1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ec2_163.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,223 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "ec2.h" 1.9 +#include "mp_gf2m.h" 1.10 +#include "mp_gf2m-priv.h" 1.11 +#include "mpi.h" 1.12 +#include "mpi-priv.h" 1.13 +#include <stdlib.h> 1.14 + 1.15 +/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction 1.16 + * polynomial with terms {163, 7, 6, 3, 0}. */ 1.17 +mp_err 1.18 +ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 1.19 +{ 1.20 + mp_err res = MP_OKAY; 1.21 + mp_digit *u, z; 1.22 + 1.23 + if (a != r) { 1.24 + MP_CHECKOK(mp_copy(a, r)); 1.25 + } 1.26 +#ifdef ECL_SIXTY_FOUR_BIT 1.27 + if (MP_USED(r) < 6) { 1.28 + MP_CHECKOK(s_mp_pad(r, 6)); 1.29 + } 1.30 + u = MP_DIGITS(r); 1.31 + MP_USED(r) = 6; 1.32 + 1.33 + /* u[5] only has 6 significant bits */ 1.34 + z = u[5]; 1.35 + u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); 1.36 + z = u[4]; 1.37 + u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35); 1.38 + u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); 1.39 + z = u[3]; 1.40 + u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35); 1.41 + u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29); 1.42 + z = u[2] >> 35; /* z only has 29 significant bits */ 1.43 + u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z; 1.44 + /* clear bits above 163 */ 1.45 + u[5] = u[4] = u[3] = 0; 1.46 + u[2] ^= z << 35; 1.47 +#else 1.48 + if (MP_USED(r) < 11) { 1.49 + MP_CHECKOK(s_mp_pad(r, 11)); 1.50 + } 1.51 + u = MP_DIGITS(r); 1.52 + MP_USED(r) = 11; 1.53 + 1.54 + /* u[11] only has 6 significant bits */ 1.55 + z = u[10]; 1.56 + u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); 1.57 + u[4] ^= (z << 29); 1.58 + z = u[9]; 1.59 + u[5] ^= (z >> 28) ^ (z >> 29); 1.60 + u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); 1.61 + u[3] ^= (z << 29); 1.62 + z = u[8]; 1.63 + u[4] ^= (z >> 28) ^ (z >> 29); 1.64 + u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); 1.65 + u[2] ^= (z << 29); 1.66 + z = u[7]; 1.67 + u[3] ^= (z >> 28) ^ (z >> 29); 1.68 + u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); 1.69 + u[1] ^= (z << 29); 1.70 + z = u[6]; 1.71 + u[2] ^= (z >> 28) ^ (z >> 29); 1.72 + u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3); 1.73 + u[0] ^= (z << 29); 1.74 + z = u[5] >> 3; /* z only has 29 significant bits */ 1.75 + u[1] ^= (z >> 25) ^ (z >> 26); 1.76 + u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z; 1.77 + /* clear bits above 163 */ 1.78 + u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0; 1.79 + u[5] ^= z << 3; 1.80 +#endif 1.81 + s_mp_clamp(r); 1.82 + 1.83 + CLEANUP: 1.84 + return res; 1.85 +} 1.86 + 1.87 +/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction 1.88 + * polynomial with terms {163, 7, 6, 3, 0}. */ 1.89 +mp_err 1.90 +ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 1.91 +{ 1.92 + mp_err res = MP_OKAY; 1.93 + mp_digit *u, *v; 1.94 + 1.95 + v = MP_DIGITS(a); 1.96 + 1.97 +#ifdef ECL_SIXTY_FOUR_BIT 1.98 + if (MP_USED(a) < 3) { 1.99 + return mp_bsqrmod(a, meth->irr_arr, r); 1.100 + } 1.101 + if (MP_USED(r) < 6) { 1.102 + MP_CHECKOK(s_mp_pad(r, 6)); 1.103 + } 1.104 + MP_USED(r) = 6; 1.105 +#else 1.106 + if (MP_USED(a) < 6) { 1.107 + return mp_bsqrmod(a, meth->irr_arr, r); 1.108 + } 1.109 + if (MP_USED(r) < 12) { 1.110 + MP_CHECKOK(s_mp_pad(r, 12)); 1.111 + } 1.112 + MP_USED(r) = 12; 1.113 +#endif 1.114 + u = MP_DIGITS(r); 1.115 + 1.116 +#ifdef ECL_THIRTY_TWO_BIT 1.117 + u[11] = gf2m_SQR1(v[5]); 1.118 + u[10] = gf2m_SQR0(v[5]); 1.119 + u[9] = gf2m_SQR1(v[4]); 1.120 + u[8] = gf2m_SQR0(v[4]); 1.121 + u[7] = gf2m_SQR1(v[3]); 1.122 + u[6] = gf2m_SQR0(v[3]); 1.123 +#endif 1.124 + u[5] = gf2m_SQR1(v[2]); 1.125 + u[4] = gf2m_SQR0(v[2]); 1.126 + u[3] = gf2m_SQR1(v[1]); 1.127 + u[2] = gf2m_SQR0(v[1]); 1.128 + u[1] = gf2m_SQR1(v[0]); 1.129 + u[0] = gf2m_SQR0(v[0]); 1.130 + return ec_GF2m_163_mod(r, r, meth); 1.131 + 1.132 + CLEANUP: 1.133 + return res; 1.134 +} 1.135 + 1.136 +/* Fast multiplication for polynomials over a 163-bit curve. Assumes 1.137 + * reduction polynomial with terms {163, 7, 6, 3, 0}. */ 1.138 +mp_err 1.139 +ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r, 1.140 + const GFMethod *meth) 1.141 +{ 1.142 + mp_err res = MP_OKAY; 1.143 + mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0; 1.144 + 1.145 +#ifdef ECL_THIRTY_TWO_BIT 1.146 + mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0; 1.147 + mp_digit rm[6]; 1.148 +#endif 1.149 + 1.150 + if (a == b) { 1.151 + return ec_GF2m_163_sqr(a, r, meth); 1.152 + } else { 1.153 + switch (MP_USED(a)) { 1.154 +#ifdef ECL_THIRTY_TWO_BIT 1.155 + case 6: 1.156 + a5 = MP_DIGIT(a, 5); 1.157 + case 5: 1.158 + a4 = MP_DIGIT(a, 4); 1.159 + case 4: 1.160 + a3 = MP_DIGIT(a, 3); 1.161 +#endif 1.162 + case 3: 1.163 + a2 = MP_DIGIT(a, 2); 1.164 + case 2: 1.165 + a1 = MP_DIGIT(a, 1); 1.166 + default: 1.167 + a0 = MP_DIGIT(a, 0); 1.168 + } 1.169 + switch (MP_USED(b)) { 1.170 +#ifdef ECL_THIRTY_TWO_BIT 1.171 + case 6: 1.172 + b5 = MP_DIGIT(b, 5); 1.173 + case 5: 1.174 + b4 = MP_DIGIT(b, 4); 1.175 + case 4: 1.176 + b3 = MP_DIGIT(b, 3); 1.177 +#endif 1.178 + case 3: 1.179 + b2 = MP_DIGIT(b, 2); 1.180 + case 2: 1.181 + b1 = MP_DIGIT(b, 1); 1.182 + default: 1.183 + b0 = MP_DIGIT(b, 0); 1.184 + } 1.185 +#ifdef ECL_SIXTY_FOUR_BIT 1.186 + MP_CHECKOK(s_mp_pad(r, 6)); 1.187 + s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0); 1.188 + MP_USED(r) = 6; 1.189 + s_mp_clamp(r); 1.190 +#else 1.191 + MP_CHECKOK(s_mp_pad(r, 12)); 1.192 + s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3); 1.193 + s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0); 1.194 + s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1, 1.195 + b3 ^ b0); 1.196 + rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11); 1.197 + rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10); 1.198 + rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9); 1.199 + rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8); 1.200 + rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7); 1.201 + rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6); 1.202 + MP_DIGIT(r, 8) ^= rm[5]; 1.203 + MP_DIGIT(r, 7) ^= rm[4]; 1.204 + MP_DIGIT(r, 6) ^= rm[3]; 1.205 + MP_DIGIT(r, 5) ^= rm[2]; 1.206 + MP_DIGIT(r, 4) ^= rm[1]; 1.207 + MP_DIGIT(r, 3) ^= rm[0]; 1.208 + MP_USED(r) = 12; 1.209 + s_mp_clamp(r); 1.210 +#endif 1.211 + return ec_GF2m_163_mod(r, r, meth); 1.212 + } 1.213 + 1.214 + CLEANUP: 1.215 + return res; 1.216 +} 1.217 + 1.218 +/* Wire in fast field arithmetic for 163-bit curves. */ 1.219 +mp_err 1.220 +ec_group_set_gf2m163(ECGroup *group, ECCurveName name) 1.221 +{ 1.222 + group->meth->field_mod = &ec_GF2m_163_mod; 1.223 + group->meth->field_mul = &ec_GF2m_163_mul; 1.224 + group->meth->field_sqr = &ec_GF2m_163_sqr; 1.225 + return MP_OKAY; 1.226 +}