1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ec2_233.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,263 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "ec2.h" 1.9 +#include "mp_gf2m.h" 1.10 +#include "mp_gf2m-priv.h" 1.11 +#include "mpi.h" 1.12 +#include "mpi-priv.h" 1.13 +#include <stdlib.h> 1.14 + 1.15 +/* Fast reduction for polynomials over a 233-bit curve. Assumes reduction 1.16 + * polynomial with terms {233, 74, 0}. */ 1.17 +mp_err 1.18 +ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 1.19 +{ 1.20 + mp_err res = MP_OKAY; 1.21 + mp_digit *u, z; 1.22 + 1.23 + if (a != r) { 1.24 + MP_CHECKOK(mp_copy(a, r)); 1.25 + } 1.26 +#ifdef ECL_SIXTY_FOUR_BIT 1.27 + if (MP_USED(r) < 8) { 1.28 + MP_CHECKOK(s_mp_pad(r, 8)); 1.29 + } 1.30 + u = MP_DIGITS(r); 1.31 + MP_USED(r) = 8; 1.32 + 1.33 + /* u[7] only has 18 significant bits */ 1.34 + z = u[7]; 1.35 + u[4] ^= (z << 33) ^ (z >> 41); 1.36 + u[3] ^= (z << 23); 1.37 + z = u[6]; 1.38 + u[4] ^= (z >> 31); 1.39 + u[3] ^= (z << 33) ^ (z >> 41); 1.40 + u[2] ^= (z << 23); 1.41 + z = u[5]; 1.42 + u[3] ^= (z >> 31); 1.43 + u[2] ^= (z << 33) ^ (z >> 41); 1.44 + u[1] ^= (z << 23); 1.45 + z = u[4]; 1.46 + u[2] ^= (z >> 31); 1.47 + u[1] ^= (z << 33) ^ (z >> 41); 1.48 + u[0] ^= (z << 23); 1.49 + z = u[3] >> 41; /* z only has 23 significant bits */ 1.50 + u[1] ^= (z << 10); 1.51 + u[0] ^= z; 1.52 + /* clear bits above 233 */ 1.53 + u[7] = u[6] = u[5] = u[4] = 0; 1.54 + u[3] ^= z << 41; 1.55 +#else 1.56 + if (MP_USED(r) < 15) { 1.57 + MP_CHECKOK(s_mp_pad(r, 15)); 1.58 + } 1.59 + u = MP_DIGITS(r); 1.60 + MP_USED(r) = 15; 1.61 + 1.62 + /* u[14] only has 18 significant bits */ 1.63 + z = u[14]; 1.64 + u[9] ^= (z << 1); 1.65 + u[7] ^= (z >> 9); 1.66 + u[6] ^= (z << 23); 1.67 + z = u[13]; 1.68 + u[9] ^= (z >> 31); 1.69 + u[8] ^= (z << 1); 1.70 + u[6] ^= (z >> 9); 1.71 + u[5] ^= (z << 23); 1.72 + z = u[12]; 1.73 + u[8] ^= (z >> 31); 1.74 + u[7] ^= (z << 1); 1.75 + u[5] ^= (z >> 9); 1.76 + u[4] ^= (z << 23); 1.77 + z = u[11]; 1.78 + u[7] ^= (z >> 31); 1.79 + u[6] ^= (z << 1); 1.80 + u[4] ^= (z >> 9); 1.81 + u[3] ^= (z << 23); 1.82 + z = u[10]; 1.83 + u[6] ^= (z >> 31); 1.84 + u[5] ^= (z << 1); 1.85 + u[3] ^= (z >> 9); 1.86 + u[2] ^= (z << 23); 1.87 + z = u[9]; 1.88 + u[5] ^= (z >> 31); 1.89 + u[4] ^= (z << 1); 1.90 + u[2] ^= (z >> 9); 1.91 + u[1] ^= (z << 23); 1.92 + z = u[8]; 1.93 + u[4] ^= (z >> 31); 1.94 + u[3] ^= (z << 1); 1.95 + u[1] ^= (z >> 9); 1.96 + u[0] ^= (z << 23); 1.97 + z = u[7] >> 9; /* z only has 23 significant bits */ 1.98 + u[3] ^= (z >> 22); 1.99 + u[2] ^= (z << 10); 1.100 + u[0] ^= z; 1.101 + /* clear bits above 233 */ 1.102 + u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0; 1.103 + u[7] ^= z << 9; 1.104 +#endif 1.105 + s_mp_clamp(r); 1.106 + 1.107 + CLEANUP: 1.108 + return res; 1.109 +} 1.110 + 1.111 +/* Fast squaring for polynomials over a 233-bit curve. Assumes reduction 1.112 + * polynomial with terms {233, 74, 0}. */ 1.113 +mp_err 1.114 +ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 1.115 +{ 1.116 + mp_err res = MP_OKAY; 1.117 + mp_digit *u, *v; 1.118 + 1.119 + v = MP_DIGITS(a); 1.120 + 1.121 +#ifdef ECL_SIXTY_FOUR_BIT 1.122 + if (MP_USED(a) < 4) { 1.123 + return mp_bsqrmod(a, meth->irr_arr, r); 1.124 + } 1.125 + if (MP_USED(r) < 8) { 1.126 + MP_CHECKOK(s_mp_pad(r, 8)); 1.127 + } 1.128 + MP_USED(r) = 8; 1.129 +#else 1.130 + if (MP_USED(a) < 8) { 1.131 + return mp_bsqrmod(a, meth->irr_arr, r); 1.132 + } 1.133 + if (MP_USED(r) < 15) { 1.134 + MP_CHECKOK(s_mp_pad(r, 15)); 1.135 + } 1.136 + MP_USED(r) = 15; 1.137 +#endif 1.138 + u = MP_DIGITS(r); 1.139 + 1.140 +#ifdef ECL_THIRTY_TWO_BIT 1.141 + u[14] = gf2m_SQR0(v[7]); 1.142 + u[13] = gf2m_SQR1(v[6]); 1.143 + u[12] = gf2m_SQR0(v[6]); 1.144 + u[11] = gf2m_SQR1(v[5]); 1.145 + u[10] = gf2m_SQR0(v[5]); 1.146 + u[9] = gf2m_SQR1(v[4]); 1.147 + u[8] = gf2m_SQR0(v[4]); 1.148 +#endif 1.149 + u[7] = gf2m_SQR1(v[3]); 1.150 + u[6] = gf2m_SQR0(v[3]); 1.151 + u[5] = gf2m_SQR1(v[2]); 1.152 + u[4] = gf2m_SQR0(v[2]); 1.153 + u[3] = gf2m_SQR1(v[1]); 1.154 + u[2] = gf2m_SQR0(v[1]); 1.155 + u[1] = gf2m_SQR1(v[0]); 1.156 + u[0] = gf2m_SQR0(v[0]); 1.157 + return ec_GF2m_233_mod(r, r, meth); 1.158 + 1.159 + CLEANUP: 1.160 + return res; 1.161 +} 1.162 + 1.163 +/* Fast multiplication for polynomials over a 233-bit curve. Assumes 1.164 + * reduction polynomial with terms {233, 74, 0}. */ 1.165 +mp_err 1.166 +ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r, 1.167 + const GFMethod *meth) 1.168 +{ 1.169 + mp_err res = MP_OKAY; 1.170 + mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; 1.171 + 1.172 +#ifdef ECL_THIRTY_TWO_BIT 1.173 + mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 = 1.174 + 0; 1.175 + mp_digit rm[8]; 1.176 +#endif 1.177 + 1.178 + if (a == b) { 1.179 + return ec_GF2m_233_sqr(a, r, meth); 1.180 + } else { 1.181 + switch (MP_USED(a)) { 1.182 +#ifdef ECL_THIRTY_TWO_BIT 1.183 + case 8: 1.184 + a7 = MP_DIGIT(a, 7); 1.185 + case 7: 1.186 + a6 = MP_DIGIT(a, 6); 1.187 + case 6: 1.188 + a5 = MP_DIGIT(a, 5); 1.189 + case 5: 1.190 + a4 = MP_DIGIT(a, 4); 1.191 +#endif 1.192 + case 4: 1.193 + a3 = MP_DIGIT(a, 3); 1.194 + case 3: 1.195 + a2 = MP_DIGIT(a, 2); 1.196 + case 2: 1.197 + a1 = MP_DIGIT(a, 1); 1.198 + default: 1.199 + a0 = MP_DIGIT(a, 0); 1.200 + } 1.201 + switch (MP_USED(b)) { 1.202 +#ifdef ECL_THIRTY_TWO_BIT 1.203 + case 8: 1.204 + b7 = MP_DIGIT(b, 7); 1.205 + case 7: 1.206 + b6 = MP_DIGIT(b, 6); 1.207 + case 6: 1.208 + b5 = MP_DIGIT(b, 5); 1.209 + case 5: 1.210 + b4 = MP_DIGIT(b, 4); 1.211 +#endif 1.212 + case 4: 1.213 + b3 = MP_DIGIT(b, 3); 1.214 + case 3: 1.215 + b2 = MP_DIGIT(b, 2); 1.216 + case 2: 1.217 + b1 = MP_DIGIT(b, 1); 1.218 + default: 1.219 + b0 = MP_DIGIT(b, 0); 1.220 + } 1.221 +#ifdef ECL_SIXTY_FOUR_BIT 1.222 + MP_CHECKOK(s_mp_pad(r, 8)); 1.223 + s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 1.224 + MP_USED(r) = 8; 1.225 + s_mp_clamp(r); 1.226 +#else 1.227 + MP_CHECKOK(s_mp_pad(r, 16)); 1.228 + s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4); 1.229 + s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); 1.230 + s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3, 1.231 + b6 ^ b2, b5 ^ b1, b4 ^ b0); 1.232 + rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15); 1.233 + rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14); 1.234 + rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); 1.235 + rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); 1.236 + rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); 1.237 + rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); 1.238 + rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); 1.239 + rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); 1.240 + MP_DIGIT(r, 11) ^= rm[7]; 1.241 + MP_DIGIT(r, 10) ^= rm[6]; 1.242 + MP_DIGIT(r, 9) ^= rm[5]; 1.243 + MP_DIGIT(r, 8) ^= rm[4]; 1.244 + MP_DIGIT(r, 7) ^= rm[3]; 1.245 + MP_DIGIT(r, 6) ^= rm[2]; 1.246 + MP_DIGIT(r, 5) ^= rm[1]; 1.247 + MP_DIGIT(r, 4) ^= rm[0]; 1.248 + MP_USED(r) = 16; 1.249 + s_mp_clamp(r); 1.250 +#endif 1.251 + return ec_GF2m_233_mod(r, r, meth); 1.252 + } 1.253 + 1.254 + CLEANUP: 1.255 + return res; 1.256 +} 1.257 + 1.258 +/* Wire in fast field arithmetic for 233-bit curves. */ 1.259 +mp_err 1.260 +ec_group_set_gf2m233(ECGroup *group, ECCurveName name) 1.261 +{ 1.262 + group->meth->field_mod = &ec_GF2m_233_mod; 1.263 + group->meth->field_mul = &ec_GF2m_233_mul; 1.264 + group->meth->field_sqr = &ec_GF2m_233_sqr; 1.265 + return MP_OKAY; 1.266 +}