security/nss/lib/freebl/ecl/ec2_163.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ec2_163.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,223 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ec2.h"
     1.9 +#include "mp_gf2m.h"
    1.10 +#include "mp_gf2m-priv.h"
    1.11 +#include "mpi.h"
    1.12 +#include "mpi-priv.h"
    1.13 +#include <stdlib.h>
    1.14 +
    1.15 +/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
    1.16 + * polynomial with terms {163, 7, 6, 3, 0}. */
    1.17 +mp_err
    1.18 +ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
    1.19 +{
    1.20 +	mp_err res = MP_OKAY;
    1.21 +	mp_digit *u, z;
    1.22 +
    1.23 +	if (a != r) {
    1.24 +		MP_CHECKOK(mp_copy(a, r));
    1.25 +	}
    1.26 +#ifdef ECL_SIXTY_FOUR_BIT
    1.27 +	if (MP_USED(r) < 6) {
    1.28 +		MP_CHECKOK(s_mp_pad(r, 6));
    1.29 +	}
    1.30 +	u = MP_DIGITS(r);
    1.31 +	MP_USED(r) = 6;
    1.32 +
    1.33 +	/* u[5] only has 6 significant bits */
    1.34 +	z = u[5];
    1.35 +	u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
    1.36 +	z = u[4];
    1.37 +	u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
    1.38 +	u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
    1.39 +	z = u[3];
    1.40 +	u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
    1.41 +	u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
    1.42 +	z = u[2] >> 35;				/* z only has 29 significant bits */
    1.43 +	u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
    1.44 +	/* clear bits above 163 */
    1.45 +	u[5] = u[4] = u[3] = 0;
    1.46 +	u[2] ^= z << 35;
    1.47 +#else
    1.48 +	if (MP_USED(r) < 11) {
    1.49 +		MP_CHECKOK(s_mp_pad(r, 11));
    1.50 +	}
    1.51 +	u = MP_DIGITS(r);
    1.52 +	MP_USED(r) = 11;
    1.53 +
    1.54 +	/* u[11] only has 6 significant bits */
    1.55 +	z = u[10];
    1.56 +	u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
    1.57 +	u[4] ^= (z << 29);
    1.58 +	z = u[9];
    1.59 +	u[5] ^= (z >> 28) ^ (z >> 29);
    1.60 +	u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
    1.61 +	u[3] ^= (z << 29);
    1.62 +	z = u[8];
    1.63 +	u[4] ^= (z >> 28) ^ (z >> 29);
    1.64 +	u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
    1.65 +	u[2] ^= (z << 29);
    1.66 +	z = u[7];
    1.67 +	u[3] ^= (z >> 28) ^ (z >> 29);
    1.68 +	u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
    1.69 +	u[1] ^= (z << 29);
    1.70 +	z = u[6];
    1.71 +	u[2] ^= (z >> 28) ^ (z >> 29);
    1.72 +	u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
    1.73 +	u[0] ^= (z << 29);
    1.74 +	z = u[5] >> 3;				/* z only has 29 significant bits */
    1.75 +	u[1] ^= (z >> 25) ^ (z >> 26);
    1.76 +	u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
    1.77 +	/* clear bits above 163 */
    1.78 +	u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
    1.79 +	u[5] ^= z << 3;
    1.80 +#endif
    1.81 +	s_mp_clamp(r);
    1.82 +
    1.83 +  CLEANUP:
    1.84 +	return res;
    1.85 +}
    1.86 +
    1.87 +/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
    1.88 + * polynomial with terms {163, 7, 6, 3, 0}. */
    1.89 +mp_err
    1.90 +ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
    1.91 +{
    1.92 +	mp_err res = MP_OKAY;
    1.93 +	mp_digit *u, *v;
    1.94 +
    1.95 +	v = MP_DIGITS(a);
    1.96 +
    1.97 +#ifdef ECL_SIXTY_FOUR_BIT
    1.98 +	if (MP_USED(a) < 3) {
    1.99 +		return mp_bsqrmod(a, meth->irr_arr, r);
   1.100 +	}
   1.101 +	if (MP_USED(r) < 6) {
   1.102 +		MP_CHECKOK(s_mp_pad(r, 6));
   1.103 +	}
   1.104 +	MP_USED(r) = 6;
   1.105 +#else
   1.106 +	if (MP_USED(a) < 6) {
   1.107 +		return mp_bsqrmod(a, meth->irr_arr, r);
   1.108 +	}
   1.109 +	if (MP_USED(r) < 12) {
   1.110 +		MP_CHECKOK(s_mp_pad(r, 12));
   1.111 +	}
   1.112 +	MP_USED(r) = 12;
   1.113 +#endif
   1.114 +	u = MP_DIGITS(r);
   1.115 +
   1.116 +#ifdef ECL_THIRTY_TWO_BIT
   1.117 +	u[11] = gf2m_SQR1(v[5]);
   1.118 +	u[10] = gf2m_SQR0(v[5]);
   1.119 +	u[9] = gf2m_SQR1(v[4]);
   1.120 +	u[8] = gf2m_SQR0(v[4]);
   1.121 +	u[7] = gf2m_SQR1(v[3]);
   1.122 +	u[6] = gf2m_SQR0(v[3]);
   1.123 +#endif
   1.124 +	u[5] = gf2m_SQR1(v[2]);
   1.125 +	u[4] = gf2m_SQR0(v[2]);
   1.126 +	u[3] = gf2m_SQR1(v[1]);
   1.127 +	u[2] = gf2m_SQR0(v[1]);
   1.128 +	u[1] = gf2m_SQR1(v[0]);
   1.129 +	u[0] = gf2m_SQR0(v[0]);
   1.130 +	return ec_GF2m_163_mod(r, r, meth);
   1.131 +
   1.132 +  CLEANUP:
   1.133 +	return res;
   1.134 +}
   1.135 +
   1.136 +/* Fast multiplication for polynomials over a 163-bit curve. Assumes
   1.137 + * reduction polynomial with terms {163, 7, 6, 3, 0}. */
   1.138 +mp_err
   1.139 +ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
   1.140 +				const GFMethod *meth)
   1.141 +{
   1.142 +	mp_err res = MP_OKAY;
   1.143 +	mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
   1.144 +
   1.145 +#ifdef ECL_THIRTY_TWO_BIT
   1.146 +	mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
   1.147 +	mp_digit rm[6];
   1.148 +#endif
   1.149 +
   1.150 +	if (a == b) {
   1.151 +		return ec_GF2m_163_sqr(a, r, meth);
   1.152 +	} else {
   1.153 +		switch (MP_USED(a)) {
   1.154 +#ifdef ECL_THIRTY_TWO_BIT
   1.155 +		case 6:
   1.156 +			a5 = MP_DIGIT(a, 5);
   1.157 +		case 5:
   1.158 +			a4 = MP_DIGIT(a, 4);
   1.159 +		case 4:
   1.160 +			a3 = MP_DIGIT(a, 3);
   1.161 +#endif
   1.162 +		case 3:
   1.163 +			a2 = MP_DIGIT(a, 2);
   1.164 +		case 2:
   1.165 +			a1 = MP_DIGIT(a, 1);
   1.166 +		default:
   1.167 +			a0 = MP_DIGIT(a, 0);
   1.168 +		}
   1.169 +		switch (MP_USED(b)) {
   1.170 +#ifdef ECL_THIRTY_TWO_BIT
   1.171 +		case 6:
   1.172 +			b5 = MP_DIGIT(b, 5);
   1.173 +		case 5:
   1.174 +			b4 = MP_DIGIT(b, 4);
   1.175 +		case 4:
   1.176 +			b3 = MP_DIGIT(b, 3);
   1.177 +#endif
   1.178 +		case 3:
   1.179 +			b2 = MP_DIGIT(b, 2);
   1.180 +		case 2:
   1.181 +			b1 = MP_DIGIT(b, 1);
   1.182 +		default:
   1.183 +			b0 = MP_DIGIT(b, 0);
   1.184 +		}
   1.185 +#ifdef ECL_SIXTY_FOUR_BIT
   1.186 +		MP_CHECKOK(s_mp_pad(r, 6));
   1.187 +		s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
   1.188 +		MP_USED(r) = 6;
   1.189 +		s_mp_clamp(r);
   1.190 +#else
   1.191 +		MP_CHECKOK(s_mp_pad(r, 12));
   1.192 +		s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
   1.193 +		s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
   1.194 +		s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
   1.195 +				   b3 ^ b0);
   1.196 +		rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
   1.197 +		rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
   1.198 +		rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
   1.199 +		rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
   1.200 +		rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
   1.201 +		rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
   1.202 +		MP_DIGIT(r, 8) ^= rm[5];
   1.203 +		MP_DIGIT(r, 7) ^= rm[4];
   1.204 +		MP_DIGIT(r, 6) ^= rm[3];
   1.205 +		MP_DIGIT(r, 5) ^= rm[2];
   1.206 +		MP_DIGIT(r, 4) ^= rm[1];
   1.207 +		MP_DIGIT(r, 3) ^= rm[0];
   1.208 +		MP_USED(r) = 12;
   1.209 +		s_mp_clamp(r);
   1.210 +#endif
   1.211 +		return ec_GF2m_163_mod(r, r, meth);
   1.212 +	}
   1.213 +
   1.214 +  CLEANUP:
   1.215 +	return res;
   1.216 +}
   1.217 +
   1.218 +/* Wire in fast field arithmetic for 163-bit curves. */
   1.219 +mp_err
   1.220 +ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
   1.221 +{
   1.222 +	group->meth->field_mod = &ec_GF2m_163_mod;
   1.223 +	group->meth->field_mul = &ec_GF2m_163_mul;
   1.224 +	group->meth->field_sqr = &ec_GF2m_163_sqr;
   1.225 +	return MP_OKAY;
   1.226 +}

mercurial