1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ecl_gf.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,997 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "mpi.h" 1.9 +#include "mp_gf2m.h" 1.10 +#include "ecl-priv.h" 1.11 +#include "mpi-priv.h" 1.12 +#include <stdlib.h> 1.13 + 1.14 +/* Allocate memory for a new GFMethod object. */ 1.15 +GFMethod * 1.16 +GFMethod_new() 1.17 +{ 1.18 + mp_err res = MP_OKAY; 1.19 + GFMethod *meth; 1.20 + meth = (GFMethod *) malloc(sizeof(GFMethod)); 1.21 + if (meth == NULL) 1.22 + return NULL; 1.23 + meth->constructed = MP_YES; 1.24 + MP_DIGITS(&meth->irr) = 0; 1.25 + meth->extra_free = NULL; 1.26 + MP_CHECKOK(mp_init(&meth->irr)); 1.27 + 1.28 + CLEANUP: 1.29 + if (res != MP_OKAY) { 1.30 + GFMethod_free(meth); 1.31 + return NULL; 1.32 + } 1.33 + return meth; 1.34 +} 1.35 + 1.36 +/* Construct a generic GFMethod for arithmetic over prime fields with 1.37 + * irreducible irr. */ 1.38 +GFMethod * 1.39 +GFMethod_consGFp(const mp_int *irr) 1.40 +{ 1.41 + mp_err res = MP_OKAY; 1.42 + GFMethod *meth = NULL; 1.43 + 1.44 + meth = GFMethod_new(); 1.45 + if (meth == NULL) 1.46 + return NULL; 1.47 + 1.48 + MP_CHECKOK(mp_copy(irr, &meth->irr)); 1.49 + meth->irr_arr[0] = mpl_significant_bits(irr); 1.50 + meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] = 1.51 + meth->irr_arr[4] = 0; 1.52 + switch(MP_USED(&meth->irr)) { 1.53 + /* maybe we need 1 and 2 words here as well?*/ 1.54 + case 3: 1.55 + meth->field_add = &ec_GFp_add_3; 1.56 + meth->field_sub = &ec_GFp_sub_3; 1.57 + break; 1.58 + case 4: 1.59 + meth->field_add = &ec_GFp_add_4; 1.60 + meth->field_sub = &ec_GFp_sub_4; 1.61 + break; 1.62 + case 5: 1.63 + meth->field_add = &ec_GFp_add_5; 1.64 + meth->field_sub = &ec_GFp_sub_5; 1.65 + break; 1.66 + case 6: 1.67 + meth->field_add = &ec_GFp_add_6; 1.68 + meth->field_sub = &ec_GFp_sub_6; 1.69 + break; 1.70 + default: 1.71 + meth->field_add = &ec_GFp_add; 1.72 + meth->field_sub = &ec_GFp_sub; 1.73 + } 1.74 + meth->field_neg = &ec_GFp_neg; 1.75 + meth->field_mod = &ec_GFp_mod; 1.76 + meth->field_mul = &ec_GFp_mul; 1.77 + meth->field_sqr = &ec_GFp_sqr; 1.78 + meth->field_div = &ec_GFp_div; 1.79 + meth->field_enc = NULL; 1.80 + meth->field_dec = NULL; 1.81 + meth->extra1 = NULL; 1.82 + meth->extra2 = NULL; 1.83 + meth->extra_free = NULL; 1.84 + 1.85 + CLEANUP: 1.86 + if (res != MP_OKAY) { 1.87 + GFMethod_free(meth); 1.88 + return NULL; 1.89 + } 1.90 + return meth; 1.91 +} 1.92 + 1.93 +/* Construct a generic GFMethod for arithmetic over binary polynomial 1.94 + * fields with irreducible irr that has array representation irr_arr (see 1.95 + * ecl-priv.h for description of the representation). If irr_arr is NULL, 1.96 + * then it is constructed from the bitstring representation. */ 1.97 +GFMethod * 1.98 +GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5]) 1.99 +{ 1.100 + mp_err res = MP_OKAY; 1.101 + int ret; 1.102 + GFMethod *meth = NULL; 1.103 + 1.104 + meth = GFMethod_new(); 1.105 + if (meth == NULL) 1.106 + return NULL; 1.107 + 1.108 + MP_CHECKOK(mp_copy(irr, &meth->irr)); 1.109 + if (irr_arr != NULL) { 1.110 + /* Irreducible polynomials are either trinomials or pentanomials. */ 1.111 + meth->irr_arr[0] = irr_arr[0]; 1.112 + meth->irr_arr[1] = irr_arr[1]; 1.113 + meth->irr_arr[2] = irr_arr[2]; 1.114 + if (irr_arr[2] > 0) { 1.115 + meth->irr_arr[3] = irr_arr[3]; 1.116 + meth->irr_arr[4] = irr_arr[4]; 1.117 + } else { 1.118 + meth->irr_arr[3] = meth->irr_arr[4] = 0; 1.119 + } 1.120 + } else { 1.121 + ret = mp_bpoly2arr(irr, meth->irr_arr, 5); 1.122 + /* Irreducible polynomials are either trinomials or pentanomials. */ 1.123 + if ((ret != 5) && (ret != 3)) { 1.124 + res = MP_UNDEF; 1.125 + goto CLEANUP; 1.126 + } 1.127 + } 1.128 + meth->field_add = &ec_GF2m_add; 1.129 + meth->field_neg = &ec_GF2m_neg; 1.130 + meth->field_sub = &ec_GF2m_add; 1.131 + meth->field_mod = &ec_GF2m_mod; 1.132 + meth->field_mul = &ec_GF2m_mul; 1.133 + meth->field_sqr = &ec_GF2m_sqr; 1.134 + meth->field_div = &ec_GF2m_div; 1.135 + meth->field_enc = NULL; 1.136 + meth->field_dec = NULL; 1.137 + meth->extra1 = NULL; 1.138 + meth->extra2 = NULL; 1.139 + meth->extra_free = NULL; 1.140 + 1.141 + CLEANUP: 1.142 + if (res != MP_OKAY) { 1.143 + GFMethod_free(meth); 1.144 + return NULL; 1.145 + } 1.146 + return meth; 1.147 +} 1.148 + 1.149 +/* Free the memory allocated (if any) to a GFMethod object. */ 1.150 +void 1.151 +GFMethod_free(GFMethod *meth) 1.152 +{ 1.153 + if (meth == NULL) 1.154 + return; 1.155 + if (meth->constructed == MP_NO) 1.156 + return; 1.157 + mp_clear(&meth->irr); 1.158 + if (meth->extra_free != NULL) 1.159 + meth->extra_free(meth); 1.160 + free(meth); 1.161 +} 1.162 + 1.163 +/* Wrapper functions for generic prime field arithmetic. */ 1.164 + 1.165 +/* Add two field elements. Assumes that 0 <= a, b < meth->irr */ 1.166 +mp_err 1.167 +ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, 1.168 + const GFMethod *meth) 1.169 +{ 1.170 + /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */ 1.171 + mp_err res; 1.172 + 1.173 + if ((res = mp_add(a, b, r)) != MP_OKAY) { 1.174 + return res; 1.175 + } 1.176 + if (mp_cmp(r, &meth->irr) >= 0) { 1.177 + return mp_sub(r, &meth->irr, r); 1.178 + } 1.179 + return res; 1.180 +} 1.181 + 1.182 +/* Negates a field element. Assumes that 0 <= a < meth->irr */ 1.183 +mp_err 1.184 +ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth) 1.185 +{ 1.186 + /* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */ 1.187 + 1.188 + if (mp_cmp_z(a) == 0) { 1.189 + mp_zero(r); 1.190 + return MP_OKAY; 1.191 + } 1.192 + return mp_sub(&meth->irr, a, r); 1.193 +} 1.194 + 1.195 +/* Subtracts two field elements. Assumes that 0 <= a, b < meth->irr */ 1.196 +mp_err 1.197 +ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, 1.198 + const GFMethod *meth) 1.199 +{ 1.200 + mp_err res = MP_OKAY; 1.201 + 1.202 + /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */ 1.203 + res = mp_sub(a, b, r); 1.204 + if (res == MP_RANGE) { 1.205 + MP_CHECKOK(mp_sub(b, a, r)); 1.206 + if (mp_cmp_z(r) < 0) { 1.207 + MP_CHECKOK(mp_add(r, &meth->irr, r)); 1.208 + } 1.209 + MP_CHECKOK(ec_GFp_neg(r, r, meth)); 1.210 + } 1.211 + if (mp_cmp_z(r) < 0) { 1.212 + MP_CHECKOK(mp_add(r, &meth->irr, r)); 1.213 + } 1.214 + CLEANUP: 1.215 + return res; 1.216 +} 1.217 +/* 1.218 + * Inline adds for small curve lengths. 1.219 + */ 1.220 +/* 3 words */ 1.221 +mp_err 1.222 +ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, 1.223 + const GFMethod *meth) 1.224 +{ 1.225 + mp_err res = MP_OKAY; 1.226 + mp_digit a0 = 0, a1 = 0, a2 = 0; 1.227 + mp_digit r0 = 0, r1 = 0, r2 = 0; 1.228 + mp_digit carry; 1.229 + 1.230 + switch(MP_USED(a)) { 1.231 + case 3: 1.232 + a2 = MP_DIGIT(a,2); 1.233 + case 2: 1.234 + a1 = MP_DIGIT(a,1); 1.235 + case 1: 1.236 + a0 = MP_DIGIT(a,0); 1.237 + } 1.238 + switch(MP_USED(b)) { 1.239 + case 3: 1.240 + r2 = MP_DIGIT(b,2); 1.241 + case 2: 1.242 + r1 = MP_DIGIT(b,1); 1.243 + case 1: 1.244 + r0 = MP_DIGIT(b,0); 1.245 + } 1.246 + 1.247 +#ifndef MPI_AMD64_ADD 1.248 + MP_ADD_CARRY(a0, r0, r0, 0, carry); 1.249 + MP_ADD_CARRY(a1, r1, r1, carry, carry); 1.250 + MP_ADD_CARRY(a2, r2, r2, carry, carry); 1.251 +#else 1.252 + __asm__ ( 1.253 + "xorq %3,%3 \n\t" 1.254 + "addq %4,%0 \n\t" 1.255 + "adcq %5,%1 \n\t" 1.256 + "adcq %6,%2 \n\t" 1.257 + "adcq $0,%3 \n\t" 1.258 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry) 1.259 + : "r" (a0), "r" (a1), "r" (a2), 1.260 + "0" (r0), "1" (r1), "2" (r2) 1.261 + : "%cc" ); 1.262 +#endif 1.263 + 1.264 + MP_CHECKOK(s_mp_pad(r, 3)); 1.265 + MP_DIGIT(r, 2) = r2; 1.266 + MP_DIGIT(r, 1) = r1; 1.267 + MP_DIGIT(r, 0) = r0; 1.268 + MP_SIGN(r) = MP_ZPOS; 1.269 + MP_USED(r) = 3; 1.270 + 1.271 + /* Do quick 'subract' if we've gone over 1.272 + * (add the 2's complement of the curve field) */ 1.273 + a2 = MP_DIGIT(&meth->irr,2); 1.274 + if (carry || r2 > a2 || 1.275 + ((r2 == a2) && mp_cmp(r,&meth->irr) != MP_LT)) { 1.276 + a1 = MP_DIGIT(&meth->irr,1); 1.277 + a0 = MP_DIGIT(&meth->irr,0); 1.278 +#ifndef MPI_AMD64_ADD 1.279 + MP_SUB_BORROW(r0, a0, r0, 0, carry); 1.280 + MP_SUB_BORROW(r1, a1, r1, carry, carry); 1.281 + MP_SUB_BORROW(r2, a2, r2, carry, carry); 1.282 +#else 1.283 + __asm__ ( 1.284 + "subq %3,%0 \n\t" 1.285 + "sbbq %4,%1 \n\t" 1.286 + "sbbq %5,%2 \n\t" 1.287 + : "=r"(r0), "=r"(r1), "=r"(r2) 1.288 + : "r" (a0), "r" (a1), "r" (a2), 1.289 + "0" (r0), "1" (r1), "2" (r2) 1.290 + : "%cc" ); 1.291 +#endif 1.292 + MP_DIGIT(r, 2) = r2; 1.293 + MP_DIGIT(r, 1) = r1; 1.294 + MP_DIGIT(r, 0) = r0; 1.295 + } 1.296 + 1.297 + s_mp_clamp(r); 1.298 + 1.299 + CLEANUP: 1.300 + return res; 1.301 +} 1.302 + 1.303 +/* 4 words */ 1.304 +mp_err 1.305 +ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, 1.306 + const GFMethod *meth) 1.307 +{ 1.308 + mp_err res = MP_OKAY; 1.309 + mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0; 1.310 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; 1.311 + mp_digit carry; 1.312 + 1.313 + switch(MP_USED(a)) { 1.314 + case 4: 1.315 + a3 = MP_DIGIT(a,3); 1.316 + case 3: 1.317 + a2 = MP_DIGIT(a,2); 1.318 + case 2: 1.319 + a1 = MP_DIGIT(a,1); 1.320 + case 1: 1.321 + a0 = MP_DIGIT(a,0); 1.322 + } 1.323 + switch(MP_USED(b)) { 1.324 + case 4: 1.325 + r3 = MP_DIGIT(b,3); 1.326 + case 3: 1.327 + r2 = MP_DIGIT(b,2); 1.328 + case 2: 1.329 + r1 = MP_DIGIT(b,1); 1.330 + case 1: 1.331 + r0 = MP_DIGIT(b,0); 1.332 + } 1.333 + 1.334 +#ifndef MPI_AMD64_ADD 1.335 + MP_ADD_CARRY(a0, r0, r0, 0, carry); 1.336 + MP_ADD_CARRY(a1, r1, r1, carry, carry); 1.337 + MP_ADD_CARRY(a2, r2, r2, carry, carry); 1.338 + MP_ADD_CARRY(a3, r3, r3, carry, carry); 1.339 +#else 1.340 + __asm__ ( 1.341 + "xorq %4,%4 \n\t" 1.342 + "addq %5,%0 \n\t" 1.343 + "adcq %6,%1 \n\t" 1.344 + "adcq %7,%2 \n\t" 1.345 + "adcq %8,%3 \n\t" 1.346 + "adcq $0,%4 \n\t" 1.347 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(carry) 1.348 + : "r" (a0), "r" (a1), "r" (a2), "r" (a3), 1.349 + "0" (r0), "1" (r1), "2" (r2), "3" (r3) 1.350 + : "%cc" ); 1.351 +#endif 1.352 + 1.353 + MP_CHECKOK(s_mp_pad(r, 4)); 1.354 + MP_DIGIT(r, 3) = r3; 1.355 + MP_DIGIT(r, 2) = r2; 1.356 + MP_DIGIT(r, 1) = r1; 1.357 + MP_DIGIT(r, 0) = r0; 1.358 + MP_SIGN(r) = MP_ZPOS; 1.359 + MP_USED(r) = 4; 1.360 + 1.361 + /* Do quick 'subract' if we've gone over 1.362 + * (add the 2's complement of the curve field) */ 1.363 + a3 = MP_DIGIT(&meth->irr,3); 1.364 + if (carry || r3 > a3 || 1.365 + ((r3 == a3) && mp_cmp(r,&meth->irr) != MP_LT)) { 1.366 + a2 = MP_DIGIT(&meth->irr,2); 1.367 + a1 = MP_DIGIT(&meth->irr,1); 1.368 + a0 = MP_DIGIT(&meth->irr,0); 1.369 +#ifndef MPI_AMD64_ADD 1.370 + MP_SUB_BORROW(r0, a0, r0, 0, carry); 1.371 + MP_SUB_BORROW(r1, a1, r1, carry, carry); 1.372 + MP_SUB_BORROW(r2, a2, r2, carry, carry); 1.373 + MP_SUB_BORROW(r3, a3, r3, carry, carry); 1.374 +#else 1.375 + __asm__ ( 1.376 + "subq %4,%0 \n\t" 1.377 + "sbbq %5,%1 \n\t" 1.378 + "sbbq %6,%2 \n\t" 1.379 + "sbbq %7,%3 \n\t" 1.380 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3) 1.381 + : "r" (a0), "r" (a1), "r" (a2), "r" (a3), 1.382 + "0" (r0), "1" (r1), "2" (r2), "3" (r3) 1.383 + : "%cc" ); 1.384 +#endif 1.385 + MP_DIGIT(r, 3) = r3; 1.386 + MP_DIGIT(r, 2) = r2; 1.387 + MP_DIGIT(r, 1) = r1; 1.388 + MP_DIGIT(r, 0) = r0; 1.389 + } 1.390 + 1.391 + s_mp_clamp(r); 1.392 + 1.393 + CLEANUP: 1.394 + return res; 1.395 +} 1.396 + 1.397 +/* 5 words */ 1.398 +mp_err 1.399 +ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, 1.400 + const GFMethod *meth) 1.401 +{ 1.402 + mp_err res = MP_OKAY; 1.403 + mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0; 1.404 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; 1.405 + mp_digit carry; 1.406 + 1.407 + switch(MP_USED(a)) { 1.408 + case 5: 1.409 + a4 = MP_DIGIT(a,4); 1.410 + case 4: 1.411 + a3 = MP_DIGIT(a,3); 1.412 + case 3: 1.413 + a2 = MP_DIGIT(a,2); 1.414 + case 2: 1.415 + a1 = MP_DIGIT(a,1); 1.416 + case 1: 1.417 + a0 = MP_DIGIT(a,0); 1.418 + } 1.419 + switch(MP_USED(b)) { 1.420 + case 5: 1.421 + r4 = MP_DIGIT(b,4); 1.422 + case 4: 1.423 + r3 = MP_DIGIT(b,3); 1.424 + case 3: 1.425 + r2 = MP_DIGIT(b,2); 1.426 + case 2: 1.427 + r1 = MP_DIGIT(b,1); 1.428 + case 1: 1.429 + r0 = MP_DIGIT(b,0); 1.430 + } 1.431 + 1.432 + MP_ADD_CARRY(a0, r0, r0, 0, carry); 1.433 + MP_ADD_CARRY(a1, r1, r1, carry, carry); 1.434 + MP_ADD_CARRY(a2, r2, r2, carry, carry); 1.435 + MP_ADD_CARRY(a3, r3, r3, carry, carry); 1.436 + MP_ADD_CARRY(a4, r4, r4, carry, carry); 1.437 + 1.438 + MP_CHECKOK(s_mp_pad(r, 5)); 1.439 + MP_DIGIT(r, 4) = r4; 1.440 + MP_DIGIT(r, 3) = r3; 1.441 + MP_DIGIT(r, 2) = r2; 1.442 + MP_DIGIT(r, 1) = r1; 1.443 + MP_DIGIT(r, 0) = r0; 1.444 + MP_SIGN(r) = MP_ZPOS; 1.445 + MP_USED(r) = 5; 1.446 + 1.447 + /* Do quick 'subract' if we've gone over 1.448 + * (add the 2's complement of the curve field) */ 1.449 + a4 = MP_DIGIT(&meth->irr,4); 1.450 + if (carry || r4 > a4 || 1.451 + ((r4 == a4) && mp_cmp(r,&meth->irr) != MP_LT)) { 1.452 + a3 = MP_DIGIT(&meth->irr,3); 1.453 + a2 = MP_DIGIT(&meth->irr,2); 1.454 + a1 = MP_DIGIT(&meth->irr,1); 1.455 + a0 = MP_DIGIT(&meth->irr,0); 1.456 + MP_SUB_BORROW(r0, a0, r0, 0, carry); 1.457 + MP_SUB_BORROW(r1, a1, r1, carry, carry); 1.458 + MP_SUB_BORROW(r2, a2, r2, carry, carry); 1.459 + MP_SUB_BORROW(r3, a3, r3, carry, carry); 1.460 + MP_SUB_BORROW(r4, a4, r4, carry, carry); 1.461 + MP_DIGIT(r, 4) = r4; 1.462 + MP_DIGIT(r, 3) = r3; 1.463 + MP_DIGIT(r, 2) = r2; 1.464 + MP_DIGIT(r, 1) = r1; 1.465 + MP_DIGIT(r, 0) = r0; 1.466 + } 1.467 + 1.468 + s_mp_clamp(r); 1.469 + 1.470 + CLEANUP: 1.471 + return res; 1.472 +} 1.473 + 1.474 +/* 6 words */ 1.475 +mp_err 1.476 +ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, 1.477 + const GFMethod *meth) 1.478 +{ 1.479 + mp_err res = MP_OKAY; 1.480 + mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0; 1.481 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; 1.482 + mp_digit carry; 1.483 + 1.484 + switch(MP_USED(a)) { 1.485 + case 6: 1.486 + a5 = MP_DIGIT(a,5); 1.487 + case 5: 1.488 + a4 = MP_DIGIT(a,4); 1.489 + case 4: 1.490 + a3 = MP_DIGIT(a,3); 1.491 + case 3: 1.492 + a2 = MP_DIGIT(a,2); 1.493 + case 2: 1.494 + a1 = MP_DIGIT(a,1); 1.495 + case 1: 1.496 + a0 = MP_DIGIT(a,0); 1.497 + } 1.498 + switch(MP_USED(b)) { 1.499 + case 6: 1.500 + r5 = MP_DIGIT(b,5); 1.501 + case 5: 1.502 + r4 = MP_DIGIT(b,4); 1.503 + case 4: 1.504 + r3 = MP_DIGIT(b,3); 1.505 + case 3: 1.506 + r2 = MP_DIGIT(b,2); 1.507 + case 2: 1.508 + r1 = MP_DIGIT(b,1); 1.509 + case 1: 1.510 + r0 = MP_DIGIT(b,0); 1.511 + } 1.512 + 1.513 + MP_ADD_CARRY(a0, r0, r0, 0, carry); 1.514 + MP_ADD_CARRY(a1, r1, r1, carry, carry); 1.515 + MP_ADD_CARRY(a2, r2, r2, carry, carry); 1.516 + MP_ADD_CARRY(a3, r3, r3, carry, carry); 1.517 + MP_ADD_CARRY(a4, r4, r4, carry, carry); 1.518 + MP_ADD_CARRY(a5, r5, r5, carry, carry); 1.519 + 1.520 + MP_CHECKOK(s_mp_pad(r, 6)); 1.521 + MP_DIGIT(r, 5) = r5; 1.522 + MP_DIGIT(r, 4) = r4; 1.523 + MP_DIGIT(r, 3) = r3; 1.524 + MP_DIGIT(r, 2) = r2; 1.525 + MP_DIGIT(r, 1) = r1; 1.526 + MP_DIGIT(r, 0) = r0; 1.527 + MP_SIGN(r) = MP_ZPOS; 1.528 + MP_USED(r) = 6; 1.529 + 1.530 + /* Do quick 'subract' if we've gone over 1.531 + * (add the 2's complement of the curve field) */ 1.532 + a5 = MP_DIGIT(&meth->irr,5); 1.533 + if (carry || r5 > a5 || 1.534 + ((r5 == a5) && mp_cmp(r,&meth->irr) != MP_LT)) { 1.535 + a4 = MP_DIGIT(&meth->irr,4); 1.536 + a3 = MP_DIGIT(&meth->irr,3); 1.537 + a2 = MP_DIGIT(&meth->irr,2); 1.538 + a1 = MP_DIGIT(&meth->irr,1); 1.539 + a0 = MP_DIGIT(&meth->irr,0); 1.540 + MP_SUB_BORROW(r0, a0, r0, 0, carry); 1.541 + MP_SUB_BORROW(r1, a1, r1, carry, carry); 1.542 + MP_SUB_BORROW(r2, a2, r2, carry, carry); 1.543 + MP_SUB_BORROW(r3, a3, r3, carry, carry); 1.544 + MP_SUB_BORROW(r4, a4, r4, carry, carry); 1.545 + MP_SUB_BORROW(r5, a5, r5, carry, carry); 1.546 + MP_DIGIT(r, 5) = r5; 1.547 + MP_DIGIT(r, 4) = r4; 1.548 + MP_DIGIT(r, 3) = r3; 1.549 + MP_DIGIT(r, 2) = r2; 1.550 + MP_DIGIT(r, 1) = r1; 1.551 + MP_DIGIT(r, 0) = r0; 1.552 + } 1.553 + 1.554 + s_mp_clamp(r); 1.555 + 1.556 + CLEANUP: 1.557 + return res; 1.558 +} 1.559 + 1.560 +/* 1.561 + * The following subraction functions do in-line subractions based 1.562 + * on our curve size. 1.563 + * 1.564 + * ... 3 words 1.565 + */ 1.566 +mp_err 1.567 +ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, 1.568 + const GFMethod *meth) 1.569 +{ 1.570 + mp_err res = MP_OKAY; 1.571 + mp_digit b0 = 0, b1 = 0, b2 = 0; 1.572 + mp_digit r0 = 0, r1 = 0, r2 = 0; 1.573 + mp_digit borrow; 1.574 + 1.575 + switch(MP_USED(a)) { 1.576 + case 3: 1.577 + r2 = MP_DIGIT(a,2); 1.578 + case 2: 1.579 + r1 = MP_DIGIT(a,1); 1.580 + case 1: 1.581 + r0 = MP_DIGIT(a,0); 1.582 + } 1.583 + switch(MP_USED(b)) { 1.584 + case 3: 1.585 + b2 = MP_DIGIT(b,2); 1.586 + case 2: 1.587 + b1 = MP_DIGIT(b,1); 1.588 + case 1: 1.589 + b0 = MP_DIGIT(b,0); 1.590 + } 1.591 + 1.592 +#ifndef MPI_AMD64_ADD 1.593 + MP_SUB_BORROW(r0, b0, r0, 0, borrow); 1.594 + MP_SUB_BORROW(r1, b1, r1, borrow, borrow); 1.595 + MP_SUB_BORROW(r2, b2, r2, borrow, borrow); 1.596 +#else 1.597 + __asm__ ( 1.598 + "xorq %3,%3 \n\t" 1.599 + "subq %4,%0 \n\t" 1.600 + "sbbq %5,%1 \n\t" 1.601 + "sbbq %6,%2 \n\t" 1.602 + "adcq $0,%3 \n\t" 1.603 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r" (borrow) 1.604 + : "r" (b0), "r" (b1), "r" (b2), 1.605 + "0" (r0), "1" (r1), "2" (r2) 1.606 + : "%cc" ); 1.607 +#endif 1.608 + 1.609 + /* Do quick 'add' if we've gone under 0 1.610 + * (subtract the 2's complement of the curve field) */ 1.611 + if (borrow) { 1.612 + b2 = MP_DIGIT(&meth->irr,2); 1.613 + b1 = MP_DIGIT(&meth->irr,1); 1.614 + b0 = MP_DIGIT(&meth->irr,0); 1.615 +#ifndef MPI_AMD64_ADD 1.616 + MP_ADD_CARRY(b0, r0, r0, 0, borrow); 1.617 + MP_ADD_CARRY(b1, r1, r1, borrow, borrow); 1.618 + MP_ADD_CARRY(b2, r2, r2, borrow, borrow); 1.619 +#else 1.620 + __asm__ ( 1.621 + "addq %3,%0 \n\t" 1.622 + "adcq %4,%1 \n\t" 1.623 + "adcq %5,%2 \n\t" 1.624 + : "=r"(r0), "=r"(r1), "=r"(r2) 1.625 + : "r" (b0), "r" (b1), "r" (b2), 1.626 + "0" (r0), "1" (r1), "2" (r2) 1.627 + : "%cc" ); 1.628 +#endif 1.629 + } 1.630 + 1.631 +#ifdef MPI_AMD64_ADD 1.632 + /* compiler fakeout? */ 1.633 + if ((r2 == b0) && (r1 == b0) && (r0 == b0)) { 1.634 + MP_CHECKOK(s_mp_pad(r, 4)); 1.635 + } 1.636 +#endif 1.637 + MP_CHECKOK(s_mp_pad(r, 3)); 1.638 + MP_DIGIT(r, 2) = r2; 1.639 + MP_DIGIT(r, 1) = r1; 1.640 + MP_DIGIT(r, 0) = r0; 1.641 + MP_SIGN(r) = MP_ZPOS; 1.642 + MP_USED(r) = 3; 1.643 + s_mp_clamp(r); 1.644 + 1.645 + CLEANUP: 1.646 + return res; 1.647 +} 1.648 + 1.649 +/* 4 words */ 1.650 +mp_err 1.651 +ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, 1.652 + const GFMethod *meth) 1.653 +{ 1.654 + mp_err res = MP_OKAY; 1.655 + mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0; 1.656 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; 1.657 + mp_digit borrow; 1.658 + 1.659 + switch(MP_USED(a)) { 1.660 + case 4: 1.661 + r3 = MP_DIGIT(a,3); 1.662 + case 3: 1.663 + r2 = MP_DIGIT(a,2); 1.664 + case 2: 1.665 + r1 = MP_DIGIT(a,1); 1.666 + case 1: 1.667 + r0 = MP_DIGIT(a,0); 1.668 + } 1.669 + switch(MP_USED(b)) { 1.670 + case 4: 1.671 + b3 = MP_DIGIT(b,3); 1.672 + case 3: 1.673 + b2 = MP_DIGIT(b,2); 1.674 + case 2: 1.675 + b1 = MP_DIGIT(b,1); 1.676 + case 1: 1.677 + b0 = MP_DIGIT(b,0); 1.678 + } 1.679 + 1.680 +#ifndef MPI_AMD64_ADD 1.681 + MP_SUB_BORROW(r0, b0, r0, 0, borrow); 1.682 + MP_SUB_BORROW(r1, b1, r1, borrow, borrow); 1.683 + MP_SUB_BORROW(r2, b2, r2, borrow, borrow); 1.684 + MP_SUB_BORROW(r3, b3, r3, borrow, borrow); 1.685 +#else 1.686 + __asm__ ( 1.687 + "xorq %4,%4 \n\t" 1.688 + "subq %5,%0 \n\t" 1.689 + "sbbq %6,%1 \n\t" 1.690 + "sbbq %7,%2 \n\t" 1.691 + "sbbq %8,%3 \n\t" 1.692 + "adcq $0,%4 \n\t" 1.693 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r" (borrow) 1.694 + : "r" (b0), "r" (b1), "r" (b2), "r" (b3), 1.695 + "0" (r0), "1" (r1), "2" (r2), "3" (r3) 1.696 + : "%cc" ); 1.697 +#endif 1.698 + 1.699 + /* Do quick 'add' if we've gone under 0 1.700 + * (subtract the 2's complement of the curve field) */ 1.701 + if (borrow) { 1.702 + b3 = MP_DIGIT(&meth->irr,3); 1.703 + b2 = MP_DIGIT(&meth->irr,2); 1.704 + b1 = MP_DIGIT(&meth->irr,1); 1.705 + b0 = MP_DIGIT(&meth->irr,0); 1.706 +#ifndef MPI_AMD64_ADD 1.707 + MP_ADD_CARRY(b0, r0, r0, 0, borrow); 1.708 + MP_ADD_CARRY(b1, r1, r1, borrow, borrow); 1.709 + MP_ADD_CARRY(b2, r2, r2, borrow, borrow); 1.710 + MP_ADD_CARRY(b3, r3, r3, borrow, borrow); 1.711 +#else 1.712 + __asm__ ( 1.713 + "addq %4,%0 \n\t" 1.714 + "adcq %5,%1 \n\t" 1.715 + "adcq %6,%2 \n\t" 1.716 + "adcq %7,%3 \n\t" 1.717 + : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3) 1.718 + : "r" (b0), "r" (b1), "r" (b2), "r" (b3), 1.719 + "0" (r0), "1" (r1), "2" (r2), "3" (r3) 1.720 + : "%cc" ); 1.721 +#endif 1.722 + } 1.723 +#ifdef MPI_AMD64_ADD 1.724 + /* compiler fakeout? */ 1.725 + if ((r3 == b0) && (r1 == b0) && (r0 == b0)) { 1.726 + MP_CHECKOK(s_mp_pad(r, 4)); 1.727 + } 1.728 +#endif 1.729 + MP_CHECKOK(s_mp_pad(r, 4)); 1.730 + MP_DIGIT(r, 3) = r3; 1.731 + MP_DIGIT(r, 2) = r2; 1.732 + MP_DIGIT(r, 1) = r1; 1.733 + MP_DIGIT(r, 0) = r0; 1.734 + MP_SIGN(r) = MP_ZPOS; 1.735 + MP_USED(r) = 4; 1.736 + s_mp_clamp(r); 1.737 + 1.738 + CLEANUP: 1.739 + return res; 1.740 +} 1.741 + 1.742 +/* 5 words */ 1.743 +mp_err 1.744 +ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, 1.745 + const GFMethod *meth) 1.746 +{ 1.747 + mp_err res = MP_OKAY; 1.748 + mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0; 1.749 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; 1.750 + mp_digit borrow; 1.751 + 1.752 + switch(MP_USED(a)) { 1.753 + case 5: 1.754 + r4 = MP_DIGIT(a,4); 1.755 + case 4: 1.756 + r3 = MP_DIGIT(a,3); 1.757 + case 3: 1.758 + r2 = MP_DIGIT(a,2); 1.759 + case 2: 1.760 + r1 = MP_DIGIT(a,1); 1.761 + case 1: 1.762 + r0 = MP_DIGIT(a,0); 1.763 + } 1.764 + switch(MP_USED(b)) { 1.765 + case 5: 1.766 + b4 = MP_DIGIT(b,4); 1.767 + case 4: 1.768 + b3 = MP_DIGIT(b,3); 1.769 + case 3: 1.770 + b2 = MP_DIGIT(b,2); 1.771 + case 2: 1.772 + b1 = MP_DIGIT(b,1); 1.773 + case 1: 1.774 + b0 = MP_DIGIT(b,0); 1.775 + } 1.776 + 1.777 + MP_SUB_BORROW(r0, b0, r0, 0, borrow); 1.778 + MP_SUB_BORROW(r1, b1, r1, borrow, borrow); 1.779 + MP_SUB_BORROW(r2, b2, r2, borrow, borrow); 1.780 + MP_SUB_BORROW(r3, b3, r3, borrow, borrow); 1.781 + MP_SUB_BORROW(r4, b4, r4, borrow, borrow); 1.782 + 1.783 + /* Do quick 'add' if we've gone under 0 1.784 + * (subtract the 2's complement of the curve field) */ 1.785 + if (borrow) { 1.786 + b4 = MP_DIGIT(&meth->irr,4); 1.787 + b3 = MP_DIGIT(&meth->irr,3); 1.788 + b2 = MP_DIGIT(&meth->irr,2); 1.789 + b1 = MP_DIGIT(&meth->irr,1); 1.790 + b0 = MP_DIGIT(&meth->irr,0); 1.791 + MP_ADD_CARRY(b0, r0, r0, 0, borrow); 1.792 + MP_ADD_CARRY(b1, r1, r1, borrow, borrow); 1.793 + MP_ADD_CARRY(b2, r2, r2, borrow, borrow); 1.794 + MP_ADD_CARRY(b3, r3, r3, borrow, borrow); 1.795 + } 1.796 + MP_CHECKOK(s_mp_pad(r, 5)); 1.797 + MP_DIGIT(r, 4) = r4; 1.798 + MP_DIGIT(r, 3) = r3; 1.799 + MP_DIGIT(r, 2) = r2; 1.800 + MP_DIGIT(r, 1) = r1; 1.801 + MP_DIGIT(r, 0) = r0; 1.802 + MP_SIGN(r) = MP_ZPOS; 1.803 + MP_USED(r) = 5; 1.804 + s_mp_clamp(r); 1.805 + 1.806 + CLEANUP: 1.807 + return res; 1.808 +} 1.809 + 1.810 +/* 6 words */ 1.811 +mp_err 1.812 +ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, 1.813 + const GFMethod *meth) 1.814 +{ 1.815 + mp_err res = MP_OKAY; 1.816 + mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0; 1.817 + mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; 1.818 + mp_digit borrow; 1.819 + 1.820 + switch(MP_USED(a)) { 1.821 + case 6: 1.822 + r5 = MP_DIGIT(a,5); 1.823 + case 5: 1.824 + r4 = MP_DIGIT(a,4); 1.825 + case 4: 1.826 + r3 = MP_DIGIT(a,3); 1.827 + case 3: 1.828 + r2 = MP_DIGIT(a,2); 1.829 + case 2: 1.830 + r1 = MP_DIGIT(a,1); 1.831 + case 1: 1.832 + r0 = MP_DIGIT(a,0); 1.833 + } 1.834 + switch(MP_USED(b)) { 1.835 + case 6: 1.836 + b5 = MP_DIGIT(b,5); 1.837 + case 5: 1.838 + b4 = MP_DIGIT(b,4); 1.839 + case 4: 1.840 + b3 = MP_DIGIT(b,3); 1.841 + case 3: 1.842 + b2 = MP_DIGIT(b,2); 1.843 + case 2: 1.844 + b1 = MP_DIGIT(b,1); 1.845 + case 1: 1.846 + b0 = MP_DIGIT(b,0); 1.847 + } 1.848 + 1.849 + MP_SUB_BORROW(r0, b0, r0, 0, borrow); 1.850 + MP_SUB_BORROW(r1, b1, r1, borrow, borrow); 1.851 + MP_SUB_BORROW(r2, b2, r2, borrow, borrow); 1.852 + MP_SUB_BORROW(r3, b3, r3, borrow, borrow); 1.853 + MP_SUB_BORROW(r4, b4, r4, borrow, borrow); 1.854 + MP_SUB_BORROW(r5, b5, r5, borrow, borrow); 1.855 + 1.856 + /* Do quick 'add' if we've gone under 0 1.857 + * (subtract the 2's complement of the curve field) */ 1.858 + if (borrow) { 1.859 + b5 = MP_DIGIT(&meth->irr,5); 1.860 + b4 = MP_DIGIT(&meth->irr,4); 1.861 + b3 = MP_DIGIT(&meth->irr,3); 1.862 + b2 = MP_DIGIT(&meth->irr,2); 1.863 + b1 = MP_DIGIT(&meth->irr,1); 1.864 + b0 = MP_DIGIT(&meth->irr,0); 1.865 + MP_ADD_CARRY(b0, r0, r0, 0, borrow); 1.866 + MP_ADD_CARRY(b1, r1, r1, borrow, borrow); 1.867 + MP_ADD_CARRY(b2, r2, r2, borrow, borrow); 1.868 + MP_ADD_CARRY(b3, r3, r3, borrow, borrow); 1.869 + MP_ADD_CARRY(b4, r4, r4, borrow, borrow); 1.870 + } 1.871 + 1.872 + MP_CHECKOK(s_mp_pad(r, 6)); 1.873 + MP_DIGIT(r, 5) = r5; 1.874 + MP_DIGIT(r, 4) = r4; 1.875 + MP_DIGIT(r, 3) = r3; 1.876 + MP_DIGIT(r, 2) = r2; 1.877 + MP_DIGIT(r, 1) = r1; 1.878 + MP_DIGIT(r, 0) = r0; 1.879 + MP_SIGN(r) = MP_ZPOS; 1.880 + MP_USED(r) = 6; 1.881 + s_mp_clamp(r); 1.882 + 1.883 + CLEANUP: 1.884 + return res; 1.885 +} 1.886 + 1.887 + 1.888 +/* Reduces an integer to a field element. */ 1.889 +mp_err 1.890 +ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 1.891 +{ 1.892 + return mp_mod(a, &meth->irr, r); 1.893 +} 1.894 + 1.895 +/* Multiplies two field elements. */ 1.896 +mp_err 1.897 +ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, 1.898 + const GFMethod *meth) 1.899 +{ 1.900 + return mp_mulmod(a, b, &meth->irr, r); 1.901 +} 1.902 + 1.903 +/* Squares a field element. */ 1.904 +mp_err 1.905 +ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 1.906 +{ 1.907 + return mp_sqrmod(a, &meth->irr, r); 1.908 +} 1.909 + 1.910 +/* Divides two field elements. If a is NULL, then returns the inverse of 1.911 + * b. */ 1.912 +mp_err 1.913 +ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, 1.914 + const GFMethod *meth) 1.915 +{ 1.916 + mp_err res = MP_OKAY; 1.917 + mp_int t; 1.918 + 1.919 + /* If a is NULL, then return the inverse of b, otherwise return a/b. */ 1.920 + if (a == NULL) { 1.921 + return mp_invmod(b, &meth->irr, r); 1.922 + } else { 1.923 + /* MPI doesn't support divmod, so we implement it using invmod and 1.924 + * mulmod. */ 1.925 + MP_CHECKOK(mp_init(&t)); 1.926 + MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); 1.927 + MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r)); 1.928 + CLEANUP: 1.929 + mp_clear(&t); 1.930 + return res; 1.931 + } 1.932 +} 1.933 + 1.934 +/* Wrapper functions for generic binary polynomial field arithmetic. */ 1.935 + 1.936 +/* Adds two field elements. */ 1.937 +mp_err 1.938 +ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, 1.939 + const GFMethod *meth) 1.940 +{ 1.941 + return mp_badd(a, b, r); 1.942 +} 1.943 + 1.944 +/* Negates a field element. Note that for binary polynomial fields, the 1.945 + * negation of a field element is the field element itself. */ 1.946 +mp_err 1.947 +ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth) 1.948 +{ 1.949 + if (a == r) { 1.950 + return MP_OKAY; 1.951 + } else { 1.952 + return mp_copy(a, r); 1.953 + } 1.954 +} 1.955 + 1.956 +/* Reduces a binary polynomial to a field element. */ 1.957 +mp_err 1.958 +ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth) 1.959 +{ 1.960 + return mp_bmod(a, meth->irr_arr, r); 1.961 +} 1.962 + 1.963 +/* Multiplies two field elements. */ 1.964 +mp_err 1.965 +ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, 1.966 + const GFMethod *meth) 1.967 +{ 1.968 + return mp_bmulmod(a, b, meth->irr_arr, r); 1.969 +} 1.970 + 1.971 +/* Squares a field element. */ 1.972 +mp_err 1.973 +ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) 1.974 +{ 1.975 + return mp_bsqrmod(a, meth->irr_arr, r); 1.976 +} 1.977 + 1.978 +/* Divides two field elements. If a is NULL, then returns the inverse of 1.979 + * b. */ 1.980 +mp_err 1.981 +ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, 1.982 + const GFMethod *meth) 1.983 +{ 1.984 + mp_err res = MP_OKAY; 1.985 + mp_int t; 1.986 + 1.987 + /* If a is NULL, then return the inverse of b, otherwise return a/b. */ 1.988 + if (a == NULL) { 1.989 + /* The GF(2^m) portion of MPI doesn't support invmod, so we 1.990 + * compute 1/b. */ 1.991 + MP_CHECKOK(mp_init(&t)); 1.992 + MP_CHECKOK(mp_set_int(&t, 1)); 1.993 + MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r)); 1.994 + CLEANUP: 1.995 + mp_clear(&t); 1.996 + return res; 1.997 + } else { 1.998 + return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r); 1.999 + } 1.1000 +}