security/nss/lib/freebl/ecl/ecp_jac.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/ecl/ecp_jac.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,514 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +#include "ecp.h"
     1.9 +#include "mplogic.h"
    1.10 +#include <stdlib.h>
    1.11 +#ifdef ECL_DEBUG
    1.12 +#include <assert.h>
    1.13 +#endif
    1.14 +
    1.15 +/* Converts a point P(px, py) from affine coordinates to Jacobian
    1.16 + * projective coordinates R(rx, ry, rz). Assumes input is already
    1.17 + * field-encoded using field_enc, and returns output that is still
    1.18 + * field-encoded. */
    1.19 +mp_err
    1.20 +ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
    1.21 +				  mp_int *ry, mp_int *rz, const ECGroup *group)
    1.22 +{
    1.23 +	mp_err res = MP_OKAY;
    1.24 +
    1.25 +	if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
    1.26 +		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
    1.27 +	} else {
    1.28 +		MP_CHECKOK(mp_copy(px, rx));
    1.29 +		MP_CHECKOK(mp_copy(py, ry));
    1.30 +		MP_CHECKOK(mp_set_int(rz, 1));
    1.31 +		if (group->meth->field_enc) {
    1.32 +			MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
    1.33 +		}
    1.34 +	}
    1.35 +  CLEANUP:
    1.36 +	return res;
    1.37 +}
    1.38 +
    1.39 +/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
    1.40 + * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
    1.41 + * Assumes input is already field-encoded using field_enc, and returns
    1.42 + * output that is still field-encoded. */
    1.43 +mp_err
    1.44 +ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
    1.45 +				  mp_int *rx, mp_int *ry, const ECGroup *group)
    1.46 +{
    1.47 +	mp_err res = MP_OKAY;
    1.48 +	mp_int z1, z2, z3;
    1.49 +
    1.50 +	MP_DIGITS(&z1) = 0;
    1.51 +	MP_DIGITS(&z2) = 0;
    1.52 +	MP_DIGITS(&z3) = 0;
    1.53 +	MP_CHECKOK(mp_init(&z1));
    1.54 +	MP_CHECKOK(mp_init(&z2));
    1.55 +	MP_CHECKOK(mp_init(&z3));
    1.56 +
    1.57 +	/* if point at infinity, then set point at infinity and exit */
    1.58 +	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
    1.59 +		MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
    1.60 +		goto CLEANUP;
    1.61 +	}
    1.62 +
    1.63 +	/* transform (px, py, pz) into (px / pz^2, py / pz^3) */
    1.64 +	if (mp_cmp_d(pz, 1) == 0) {
    1.65 +		MP_CHECKOK(mp_copy(px, rx));
    1.66 +		MP_CHECKOK(mp_copy(py, ry));
    1.67 +	} else {
    1.68 +		MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
    1.69 +		MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
    1.70 +		MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
    1.71 +		MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
    1.72 +		MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
    1.73 +	}
    1.74 +
    1.75 +  CLEANUP:
    1.76 +	mp_clear(&z1);
    1.77 +	mp_clear(&z2);
    1.78 +	mp_clear(&z3);
    1.79 +	return res;
    1.80 +}
    1.81 +
    1.82 +/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
    1.83 + * coordinates. */
    1.84 +mp_err
    1.85 +ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
    1.86 +{
    1.87 +	return mp_cmp_z(pz);
    1.88 +}
    1.89 +
    1.90 +/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
    1.91 + * coordinates. */
    1.92 +mp_err
    1.93 +ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
    1.94 +{
    1.95 +	mp_zero(pz);
    1.96 +	return MP_OKAY;
    1.97 +}
    1.98 +
    1.99 +/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
   1.100 + * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
   1.101 + * Uses mixed Jacobian-affine coordinates. Assumes input is already
   1.102 + * field-encoded using field_enc, and returns output that is still
   1.103 + * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
   1.104 + * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
   1.105 + * Fields. */
   1.106 +mp_err
   1.107 +ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
   1.108 +					  const mp_int *qx, const mp_int *qy, mp_int *rx,
   1.109 +					  mp_int *ry, mp_int *rz, const ECGroup *group)
   1.110 +{
   1.111 +	mp_err res = MP_OKAY;
   1.112 +	mp_int A, B, C, D, C2, C3;
   1.113 +
   1.114 +	MP_DIGITS(&A) = 0;
   1.115 +	MP_DIGITS(&B) = 0;
   1.116 +	MP_DIGITS(&C) = 0;
   1.117 +	MP_DIGITS(&D) = 0;
   1.118 +	MP_DIGITS(&C2) = 0;
   1.119 +	MP_DIGITS(&C3) = 0;
   1.120 +	MP_CHECKOK(mp_init(&A));
   1.121 +	MP_CHECKOK(mp_init(&B));
   1.122 +	MP_CHECKOK(mp_init(&C));
   1.123 +	MP_CHECKOK(mp_init(&D));
   1.124 +	MP_CHECKOK(mp_init(&C2));
   1.125 +	MP_CHECKOK(mp_init(&C3));
   1.126 +
   1.127 +	/* If either P or Q is the point at infinity, then return the other
   1.128 +	 * point */
   1.129 +	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   1.130 +		MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
   1.131 +		goto CLEANUP;
   1.132 +	}
   1.133 +	if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
   1.134 +		MP_CHECKOK(mp_copy(px, rx));
   1.135 +		MP_CHECKOK(mp_copy(py, ry));
   1.136 +		MP_CHECKOK(mp_copy(pz, rz));
   1.137 +		goto CLEANUP;
   1.138 +	}
   1.139 +
   1.140 +	/* A = qx * pz^2, B = qy * pz^3 */
   1.141 +	MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
   1.142 +	MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
   1.143 +	MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
   1.144 +	MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
   1.145 +
   1.146 +	/* C = A - px, D = B - py */
   1.147 +	MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
   1.148 +	MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
   1.149 +
   1.150 +	/* C2 = C^2, C3 = C^3 */
   1.151 +	MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
   1.152 +	MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
   1.153 +
   1.154 +	/* rz = pz * C */
   1.155 +	MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
   1.156 +
   1.157 +	/* C = px * C^2 */
   1.158 +	MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
   1.159 +	/* A = D^2 */
   1.160 +	MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
   1.161 +
   1.162 +	/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
   1.163 +	MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
   1.164 +	MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
   1.165 +	MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
   1.166 +
   1.167 +	/* C3 = py * C^3 */
   1.168 +	MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
   1.169 +
   1.170 +	/* ry = D * (px * C^2 - rx) - py * C^3 */
   1.171 +	MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
   1.172 +	MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
   1.173 +	MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
   1.174 +
   1.175 +  CLEANUP:
   1.176 +	mp_clear(&A);
   1.177 +	mp_clear(&B);
   1.178 +	mp_clear(&C);
   1.179 +	mp_clear(&D);
   1.180 +	mp_clear(&C2);
   1.181 +	mp_clear(&C3);
   1.182 +	return res;
   1.183 +}
   1.184 +
   1.185 +/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses 
   1.186 + * Jacobian coordinates.
   1.187 + *
   1.188 + * Assumes input is already field-encoded using field_enc, and returns 
   1.189 + * output that is still field-encoded.
   1.190 + *
   1.191 + * This routine implements Point Doubling in the Jacobian Projective 
   1.192 + * space as described in the paper "Efficient elliptic curve exponentiation 
   1.193 + * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
   1.194 + */
   1.195 +mp_err
   1.196 +ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
   1.197 +				  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
   1.198 +{
   1.199 +	mp_err res = MP_OKAY;
   1.200 +	mp_int t0, t1, M, S;
   1.201 +
   1.202 +	MP_DIGITS(&t0) = 0;
   1.203 +	MP_DIGITS(&t1) = 0;
   1.204 +	MP_DIGITS(&M) = 0;
   1.205 +	MP_DIGITS(&S) = 0;
   1.206 +	MP_CHECKOK(mp_init(&t0));
   1.207 +	MP_CHECKOK(mp_init(&t1));
   1.208 +	MP_CHECKOK(mp_init(&M));
   1.209 +	MP_CHECKOK(mp_init(&S));
   1.210 +
   1.211 +	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
   1.212 +		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
   1.213 +		goto CLEANUP;
   1.214 +	}
   1.215 +
   1.216 +	if (mp_cmp_d(pz, 1) == 0) {
   1.217 +		/* M = 3 * px^2 + a */
   1.218 +		MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
   1.219 +		MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
   1.220 +		MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
   1.221 +		MP_CHECKOK(group->meth->
   1.222 +				   field_add(&t0, &group->curvea, &M, group->meth));
   1.223 +	} else if (mp_cmp_int(&group->curvea, -3) == 0) {
   1.224 +		/* M = 3 * (px + pz^2) * (px - pz^2) */
   1.225 +		MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
   1.226 +		MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
   1.227 +		MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
   1.228 +		MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
   1.229 +		MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
   1.230 +		MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
   1.231 +	} else {
   1.232 +		/* M = 3 * (px^2) + a * (pz^4) */
   1.233 +		MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
   1.234 +		MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
   1.235 +		MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
   1.236 +		MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
   1.237 +		MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
   1.238 +		MP_CHECKOK(group->meth->
   1.239 +				   field_mul(&M, &group->curvea, &M, group->meth));
   1.240 +		MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
   1.241 +	}
   1.242 +
   1.243 +	/* rz = 2 * py * pz */
   1.244 +	/* t0 = 4 * py^2 */
   1.245 +	if (mp_cmp_d(pz, 1) == 0) {
   1.246 +		MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
   1.247 +		MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
   1.248 +	} else {
   1.249 +		MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
   1.250 +		MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
   1.251 +		MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
   1.252 +	}
   1.253 +
   1.254 +	/* S = 4 * px * py^2 = px * (2 * py)^2 */
   1.255 +	MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
   1.256 +
   1.257 +	/* rx = M^2 - 2 * S */
   1.258 +	MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
   1.259 +	MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
   1.260 +	MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
   1.261 +
   1.262 +	/* ry = M * (S - rx) - 8 * py^4 */
   1.263 +	MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
   1.264 +	if (mp_isodd(&t1)) {
   1.265 +		MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
   1.266 +	}
   1.267 +	MP_CHECKOK(mp_div_2(&t1, &t1));
   1.268 +	MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
   1.269 +	MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
   1.270 +	MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
   1.271 +
   1.272 +  CLEANUP:
   1.273 +	mp_clear(&t0);
   1.274 +	mp_clear(&t1);
   1.275 +	mp_clear(&M);
   1.276 +	mp_clear(&S);
   1.277 +	return res;
   1.278 +}
   1.279 +
   1.280 +/* by default, this routine is unused and thus doesn't need to be compiled */
   1.281 +#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
   1.282 +/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
   1.283 + * a, b and p are the elliptic curve coefficients and the prime that
   1.284 + * determines the field GFp.  Elliptic curve points P and R can be
   1.285 + * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
   1.286 + * already field-encoded using field_enc, and returns output that is still 
   1.287 + * field-encoded. Uses 4-bit window method. */
   1.288 +mp_err
   1.289 +ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
   1.290 +				  mp_int *rx, mp_int *ry, const ECGroup *group)
   1.291 +{
   1.292 +	mp_err res = MP_OKAY;
   1.293 +	mp_int precomp[16][2], rz;
   1.294 +	int i, ni, d;
   1.295 +
   1.296 +	MP_DIGITS(&rz) = 0;
   1.297 +	for (i = 0; i < 16; i++) {
   1.298 +		MP_DIGITS(&precomp[i][0]) = 0;
   1.299 +		MP_DIGITS(&precomp[i][1]) = 0;
   1.300 +	}
   1.301 +
   1.302 +	ARGCHK(group != NULL, MP_BADARG);
   1.303 +	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
   1.304 +
   1.305 +	/* initialize precomputation table */
   1.306 +	for (i = 0; i < 16; i++) {
   1.307 +		MP_CHECKOK(mp_init(&precomp[i][0]));
   1.308 +		MP_CHECKOK(mp_init(&precomp[i][1]));
   1.309 +	}
   1.310 +
   1.311 +	/* fill precomputation table */
   1.312 +	mp_zero(&precomp[0][0]);
   1.313 +	mp_zero(&precomp[0][1]);
   1.314 +	MP_CHECKOK(mp_copy(px, &precomp[1][0]));
   1.315 +	MP_CHECKOK(mp_copy(py, &precomp[1][1]));
   1.316 +	for (i = 2; i < 16; i++) {
   1.317 +		MP_CHECKOK(group->
   1.318 +				   point_add(&precomp[1][0], &precomp[1][1],
   1.319 +							 &precomp[i - 1][0], &precomp[i - 1][1],
   1.320 +							 &precomp[i][0], &precomp[i][1], group));
   1.321 +	}
   1.322 +
   1.323 +	d = (mpl_significant_bits(n) + 3) / 4;
   1.324 +
   1.325 +	/* R = inf */
   1.326 +	MP_CHECKOK(mp_init(&rz));
   1.327 +	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   1.328 +
   1.329 +	for (i = d - 1; i >= 0; i--) {
   1.330 +		/* compute window ni */
   1.331 +		ni = MP_GET_BIT(n, 4 * i + 3);
   1.332 +		ni <<= 1;
   1.333 +		ni |= MP_GET_BIT(n, 4 * i + 2);
   1.334 +		ni <<= 1;
   1.335 +		ni |= MP_GET_BIT(n, 4 * i + 1);
   1.336 +		ni <<= 1;
   1.337 +		ni |= MP_GET_BIT(n, 4 * i);
   1.338 +		/* R = 2^4 * R */
   1.339 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.340 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.341 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.342 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.343 +		/* R = R + (ni * P) */
   1.344 +		MP_CHECKOK(ec_GFp_pt_add_jac_aff
   1.345 +				   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
   1.346 +					&rz, group));
   1.347 +	}
   1.348 +
   1.349 +	/* convert result S to affine coordinates */
   1.350 +	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   1.351 +
   1.352 +  CLEANUP:
   1.353 +	mp_clear(&rz);
   1.354 +	for (i = 0; i < 16; i++) {
   1.355 +		mp_clear(&precomp[i][0]);
   1.356 +		mp_clear(&precomp[i][1]);
   1.357 +	}
   1.358 +	return res;
   1.359 +}
   1.360 +#endif
   1.361 +
   1.362 +/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
   1.363 + * k2 * P(x, y), where G is the generator (base point) of the group of
   1.364 + * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
   1.365 + * Uses mixed Jacobian-affine coordinates. Input and output values are
   1.366 + * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
   1.367 + * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
   1.368 + * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
   1.369 +mp_err
   1.370 +ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
   1.371 +				   const mp_int *py, mp_int *rx, mp_int *ry,
   1.372 +				   const ECGroup *group)
   1.373 +{
   1.374 +	mp_err res = MP_OKAY;
   1.375 +	mp_int precomp[4][4][2];
   1.376 +	mp_int rz;
   1.377 +	const mp_int *a, *b;
   1.378 +	int i, j;
   1.379 +	int ai, bi, d;
   1.380 +
   1.381 +	for (i = 0; i < 4; i++) {
   1.382 +		for (j = 0; j < 4; j++) {
   1.383 +			MP_DIGITS(&precomp[i][j][0]) = 0;
   1.384 +			MP_DIGITS(&precomp[i][j][1]) = 0;
   1.385 +		}
   1.386 +	}
   1.387 +	MP_DIGITS(&rz) = 0;
   1.388 +
   1.389 +	ARGCHK(group != NULL, MP_BADARG);
   1.390 +	ARGCHK(!((k1 == NULL)
   1.391 +			 && ((k2 == NULL) || (px == NULL)
   1.392 +				 || (py == NULL))), MP_BADARG);
   1.393 +
   1.394 +	/* if some arguments are not defined used ECPoint_mul */
   1.395 +	if (k1 == NULL) {
   1.396 +		return ECPoint_mul(group, k2, px, py, rx, ry);
   1.397 +	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
   1.398 +		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
   1.399 +	}
   1.400 +
   1.401 +	/* initialize precomputation table */
   1.402 +	for (i = 0; i < 4; i++) {
   1.403 +		for (j = 0; j < 4; j++) {
   1.404 +			MP_CHECKOK(mp_init(&precomp[i][j][0]));
   1.405 +			MP_CHECKOK(mp_init(&precomp[i][j][1]));
   1.406 +		}
   1.407 +	}
   1.408 +
   1.409 +	/* fill precomputation table */
   1.410 +	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
   1.411 +	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
   1.412 +		a = k2;
   1.413 +		b = k1;
   1.414 +		if (group->meth->field_enc) {
   1.415 +			MP_CHECKOK(group->meth->
   1.416 +					   field_enc(px, &precomp[1][0][0], group->meth));
   1.417 +			MP_CHECKOK(group->meth->
   1.418 +					   field_enc(py, &precomp[1][0][1], group->meth));
   1.419 +		} else {
   1.420 +			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
   1.421 +			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
   1.422 +		}
   1.423 +		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
   1.424 +		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
   1.425 +	} else {
   1.426 +		a = k1;
   1.427 +		b = k2;
   1.428 +		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
   1.429 +		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
   1.430 +		if (group->meth->field_enc) {
   1.431 +			MP_CHECKOK(group->meth->
   1.432 +					   field_enc(px, &precomp[0][1][0], group->meth));
   1.433 +			MP_CHECKOK(group->meth->
   1.434 +					   field_enc(py, &precomp[0][1][1], group->meth));
   1.435 +		} else {
   1.436 +			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
   1.437 +			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
   1.438 +		}
   1.439 +	}
   1.440 +	/* precompute [*][0][*] */
   1.441 +	mp_zero(&precomp[0][0][0]);
   1.442 +	mp_zero(&precomp[0][0][1]);
   1.443 +	MP_CHECKOK(group->
   1.444 +			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
   1.445 +						 &precomp[2][0][0], &precomp[2][0][1], group));
   1.446 +	MP_CHECKOK(group->
   1.447 +			   point_add(&precomp[1][0][0], &precomp[1][0][1],
   1.448 +						 &precomp[2][0][0], &precomp[2][0][1],
   1.449 +						 &precomp[3][0][0], &precomp[3][0][1], group));
   1.450 +	/* precompute [*][1][*] */
   1.451 +	for (i = 1; i < 4; i++) {
   1.452 +		MP_CHECKOK(group->
   1.453 +				   point_add(&precomp[0][1][0], &precomp[0][1][1],
   1.454 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.455 +							 &precomp[i][1][0], &precomp[i][1][1], group));
   1.456 +	}
   1.457 +	/* precompute [*][2][*] */
   1.458 +	MP_CHECKOK(group->
   1.459 +			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
   1.460 +						 &precomp[0][2][0], &precomp[0][2][1], group));
   1.461 +	for (i = 1; i < 4; i++) {
   1.462 +		MP_CHECKOK(group->
   1.463 +				   point_add(&precomp[0][2][0], &precomp[0][2][1],
   1.464 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.465 +							 &precomp[i][2][0], &precomp[i][2][1], group));
   1.466 +	}
   1.467 +	/* precompute [*][3][*] */
   1.468 +	MP_CHECKOK(group->
   1.469 +			   point_add(&precomp[0][1][0], &precomp[0][1][1],
   1.470 +						 &precomp[0][2][0], &precomp[0][2][1],
   1.471 +						 &precomp[0][3][0], &precomp[0][3][1], group));
   1.472 +	for (i = 1; i < 4; i++) {
   1.473 +		MP_CHECKOK(group->
   1.474 +				   point_add(&precomp[0][3][0], &precomp[0][3][1],
   1.475 +							 &precomp[i][0][0], &precomp[i][0][1],
   1.476 +							 &precomp[i][3][0], &precomp[i][3][1], group));
   1.477 +	}
   1.478 +
   1.479 +	d = (mpl_significant_bits(a) + 1) / 2;
   1.480 +
   1.481 +	/* R = inf */
   1.482 +	MP_CHECKOK(mp_init(&rz));
   1.483 +	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
   1.484 +
   1.485 +	for (i = d - 1; i >= 0; i--) {
   1.486 +		ai = MP_GET_BIT(a, 2 * i + 1);
   1.487 +		ai <<= 1;
   1.488 +		ai |= MP_GET_BIT(a, 2 * i);
   1.489 +		bi = MP_GET_BIT(b, 2 * i + 1);
   1.490 +		bi <<= 1;
   1.491 +		bi |= MP_GET_BIT(b, 2 * i);
   1.492 +		/* R = 2^2 * R */
   1.493 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.494 +		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
   1.495 +		/* R = R + (ai * A + bi * B) */
   1.496 +		MP_CHECKOK(ec_GFp_pt_add_jac_aff
   1.497 +				   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
   1.498 +					rx, ry, &rz, group));
   1.499 +	}
   1.500 +
   1.501 +	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
   1.502 +
   1.503 +	if (group->meth->field_dec) {
   1.504 +		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
   1.505 +		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
   1.506 +	}
   1.507 +
   1.508 +  CLEANUP:
   1.509 +	mp_clear(&rz);
   1.510 +	for (i = 0; i < 4; i++) {
   1.511 +		for (j = 0; j < 4; j++) {
   1.512 +			mp_clear(&precomp[i][j][0]);
   1.513 +			mp_clear(&precomp[i][j][1]);
   1.514 +		}
   1.515 +	}
   1.516 +	return res;
   1.517 +}

mercurial