security/nss/lib/freebl/ecl/ecp_384.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecp_384.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,258 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ecp.h"
     1.9 +#include "mpi.h"
    1.10 +#include "mplogic.h"
    1.11 +#include "mpi-priv.h"
    1.12 +
    1.13 +/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r. 
    1.14 + * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to 
    1.15 + * Elliptic Curve Cryptography. */
    1.16 +static mp_err
    1.17 +ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
    1.18 +{
    1.19 +	mp_err res = MP_OKAY;
    1.20 +	int a_bits = mpl_significant_bits(a);
    1.21 +	int i;
    1.22 +
    1.23 +	/* m1, m2 are statically-allocated mp_int of exactly the size we need */
    1.24 +	mp_int m[10];
    1.25 +
    1.26 +#ifdef ECL_THIRTY_TWO_BIT
    1.27 +	mp_digit s[10][12];
    1.28 +	for (i = 0; i < 10; i++) {
    1.29 +		MP_SIGN(&m[i]) = MP_ZPOS;
    1.30 +		MP_ALLOC(&m[i]) = 12;
    1.31 +		MP_USED(&m[i]) = 12;
    1.32 +		MP_DIGITS(&m[i]) = s[i];
    1.33 +	}
    1.34 +#else
    1.35 +	mp_digit s[10][6];
    1.36 +	for (i = 0; i < 10; i++) {
    1.37 +		MP_SIGN(&m[i]) = MP_ZPOS;
    1.38 +		MP_ALLOC(&m[i]) = 6;
    1.39 +		MP_USED(&m[i]) = 6;
    1.40 +		MP_DIGITS(&m[i]) = s[i];
    1.41 +	}
    1.42 +#endif
    1.43 +
    1.44 +#ifdef ECL_THIRTY_TWO_BIT
    1.45 +	/* for polynomials larger than twice the field size or polynomials 
    1.46 +	 * not using all words, use regular reduction */
    1.47 +	if ((a_bits > 768) || (a_bits <= 736)) {
    1.48 +		MP_CHECKOK(mp_mod(a, &meth->irr, r));
    1.49 +	} else {
    1.50 +		for (i = 0; i < 12; i++) {
    1.51 +			s[0][i] = MP_DIGIT(a, i);
    1.52 +		}
    1.53 +		s[1][0] = 0;
    1.54 +		s[1][1] = 0;
    1.55 +		s[1][2] = 0;
    1.56 +		s[1][3] = 0;
    1.57 +		s[1][4] = MP_DIGIT(a, 21);
    1.58 +		s[1][5] = MP_DIGIT(a, 22);
    1.59 +		s[1][6] = MP_DIGIT(a, 23);
    1.60 +		s[1][7] = 0;
    1.61 +		s[1][8] = 0;
    1.62 +		s[1][9] = 0;
    1.63 +		s[1][10] = 0;
    1.64 +		s[1][11] = 0;
    1.65 +		for (i = 0; i < 12; i++) {
    1.66 +			s[2][i] = MP_DIGIT(a, i+12);
    1.67 +		}
    1.68 +		s[3][0] = MP_DIGIT(a, 21);
    1.69 +		s[3][1] = MP_DIGIT(a, 22);
    1.70 +		s[3][2] = MP_DIGIT(a, 23);
    1.71 +		for (i = 3; i < 12; i++) {
    1.72 +			s[3][i] = MP_DIGIT(a, i+9);
    1.73 +		}
    1.74 +		s[4][0] = 0;
    1.75 +		s[4][1] = MP_DIGIT(a, 23);
    1.76 +		s[4][2] = 0;
    1.77 +		s[4][3] = MP_DIGIT(a, 20);
    1.78 +		for (i = 4; i < 12; i++) {
    1.79 +			s[4][i] = MP_DIGIT(a, i+8);
    1.80 +		}
    1.81 +		s[5][0] = 0;
    1.82 +		s[5][1] = 0;
    1.83 +		s[5][2] = 0;
    1.84 +		s[5][3] = 0;
    1.85 +		s[5][4] = MP_DIGIT(a, 20);
    1.86 +		s[5][5] = MP_DIGIT(a, 21);
    1.87 +		s[5][6] = MP_DIGIT(a, 22);
    1.88 +		s[5][7] = MP_DIGIT(a, 23);
    1.89 +		s[5][8] = 0;
    1.90 +		s[5][9] = 0;
    1.91 +		s[5][10] = 0;
    1.92 +		s[5][11] = 0;
    1.93 +		s[6][0] = MP_DIGIT(a, 20);
    1.94 +		s[6][1] = 0;
    1.95 +		s[6][2] = 0;
    1.96 +		s[6][3] = MP_DIGIT(a, 21);
    1.97 +		s[6][4] = MP_DIGIT(a, 22);
    1.98 +		s[6][5] = MP_DIGIT(a, 23);
    1.99 +		s[6][6] = 0;
   1.100 +		s[6][7] = 0;
   1.101 +		s[6][8] = 0;
   1.102 +		s[6][9] = 0;
   1.103 +		s[6][10] = 0;
   1.104 +		s[6][11] = 0;
   1.105 +		s[7][0] = MP_DIGIT(a, 23);
   1.106 +		for (i = 1; i < 12; i++) {
   1.107 +			s[7][i] = MP_DIGIT(a, i+11);
   1.108 +		}
   1.109 +		s[8][0] = 0;
   1.110 +		s[8][1] = MP_DIGIT(a, 20);
   1.111 +		s[8][2] = MP_DIGIT(a, 21);
   1.112 +		s[8][3] = MP_DIGIT(a, 22);
   1.113 +		s[8][4] = MP_DIGIT(a, 23);
   1.114 +		s[8][5] = 0;
   1.115 +		s[8][6] = 0;
   1.116 +		s[8][7] = 0;
   1.117 +		s[8][8] = 0;
   1.118 +		s[8][9] = 0;
   1.119 +		s[8][10] = 0;
   1.120 +		s[8][11] = 0;
   1.121 +		s[9][0] = 0;
   1.122 +		s[9][1] = 0;
   1.123 +		s[9][2] = 0;
   1.124 +		s[9][3] = MP_DIGIT(a, 23);
   1.125 +		s[9][4] = MP_DIGIT(a, 23);
   1.126 +		s[9][5] = 0;
   1.127 +		s[9][6] = 0;
   1.128 +		s[9][7] = 0;
   1.129 +		s[9][8] = 0;
   1.130 +		s[9][9] = 0;
   1.131 +		s[9][10] = 0;
   1.132 +		s[9][11] = 0;
   1.133 +
   1.134 +		MP_CHECKOK(mp_add(&m[0], &m[1], r));
   1.135 +		MP_CHECKOK(mp_add(r, &m[1], r));
   1.136 +		MP_CHECKOK(mp_add(r, &m[2], r));
   1.137 +		MP_CHECKOK(mp_add(r, &m[3], r));
   1.138 +		MP_CHECKOK(mp_add(r, &m[4], r));
   1.139 +		MP_CHECKOK(mp_add(r, &m[5], r));
   1.140 +		MP_CHECKOK(mp_add(r, &m[6], r));
   1.141 +		MP_CHECKOK(mp_sub(r, &m[7], r));
   1.142 +		MP_CHECKOK(mp_sub(r, &m[8], r));
   1.143 +		MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
   1.144 +		s_mp_clamp(r);
   1.145 +	}
   1.146 +#else
   1.147 +	/* for polynomials larger than twice the field size or polynomials 
   1.148 +	 * not using all words, use regular reduction */
   1.149 +	if ((a_bits > 768) || (a_bits <= 736)) {
   1.150 +		MP_CHECKOK(mp_mod(a, &meth->irr, r));
   1.151 +	} else {
   1.152 +		for (i = 0; i < 6; i++) {
   1.153 +			s[0][i] = MP_DIGIT(a, i);
   1.154 +		}
   1.155 +		s[1][0] = 0;
   1.156 +		s[1][1] = 0;
   1.157 +		s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
   1.158 +		s[1][3] = MP_DIGIT(a, 11) >> 32;
   1.159 +		s[1][4] = 0;
   1.160 +		s[1][5] = 0;
   1.161 +		for (i = 0; i < 6; i++) {
   1.162 +			s[2][i] = MP_DIGIT(a, i+6);
   1.163 +		}
   1.164 +		s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
   1.165 +		s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
   1.166 +		for (i = 2; i < 6; i++) {
   1.167 +			s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
   1.168 +		}
   1.169 +		s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
   1.170 +		s[4][1] = MP_DIGIT(a, 10) << 32;
   1.171 +		for (i = 2; i < 6; i++) {
   1.172 +			s[4][i] = MP_DIGIT(a, i+4);
   1.173 +		}
   1.174 +		s[5][0] = 0;
   1.175 +		s[5][1] = 0;
   1.176 +		s[5][2] = MP_DIGIT(a, 10);
   1.177 +		s[5][3] = MP_DIGIT(a, 11);
   1.178 +		s[5][4] = 0;
   1.179 +		s[5][5] = 0;
   1.180 +		s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
   1.181 +		s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
   1.182 +		s[6][2] = MP_DIGIT(a, 11);
   1.183 +		s[6][3] = 0;
   1.184 +		s[6][4] = 0;
   1.185 +		s[6][5] = 0;
   1.186 +		s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
   1.187 +		for (i = 1; i < 6; i++) {
   1.188 +			s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
   1.189 +		}
   1.190 +		s[8][0] = MP_DIGIT(a, 10) << 32;
   1.191 +		s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
   1.192 +		s[8][2] = MP_DIGIT(a, 11) >> 32;
   1.193 +		s[8][3] = 0;
   1.194 +		s[8][4] = 0;
   1.195 +		s[8][5] = 0;
   1.196 +		s[9][0] = 0;
   1.197 +		s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
   1.198 +		s[9][2] = MP_DIGIT(a, 11) >> 32;
   1.199 +		s[9][3] = 0;
   1.200 +		s[9][4] = 0;
   1.201 +		s[9][5] = 0;
   1.202 +
   1.203 +		MP_CHECKOK(mp_add(&m[0], &m[1], r));
   1.204 +		MP_CHECKOK(mp_add(r, &m[1], r));
   1.205 +		MP_CHECKOK(mp_add(r, &m[2], r));
   1.206 +		MP_CHECKOK(mp_add(r, &m[3], r));
   1.207 +		MP_CHECKOK(mp_add(r, &m[4], r));
   1.208 +		MP_CHECKOK(mp_add(r, &m[5], r));
   1.209 +		MP_CHECKOK(mp_add(r, &m[6], r));
   1.210 +		MP_CHECKOK(mp_sub(r, &m[7], r));
   1.211 +		MP_CHECKOK(mp_sub(r, &m[8], r));
   1.212 +		MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
   1.213 +		s_mp_clamp(r);
   1.214 +	}
   1.215 +#endif
   1.216 +
   1.217 +  CLEANUP:
   1.218 +	return res;
   1.219 +}
   1.220 +
   1.221 +/* Compute the square of polynomial a, reduce modulo p384. Store the
   1.222 + * result in r.  r could be a.  Uses optimized modular reduction for p384. 
   1.223 + */
   1.224 +static mp_err
   1.225 +ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
   1.226 +{
   1.227 +	mp_err res = MP_OKAY;
   1.228 +
   1.229 +	MP_CHECKOK(mp_sqr(a, r));
   1.230 +	MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
   1.231 +  CLEANUP:
   1.232 +	return res;
   1.233 +}
   1.234 +
   1.235 +/* Compute the product of two polynomials a and b, reduce modulo p384.
   1.236 + * Store the result in r.  r could be a or b; a could be b.  Uses
   1.237 + * optimized modular reduction for p384. */
   1.238 +static mp_err
   1.239 +ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
   1.240 +					const GFMethod *meth)
   1.241 +{
   1.242 +	mp_err res = MP_OKAY;
   1.243 +
   1.244 +	MP_CHECKOK(mp_mul(a, b, r));
   1.245 +	MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
   1.246 +  CLEANUP:
   1.247 +	return res;
   1.248 +}
   1.249 +
   1.250 +/* Wire in fast field arithmetic and precomputation of base point for
   1.251 + * named curves. */
   1.252 +mp_err
   1.253 +ec_group_set_gfp384(ECGroup *group, ECCurveName name)
   1.254 +{
   1.255 +	if (name == ECCurve_NIST_P384) {
   1.256 +		group->meth->field_mod = &ec_GFp_nistp384_mod;
   1.257 +		group->meth->field_mul = &ec_GFp_nistp384_mul;
   1.258 +		group->meth->field_sqr = &ec_GFp_nistp384_sqr;
   1.259 +	}
   1.260 +	return MP_OKAY;
   1.261 +}

mercurial