1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ec2_193.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,240 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "ec2.h" 1.9 +#include "mp_gf2m.h" 1.10 +#include "mp_gf2m-priv.h" 1.11 +#include "mpi.h" 1.12 +#include "mpi-priv.h" 1.13 +#include <stdlib.h> 1.14 + 1.15 +/* Fast reduction for polynomials over a 193-bit curve. Assumes reduction 1.16 + * polynomial with terms {193, 15, 0}. */ 1.17 +mp_err 1.18 +ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 1.19 +{ 1.20 + mp_err res = MP_OKAY; 1.21 + mp_digit *u, z; 1.22 + 1.23 + if (a != r) { 1.24 + MP_CHECKOK(mp_copy(a, r)); 1.25 + } 1.26 +#ifdef ECL_SIXTY_FOUR_BIT 1.27 + if (MP_USED(r) < 7) { 1.28 + MP_CHECKOK(s_mp_pad(r, 7)); 1.29 + } 1.30 + u = MP_DIGITS(r); 1.31 + MP_USED(r) = 7; 1.32 + 1.33 + /* u[6] only has 2 significant bits */ 1.34 + z = u[6]; 1.35 + u[3] ^= (z << 14) ^ (z >> 1); 1.36 + u[2] ^= (z << 63); 1.37 + z = u[5]; 1.38 + u[3] ^= (z >> 50); 1.39 + u[2] ^= (z << 14) ^ (z >> 1); 1.40 + u[1] ^= (z << 63); 1.41 + z = u[4]; 1.42 + u[2] ^= (z >> 50); 1.43 + u[1] ^= (z << 14) ^ (z >> 1); 1.44 + u[0] ^= (z << 63); 1.45 + z = u[3] >> 1; /* z only has 63 significant bits */ 1.46 + u[1] ^= (z >> 49); 1.47 + u[0] ^= (z << 15) ^ z; 1.48 + /* clear bits above 193 */ 1.49 + u[6] = u[5] = u[4] = 0; 1.50 + u[3] ^= z << 1; 1.51 +#else 1.52 + if (MP_USED(r) < 13) { 1.53 + MP_CHECKOK(s_mp_pad(r, 13)); 1.54 + } 1.55 + u = MP_DIGITS(r); 1.56 + MP_USED(r) = 13; 1.57 + 1.58 + /* u[12] only has 2 significant bits */ 1.59 + z = u[12]; 1.60 + u[6] ^= (z << 14) ^ (z >> 1); 1.61 + u[5] ^= (z << 31); 1.62 + z = u[11]; 1.63 + u[6] ^= (z >> 18); 1.64 + u[5] ^= (z << 14) ^ (z >> 1); 1.65 + u[4] ^= (z << 31); 1.66 + z = u[10]; 1.67 + u[5] ^= (z >> 18); 1.68 + u[4] ^= (z << 14) ^ (z >> 1); 1.69 + u[3] ^= (z << 31); 1.70 + z = u[9]; 1.71 + u[4] ^= (z >> 18); 1.72 + u[3] ^= (z << 14) ^ (z >> 1); 1.73 + u[2] ^= (z << 31); 1.74 + z = u[8]; 1.75 + u[3] ^= (z >> 18); 1.76 + u[2] ^= (z << 14) ^ (z >> 1); 1.77 + u[1] ^= (z << 31); 1.78 + z = u[7]; 1.79 + u[2] ^= (z >> 18); 1.80 + u[1] ^= (z << 14) ^ (z >> 1); 1.81 + u[0] ^= (z << 31); 1.82 + z = u[6] >> 1; /* z only has 31 significant bits */ 1.83 + u[1] ^= (z >> 17); 1.84 + u[0] ^= (z << 15) ^ z; 1.85 + /* clear bits above 193 */ 1.86 + u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0; 1.87 + u[6] ^= z << 1; 1.88 +#endif 1.89 + s_mp_clamp(r); 1.90 + 1.91 + CLEANUP: 1.92 + return res; 1.93 +} 1.94 + 1.95 +/* Fast squaring for polynomials over a 193-bit curve. Assumes reduction 1.96 + * polynomial with terms {193, 15, 0}. */ 1.97 +mp_err 1.98 +ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 1.99 +{ 1.100 + mp_err res = MP_OKAY; 1.101 + mp_digit *u, *v; 1.102 + 1.103 + v = MP_DIGITS(a); 1.104 + 1.105 +#ifdef ECL_SIXTY_FOUR_BIT 1.106 + if (MP_USED(a) < 4) { 1.107 + return mp_bsqrmod(a, meth->irr_arr, r); 1.108 + } 1.109 + if (MP_USED(r) < 7) { 1.110 + MP_CHECKOK(s_mp_pad(r, 7)); 1.111 + } 1.112 + MP_USED(r) = 7; 1.113 +#else 1.114 + if (MP_USED(a) < 7) { 1.115 + return mp_bsqrmod(a, meth->irr_arr, r); 1.116 + } 1.117 + if (MP_USED(r) < 13) { 1.118 + MP_CHECKOK(s_mp_pad(r, 13)); 1.119 + } 1.120 + MP_USED(r) = 13; 1.121 +#endif 1.122 + u = MP_DIGITS(r); 1.123 + 1.124 +#ifdef ECL_THIRTY_TWO_BIT 1.125 + u[12] = gf2m_SQR0(v[6]); 1.126 + u[11] = gf2m_SQR1(v[5]); 1.127 + u[10] = gf2m_SQR0(v[5]); 1.128 + u[9] = gf2m_SQR1(v[4]); 1.129 + u[8] = gf2m_SQR0(v[4]); 1.130 + u[7] = gf2m_SQR1(v[3]); 1.131 +#endif 1.132 + u[6] = gf2m_SQR0(v[3]); 1.133 + u[5] = gf2m_SQR1(v[2]); 1.134 + u[4] = gf2m_SQR0(v[2]); 1.135 + u[3] = gf2m_SQR1(v[1]); 1.136 + u[2] = gf2m_SQR0(v[1]); 1.137 + u[1] = gf2m_SQR1(v[0]); 1.138 + u[0] = gf2m_SQR0(v[0]); 1.139 + return ec_GF2m_193_mod(r, r, meth); 1.140 + 1.141 + CLEANUP: 1.142 + return res; 1.143 +} 1.144 + 1.145 +/* Fast multiplication for polynomials over a 193-bit curve. Assumes 1.146 + * reduction polynomial with terms {193, 15, 0}. */ 1.147 +mp_err 1.148 +ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r, 1.149 + const GFMethod *meth) 1.150 +{ 1.151 + mp_err res = MP_OKAY; 1.152 + mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; 1.153 + 1.154 +#ifdef ECL_THIRTY_TWO_BIT 1.155 + mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0; 1.156 + mp_digit rm[8]; 1.157 +#endif 1.158 + 1.159 + if (a == b) { 1.160 + return ec_GF2m_193_sqr(a, r, meth); 1.161 + } else { 1.162 + switch (MP_USED(a)) { 1.163 +#ifdef ECL_THIRTY_TWO_BIT 1.164 + case 7: 1.165 + a6 = MP_DIGIT(a, 6); 1.166 + case 6: 1.167 + a5 = MP_DIGIT(a, 5); 1.168 + case 5: 1.169 + a4 = MP_DIGIT(a, 4); 1.170 +#endif 1.171 + case 4: 1.172 + a3 = MP_DIGIT(a, 3); 1.173 + case 3: 1.174 + a2 = MP_DIGIT(a, 2); 1.175 + case 2: 1.176 + a1 = MP_DIGIT(a, 1); 1.177 + default: 1.178 + a0 = MP_DIGIT(a, 0); 1.179 + } 1.180 + switch (MP_USED(b)) { 1.181 +#ifdef ECL_THIRTY_TWO_BIT 1.182 + case 7: 1.183 + b6 = MP_DIGIT(b, 6); 1.184 + case 6: 1.185 + b5 = MP_DIGIT(b, 5); 1.186 + case 5: 1.187 + b4 = MP_DIGIT(b, 4); 1.188 +#endif 1.189 + case 4: 1.190 + b3 = MP_DIGIT(b, 3); 1.191 + case 3: 1.192 + b2 = MP_DIGIT(b, 2); 1.193 + case 2: 1.194 + b1 = MP_DIGIT(b, 1); 1.195 + default: 1.196 + b0 = MP_DIGIT(b, 0); 1.197 + } 1.198 +#ifdef ECL_SIXTY_FOUR_BIT 1.199 + MP_CHECKOK(s_mp_pad(r, 8)); 1.200 + s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 1.201 + MP_USED(r) = 8; 1.202 + s_mp_clamp(r); 1.203 +#else 1.204 + MP_CHECKOK(s_mp_pad(r, 14)); 1.205 + s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4); 1.206 + s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 1.207 + s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1, 1.208 + b4 ^ b0); 1.209 + rm[7] ^= MP_DIGIT(r, 7); 1.210 + rm[6] ^= MP_DIGIT(r, 6); 1.211 + rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); 1.212 + rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); 1.213 + rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); 1.214 + rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); 1.215 + rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); 1.216 + rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); 1.217 + MP_DIGIT(r, 11) ^= rm[7]; 1.218 + MP_DIGIT(r, 10) ^= rm[6]; 1.219 + MP_DIGIT(r, 9) ^= rm[5]; 1.220 + MP_DIGIT(r, 8) ^= rm[4]; 1.221 + MP_DIGIT(r, 7) ^= rm[3]; 1.222 + MP_DIGIT(r, 6) ^= rm[2]; 1.223 + MP_DIGIT(r, 5) ^= rm[1]; 1.224 + MP_DIGIT(r, 4) ^= rm[0]; 1.225 + MP_USED(r) = 14; 1.226 + s_mp_clamp(r); 1.227 +#endif 1.228 + return ec_GF2m_193_mod(r, r, meth); 1.229 + } 1.230 + 1.231 + CLEANUP: 1.232 + return res; 1.233 +} 1.234 + 1.235 +/* Wire in fast field arithmetic for 193-bit curves. */ 1.236 +mp_err 1.237 +ec_group_set_gf2m193(ECGroup *group, ECCurveName name) 1.238 +{ 1.239 + group->meth->field_mod = &ec_GF2m_193_mod; 1.240 + group->meth->field_mul = &ec_GF2m_193_mul; 1.241 + group->meth->field_sqr = &ec_GF2m_193_sqr; 1.242 + return MP_OKAY; 1.243 +}