security/nss/lib/freebl/ecl/ecl_gf.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecl_gf.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,997 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "mpi.h"
     1.9 +#include "mp_gf2m.h"
    1.10 +#include "ecl-priv.h"
    1.11 +#include "mpi-priv.h"
    1.12 +#include <stdlib.h>
    1.13 +
    1.14 +/* Allocate memory for a new GFMethod object. */
    1.15 +GFMethod *
    1.16 +GFMethod_new()
    1.17 +{
    1.18 +	mp_err res = MP_OKAY;
    1.19 +	GFMethod *meth;
    1.20 +	meth = (GFMethod *) malloc(sizeof(GFMethod));
    1.21 +	if (meth == NULL)
    1.22 +		return NULL;
    1.23 +	meth->constructed = MP_YES;
    1.24 +	MP_DIGITS(&meth->irr) = 0;
    1.25 +	meth->extra_free = NULL;
    1.26 +	MP_CHECKOK(mp_init(&meth->irr));
    1.27 +
    1.28 +  CLEANUP:
    1.29 +	if (res != MP_OKAY) {
    1.30 +		GFMethod_free(meth);
    1.31 +		return NULL;
    1.32 +	}
    1.33 +	return meth;
    1.34 +}
    1.35 +
    1.36 +/* Construct a generic GFMethod for arithmetic over prime fields with
    1.37 + * irreducible irr. */
    1.38 +GFMethod *
    1.39 +GFMethod_consGFp(const mp_int *irr)
    1.40 +{
    1.41 +	mp_err res = MP_OKAY;
    1.42 +	GFMethod *meth = NULL;
    1.43 +
    1.44 +	meth = GFMethod_new();
    1.45 +	if (meth == NULL)
    1.46 +		return NULL;
    1.47 +
    1.48 +	MP_CHECKOK(mp_copy(irr, &meth->irr));
    1.49 +	meth->irr_arr[0] = mpl_significant_bits(irr);
    1.50 +	meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] =
    1.51 +		meth->irr_arr[4] = 0;
    1.52 +	switch(MP_USED(&meth->irr)) {
    1.53 +	/* maybe we need 1 and 2 words here as well?*/
    1.54 +	case 3:
    1.55 +		meth->field_add = &ec_GFp_add_3;
    1.56 +		meth->field_sub = &ec_GFp_sub_3;
    1.57 +		break;
    1.58 +	case 4:
    1.59 +		meth->field_add = &ec_GFp_add_4;
    1.60 +		meth->field_sub = &ec_GFp_sub_4;
    1.61 +		break;
    1.62 +	case 5:
    1.63 +		meth->field_add = &ec_GFp_add_5;
    1.64 +		meth->field_sub = &ec_GFp_sub_5;
    1.65 +		break;
    1.66 +	case 6:
    1.67 +		meth->field_add = &ec_GFp_add_6;
    1.68 +		meth->field_sub = &ec_GFp_sub_6;
    1.69 +		break;
    1.70 +	default:
    1.71 +		meth->field_add = &ec_GFp_add;
    1.72 +		meth->field_sub = &ec_GFp_sub;
    1.73 +	}
    1.74 +	meth->field_neg = &ec_GFp_neg;
    1.75 +	meth->field_mod = &ec_GFp_mod;
    1.76 +	meth->field_mul = &ec_GFp_mul;
    1.77 +	meth->field_sqr = &ec_GFp_sqr;
    1.78 +	meth->field_div = &ec_GFp_div;
    1.79 +	meth->field_enc = NULL;
    1.80 +	meth->field_dec = NULL;
    1.81 +	meth->extra1 = NULL;
    1.82 +	meth->extra2 = NULL;
    1.83 +	meth->extra_free = NULL;
    1.84 +
    1.85 +  CLEANUP:
    1.86 +	if (res != MP_OKAY) {
    1.87 +		GFMethod_free(meth);
    1.88 +		return NULL;
    1.89 +	}
    1.90 +	return meth;
    1.91 +}
    1.92 +
    1.93 +/* Construct a generic GFMethod for arithmetic over binary polynomial
    1.94 + * fields with irreducible irr that has array representation irr_arr (see
    1.95 + * ecl-priv.h for description of the representation).  If irr_arr is NULL, 
    1.96 + * then it is constructed from the bitstring representation. */
    1.97 +GFMethod *
    1.98 +GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5])
    1.99 +{
   1.100 +	mp_err res = MP_OKAY;
   1.101 +	int ret;
   1.102 +	GFMethod *meth = NULL;
   1.103 +
   1.104 +	meth = GFMethod_new();
   1.105 +	if (meth == NULL)
   1.106 +		return NULL;
   1.107 +
   1.108 +	MP_CHECKOK(mp_copy(irr, &meth->irr));
   1.109 +	if (irr_arr != NULL) {
   1.110 +		/* Irreducible polynomials are either trinomials or pentanomials. */
   1.111 +		meth->irr_arr[0] = irr_arr[0];
   1.112 +		meth->irr_arr[1] = irr_arr[1];
   1.113 +		meth->irr_arr[2] = irr_arr[2];
   1.114 +		if (irr_arr[2] > 0) {
   1.115 +			meth->irr_arr[3] = irr_arr[3];
   1.116 +			meth->irr_arr[4] = irr_arr[4];
   1.117 +		} else {
   1.118 +			meth->irr_arr[3] = meth->irr_arr[4] = 0;
   1.119 +		}
   1.120 +	} else {
   1.121 +		ret = mp_bpoly2arr(irr, meth->irr_arr, 5);
   1.122 +		/* Irreducible polynomials are either trinomials or pentanomials. */
   1.123 +		if ((ret != 5) && (ret != 3)) {
   1.124 +			res = MP_UNDEF;
   1.125 +			goto CLEANUP;
   1.126 +		}
   1.127 +	}
   1.128 +	meth->field_add = &ec_GF2m_add;
   1.129 +	meth->field_neg = &ec_GF2m_neg;
   1.130 +	meth->field_sub = &ec_GF2m_add;
   1.131 +	meth->field_mod = &ec_GF2m_mod;
   1.132 +	meth->field_mul = &ec_GF2m_mul;
   1.133 +	meth->field_sqr = &ec_GF2m_sqr;
   1.134 +	meth->field_div = &ec_GF2m_div;
   1.135 +	meth->field_enc = NULL;
   1.136 +	meth->field_dec = NULL;
   1.137 +	meth->extra1 = NULL;
   1.138 +	meth->extra2 = NULL;
   1.139 +	meth->extra_free = NULL;
   1.140 +
   1.141 +  CLEANUP:
   1.142 +	if (res != MP_OKAY) {
   1.143 +		GFMethod_free(meth);
   1.144 +		return NULL;
   1.145 +	}
   1.146 +	return meth;
   1.147 +}
   1.148 +
   1.149 +/* Free the memory allocated (if any) to a GFMethod object. */
   1.150 +void
   1.151 +GFMethod_free(GFMethod *meth)
   1.152 +{
   1.153 +	if (meth == NULL)
   1.154 +		return;
   1.155 +	if (meth->constructed == MP_NO)
   1.156 +		return;
   1.157 +	mp_clear(&meth->irr);
   1.158 +	if (meth->extra_free != NULL)
   1.159 +		meth->extra_free(meth);
   1.160 +	free(meth);
   1.161 +}
   1.162 +
   1.163 +/* Wrapper functions for generic prime field arithmetic. */
   1.164 +
   1.165 +/* Add two field elements.  Assumes that 0 <= a, b < meth->irr */
   1.166 +mp_err
   1.167 +ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
   1.168 +		   const GFMethod *meth)
   1.169 +{
   1.170 +	/* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */
   1.171 +	mp_err res;
   1.172 +
   1.173 +	if ((res = mp_add(a, b, r)) != MP_OKAY) {
   1.174 +		return res;
   1.175 +	}
   1.176 +	if (mp_cmp(r, &meth->irr) >= 0) {
   1.177 +		return mp_sub(r, &meth->irr, r);
   1.178 +	}
   1.179 +	return res;
   1.180 +}
   1.181 +
   1.182 +/* Negates a field element.  Assumes that 0 <= a < meth->irr */
   1.183 +mp_err
   1.184 +ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.185 +{
   1.186 +	/* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */
   1.187 +
   1.188 +	if (mp_cmp_z(a) == 0) {
   1.189 +		mp_zero(r);
   1.190 +		return MP_OKAY;
   1.191 +	}
   1.192 +	return mp_sub(&meth->irr, a, r);
   1.193 +}
   1.194 +
   1.195 +/* Subtracts two field elements.  Assumes that 0 <= a, b < meth->irr */
   1.196 +mp_err
   1.197 +ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
   1.198 +		   const GFMethod *meth)
   1.199 +{
   1.200 +	mp_err res = MP_OKAY;
   1.201 +
   1.202 +	/* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */
   1.203 +	res = mp_sub(a, b, r);
   1.204 +	if (res == MP_RANGE) {
   1.205 +		MP_CHECKOK(mp_sub(b, a, r));
   1.206 +		if (mp_cmp_z(r) < 0) {
   1.207 +			MP_CHECKOK(mp_add(r, &meth->irr, r));
   1.208 +		}
   1.209 +		MP_CHECKOK(ec_GFp_neg(r, r, meth));
   1.210 +	}
   1.211 +	if (mp_cmp_z(r) < 0) {
   1.212 +		MP_CHECKOK(mp_add(r, &meth->irr, r));
   1.213 +	}
   1.214 +  CLEANUP:
   1.215 +	return res;
   1.216 +}
   1.217 +/* 
   1.218 + * Inline adds for small curve lengths.
   1.219 + */
   1.220 +/* 3 words */
   1.221 +mp_err
   1.222 +ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, 
   1.223 +			const GFMethod *meth)
   1.224 +{
   1.225 +	mp_err res = MP_OKAY;
   1.226 +	mp_digit a0 = 0, a1 = 0, a2 = 0;
   1.227 +	mp_digit r0 = 0, r1 = 0, r2 = 0;
   1.228 +	mp_digit carry;
   1.229 +
   1.230 +	switch(MP_USED(a)) {
   1.231 +	case 3:
   1.232 +		a2 = MP_DIGIT(a,2);
   1.233 +	case 2:
   1.234 +		a1 = MP_DIGIT(a,1);
   1.235 +	case 1:
   1.236 +		a0 = MP_DIGIT(a,0);
   1.237 +	}
   1.238 +	switch(MP_USED(b)) {
   1.239 +	case 3:
   1.240 +		r2 = MP_DIGIT(b,2);
   1.241 +	case 2:
   1.242 +		r1 = MP_DIGIT(b,1);
   1.243 +	case 1:
   1.244 +		r0 = MP_DIGIT(b,0);
   1.245 +	}
   1.246 +
   1.247 +#ifndef MPI_AMD64_ADD
   1.248 +	MP_ADD_CARRY(a0, r0, r0, 0,     carry);
   1.249 +	MP_ADD_CARRY(a1, r1, r1, carry, carry);
   1.250 +	MP_ADD_CARRY(a2, r2, r2, carry, carry);
   1.251 +#else
   1.252 +	__asm__ (
   1.253 +                "xorq   %3,%3           \n\t"
   1.254 +                "addq   %4,%0           \n\t"
   1.255 +                "adcq   %5,%1           \n\t"
   1.256 +                "adcq   %6,%2           \n\t"
   1.257 +                "adcq   $0,%3           \n\t"
   1.258 +                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
   1.259 +                : "r" (a0), "r" (a1), "r" (a2),
   1.260 +		  "0" (r0), "1" (r1), "2" (r2)
   1.261 +                : "%cc" );
   1.262 +#endif
   1.263 +
   1.264 +	MP_CHECKOK(s_mp_pad(r, 3));
   1.265 +	MP_DIGIT(r, 2) = r2;
   1.266 +	MP_DIGIT(r, 1) = r1;
   1.267 +	MP_DIGIT(r, 0) = r0;
   1.268 +	MP_SIGN(r) = MP_ZPOS;
   1.269 +	MP_USED(r) = 3;
   1.270 +
   1.271 +	/* Do quick 'subract' if we've gone over 
   1.272 +	 * (add the 2's complement of the curve field) */
   1.273 +	 a2 = MP_DIGIT(&meth->irr,2);
   1.274 +	if (carry ||  r2 >  a2 ||
   1.275 +		((r2 == a2) && mp_cmp(r,&meth->irr) != MP_LT)) {
   1.276 +		a1 = MP_DIGIT(&meth->irr,1);
   1.277 +		a0 = MP_DIGIT(&meth->irr,0);
   1.278 +#ifndef MPI_AMD64_ADD
   1.279 +		MP_SUB_BORROW(r0, a0, r0, 0,     carry);
   1.280 +		MP_SUB_BORROW(r1, a1, r1, carry, carry);
   1.281 +		MP_SUB_BORROW(r2, a2, r2, carry, carry);
   1.282 +#else
   1.283 +		__asm__ (
   1.284 +			"subq   %3,%0           \n\t"
   1.285 +			"sbbq   %4,%1           \n\t"
   1.286 +			"sbbq   %5,%2           \n\t"
   1.287 +			: "=r"(r0), "=r"(r1), "=r"(r2)
   1.288 +			: "r" (a0), "r" (a1), "r" (a2),
   1.289 +			  "0" (r0), "1" (r1), "2" (r2)
   1.290 +			: "%cc" );
   1.291 +#endif
   1.292 +		MP_DIGIT(r, 2) = r2;
   1.293 +		MP_DIGIT(r, 1) = r1;
   1.294 +		MP_DIGIT(r, 0) = r0;
   1.295 +	}
   1.296 +	
   1.297 +	s_mp_clamp(r);
   1.298 +
   1.299 +  CLEANUP:
   1.300 +	return res;
   1.301 +}
   1.302 +
   1.303 +/* 4 words */
   1.304 +mp_err
   1.305 +ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, 
   1.306 +			const GFMethod *meth)
   1.307 +{
   1.308 +	mp_err res = MP_OKAY;
   1.309 +	mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0;
   1.310 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
   1.311 +	mp_digit carry;
   1.312 +
   1.313 +	switch(MP_USED(a)) {
   1.314 +	case 4:
   1.315 +		a3 = MP_DIGIT(a,3);
   1.316 +	case 3:
   1.317 +		a2 = MP_DIGIT(a,2);
   1.318 +	case 2:
   1.319 +		a1 = MP_DIGIT(a,1);
   1.320 +	case 1:
   1.321 +		a0 = MP_DIGIT(a,0);
   1.322 +	}
   1.323 +	switch(MP_USED(b)) {
   1.324 +	case 4:
   1.325 +		r3 = MP_DIGIT(b,3);
   1.326 +	case 3:
   1.327 +		r2 = MP_DIGIT(b,2);
   1.328 +	case 2:
   1.329 +		r1 = MP_DIGIT(b,1);
   1.330 +	case 1:
   1.331 +		r0 = MP_DIGIT(b,0);
   1.332 +	}
   1.333 +
   1.334 +#ifndef MPI_AMD64_ADD
   1.335 +	MP_ADD_CARRY(a0, r0, r0, 0,     carry);
   1.336 +	MP_ADD_CARRY(a1, r1, r1, carry, carry);
   1.337 +	MP_ADD_CARRY(a2, r2, r2, carry, carry);
   1.338 +	MP_ADD_CARRY(a3, r3, r3, carry, carry);
   1.339 +#else
   1.340 +	__asm__ (
   1.341 +                "xorq   %4,%4           \n\t"
   1.342 +                "addq   %5,%0           \n\t"
   1.343 +                "adcq   %6,%1           \n\t"
   1.344 +                "adcq   %7,%2           \n\t"
   1.345 +                "adcq   %8,%3           \n\t"
   1.346 +                "adcq   $0,%4           \n\t"
   1.347 +                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(carry)
   1.348 +                : "r" (a0), "r" (a1), "r" (a2), "r" (a3),
   1.349 +		  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
   1.350 +                : "%cc" );
   1.351 +#endif
   1.352 +
   1.353 +	MP_CHECKOK(s_mp_pad(r, 4));
   1.354 +	MP_DIGIT(r, 3) = r3;
   1.355 +	MP_DIGIT(r, 2) = r2;
   1.356 +	MP_DIGIT(r, 1) = r1;
   1.357 +	MP_DIGIT(r, 0) = r0;
   1.358 +	MP_SIGN(r) = MP_ZPOS;
   1.359 +	MP_USED(r) = 4;
   1.360 +
   1.361 +	/* Do quick 'subract' if we've gone over 
   1.362 +	 * (add the 2's complement of the curve field) */
   1.363 +	 a3 = MP_DIGIT(&meth->irr,3);
   1.364 +	if (carry ||  r3 >  a3 ||
   1.365 +		((r3 == a3) && mp_cmp(r,&meth->irr) != MP_LT)) {
   1.366 +		a2 = MP_DIGIT(&meth->irr,2);
   1.367 +		a1 = MP_DIGIT(&meth->irr,1);
   1.368 +		a0 = MP_DIGIT(&meth->irr,0);
   1.369 +#ifndef MPI_AMD64_ADD
   1.370 +		MP_SUB_BORROW(r0, a0, r0, 0,     carry);
   1.371 +		MP_SUB_BORROW(r1, a1, r1, carry, carry);
   1.372 +		MP_SUB_BORROW(r2, a2, r2, carry, carry);
   1.373 +		MP_SUB_BORROW(r3, a3, r3, carry, carry);
   1.374 +#else
   1.375 +		__asm__ (
   1.376 +			"subq   %4,%0           \n\t"
   1.377 +			"sbbq   %5,%1           \n\t"
   1.378 +			"sbbq   %6,%2           \n\t"
   1.379 +			"sbbq   %7,%3           \n\t"
   1.380 +			: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
   1.381 +			: "r" (a0), "r" (a1), "r" (a2), "r" (a3),
   1.382 +			  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
   1.383 +			: "%cc" );
   1.384 +#endif
   1.385 +		MP_DIGIT(r, 3) = r3;
   1.386 +		MP_DIGIT(r, 2) = r2;
   1.387 +		MP_DIGIT(r, 1) = r1;
   1.388 +		MP_DIGIT(r, 0) = r0;
   1.389 +	}
   1.390 +	
   1.391 +	s_mp_clamp(r);
   1.392 +
   1.393 +  CLEANUP:
   1.394 +	return res;
   1.395 +}
   1.396 +
   1.397 +/* 5 words */
   1.398 +mp_err
   1.399 +ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, 
   1.400 +			const GFMethod *meth)
   1.401 +{
   1.402 +	mp_err res = MP_OKAY;
   1.403 +	mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0;
   1.404 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
   1.405 +	mp_digit carry;
   1.406 +
   1.407 +	switch(MP_USED(a)) {
   1.408 +	case 5:
   1.409 +		a4 = MP_DIGIT(a,4);
   1.410 +	case 4:
   1.411 +		a3 = MP_DIGIT(a,3);
   1.412 +	case 3:
   1.413 +		a2 = MP_DIGIT(a,2);
   1.414 +	case 2:
   1.415 +		a1 = MP_DIGIT(a,1);
   1.416 +	case 1:
   1.417 +		a0 = MP_DIGIT(a,0);
   1.418 +	}
   1.419 +	switch(MP_USED(b)) {
   1.420 +	case 5:
   1.421 +		r4 = MP_DIGIT(b,4);
   1.422 +	case 4:
   1.423 +		r3 = MP_DIGIT(b,3);
   1.424 +	case 3:
   1.425 +		r2 = MP_DIGIT(b,2);
   1.426 +	case 2:
   1.427 +		r1 = MP_DIGIT(b,1);
   1.428 +	case 1:
   1.429 +		r0 = MP_DIGIT(b,0);
   1.430 +	}
   1.431 +
   1.432 +	MP_ADD_CARRY(a0, r0, r0, 0,     carry);
   1.433 +	MP_ADD_CARRY(a1, r1, r1, carry, carry);
   1.434 +	MP_ADD_CARRY(a2, r2, r2, carry, carry);
   1.435 +	MP_ADD_CARRY(a3, r3, r3, carry, carry);
   1.436 +	MP_ADD_CARRY(a4, r4, r4, carry, carry);
   1.437 +
   1.438 +	MP_CHECKOK(s_mp_pad(r, 5));
   1.439 +	MP_DIGIT(r, 4) = r4;
   1.440 +	MP_DIGIT(r, 3) = r3;
   1.441 +	MP_DIGIT(r, 2) = r2;
   1.442 +	MP_DIGIT(r, 1) = r1;
   1.443 +	MP_DIGIT(r, 0) = r0;
   1.444 +	MP_SIGN(r) = MP_ZPOS;
   1.445 +	MP_USED(r) = 5;
   1.446 +
   1.447 +	/* Do quick 'subract' if we've gone over 
   1.448 +	 * (add the 2's complement of the curve field) */
   1.449 +	 a4 = MP_DIGIT(&meth->irr,4);
   1.450 +	if (carry ||  r4 >  a4 ||
   1.451 +		((r4 == a4) && mp_cmp(r,&meth->irr) != MP_LT)) {
   1.452 +		a3 = MP_DIGIT(&meth->irr,3);
   1.453 +		a2 = MP_DIGIT(&meth->irr,2);
   1.454 +		a1 = MP_DIGIT(&meth->irr,1);
   1.455 +		a0 = MP_DIGIT(&meth->irr,0);
   1.456 +		MP_SUB_BORROW(r0, a0, r0, 0,     carry);
   1.457 +		MP_SUB_BORROW(r1, a1, r1, carry, carry);
   1.458 +		MP_SUB_BORROW(r2, a2, r2, carry, carry);
   1.459 +		MP_SUB_BORROW(r3, a3, r3, carry, carry);
   1.460 +		MP_SUB_BORROW(r4, a4, r4, carry, carry);
   1.461 +		MP_DIGIT(r, 4) = r4;
   1.462 +		MP_DIGIT(r, 3) = r3;
   1.463 +		MP_DIGIT(r, 2) = r2;
   1.464 +		MP_DIGIT(r, 1) = r1;
   1.465 +		MP_DIGIT(r, 0) = r0;
   1.466 +	}
   1.467 +	
   1.468 +	s_mp_clamp(r);
   1.469 +
   1.470 +  CLEANUP:
   1.471 +	return res;
   1.472 +}
   1.473 +
   1.474 +/* 6 words */
   1.475 +mp_err
   1.476 +ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, 
   1.477 +			const GFMethod *meth)
   1.478 +{
   1.479 +	mp_err res = MP_OKAY;
   1.480 +	mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0;
   1.481 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
   1.482 +	mp_digit carry;
   1.483 +
   1.484 +	switch(MP_USED(a)) {
   1.485 +	case 6:
   1.486 +		a5 = MP_DIGIT(a,5);
   1.487 +	case 5:
   1.488 +		a4 = MP_DIGIT(a,4);
   1.489 +	case 4:
   1.490 +		a3 = MP_DIGIT(a,3);
   1.491 +	case 3:
   1.492 +		a2 = MP_DIGIT(a,2);
   1.493 +	case 2:
   1.494 +		a1 = MP_DIGIT(a,1);
   1.495 +	case 1:
   1.496 +		a0 = MP_DIGIT(a,0);
   1.497 +	}
   1.498 +	switch(MP_USED(b)) {
   1.499 +	case 6:
   1.500 +		r5 = MP_DIGIT(b,5);
   1.501 +	case 5:
   1.502 +		r4 = MP_DIGIT(b,4);
   1.503 +	case 4:
   1.504 +		r3 = MP_DIGIT(b,3);
   1.505 +	case 3:
   1.506 +		r2 = MP_DIGIT(b,2);
   1.507 +	case 2:
   1.508 +		r1 = MP_DIGIT(b,1);
   1.509 +	case 1:
   1.510 +		r0 = MP_DIGIT(b,0);
   1.511 +	}
   1.512 +
   1.513 +	MP_ADD_CARRY(a0, r0, r0, 0,     carry);
   1.514 +	MP_ADD_CARRY(a1, r1, r1, carry, carry);
   1.515 +	MP_ADD_CARRY(a2, r2, r2, carry, carry);
   1.516 +	MP_ADD_CARRY(a3, r3, r3, carry, carry);
   1.517 +	MP_ADD_CARRY(a4, r4, r4, carry, carry);
   1.518 +	MP_ADD_CARRY(a5, r5, r5, carry, carry);
   1.519 +
   1.520 +	MP_CHECKOK(s_mp_pad(r, 6));
   1.521 +	MP_DIGIT(r, 5) = r5;
   1.522 +	MP_DIGIT(r, 4) = r4;
   1.523 +	MP_DIGIT(r, 3) = r3;
   1.524 +	MP_DIGIT(r, 2) = r2;
   1.525 +	MP_DIGIT(r, 1) = r1;
   1.526 +	MP_DIGIT(r, 0) = r0;
   1.527 +	MP_SIGN(r) = MP_ZPOS;
   1.528 +	MP_USED(r) = 6;
   1.529 +
   1.530 +	/* Do quick 'subract' if we've gone over 
   1.531 +	 * (add the 2's complement of the curve field) */
   1.532 +	a5 = MP_DIGIT(&meth->irr,5);
   1.533 +	if (carry ||  r5 >  a5 ||
   1.534 +		((r5 == a5) && mp_cmp(r,&meth->irr) != MP_LT)) {
   1.535 +		a4 = MP_DIGIT(&meth->irr,4);
   1.536 +		a3 = MP_DIGIT(&meth->irr,3);
   1.537 +		a2 = MP_DIGIT(&meth->irr,2);
   1.538 +		a1 = MP_DIGIT(&meth->irr,1);
   1.539 +		a0 = MP_DIGIT(&meth->irr,0);
   1.540 +		MP_SUB_BORROW(r0, a0, r0, 0,     carry);
   1.541 +		MP_SUB_BORROW(r1, a1, r1, carry, carry);
   1.542 +		MP_SUB_BORROW(r2, a2, r2, carry, carry);
   1.543 +		MP_SUB_BORROW(r3, a3, r3, carry, carry);
   1.544 +		MP_SUB_BORROW(r4, a4, r4, carry, carry);
   1.545 +		MP_SUB_BORROW(r5, a5, r5, carry, carry);
   1.546 +		MP_DIGIT(r, 5) = r5;
   1.547 +		MP_DIGIT(r, 4) = r4;
   1.548 +		MP_DIGIT(r, 3) = r3;
   1.549 +		MP_DIGIT(r, 2) = r2;
   1.550 +		MP_DIGIT(r, 1) = r1;
   1.551 +		MP_DIGIT(r, 0) = r0;
   1.552 +	}
   1.553 +	
   1.554 +	s_mp_clamp(r);
   1.555 +
   1.556 +  CLEANUP:
   1.557 +	return res;
   1.558 +}
   1.559 +
   1.560 +/*
   1.561 + * The following subraction functions do in-line subractions based
   1.562 + * on our curve size.
   1.563 + *
   1.564 + * ... 3 words
   1.565 + */
   1.566 +mp_err
   1.567 +ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, 
   1.568 +			const GFMethod *meth)
   1.569 +{
   1.570 +	mp_err res = MP_OKAY;
   1.571 +	mp_digit b0 = 0, b1 = 0, b2 = 0;
   1.572 +	mp_digit r0 = 0, r1 = 0, r2 = 0;
   1.573 +	mp_digit borrow;
   1.574 +
   1.575 +	switch(MP_USED(a)) {
   1.576 +	case 3:
   1.577 +		r2 = MP_DIGIT(a,2);
   1.578 +	case 2:
   1.579 +		r1 = MP_DIGIT(a,1);
   1.580 +	case 1:
   1.581 +		r0 = MP_DIGIT(a,0);
   1.582 +	}
   1.583 +	switch(MP_USED(b)) {
   1.584 +	case 3:
   1.585 +		b2 = MP_DIGIT(b,2);
   1.586 +	case 2:
   1.587 +		b1 = MP_DIGIT(b,1);
   1.588 +	case 1:
   1.589 +		b0 = MP_DIGIT(b,0);
   1.590 +	}
   1.591 +
   1.592 +#ifndef MPI_AMD64_ADD
   1.593 +	MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
   1.594 +	MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
   1.595 +	MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
   1.596 +#else
   1.597 +	__asm__ (
   1.598 +                "xorq   %3,%3           \n\t"
   1.599 +                "subq   %4,%0           \n\t"
   1.600 +                "sbbq   %5,%1           \n\t"
   1.601 +                "sbbq   %6,%2           \n\t"
   1.602 +                "adcq   $0,%3           \n\t"
   1.603 +                : "=r"(r0), "=r"(r1), "=r"(r2), "=r" (borrow)
   1.604 +                : "r" (b0), "r" (b1), "r" (b2), 
   1.605 +		  "0" (r0), "1" (r1), "2" (r2)
   1.606 +                : "%cc" );
   1.607 +#endif
   1.608 +
   1.609 +	/* Do quick 'add' if we've gone under 0
   1.610 +	 * (subtract the 2's complement of the curve field) */
   1.611 +	if (borrow) {
   1.612 +	 	b2 = MP_DIGIT(&meth->irr,2);
   1.613 +		b1 = MP_DIGIT(&meth->irr,1);
   1.614 +		b0 = MP_DIGIT(&meth->irr,0);
   1.615 +#ifndef MPI_AMD64_ADD
   1.616 +		MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
   1.617 +		MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
   1.618 +		MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
   1.619 +#else
   1.620 +		__asm__ (
   1.621 +			"addq   %3,%0           \n\t"
   1.622 +			"adcq   %4,%1           \n\t"
   1.623 +			"adcq   %5,%2           \n\t"
   1.624 +			: "=r"(r0), "=r"(r1), "=r"(r2)
   1.625 +			: "r" (b0), "r" (b1), "r" (b2),
   1.626 +  			  "0" (r0), "1" (r1), "2" (r2)
   1.627 +			: "%cc" );
   1.628 +#endif
   1.629 +	}
   1.630 +
   1.631 +#ifdef MPI_AMD64_ADD
   1.632 +	/* compiler fakeout? */
   1.633 +	if ((r2 == b0) && (r1 == b0) && (r0 == b0)) { 
   1.634 +		MP_CHECKOK(s_mp_pad(r, 4));
   1.635 +	} 
   1.636 +#endif
   1.637 +	MP_CHECKOK(s_mp_pad(r, 3));
   1.638 +	MP_DIGIT(r, 2) = r2;
   1.639 +	MP_DIGIT(r, 1) = r1;
   1.640 +	MP_DIGIT(r, 0) = r0;
   1.641 +	MP_SIGN(r) = MP_ZPOS;
   1.642 +	MP_USED(r) = 3;
   1.643 +	s_mp_clamp(r);
   1.644 +
   1.645 +  CLEANUP:
   1.646 +	return res;
   1.647 +}
   1.648 +
   1.649 +/* 4 words */
   1.650 +mp_err
   1.651 +ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, 
   1.652 +			const GFMethod *meth)
   1.653 +{
   1.654 +	mp_err res = MP_OKAY;
   1.655 +	mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0;
   1.656 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
   1.657 +	mp_digit borrow;
   1.658 +
   1.659 +	switch(MP_USED(a)) {
   1.660 +	case 4:
   1.661 +		r3 = MP_DIGIT(a,3);
   1.662 +	case 3:
   1.663 +		r2 = MP_DIGIT(a,2);
   1.664 +	case 2:
   1.665 +		r1 = MP_DIGIT(a,1);
   1.666 +	case 1:
   1.667 +		r0 = MP_DIGIT(a,0);
   1.668 +	}
   1.669 +	switch(MP_USED(b)) {
   1.670 +	case 4:
   1.671 +		b3 = MP_DIGIT(b,3);
   1.672 +	case 3:
   1.673 +		b2 = MP_DIGIT(b,2);
   1.674 +	case 2:
   1.675 +		b1 = MP_DIGIT(b,1);
   1.676 +	case 1:
   1.677 +		b0 = MP_DIGIT(b,0);
   1.678 +	}
   1.679 +
   1.680 +#ifndef MPI_AMD64_ADD
   1.681 +	MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
   1.682 +	MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
   1.683 +	MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
   1.684 +	MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
   1.685 +#else
   1.686 +	__asm__ (
   1.687 +                "xorq   %4,%4           \n\t"
   1.688 +                "subq   %5,%0           \n\t"
   1.689 +                "sbbq   %6,%1           \n\t"
   1.690 +                "sbbq   %7,%2           \n\t"
   1.691 +                "sbbq   %8,%3           \n\t"
   1.692 +                "adcq   $0,%4           \n\t"
   1.693 +                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r" (borrow)
   1.694 +                : "r" (b0), "r" (b1), "r" (b2), "r" (b3),
   1.695 +		  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
   1.696 +                : "%cc" );
   1.697 +#endif
   1.698 +
   1.699 +	/* Do quick 'add' if we've gone under 0
   1.700 +	 * (subtract the 2's complement of the curve field) */
   1.701 +	if (borrow) {
   1.702 +	 	b3 = MP_DIGIT(&meth->irr,3);
   1.703 +	 	b2 = MP_DIGIT(&meth->irr,2);
   1.704 +		b1 = MP_DIGIT(&meth->irr,1);
   1.705 +		b0 = MP_DIGIT(&meth->irr,0);
   1.706 +#ifndef MPI_AMD64_ADD
   1.707 +		MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
   1.708 +		MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
   1.709 +		MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
   1.710 +		MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
   1.711 +#else
   1.712 +		__asm__ (
   1.713 +			"addq   %4,%0           \n\t"
   1.714 +			"adcq   %5,%1           \n\t"
   1.715 +			"adcq   %6,%2           \n\t"
   1.716 +			"adcq   %7,%3           \n\t"
   1.717 +			: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
   1.718 +			: "r" (b0), "r" (b1), "r" (b2), "r" (b3),
   1.719 +  			  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
   1.720 +			: "%cc" );
   1.721 +#endif
   1.722 +	}
   1.723 +#ifdef MPI_AMD64_ADD
   1.724 +	/* compiler fakeout? */
   1.725 +	if ((r3 == b0) && (r1 == b0) && (r0 == b0)) { 
   1.726 +		MP_CHECKOK(s_mp_pad(r, 4));
   1.727 +	} 
   1.728 +#endif
   1.729 +	MP_CHECKOK(s_mp_pad(r, 4));
   1.730 +	MP_DIGIT(r, 3) = r3;
   1.731 +	MP_DIGIT(r, 2) = r2;
   1.732 +	MP_DIGIT(r, 1) = r1;
   1.733 +	MP_DIGIT(r, 0) = r0;
   1.734 +	MP_SIGN(r) = MP_ZPOS;
   1.735 +	MP_USED(r) = 4;
   1.736 +	s_mp_clamp(r);
   1.737 +
   1.738 +  CLEANUP:
   1.739 +	return res;
   1.740 +}
   1.741 +
   1.742 +/* 5 words */
   1.743 +mp_err
   1.744 +ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, 
   1.745 +			const GFMethod *meth)
   1.746 +{
   1.747 +	mp_err res = MP_OKAY;
   1.748 +	mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0;
   1.749 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
   1.750 +	mp_digit borrow;
   1.751 +
   1.752 +	switch(MP_USED(a)) {
   1.753 +	case 5:
   1.754 +		r4 = MP_DIGIT(a,4);
   1.755 +	case 4:
   1.756 +		r3 = MP_DIGIT(a,3);
   1.757 +	case 3:
   1.758 +		r2 = MP_DIGIT(a,2);
   1.759 +	case 2:
   1.760 +		r1 = MP_DIGIT(a,1);
   1.761 +	case 1:
   1.762 +		r0 = MP_DIGIT(a,0);
   1.763 +	}
   1.764 +	switch(MP_USED(b)) {
   1.765 +	case 5:
   1.766 +		b4 = MP_DIGIT(b,4);
   1.767 +	case 4:
   1.768 +		b3 = MP_DIGIT(b,3);
   1.769 +	case 3:
   1.770 +		b2 = MP_DIGIT(b,2);
   1.771 +	case 2:
   1.772 +		b1 = MP_DIGIT(b,1);
   1.773 +	case 1:
   1.774 +		b0 = MP_DIGIT(b,0);
   1.775 +	}
   1.776 +
   1.777 +	MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
   1.778 +	MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
   1.779 +	MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
   1.780 +	MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
   1.781 +	MP_SUB_BORROW(r4, b4, r4, borrow, borrow);
   1.782 +
   1.783 +	/* Do quick 'add' if we've gone under 0
   1.784 +	 * (subtract the 2's complement of the curve field) */
   1.785 +	if (borrow) {
   1.786 +	 	b4 = MP_DIGIT(&meth->irr,4);
   1.787 +	 	b3 = MP_DIGIT(&meth->irr,3);
   1.788 +	 	b2 = MP_DIGIT(&meth->irr,2);
   1.789 +		b1 = MP_DIGIT(&meth->irr,1);
   1.790 +		b0 = MP_DIGIT(&meth->irr,0);
   1.791 +		MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
   1.792 +		MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
   1.793 +		MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
   1.794 +		MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
   1.795 +	}
   1.796 +	MP_CHECKOK(s_mp_pad(r, 5));
   1.797 +	MP_DIGIT(r, 4) = r4;
   1.798 +	MP_DIGIT(r, 3) = r3;
   1.799 +	MP_DIGIT(r, 2) = r2;
   1.800 +	MP_DIGIT(r, 1) = r1;
   1.801 +	MP_DIGIT(r, 0) = r0;
   1.802 +	MP_SIGN(r) = MP_ZPOS;
   1.803 +	MP_USED(r) = 5;
   1.804 +	s_mp_clamp(r);
   1.805 +
   1.806 +  CLEANUP:
   1.807 +	return res;
   1.808 +}
   1.809 +
   1.810 +/* 6 words */
   1.811 +mp_err
   1.812 +ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, 
   1.813 +			const GFMethod *meth)
   1.814 +{
   1.815 +	mp_err res = MP_OKAY;
   1.816 +	mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0;
   1.817 +	mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
   1.818 +	mp_digit borrow;
   1.819 +
   1.820 +	switch(MP_USED(a)) {
   1.821 +	case 6:
   1.822 +		r5 = MP_DIGIT(a,5);
   1.823 +	case 5:
   1.824 +		r4 = MP_DIGIT(a,4);
   1.825 +	case 4:
   1.826 +		r3 = MP_DIGIT(a,3);
   1.827 +	case 3:
   1.828 +		r2 = MP_DIGIT(a,2);
   1.829 +	case 2:
   1.830 +		r1 = MP_DIGIT(a,1);
   1.831 +	case 1:
   1.832 +		r0 = MP_DIGIT(a,0);
   1.833 +	}
   1.834 +	switch(MP_USED(b)) {
   1.835 +	case 6:
   1.836 +		b5 = MP_DIGIT(b,5);
   1.837 +	case 5:
   1.838 +		b4 = MP_DIGIT(b,4);
   1.839 +	case 4:
   1.840 +		b3 = MP_DIGIT(b,3);
   1.841 +	case 3:
   1.842 +		b2 = MP_DIGIT(b,2);
   1.843 +	case 2:
   1.844 +		b1 = MP_DIGIT(b,1);
   1.845 +	case 1:
   1.846 +		b0 = MP_DIGIT(b,0);
   1.847 +	}
   1.848 +
   1.849 +	MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
   1.850 +	MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
   1.851 +	MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
   1.852 +	MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
   1.853 +	MP_SUB_BORROW(r4, b4, r4, borrow, borrow);
   1.854 +	MP_SUB_BORROW(r5, b5, r5, borrow, borrow);
   1.855 +
   1.856 +	/* Do quick 'add' if we've gone under 0
   1.857 +	 * (subtract the 2's complement of the curve field) */
   1.858 +	if (borrow) {
   1.859 +	 	b5 = MP_DIGIT(&meth->irr,5);
   1.860 +	 	b4 = MP_DIGIT(&meth->irr,4);
   1.861 +	 	b3 = MP_DIGIT(&meth->irr,3);
   1.862 +	 	b2 = MP_DIGIT(&meth->irr,2);
   1.863 +		b1 = MP_DIGIT(&meth->irr,1);
   1.864 +		b0 = MP_DIGIT(&meth->irr,0);
   1.865 +		MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
   1.866 +		MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
   1.867 +		MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
   1.868 +		MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
   1.869 +		MP_ADD_CARRY(b4, r4, r4, borrow, borrow);
   1.870 +	}
   1.871 +
   1.872 +	MP_CHECKOK(s_mp_pad(r, 6));
   1.873 +	MP_DIGIT(r, 5) = r5;
   1.874 +	MP_DIGIT(r, 4) = r4;
   1.875 +	MP_DIGIT(r, 3) = r3;
   1.876 +	MP_DIGIT(r, 2) = r2;
   1.877 +	MP_DIGIT(r, 1) = r1;
   1.878 +	MP_DIGIT(r, 0) = r0;
   1.879 +	MP_SIGN(r) = MP_ZPOS;
   1.880 +	MP_USED(r) = 6;
   1.881 +	s_mp_clamp(r);
   1.882 +
   1.883 +  CLEANUP:
   1.884 +	return res;
   1.885 +}
   1.886 +
   1.887 +
   1.888 +/* Reduces an integer to a field element. */
   1.889 +mp_err
   1.890 +ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.891 +{
   1.892 +	return mp_mod(a, &meth->irr, r);
   1.893 +}
   1.894 +
   1.895 +/* Multiplies two field elements. */
   1.896 +mp_err
   1.897 +ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
   1.898 +		   const GFMethod *meth)
   1.899 +{
   1.900 +	return mp_mulmod(a, b, &meth->irr, r);
   1.901 +}
   1.902 +
   1.903 +/* Squares a field element. */
   1.904 +mp_err
   1.905 +ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.906 +{
   1.907 +	return mp_sqrmod(a, &meth->irr, r);
   1.908 +}
   1.909 +
   1.910 +/* Divides two field elements. If a is NULL, then returns the inverse of
   1.911 + * b. */
   1.912 +mp_err
   1.913 +ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
   1.914 +		   const GFMethod *meth)
   1.915 +{
   1.916 +	mp_err res = MP_OKAY;
   1.917 +	mp_int t;
   1.918 +
   1.919 +	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
   1.920 +	if (a == NULL) {
   1.921 +		return mp_invmod(b, &meth->irr, r);
   1.922 +	} else {
   1.923 +		/* MPI doesn't support divmod, so we implement it using invmod and 
   1.924 +		 * mulmod. */
   1.925 +		MP_CHECKOK(mp_init(&t));
   1.926 +		MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
   1.927 +		MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r));
   1.928 +	  CLEANUP:
   1.929 +		mp_clear(&t);
   1.930 +		return res;
   1.931 +	}
   1.932 +}
   1.933 +
   1.934 +/* Wrapper functions for generic binary polynomial field arithmetic. */
   1.935 +
   1.936 +/* Adds two field elements. */
   1.937 +mp_err
   1.938 +ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
   1.939 +			const GFMethod *meth)
   1.940 +{
   1.941 +	return mp_badd(a, b, r);
   1.942 +}
   1.943 +
   1.944 +/* Negates a field element. Note that for binary polynomial fields, the
   1.945 + * negation of a field element is the field element itself. */
   1.946 +mp_err
   1.947 +ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.948 +{
   1.949 +	if (a == r) {
   1.950 +		return MP_OKAY;
   1.951 +	} else {
   1.952 +		return mp_copy(a, r);
   1.953 +	}
   1.954 +}
   1.955 +
   1.956 +/* Reduces a binary polynomial to a field element. */
   1.957 +mp_err
   1.958 +ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.959 +{
   1.960 +	return mp_bmod(a, meth->irr_arr, r);
   1.961 +}
   1.962 +
   1.963 +/* Multiplies two field elements. */
   1.964 +mp_err
   1.965 +ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
   1.966 +			const GFMethod *meth)
   1.967 +{
   1.968 +	return mp_bmulmod(a, b, meth->irr_arr, r);
   1.969 +}
   1.970 +
   1.971 +/* Squares a field element. */
   1.972 +mp_err
   1.973 +ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.974 +{
   1.975 +	return mp_bsqrmod(a, meth->irr_arr, r);
   1.976 +}
   1.977 +
   1.978 +/* Divides two field elements. If a is NULL, then returns the inverse of
   1.979 + * b. */
   1.980 +mp_err
   1.981 +ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
   1.982 +			const GFMethod *meth)
   1.983 +{
   1.984 +	mp_err res = MP_OKAY;
   1.985 +	mp_int t;
   1.986 +
   1.987 +	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
   1.988 +	if (a == NULL) {
   1.989 +		/* The GF(2^m) portion of MPI doesn't support invmod, so we
   1.990 +		 * compute 1/b. */
   1.991 +		MP_CHECKOK(mp_init(&t));
   1.992 +		MP_CHECKOK(mp_set_int(&t, 1));
   1.993 +		MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r));
   1.994 +	  CLEANUP:
   1.995 +		mp_clear(&t);
   1.996 +		return res;
   1.997 +	} else {
   1.998 +		return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r);
   1.999 +	}
  1.1000 +}

mercurial