rc2Func rc2_DecryptCBC;
    1.33 +
    1.34 +typedef union {
    1.35 +    PRUint32	l[2];
    1.36 +    PRUint16	s[4];
    1.37 +    PRUint8	b[8];
    1.38 +} RC2Block;
    1.39 +
    1.40 +struct RC2ContextStr {
    1.41 +    union {
    1.42 +    	PRUint8  Kb[128];
    1.43 +	PRUint16 Kw[64];
    1.44 +    } u;
    1.45 +    RC2Block     iv;
    1.46 +    rc2Func      *enc;
    1.47 +    rc2Func      *dec;
    1.48 +};
    1.49 +
    1.50 +#define B u.Kb
    1.51 +#define K u.Kw
    1.52 +#define BYTESWAP(x) ((x) << 8 | (x) >> 8)
    1.53 +#define SWAPK(i)  cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
    1.54 +#define RC2_BLOCK_SIZE 8
    1.55 +
    1.56 +#define LOAD_HARD(R) \
    1.57 +    R[0] = (PRUint16)input[1] << 8 | input[0]; \
    1.58 +    R[1] = (PRUint16)input[3] << 8 | input[2]; \
    1.59 +    R[2] = (PRUint16)input[5] << 8 | input[4]; \
    1.60 +    R[3] = (PRUint16)input[7] << 8 | input[6];
    1.61 +#define LOAD_EASY(R) \
    1.62 +    R[0] = ((PRUint16 *)input)[0]; \
    1.63 +    R[1] = ((PRUint16 *)input)[1]; \
    1.64 +    R[2] = ((PRUint16 *)input)[2]; \
    1.65 +    R[3] = ((PRUint16 *)input)[3];
    1.66 +#define STORE_HARD(R) \
    1.67 +    output[0] =  (PRUint8)(R[0]);   output[1] = (PRUint8)(R[0] >> 8); \
    1.68 +    output[2] =  (PRUint8)(R[1]);   output[3] = (PRUint8)(R[1] >> 8); \
    1.69 +    output[4] =  (PRUint8)(R[2]);   output[5] = (PRUint8)(R[2] >> 8); \
    1.70 +    output[6] =  (PRUint8)(R[3]);   output[7] = (PRUint8)(R[3] >> 8);
    1.71 +#define STORE_EASY(R) \
    1.72 +    ((PRUint16 *)output)[0] =  R[0]; \
    1.73 +    ((PRUint16 *)output)[1] =  R[1]; \
    1.74 +    ((PRUint16 *)output)[2] =  R[2]; \
    1.75 +    ((PRUint16 *)output)[3] =  R[3];   
    1.76 +
    1.77 +#if defined (NSS_X86_OR_X64)
    1.78 +#define LOAD(R)  LOAD_EASY(R)
    1.79 +#define STORE(R) STORE_EASY(R)
    1.80 +#elif !defined(IS_LITTLE_ENDIAN)
    1.81 +#define LOAD(R)  LOAD_HARD(R)
    1.82 +#define STORE(R) STORE_HARD(R)
    1.83 +#else
    1.84 +#define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) }
    1.85 +#define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) }
    1.86 +#endif
    1.87 +
    1.88 +static const PRUint8 S[256] = {
    1.89 +0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235,
    1.90 +0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242,
    1.91 +0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062,
    1.92 +0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202,
    1.93 +0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334,
    1.94 +0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046,
    1.95 +0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003,
    1.96 +0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327,
    1.97 +0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052,
    1.98 +0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354,
    1.99 +0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071,
   1.100 +0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061,
   1.101 +0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311,
   1.102 +0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251,
   1.103 +0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056,
   1.104 +0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255
   1.105 +};
   1.106 +
   1.107 +RC2Context * RC2_AllocateContext(void)
   1.108 +{
   1.109 +    return PORT_ZNew(RC2Context);
   1.110 +}
   1.111 +SECStatus   
   1.112 +RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
   1.113 +	        const unsigned char *input, int mode, unsigned int efLen8, 
   1.114 +		unsigned int unused)
   1.115 +{
   1.116 +    PRUint8    *L,*L2;
   1.117 +    int         i;
   1.118 +#if !defined(IS_LITTLE_ENDIAN)
   1.119 +    PRUint16    tmpS;
   1.120 +#endif
   1.121 +    PRUint8     tmpB;
   1.122 +
   1.123 +    if (!key || !cx || !len || len > (sizeof cx->B) || 
   1.124 +	efLen8 > (sizeof cx->B)) {
   1.125 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.126 +    	return SECFailure;
   1.127 +    }
   1.128 +    if (mode == NSS_RC2) {
   1.129 +    	/* groovy */
   1.130 +    } else if (mode == NSS_RC2_CBC) {
   1.131 +    	if (!input) {
   1.132 +	    PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.133 +	    return SECFailure;
   1.134 +	}
   1.135 +    } else {
   1.136 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.137 +	return SECFailure;
   1.138 +    }
   1.139 +
   1.140 +    if (mode == NSS_RC2_CBC) {
   1.141 +    	cx->enc = & rc2_EncryptCBC;
   1.142 +	cx->dec = & rc2_DecryptCBC;
   1.143 +	LOAD(cx->iv.s);
   1.144 +    } else {
   1.145 +    	cx->enc = & rc2_EncryptECB;
   1.146 +	cx->dec = & rc2_DecryptECB;
   1.147 +    }
   1.148 +
   1.149 +    /* Step 0. Copy key into table. */
   1.150 +    memcpy(cx->B, key, len);
   1.151 +
   1.152 +    /* Step 1. Compute all values to the right of the key. */
   1.153 +    L2 = cx->B;
   1.154 +    L = L2 + len;
   1.155 +    tmpB = L[-1];
   1.156 +    for (i = (sizeof cx->B) - len; i > 0; --i) {
   1.157 +	*L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ];
   1.158 +    }
   1.159 +
   1.160 +    /* step 2. Adjust left most byte of effective key. */
   1.161 +    i = (sizeof cx->B) - efLen8;
   1.162 +    L = cx->B + i;
   1.163 +    *L = tmpB = S[*L];				/* mask is always 0xff */
   1.164 +
   1.165 +    /* step 3. Recompute all values to the left of effective key. */
   1.166 +    L2 = --L + efLen8;
   1.167 +    while(L >= cx->B) {
   1.168 +	*L-- = tmpB = S[ tmpB ^ *L2-- ];
   1.169 +    }
   1.170 +
   1.171 +#if !defined(IS_LITTLE_ENDIAN)
   1.172 +    for (i = 63; i >= 0; --i) {
   1.173 +        SWAPK(i);		/* candidate for unrolling */
   1.174 +    }
   1.175 +#endif
   1.176 +    return SECSuccess;
   1.177 +}
   1.178 +
   1.179 +/*
   1.180 +** Create a new RC2 context suitable for RC2 encryption/decryption.
   1.181 +** 	"key" raw key data
   1.182 +** 	"len" the number of bytes of key data
   1.183 +** 	"iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
   1.184 +** 	"mode" one of NSS_RC2 or NSS_RC2_CBC
   1.185 +**	"effectiveKeyLen" in bytes, not bits.
   1.186 +**
   1.187 +** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
   1.188 +** chaining" mode.
   1.189 +*/
   1.190 +RC2Context *
   1.191 +RC2_CreateContext(const unsigned char *key, unsigned int len,
   1.192 +		  const unsigned char *iv, int mode, unsigned efLen8)
   1.193 +{
   1.194 +    RC2Context *cx = PORT_ZNew(RC2Context);
   1.195 +    if (cx) {
   1.196 +	SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
   1.197 +	if (rv != SECSuccess) {
   1.198 +	    RC2_DestroyContext(cx, PR_TRUE);
   1.199 +	    cx = NULL;
   1.200 +	}
   1.201 +    }
   1.202 +    return cx;
   1.203 +}
   1.204 +
   1.205 +/*
   1.206 +** Destroy an RC2 encryption/decryption context.
   1.207 +**	"cx" the context
   1.208 +**	"freeit" if PR_TRUE then free the object as well as its sub-objects
   1.209 +*/
   1.210 +void 
   1.211 +RC2_DestroyContext(RC2Context *cx, PRBool freeit)
   1.212 +{
   1.213 +    if (cx) {
   1.214 +	memset(cx, 0, sizeof *cx);
   1.215 +	if (freeit) {
   1.216 +	    PORT_Free(cx);
   1.217 +	}
   1.218 +    }
   1.219 +}
   1.220 +
   1.221 +#define ROL(x,k) (x << k | x >> (16-k))
   1.222 +#define MIX(j) \
   1.223 +    R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1);  R0 = ROL(R0,1);\
   1.224 +    R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2);  R1 = ROL(R1,2);\
   1.225 +    R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3);  R2 = ROL(R2,3);\
   1.226 +    R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0);  R3 = ROL(R3,5)
   1.227 +#define MASH \
   1.228 +    R0 = R0 + cx->K[R3 & 63];\
   1.229 +    R1 = R1 + cx->K[R0 & 63];\
   1.230 +    R2 = R2 + cx->K[R1 & 63];\
   1.231 +    R3 = R3 + cx->K[R2 & 63]
   1.232 +
   1.233 +/* Encrypt one block */
   1.234 +static void 
   1.235 +rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
   1.236 +{
   1.237 +    register PRUint16 R0, R1, R2, R3;
   1.238 +
   1.239 +    /* step 1. Initialize input. */
   1.240 +    R0 = input->s[0];
   1.241 +    R1 = input->s[1];
   1.242 +    R2 = input->s[2];
   1.243 +    R3 = input->s[3];
   1.244 +
   1.245 +    /* step 2.  Expand Key (already done, in context) */
   1.246 +    /* step 3.  j = 0 */
   1.247 +    /* step 4.  Perform 5 mixing rounds. */
   1.248 +
   1.249 +    MIX(0);
   1.250 +    MIX(1);
   1.251 +    MIX(2);
   1.252 +    MIX(3);
   1.253 +    MIX(4);
   1.254 +
   1.255 +    /* step 5. Perform 1 mashing round. */
   1.256 +    MASH;
   1.257 +
   1.258 +    /* step 6. Perform 6 mixing rounds. */
   1.259 +
   1.260 +    MIX(5);
   1.261 +    MIX(6);
   1.262 +    MIX(7);
   1.263 +    MIX(8);
   1.264 +    MIX(9);
   1.265 +    MIX(10);
   1.266 +
   1.267 +    /* step 7. Perform 1 mashing round. */
   1.268 +    MASH;
   1.269 +
   1.270 +    /* step 8. Perform 5 mixing rounds. */
   1.271 +
   1.272 +    MIX(11);
   1.273 +    MIX(12);
   1.274 +    MIX(13);
   1.275 +    MIX(14);
   1.276 +    MIX(15);
   1.277 +
   1.278 +    /* output results */
   1.279 +    output->s[0] = R0;
   1.280 +    output->s[1] = R1;
   1.281 +    output->s[2] = R2;
   1.282 +    output->s[3] = R3;
   1.283 +}
   1.284 +
   1.285 +#define ROR(x,k) (x >> k | x << (16-k))
   1.286 +#define R_MIX(j) \
   1.287 +    R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0);  \
   1.288 +    R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3);  \
   1.289 +    R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2);  \
   1.290 +    R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1)
   1.291 +#define R_MASH \
   1.292 +    R3 = R3 - cx->K[R2 & 63];\
   1.293 +    R2 = R2 - cx->K[R1 & 63];\
   1.294 +    R1 = R1 - cx->K[R0 & 63];\
   1.295 +    R0 = R0 - cx->K[R3 & 63]
   1.296 +
   1.297 +/* Encrypt one block */
   1.298 +static void 
   1.299 +rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
   1.300 +{
   1.301 +    register PRUint16 R0, R1, R2, R3;
   1.302 +
   1.303 +    /* step 1. Initialize input. */
   1.304 +    R0 = input->s[0];
   1.305 +    R1 = input->s[1];
   1.306 +    R2 = input->s[2];
   1.307 +    R3 = input->s[3];
   1.308 +
   1.309 +    /* step 2.  Expand Key (already done, in context) */
   1.310 +    /* step 3.  j = 63 */
   1.311 +    /* step 4.  Perform 5 r_mixing rounds. */
   1.312 +    R_MIX(15);
   1.313 +    R_MIX(14);
   1.314 +    R_MIX(13);
   1.315 +    R_MIX(12);
   1.316 +    R_MIX(11);
   1.317 +
   1.318 +    /* step 5.  Perform 1 r_mashing round. */
   1.319 +    R_MASH;
   1.320 +
   1.321 +    /* step 6.  Perform 6 r_mixing rounds. */
   1.322 +    R_MIX(10);
   1.323 +    R_MIX(9);
   1.324 +    R_MIX(8);
   1.325 +    R_MIX(7);
   1.326 +    R_MIX(6);
   1.327 +    R_MIX(5);
   1.328 +
   1.329 +    /* step 7.  Perform 1 r_mashing round. */
   1.330 +    R_MASH;
   1.331 +
   1.332 +    /* step 8.  Perform 5 r_mixing rounds. */
   1.333 +    R_MIX(4);
   1.334 +    R_MIX(3);
   1.335 +    R_MIX(2);
   1.336 +    R_MIX(1);
   1.337 +    R_MIX(0);
   1.338 +
   1.339 +    /* output results */
   1.340 +    output->s[0] = R0;
   1.341 +    output->s[1] = R1;
   1.342 +    output->s[2] = R2;
   1.343 +    output->s[3] = R3;
   1.344 +}
   1.345 +
   1.346 +static SECStatus
   1.347 +rc2_EncryptECB(RC2Context *cx, unsigned char *output,
   1.348 +	       const unsigned char *input, unsigned int inputLen)
   1.349 +{
   1.350 +    RC2Block  iBlock;
   1.351 +
   1.352 +    while (inputLen > 0) {
   1.353 +    	LOAD(iBlock.s)
   1.354 +	rc2_Encrypt1Block(cx, &iBlock, &iBlock);
   1.355 +	STORE(iBlock.s)
   1.356 +	output   += RC2_BLOCK_SIZE;
   1.357 +	input    += RC2_BLOCK_SIZE;
   1.358 +	inputLen -= RC2_BLOCK_SIZE;
   1.359 +    }
   1.360 +    return SECSuccess;
   1.361 +}
   1.362 +
   1.363 +static SECStatus
   1.364 +rc2_DecryptECB(RC2Context *cx, unsigned char *output,
   1.365 +	       const unsigned char *input, unsigned int inputLen)
   1.366 +{
   1.367 +    RC2Block  iBlock;
   1.368 +
   1.369 +    while (inputLen > 0) {
   1.370 +    	LOAD(iBlock.s)
   1.371 +	rc2_Decrypt1Block(cx, &iBlock, &iBlock);
   1.372 +	STORE(iBlock.s)
   1.373 +	output   += RC2_BLOCK_SIZE;
   1.374 +	input    += RC2_BLOCK_SIZE;
   1.375 +	inputLen -= RC2_BLOCK_SIZE;
   1.376 +    }
   1.377 +    return SECSuccess;
   1.378 +}
   1.379 +
   1.380 +static SECStatus
   1.381 +rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
   1.382 +	       const unsigned char *input, unsigned int inputLen)
   1.383 +{
   1.384 +    RC2Block  iBlock;
   1.385 +
   1.386 +    while (inputLen > 0) {
   1.387 +
   1.388 +	LOAD(iBlock.s)
   1.389 +	iBlock.l[0] ^= cx->iv.l[0];
   1.390 +	iBlock.l[1] ^= cx->iv.l[1];
   1.391 +	rc2_Encrypt1Block(cx, &iBlock, &iBlock);
   1.392 +	cx->iv = iBlock;
   1.393 +	STORE(iBlock.s)
   1.394 +	output   += RC2_BLOCK_SIZE;
   1.395 +	input    += RC2_BLOCK_SIZE;
   1.396 +	inputLen -= RC2_BLOCK_SIZE;
   1.397 +    }
   1.398 +    return SECSuccess;
   1.399 +}
   1.400 +
   1.401 +static SECStatus
   1.402 +rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
   1.403 +	       const unsigned char *input, unsigned int inputLen)
   1.404 +{
   1.405 +    RC2Block  iBlock;
   1.406 +    RC2Block  oBlock;
   1.407 +
   1.408 +    while (inputLen > 0) {
   1.409 +	LOAD(iBlock.s)
   1.410 +	rc2_Decrypt1Block(cx, &oBlock, &iBlock);
   1.411 +	oBlock.l[0] ^= cx->iv.l[0];
   1.412 +	oBlock.l[1] ^= cx->iv.l[1];
   1.413 +	cx->iv = iBlock;
   1.414 +	STORE(oBlock.s)
   1.415 +	output   += RC2_BLOCK_SIZE;
   1.416 +	input    += RC2_BLOCK_SIZE;
   1.417 +	inputLen -= RC2_BLOCK_SIZE;
   1.418 +    }
   1.419 +    return SECSuccess;
   1.420 +}
   1.421 +
   1.422 +
   1.423 +/*
   1.424 +** Perform RC2 encryption.
   1.425 +**	"cx" the context
   1.426 +**	"output" the output buffer to store the encrypted data.
   1.427 +**	"outputLen" how much data is stored in "output". Set by the routine
   1.428 +**	   after some data is stored in output.
   1.429 +**	"maxOutputLen" the maximum amount of data that can ever be
   1.430 +**	   stored in "output"
   1.431 +**	"input" the input data
   1.432 +**	"inputLen" the amount of input data
   1.433 +*/
   1.434 +SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
   1.435 +		      unsigned int *outputLen, unsigned int maxOutputLen,
   1.436 +		      const unsigned char *input, unsigned int inputLen)
   1.437 +{
   1.438 +    SECStatus rv = SECSuccess;
   1.439 +    if (inputLen) {
   1.440 +	if (inputLen % RC2_BLOCK_SIZE) {
   1.441 +	    PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.442 +	    return SECFailure;
   1.443 +	}
   1.444 +	if (maxOutputLen < inputLen) {
   1.445 +	    PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.446 +	    return SECFailure;
   1.447 +	}
   1.448 +	rv = (*cx->enc)(cx, output, input, inputLen);
   1.449 +    }
   1.450 +    if (rv == SECSuccess) {
   1.451 +    	*outputLen = inputLen;
   1.452 +    }
   1.453 +    return rv;
   1.454 +}
   1.455 +
   1.456 +/*
   1.457 +** Perform RC2 decryption.
   1.458 +**	"cx" the context
   1.459 +**	"output" the output buffer to store the decrypted data.
   1.460 +**	"outputLen" how much data is stored in "output". Set by the routine
   1.461 +**	   after some data is stored in output.
   1.462 +**	"maxOutputLen" the maximum amount of data that can ever be
   1.463 +**	   stored in "output"
   1.464 +**	"input" the input data
   1.465 +**	"inputLen" the amount of input data
   1.466 +*/
   1.467 +SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
   1.468 +		      unsigned int *outputLen, unsigned int maxOutputLen,
   1.469 +		      const unsigned char *input, unsigned int inputLen)
   1.470 +{
   1.471 +    SECStatus rv = SECSuccess;
   1.472 +    if (inputLen) {
   1.473 +	if (inputLen % RC2_BLOCK_SIZE) {
   1.474 +	    PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.475 +	    return SECFailure;
   1.476 +	}
   1.477 +	if (maxOutputLen < inputLen) {
   1.478 +	    PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.479 +	    return SECFailure;
   1.480 +	}
   1.481 +	rv = (*cx->dec)(cx, output, input, inputLen);
   1.482 +    }
   1.483 +    if (rv == SECSuccess) {
   1.484 +	*outputLen = inputLen;
   1.485 +    }
   1.486 +    return rv;
   1.487 +}
   1.488 +

mercurial