1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ecp_aff.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,317 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "ecp.h" 1.9 +#include "mplogic.h" 1.10 +#include <stdlib.h> 1.11 + 1.12 +/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ 1.13 +mp_err 1.14 +ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py) 1.15 +{ 1.16 + 1.17 + if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) { 1.18 + return MP_YES; 1.19 + } else { 1.20 + return MP_NO; 1.21 + } 1.22 + 1.23 +} 1.24 + 1.25 +/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ 1.26 +mp_err 1.27 +ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py) 1.28 +{ 1.29 + mp_zero(px); 1.30 + mp_zero(py); 1.31 + return MP_OKAY; 1.32 +} 1.33 + 1.34 +/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P, 1.35 + * Q, and R can all be identical. Uses affine coordinates. Assumes input 1.36 + * is already field-encoded using field_enc, and returns output that is 1.37 + * still field-encoded. */ 1.38 +mp_err 1.39 +ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, 1.40 + const mp_int *qy, mp_int *rx, mp_int *ry, 1.41 + const ECGroup *group) 1.42 +{ 1.43 + mp_err res = MP_OKAY; 1.44 + mp_int lambda, temp, tempx, tempy; 1.45 + 1.46 + MP_DIGITS(&lambda) = 0; 1.47 + MP_DIGITS(&temp) = 0; 1.48 + MP_DIGITS(&tempx) = 0; 1.49 + MP_DIGITS(&tempy) = 0; 1.50 + MP_CHECKOK(mp_init(&lambda)); 1.51 + MP_CHECKOK(mp_init(&temp)); 1.52 + MP_CHECKOK(mp_init(&tempx)); 1.53 + MP_CHECKOK(mp_init(&tempy)); 1.54 + /* if P = inf, then R = Q */ 1.55 + if (ec_GFp_pt_is_inf_aff(px, py) == 0) { 1.56 + MP_CHECKOK(mp_copy(qx, rx)); 1.57 + MP_CHECKOK(mp_copy(qy, ry)); 1.58 + res = MP_OKAY; 1.59 + goto CLEANUP; 1.60 + } 1.61 + /* if Q = inf, then R = P */ 1.62 + if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) { 1.63 + MP_CHECKOK(mp_copy(px, rx)); 1.64 + MP_CHECKOK(mp_copy(py, ry)); 1.65 + res = MP_OKAY; 1.66 + goto CLEANUP; 1.67 + } 1.68 + /* if px != qx, then lambda = (py-qy) / (px-qx) */ 1.69 + if (mp_cmp(px, qx) != 0) { 1.70 + MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth)); 1.71 + MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth)); 1.72 + MP_CHECKOK(group->meth-> 1.73 + field_div(&tempy, &tempx, &lambda, group->meth)); 1.74 + } else { 1.75 + /* if py != qy or qy = 0, then R = inf */ 1.76 + if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) { 1.77 + mp_zero(rx); 1.78 + mp_zero(ry); 1.79 + res = MP_OKAY; 1.80 + goto CLEANUP; 1.81 + } 1.82 + /* lambda = (3qx^2+a) / (2qy) */ 1.83 + MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth)); 1.84 + MP_CHECKOK(mp_set_int(&temp, 3)); 1.85 + if (group->meth->field_enc) { 1.86 + MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth)); 1.87 + } 1.88 + MP_CHECKOK(group->meth-> 1.89 + field_mul(&tempx, &temp, &tempx, group->meth)); 1.90 + MP_CHECKOK(group->meth-> 1.91 + field_add(&tempx, &group->curvea, &tempx, group->meth)); 1.92 + MP_CHECKOK(mp_set_int(&temp, 2)); 1.93 + if (group->meth->field_enc) { 1.94 + MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth)); 1.95 + } 1.96 + MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth)); 1.97 + MP_CHECKOK(group->meth-> 1.98 + field_div(&tempx, &tempy, &lambda, group->meth)); 1.99 + } 1.100 + /* rx = lambda^2 - px - qx */ 1.101 + MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); 1.102 + MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth)); 1.103 + MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth)); 1.104 + /* ry = (x1-x2) * lambda - y1 */ 1.105 + MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth)); 1.106 + MP_CHECKOK(group->meth-> 1.107 + field_mul(&tempy, &lambda, &tempy, group->meth)); 1.108 + MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth)); 1.109 + MP_CHECKOK(mp_copy(&tempx, rx)); 1.110 + MP_CHECKOK(mp_copy(&tempy, ry)); 1.111 + 1.112 + CLEANUP: 1.113 + mp_clear(&lambda); 1.114 + mp_clear(&temp); 1.115 + mp_clear(&tempx); 1.116 + mp_clear(&tempy); 1.117 + return res; 1.118 +} 1.119 + 1.120 +/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be 1.121 + * identical. Uses affine coordinates. Assumes input is already 1.122 + * field-encoded using field_enc, and returns output that is still 1.123 + * field-encoded. */ 1.124 +mp_err 1.125 +ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, 1.126 + const mp_int *qy, mp_int *rx, mp_int *ry, 1.127 + const ECGroup *group) 1.128 +{ 1.129 + mp_err res = MP_OKAY; 1.130 + mp_int nqy; 1.131 + 1.132 + MP_DIGITS(&nqy) = 0; 1.133 + MP_CHECKOK(mp_init(&nqy)); 1.134 + /* nqy = -qy */ 1.135 + MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth)); 1.136 + res = group->point_add(px, py, qx, &nqy, rx, ry, group); 1.137 + CLEANUP: 1.138 + mp_clear(&nqy); 1.139 + return res; 1.140 +} 1.141 + 1.142 +/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses 1.143 + * affine coordinates. Assumes input is already field-encoded using 1.144 + * field_enc, and returns output that is still field-encoded. */ 1.145 +mp_err 1.146 +ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, 1.147 + mp_int *ry, const ECGroup *group) 1.148 +{ 1.149 + return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group); 1.150 +} 1.151 + 1.152 +/* by default, this routine is unused and thus doesn't need to be compiled */ 1.153 +#ifdef ECL_ENABLE_GFP_PT_MUL_AFF 1.154 +/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and 1.155 + * R can be identical. Uses affine coordinates. Assumes input is already 1.156 + * field-encoded using field_enc, and returns output that is still 1.157 + * field-encoded. */ 1.158 +mp_err 1.159 +ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, 1.160 + mp_int *rx, mp_int *ry, const ECGroup *group) 1.161 +{ 1.162 + mp_err res = MP_OKAY; 1.163 + mp_int k, k3, qx, qy, sx, sy; 1.164 + int b1, b3, i, l; 1.165 + 1.166 + MP_DIGITS(&k) = 0; 1.167 + MP_DIGITS(&k3) = 0; 1.168 + MP_DIGITS(&qx) = 0; 1.169 + MP_DIGITS(&qy) = 0; 1.170 + MP_DIGITS(&sx) = 0; 1.171 + MP_DIGITS(&sy) = 0; 1.172 + MP_CHECKOK(mp_init(&k)); 1.173 + MP_CHECKOK(mp_init(&k3)); 1.174 + MP_CHECKOK(mp_init(&qx)); 1.175 + MP_CHECKOK(mp_init(&qy)); 1.176 + MP_CHECKOK(mp_init(&sx)); 1.177 + MP_CHECKOK(mp_init(&sy)); 1.178 + 1.179 + /* if n = 0 then r = inf */ 1.180 + if (mp_cmp_z(n) == 0) { 1.181 + mp_zero(rx); 1.182 + mp_zero(ry); 1.183 + res = MP_OKAY; 1.184 + goto CLEANUP; 1.185 + } 1.186 + /* Q = P, k = n */ 1.187 + MP_CHECKOK(mp_copy(px, &qx)); 1.188 + MP_CHECKOK(mp_copy(py, &qy)); 1.189 + MP_CHECKOK(mp_copy(n, &k)); 1.190 + /* if n < 0 then Q = -Q, k = -k */ 1.191 + if (mp_cmp_z(n) < 0) { 1.192 + MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth)); 1.193 + MP_CHECKOK(mp_neg(&k, &k)); 1.194 + } 1.195 +#ifdef ECL_DEBUG /* basic double and add method */ 1.196 + l = mpl_significant_bits(&k) - 1; 1.197 + MP_CHECKOK(mp_copy(&qx, &sx)); 1.198 + MP_CHECKOK(mp_copy(&qy, &sy)); 1.199 + for (i = l - 1; i >= 0; i--) { 1.200 + /* S = 2S */ 1.201 + MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); 1.202 + /* if k_i = 1, then S = S + Q */ 1.203 + if (mpl_get_bit(&k, i) != 0) { 1.204 + MP_CHECKOK(group-> 1.205 + point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); 1.206 + } 1.207 + } 1.208 +#else /* double and add/subtract method from 1.209 + * standard */ 1.210 + /* k3 = 3 * k */ 1.211 + MP_CHECKOK(mp_set_int(&k3, 3)); 1.212 + MP_CHECKOK(mp_mul(&k, &k3, &k3)); 1.213 + /* S = Q */ 1.214 + MP_CHECKOK(mp_copy(&qx, &sx)); 1.215 + MP_CHECKOK(mp_copy(&qy, &sy)); 1.216 + /* l = index of high order bit in binary representation of 3*k */ 1.217 + l = mpl_significant_bits(&k3) - 1; 1.218 + /* for i = l-1 downto 1 */ 1.219 + for (i = l - 1; i >= 1; i--) { 1.220 + /* S = 2S */ 1.221 + MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); 1.222 + b3 = MP_GET_BIT(&k3, i); 1.223 + b1 = MP_GET_BIT(&k, i); 1.224 + /* if k3_i = 1 and k_i = 0, then S = S + Q */ 1.225 + if ((b3 == 1) && (b1 == 0)) { 1.226 + MP_CHECKOK(group-> 1.227 + point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); 1.228 + /* if k3_i = 0 and k_i = 1, then S = S - Q */ 1.229 + } else if ((b3 == 0) && (b1 == 1)) { 1.230 + MP_CHECKOK(group-> 1.231 + point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group)); 1.232 + } 1.233 + } 1.234 +#endif 1.235 + /* output S */ 1.236 + MP_CHECKOK(mp_copy(&sx, rx)); 1.237 + MP_CHECKOK(mp_copy(&sy, ry)); 1.238 + 1.239 + CLEANUP: 1.240 + mp_clear(&k); 1.241 + mp_clear(&k3); 1.242 + mp_clear(&qx); 1.243 + mp_clear(&qy); 1.244 + mp_clear(&sx); 1.245 + mp_clear(&sy); 1.246 + return res; 1.247 +} 1.248 +#endif 1.249 + 1.250 +/* Validates a point on a GFp curve. */ 1.251 +mp_err 1.252 +ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group) 1.253 +{ 1.254 + mp_err res = MP_NO; 1.255 + mp_int accl, accr, tmp, pxt, pyt; 1.256 + 1.257 + MP_DIGITS(&accl) = 0; 1.258 + MP_DIGITS(&accr) = 0; 1.259 + MP_DIGITS(&tmp) = 0; 1.260 + MP_DIGITS(&pxt) = 0; 1.261 + MP_DIGITS(&pyt) = 0; 1.262 + MP_CHECKOK(mp_init(&accl)); 1.263 + MP_CHECKOK(mp_init(&accr)); 1.264 + MP_CHECKOK(mp_init(&tmp)); 1.265 + MP_CHECKOK(mp_init(&pxt)); 1.266 + MP_CHECKOK(mp_init(&pyt)); 1.267 + 1.268 + /* 1: Verify that publicValue is not the point at infinity */ 1.269 + if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) { 1.270 + res = MP_NO; 1.271 + goto CLEANUP; 1.272 + } 1.273 + /* 2: Verify that the coordinates of publicValue are elements 1.274 + * of the field. 1.275 + */ 1.276 + if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) || 1.277 + (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) { 1.278 + res = MP_NO; 1.279 + goto CLEANUP; 1.280 + } 1.281 + /* 3: Verify that publicValue is on the curve. */ 1.282 + if (group->meth->field_enc) { 1.283 + group->meth->field_enc(px, &pxt, group->meth); 1.284 + group->meth->field_enc(py, &pyt, group->meth); 1.285 + } else { 1.286 + mp_copy(px, &pxt); 1.287 + mp_copy(py, &pyt); 1.288 + } 1.289 + /* left-hand side: y^2 */ 1.290 + MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) ); 1.291 + /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */ 1.292 + MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) ); 1.293 + MP_CHECKOK( group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth) ); 1.294 + MP_CHECKOK( group->meth->field_mul(&tmp, &pxt, &accr, group->meth) ); 1.295 + MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) ); 1.296 + /* check LHS - RHS == 0 */ 1.297 + MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) ); 1.298 + if (mp_cmp_z(&accr) != 0) { 1.299 + res = MP_NO; 1.300 + goto CLEANUP; 1.301 + } 1.302 + /* 4: Verify that the order of the curve times the publicValue 1.303 + * is the point at infinity. 1.304 + */ 1.305 + MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) ); 1.306 + if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) { 1.307 + res = MP_NO; 1.308 + goto CLEANUP; 1.309 + } 1.310 + 1.311 + res = MP_YES; 1.312 + 1.313 +CLEANUP: 1.314 + mp_clear(&accl); 1.315 + mp_clear(&accr); 1.316 + mp_clear(&tmp); 1.317 + mp_clear(&pxt); 1.318 + mp_clear(&pyt); 1.319 + return res; 1.320 +}