security/nss/lib/freebl/ecl/ec2_mont.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ec2_mont.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,238 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ec2.h"
     1.9 +#include "mplogic.h"
    1.10 +#include "mp_gf2m.h"
    1.11 +#include <stdlib.h>
    1.12 +
    1.13 +/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
    1.14 + * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. 
    1.15 + * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
    1.16 + * without precomputation". modified to not require precomputation of
    1.17 + * c=b^{2^{m-1}}. */
    1.18 +static mp_err
    1.19 +gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group)
    1.20 +{
    1.21 +	mp_err res = MP_OKAY;
    1.22 +	mp_int t1;
    1.23 +
    1.24 +	MP_DIGITS(&t1) = 0;
    1.25 +	MP_CHECKOK(mp_init(&t1));
    1.26 +
    1.27 +	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
    1.28 +	MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
    1.29 +	MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
    1.30 +	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
    1.31 +	MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
    1.32 +	MP_CHECKOK(group->meth->
    1.33 +			   field_mul(&group->curveb, &t1, &t1, group->meth));
    1.34 +	MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
    1.35 +
    1.36 +  CLEANUP:
    1.37 +	mp_clear(&t1);
    1.38 +	return res;
    1.39 +}
    1.40 +
    1.41 +/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
    1.42 + * Montgomery projective coordinates. Uses algorithm Madd in appendix of
    1.43 + * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
    1.44 + * GF(2^m) without precomputation". */
    1.45 +static mp_err
    1.46 +gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
    1.47 +		  const ECGroup *group)
    1.48 +{
    1.49 +	mp_err res = MP_OKAY;
    1.50 +	mp_int t1, t2;
    1.51 +
    1.52 +	MP_DIGITS(&t1) = 0;
    1.53 +	MP_DIGITS(&t2) = 0;
    1.54 +	MP_CHECKOK(mp_init(&t1));
    1.55 +	MP_CHECKOK(mp_init(&t2));
    1.56 +
    1.57 +	MP_CHECKOK(mp_copy(x, &t1));
    1.58 +	MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
    1.59 +	MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
    1.60 +	MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
    1.61 +	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
    1.62 +	MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
    1.63 +	MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
    1.64 +	MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
    1.65 +
    1.66 +  CLEANUP:
    1.67 +	mp_clear(&t1);
    1.68 +	mp_clear(&t2);
    1.69 +	return res;
    1.70 +}
    1.71 +
    1.72 +/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
    1.73 + * using Montgomery point multiplication algorithm Mxy() in appendix of
    1.74 + * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
    1.75 + * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
    1.76 + * should be the point at infinity 2 otherwise */
    1.77 +static int
    1.78 +gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
    1.79 +		 mp_int *x2, mp_int *z2, const ECGroup *group)
    1.80 +{
    1.81 +	mp_err res = MP_OKAY;
    1.82 +	int ret = 0;
    1.83 +	mp_int t3, t4, t5;
    1.84 +
    1.85 +	MP_DIGITS(&t3) = 0;
    1.86 +	MP_DIGITS(&t4) = 0;
    1.87 +	MP_DIGITS(&t5) = 0;
    1.88 +	MP_CHECKOK(mp_init(&t3));
    1.89 +	MP_CHECKOK(mp_init(&t4));
    1.90 +	MP_CHECKOK(mp_init(&t5));
    1.91 +
    1.92 +	if (mp_cmp_z(z1) == 0) {
    1.93 +		mp_zero(x2);
    1.94 +		mp_zero(z2);
    1.95 +		ret = 1;
    1.96 +		goto CLEANUP;
    1.97 +	}
    1.98 +
    1.99 +	if (mp_cmp_z(z2) == 0) {
   1.100 +		MP_CHECKOK(mp_copy(x, x2));
   1.101 +		MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
   1.102 +		ret = 2;
   1.103 +		goto CLEANUP;
   1.104 +	}
   1.105 +
   1.106 +	MP_CHECKOK(mp_set_int(&t5, 1));
   1.107 +	if (group->meth->field_enc) {
   1.108 +		MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
   1.109 +	}
   1.110 +
   1.111 +	MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
   1.112 +
   1.113 +	MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
   1.114 +	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
   1.115 +	MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
   1.116 +	MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
   1.117 +	MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
   1.118 +
   1.119 +	MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
   1.120 +	MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
   1.121 +	MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
   1.122 +	MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
   1.123 +	MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
   1.124 +
   1.125 +	MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
   1.126 +	MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
   1.127 +	MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
   1.128 +	MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
   1.129 +	MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
   1.130 +
   1.131 +	MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
   1.132 +	MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
   1.133 +
   1.134 +	ret = 2;
   1.135 +
   1.136 +  CLEANUP:
   1.137 +	mp_clear(&t3);
   1.138 +	mp_clear(&t4);
   1.139 +	mp_clear(&t5);
   1.140 +	if (res == MP_OKAY) {
   1.141 +		return ret;
   1.142 +	} else {
   1.143 +		return 0;
   1.144 +	}
   1.145 +}
   1.146 +
   1.147 +/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast 
   1.148 + * multiplication on elliptic curves over GF(2^m) without
   1.149 + * precomputation". Elliptic curve points P and R can be identical. Uses
   1.150 + * Montgomery projective coordinates. */
   1.151 +mp_err
   1.152 +ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
   1.153 +					mp_int *rx, mp_int *ry, const ECGroup *group)
   1.154 +{
   1.155 +	mp_err res = MP_OKAY;
   1.156 +	mp_int x1, x2, z1, z2;
   1.157 +	int i, j;
   1.158 +	mp_digit top_bit, mask;
   1.159 +
   1.160 +	MP_DIGITS(&x1) = 0;
   1.161 +	MP_DIGITS(&x2) = 0;
   1.162 +	MP_DIGITS(&z1) = 0;
   1.163 +	MP_DIGITS(&z2) = 0;
   1.164 +	MP_CHECKOK(mp_init(&x1));
   1.165 +	MP_CHECKOK(mp_init(&x2));
   1.166 +	MP_CHECKOK(mp_init(&z1));
   1.167 +	MP_CHECKOK(mp_init(&z2));
   1.168 +
   1.169 +	/* if result should be point at infinity */
   1.170 +	if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
   1.171 +		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
   1.172 +		goto CLEANUP;
   1.173 +	}
   1.174 +
   1.175 +	MP_CHECKOK(mp_copy(px, &x1));	/* x1 = px */
   1.176 +	MP_CHECKOK(mp_set_int(&z1, 1));	/* z1 = 1 */
   1.177 +	MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));	/* z2 =
   1.178 +																 * x1^2 =
   1.179 +																 * px^2 */
   1.180 +	MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
   1.181 +	MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));	/* x2 
   1.182 +																				 * = 
   1.183 +																				 * px^4 
   1.184 +																				 * + 
   1.185 +																				 * b 
   1.186 +																				 */
   1.187 +
   1.188 +	/* find top-most bit and go one past it */
   1.189 +	i = MP_USED(n) - 1;
   1.190 +	j = MP_DIGIT_BIT - 1;
   1.191 +	top_bit = 1;
   1.192 +	top_bit <<= MP_DIGIT_BIT - 1;
   1.193 +	mask = top_bit;
   1.194 +	while (!(MP_DIGITS(n)[i] & mask)) {
   1.195 +		mask >>= 1;
   1.196 +		j--;
   1.197 +	}
   1.198 +	mask >>= 1;
   1.199 +	j--;
   1.200 +
   1.201 +	/* if top most bit was at word break, go to next word */
   1.202 +	if (!mask) {
   1.203 +		i--;
   1.204 +		j = MP_DIGIT_BIT - 1;
   1.205 +		mask = top_bit;
   1.206 +	}
   1.207 +
   1.208 +	for (; i >= 0; i--) {
   1.209 +		for (; j >= 0; j--) {
   1.210 +			if (MP_DIGITS(n)[i] & mask) {
   1.211 +				MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group));
   1.212 +				MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group));
   1.213 +			} else {
   1.214 +				MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group));
   1.215 +				MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group));
   1.216 +			}
   1.217 +			mask >>= 1;
   1.218 +		}
   1.219 +		j = MP_DIGIT_BIT - 1;
   1.220 +		mask = top_bit;
   1.221 +	}
   1.222 +
   1.223 +	/* convert out of "projective" coordinates */
   1.224 +	i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
   1.225 +	if (i == 0) {
   1.226 +		res = MP_BADARG;
   1.227 +		goto CLEANUP;
   1.228 +	} else if (i == 1) {
   1.229 +		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
   1.230 +	} else {
   1.231 +		MP_CHECKOK(mp_copy(&x2, rx));
   1.232 +		MP_CHECKOK(mp_copy(&z2, ry));
   1.233 +	}
   1.234 +
   1.235 +  CLEANUP:
   1.236 +	mp_clear(&x1);
   1.237 +	mp_clear(&x2);
   1.238 +	mp_clear(&z1);
   1.239 +	mp_clear(&z2);
   1.240 +	return res;
   1.241 +}

mercurial