1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/mpi/mpi.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,4820 @@ 1.4 +/* 1.5 + * mpi.c 1.6 + * 1.7 + * Arbitrary precision integer arithmetic library 1.8 + * 1.9 + * This Source Code Form is subject to the terms of the Mozilla Public 1.10 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.11 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.12 + 1.13 +#include "mpi-priv.h" 1.14 +#if defined(OSF1) 1.15 +#include <c_asm.h> 1.16 +#endif 1.17 + 1.18 +#if defined(__arm__) && \ 1.19 + ((defined(__thumb__) && !defined(__thumb2__)) || defined(__ARM_ARCH_3__)) 1.20 +/* 16-bit thumb or ARM v3 doesn't work inlined assember version */ 1.21 +#undef MP_ASSEMBLY_MULTIPLY 1.22 +#undef MP_ASSEMBLY_SQUARE 1.23 +#endif 1.24 + 1.25 +#if MP_LOGTAB 1.26 +/* 1.27 + A table of the logs of 2 for various bases (the 0 and 1 entries of 1.28 + this table are meaningless and should not be referenced). 1.29 + 1.30 + This table is used to compute output lengths for the mp_toradix() 1.31 + function. Since a number n in radix r takes up about log_r(n) 1.32 + digits, we estimate the output size by taking the least integer 1.33 + greater than log_r(n), where: 1.34 + 1.35 + log_r(n) = log_2(n) * log_r(2) 1.36 + 1.37 + This table, therefore, is a table of log_r(2) for 2 <= r <= 36, 1.38 + which are the output bases supported. 1.39 + */ 1.40 +#include "logtab.h" 1.41 +#endif 1.42 + 1.43 +/* {{{ Constant strings */ 1.44 + 1.45 +/* Constant strings returned by mp_strerror() */ 1.46 +static const char *mp_err_string[] = { 1.47 + "unknown result code", /* say what? */ 1.48 + "boolean true", /* MP_OKAY, MP_YES */ 1.49 + "boolean false", /* MP_NO */ 1.50 + "out of memory", /* MP_MEM */ 1.51 + "argument out of range", /* MP_RANGE */ 1.52 + "invalid input parameter", /* MP_BADARG */ 1.53 + "result is undefined" /* MP_UNDEF */ 1.54 +}; 1.55 + 1.56 +/* Value to digit maps for radix conversion */ 1.57 + 1.58 +/* s_dmap_1 - standard digits and letters */ 1.59 +static const char *s_dmap_1 = 1.60 + "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; 1.61 + 1.62 +/* }}} */ 1.63 + 1.64 +unsigned long mp_allocs; 1.65 +unsigned long mp_frees; 1.66 +unsigned long mp_copies; 1.67 + 1.68 +/* {{{ Default precision manipulation */ 1.69 + 1.70 +/* Default precision for newly created mp_int's */ 1.71 +static mp_size s_mp_defprec = MP_DEFPREC; 1.72 + 1.73 +mp_size mp_get_prec(void) 1.74 +{ 1.75 + return s_mp_defprec; 1.76 + 1.77 +} /* end mp_get_prec() */ 1.78 + 1.79 +void mp_set_prec(mp_size prec) 1.80 +{ 1.81 + if(prec == 0) 1.82 + s_mp_defprec = MP_DEFPREC; 1.83 + else 1.84 + s_mp_defprec = prec; 1.85 + 1.86 +} /* end mp_set_prec() */ 1.87 + 1.88 +/* }}} */ 1.89 + 1.90 +/*------------------------------------------------------------------------*/ 1.91 +/* {{{ mp_init(mp) */ 1.92 + 1.93 +/* 1.94 + mp_init(mp) 1.95 + 1.96 + Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, 1.97 + MP_MEM if memory could not be allocated for the structure. 1.98 + */ 1.99 + 1.100 +mp_err mp_init(mp_int *mp) 1.101 +{ 1.102 + return mp_init_size(mp, s_mp_defprec); 1.103 + 1.104 +} /* end mp_init() */ 1.105 + 1.106 +/* }}} */ 1.107 + 1.108 +/* {{{ mp_init_size(mp, prec) */ 1.109 + 1.110 +/* 1.111 + mp_init_size(mp, prec) 1.112 + 1.113 + Initialize a new zero-valued mp_int with at least the given 1.114 + precision; returns MP_OKAY if successful, or MP_MEM if memory could 1.115 + not be allocated for the structure. 1.116 + */ 1.117 + 1.118 +mp_err mp_init_size(mp_int *mp, mp_size prec) 1.119 +{ 1.120 + ARGCHK(mp != NULL && prec > 0, MP_BADARG); 1.121 + 1.122 + prec = MP_ROUNDUP(prec, s_mp_defprec); 1.123 + if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) 1.124 + return MP_MEM; 1.125 + 1.126 + SIGN(mp) = ZPOS; 1.127 + USED(mp) = 1; 1.128 + ALLOC(mp) = prec; 1.129 + 1.130 + return MP_OKAY; 1.131 + 1.132 +} /* end mp_init_size() */ 1.133 + 1.134 +/* }}} */ 1.135 + 1.136 +/* {{{ mp_init_copy(mp, from) */ 1.137 + 1.138 +/* 1.139 + mp_init_copy(mp, from) 1.140 + 1.141 + Initialize mp as an exact copy of from. Returns MP_OKAY if 1.142 + successful, MP_MEM if memory could not be allocated for the new 1.143 + structure. 1.144 + */ 1.145 + 1.146 +mp_err mp_init_copy(mp_int *mp, const mp_int *from) 1.147 +{ 1.148 + ARGCHK(mp != NULL && from != NULL, MP_BADARG); 1.149 + 1.150 + if(mp == from) 1.151 + return MP_OKAY; 1.152 + 1.153 + if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) 1.154 + return MP_MEM; 1.155 + 1.156 + s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); 1.157 + USED(mp) = USED(from); 1.158 + ALLOC(mp) = ALLOC(from); 1.159 + SIGN(mp) = SIGN(from); 1.160 + 1.161 + return MP_OKAY; 1.162 + 1.163 +} /* end mp_init_copy() */ 1.164 + 1.165 +/* }}} */ 1.166 + 1.167 +/* {{{ mp_copy(from, to) */ 1.168 + 1.169 +/* 1.170 + mp_copy(from, to) 1.171 + 1.172 + Copies the mp_int 'from' to the mp_int 'to'. It is presumed that 1.173 + 'to' has already been initialized (if not, use mp_init_copy() 1.174 + instead). If 'from' and 'to' are identical, nothing happens. 1.175 + */ 1.176 + 1.177 +mp_err mp_copy(const mp_int *from, mp_int *to) 1.178 +{ 1.179 + ARGCHK(from != NULL && to != NULL, MP_BADARG); 1.180 + 1.181 + if(from == to) 1.182 + return MP_OKAY; 1.183 + 1.184 + { /* copy */ 1.185 + mp_digit *tmp; 1.186 + 1.187 + /* 1.188 + If the allocated buffer in 'to' already has enough space to hold 1.189 + all the used digits of 'from', we'll re-use it to avoid hitting 1.190 + the memory allocater more than necessary; otherwise, we'd have 1.191 + to grow anyway, so we just allocate a hunk and make the copy as 1.192 + usual 1.193 + */ 1.194 + if(ALLOC(to) >= USED(from)) { 1.195 + s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); 1.196 + s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); 1.197 + 1.198 + } else { 1.199 + if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) 1.200 + return MP_MEM; 1.201 + 1.202 + s_mp_copy(DIGITS(from), tmp, USED(from)); 1.203 + 1.204 + if(DIGITS(to) != NULL) { 1.205 +#if MP_CRYPTO 1.206 + s_mp_setz(DIGITS(to), ALLOC(to)); 1.207 +#endif 1.208 + s_mp_free(DIGITS(to)); 1.209 + } 1.210 + 1.211 + DIGITS(to) = tmp; 1.212 + ALLOC(to) = ALLOC(from); 1.213 + } 1.214 + 1.215 + /* Copy the precision and sign from the original */ 1.216 + USED(to) = USED(from); 1.217 + SIGN(to) = SIGN(from); 1.218 + } /* end copy */ 1.219 + 1.220 + return MP_OKAY; 1.221 + 1.222 +} /* end mp_copy() */ 1.223 + 1.224 +/* }}} */ 1.225 + 1.226 +/* {{{ mp_exch(mp1, mp2) */ 1.227 + 1.228 +/* 1.229 + mp_exch(mp1, mp2) 1.230 + 1.231 + Exchange mp1 and mp2 without allocating any intermediate memory 1.232 + (well, unless you count the stack space needed for this call and the 1.233 + locals it creates...). This cannot fail. 1.234 + */ 1.235 + 1.236 +void mp_exch(mp_int *mp1, mp_int *mp2) 1.237 +{ 1.238 +#if MP_ARGCHK == 2 1.239 + assert(mp1 != NULL && mp2 != NULL); 1.240 +#else 1.241 + if(mp1 == NULL || mp2 == NULL) 1.242 + return; 1.243 +#endif 1.244 + 1.245 + s_mp_exch(mp1, mp2); 1.246 + 1.247 +} /* end mp_exch() */ 1.248 + 1.249 +/* }}} */ 1.250 + 1.251 +/* {{{ mp_clear(mp) */ 1.252 + 1.253 +/* 1.254 + mp_clear(mp) 1.255 + 1.256 + Release the storage used by an mp_int, and void its fields so that 1.257 + if someone calls mp_clear() again for the same int later, we won't 1.258 + get tollchocked. 1.259 + */ 1.260 + 1.261 +void mp_clear(mp_int *mp) 1.262 +{ 1.263 + if(mp == NULL) 1.264 + return; 1.265 + 1.266 + if(DIGITS(mp) != NULL) { 1.267 +#if MP_CRYPTO 1.268 + s_mp_setz(DIGITS(mp), ALLOC(mp)); 1.269 +#endif 1.270 + s_mp_free(DIGITS(mp)); 1.271 + DIGITS(mp) = NULL; 1.272 + } 1.273 + 1.274 + USED(mp) = 0; 1.275 + ALLOC(mp) = 0; 1.276 + 1.277 +} /* end mp_clear() */ 1.278 + 1.279 +/* }}} */ 1.280 + 1.281 +/* {{{ mp_zero(mp) */ 1.282 + 1.283 +/* 1.284 + mp_zero(mp) 1.285 + 1.286 + Set mp to zero. Does not change the allocated size of the structure, 1.287 + and therefore cannot fail (except on a bad argument, which we ignore) 1.288 + */ 1.289 +void mp_zero(mp_int *mp) 1.290 +{ 1.291 + if(mp == NULL) 1.292 + return; 1.293 + 1.294 + s_mp_setz(DIGITS(mp), ALLOC(mp)); 1.295 + USED(mp) = 1; 1.296 + SIGN(mp) = ZPOS; 1.297 + 1.298 +} /* end mp_zero() */ 1.299 + 1.300 +/* }}} */ 1.301 + 1.302 +/* {{{ mp_set(mp, d) */ 1.303 + 1.304 +void mp_set(mp_int *mp, mp_digit d) 1.305 +{ 1.306 + if(mp == NULL) 1.307 + return; 1.308 + 1.309 + mp_zero(mp); 1.310 + DIGIT(mp, 0) = d; 1.311 + 1.312 +} /* end mp_set() */ 1.313 + 1.314 +/* }}} */ 1.315 + 1.316 +/* {{{ mp_set_int(mp, z) */ 1.317 + 1.318 +mp_err mp_set_int(mp_int *mp, long z) 1.319 +{ 1.320 + int ix; 1.321 + unsigned long v = labs(z); 1.322 + mp_err res; 1.323 + 1.324 + ARGCHK(mp != NULL, MP_BADARG); 1.325 + 1.326 + mp_zero(mp); 1.327 + if(z == 0) 1.328 + return MP_OKAY; /* shortcut for zero */ 1.329 + 1.330 + if (sizeof v <= sizeof(mp_digit)) { 1.331 + DIGIT(mp,0) = v; 1.332 + } else { 1.333 + for (ix = sizeof(long) - 1; ix >= 0; ix--) { 1.334 + if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) 1.335 + return res; 1.336 + 1.337 + res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); 1.338 + if (res != MP_OKAY) 1.339 + return res; 1.340 + } 1.341 + } 1.342 + if(z < 0) 1.343 + SIGN(mp) = NEG; 1.344 + 1.345 + return MP_OKAY; 1.346 + 1.347 +} /* end mp_set_int() */ 1.348 + 1.349 +/* }}} */ 1.350 + 1.351 +/* {{{ mp_set_ulong(mp, z) */ 1.352 + 1.353 +mp_err mp_set_ulong(mp_int *mp, unsigned long z) 1.354 +{ 1.355 + int ix; 1.356 + mp_err res; 1.357 + 1.358 + ARGCHK(mp != NULL, MP_BADARG); 1.359 + 1.360 + mp_zero(mp); 1.361 + if(z == 0) 1.362 + return MP_OKAY; /* shortcut for zero */ 1.363 + 1.364 + if (sizeof z <= sizeof(mp_digit)) { 1.365 + DIGIT(mp,0) = z; 1.366 + } else { 1.367 + for (ix = sizeof(long) - 1; ix >= 0; ix--) { 1.368 + if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) 1.369 + return res; 1.370 + 1.371 + res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); 1.372 + if (res != MP_OKAY) 1.373 + return res; 1.374 + } 1.375 + } 1.376 + return MP_OKAY; 1.377 +} /* end mp_set_ulong() */ 1.378 + 1.379 +/* }}} */ 1.380 + 1.381 +/*------------------------------------------------------------------------*/ 1.382 +/* {{{ Digit arithmetic */ 1.383 + 1.384 +/* {{{ mp_add_d(a, d, b) */ 1.385 + 1.386 +/* 1.387 + mp_add_d(a, d, b) 1.388 + 1.389 + Compute the sum b = a + d, for a single digit d. Respects the sign of 1.390 + its primary addend (single digits are unsigned anyway). 1.391 + */ 1.392 + 1.393 +mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) 1.394 +{ 1.395 + mp_int tmp; 1.396 + mp_err res; 1.397 + 1.398 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.399 + 1.400 + if((res = mp_init_copy(&tmp, a)) != MP_OKAY) 1.401 + return res; 1.402 + 1.403 + if(SIGN(&tmp) == ZPOS) { 1.404 + if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) 1.405 + goto CLEANUP; 1.406 + } else if(s_mp_cmp_d(&tmp, d) >= 0) { 1.407 + if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) 1.408 + goto CLEANUP; 1.409 + } else { 1.410 + mp_neg(&tmp, &tmp); 1.411 + 1.412 + DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); 1.413 + } 1.414 + 1.415 + if(s_mp_cmp_d(&tmp, 0) == 0) 1.416 + SIGN(&tmp) = ZPOS; 1.417 + 1.418 + s_mp_exch(&tmp, b); 1.419 + 1.420 +CLEANUP: 1.421 + mp_clear(&tmp); 1.422 + return res; 1.423 + 1.424 +} /* end mp_add_d() */ 1.425 + 1.426 +/* }}} */ 1.427 + 1.428 +/* {{{ mp_sub_d(a, d, b) */ 1.429 + 1.430 +/* 1.431 + mp_sub_d(a, d, b) 1.432 + 1.433 + Compute the difference b = a - d, for a single digit d. Respects the 1.434 + sign of its subtrahend (single digits are unsigned anyway). 1.435 + */ 1.436 + 1.437 +mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) 1.438 +{ 1.439 + mp_int tmp; 1.440 + mp_err res; 1.441 + 1.442 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.443 + 1.444 + if((res = mp_init_copy(&tmp, a)) != MP_OKAY) 1.445 + return res; 1.446 + 1.447 + if(SIGN(&tmp) == NEG) { 1.448 + if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) 1.449 + goto CLEANUP; 1.450 + } else if(s_mp_cmp_d(&tmp, d) >= 0) { 1.451 + if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) 1.452 + goto CLEANUP; 1.453 + } else { 1.454 + mp_neg(&tmp, &tmp); 1.455 + 1.456 + DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); 1.457 + SIGN(&tmp) = NEG; 1.458 + } 1.459 + 1.460 + if(s_mp_cmp_d(&tmp, 0) == 0) 1.461 + SIGN(&tmp) = ZPOS; 1.462 + 1.463 + s_mp_exch(&tmp, b); 1.464 + 1.465 +CLEANUP: 1.466 + mp_clear(&tmp); 1.467 + return res; 1.468 + 1.469 +} /* end mp_sub_d() */ 1.470 + 1.471 +/* }}} */ 1.472 + 1.473 +/* {{{ mp_mul_d(a, d, b) */ 1.474 + 1.475 +/* 1.476 + mp_mul_d(a, d, b) 1.477 + 1.478 + Compute the product b = a * d, for a single digit d. Respects the sign 1.479 + of its multiplicand (single digits are unsigned anyway) 1.480 + */ 1.481 + 1.482 +mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) 1.483 +{ 1.484 + mp_err res; 1.485 + 1.486 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.487 + 1.488 + if(d == 0) { 1.489 + mp_zero(b); 1.490 + return MP_OKAY; 1.491 + } 1.492 + 1.493 + if((res = mp_copy(a, b)) != MP_OKAY) 1.494 + return res; 1.495 + 1.496 + res = s_mp_mul_d(b, d); 1.497 + 1.498 + return res; 1.499 + 1.500 +} /* end mp_mul_d() */ 1.501 + 1.502 +/* }}} */ 1.503 + 1.504 +/* {{{ mp_mul_2(a, c) */ 1.505 + 1.506 +mp_err mp_mul_2(const mp_int *a, mp_int *c) 1.507 +{ 1.508 + mp_err res; 1.509 + 1.510 + ARGCHK(a != NULL && c != NULL, MP_BADARG); 1.511 + 1.512 + if((res = mp_copy(a, c)) != MP_OKAY) 1.513 + return res; 1.514 + 1.515 + return s_mp_mul_2(c); 1.516 + 1.517 +} /* end mp_mul_2() */ 1.518 + 1.519 +/* }}} */ 1.520 + 1.521 +/* {{{ mp_div_d(a, d, q, r) */ 1.522 + 1.523 +/* 1.524 + mp_div_d(a, d, q, r) 1.525 + 1.526 + Compute the quotient q = a / d and remainder r = a mod d, for a 1.527 + single digit d. Respects the sign of its divisor (single digits are 1.528 + unsigned anyway). 1.529 + */ 1.530 + 1.531 +mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) 1.532 +{ 1.533 + mp_err res; 1.534 + mp_int qp; 1.535 + mp_digit rem; 1.536 + int pow; 1.537 + 1.538 + ARGCHK(a != NULL, MP_BADARG); 1.539 + 1.540 + if(d == 0) 1.541 + return MP_RANGE; 1.542 + 1.543 + /* Shortcut for powers of two ... */ 1.544 + if((pow = s_mp_ispow2d(d)) >= 0) { 1.545 + mp_digit mask; 1.546 + 1.547 + mask = ((mp_digit)1 << pow) - 1; 1.548 + rem = DIGIT(a, 0) & mask; 1.549 + 1.550 + if(q) { 1.551 + mp_copy(a, q); 1.552 + s_mp_div_2d(q, pow); 1.553 + } 1.554 + 1.555 + if(r) 1.556 + *r = rem; 1.557 + 1.558 + return MP_OKAY; 1.559 + } 1.560 + 1.561 + if((res = mp_init_copy(&qp, a)) != MP_OKAY) 1.562 + return res; 1.563 + 1.564 + res = s_mp_div_d(&qp, d, &rem); 1.565 + 1.566 + if(s_mp_cmp_d(&qp, 0) == 0) 1.567 + SIGN(q) = ZPOS; 1.568 + 1.569 + if(r) 1.570 + *r = rem; 1.571 + 1.572 + if(q) 1.573 + s_mp_exch(&qp, q); 1.574 + 1.575 + mp_clear(&qp); 1.576 + return res; 1.577 + 1.578 +} /* end mp_div_d() */ 1.579 + 1.580 +/* }}} */ 1.581 + 1.582 +/* {{{ mp_div_2(a, c) */ 1.583 + 1.584 +/* 1.585 + mp_div_2(a, c) 1.586 + 1.587 + Compute c = a / 2, disregarding the remainder. 1.588 + */ 1.589 + 1.590 +mp_err mp_div_2(const mp_int *a, mp_int *c) 1.591 +{ 1.592 + mp_err res; 1.593 + 1.594 + ARGCHK(a != NULL && c != NULL, MP_BADARG); 1.595 + 1.596 + if((res = mp_copy(a, c)) != MP_OKAY) 1.597 + return res; 1.598 + 1.599 + s_mp_div_2(c); 1.600 + 1.601 + return MP_OKAY; 1.602 + 1.603 +} /* end mp_div_2() */ 1.604 + 1.605 +/* }}} */ 1.606 + 1.607 +/* {{{ mp_expt_d(a, d, b) */ 1.608 + 1.609 +mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) 1.610 +{ 1.611 + mp_int s, x; 1.612 + mp_err res; 1.613 + 1.614 + ARGCHK(a != NULL && c != NULL, MP_BADARG); 1.615 + 1.616 + if((res = mp_init(&s)) != MP_OKAY) 1.617 + return res; 1.618 + if((res = mp_init_copy(&x, a)) != MP_OKAY) 1.619 + goto X; 1.620 + 1.621 + DIGIT(&s, 0) = 1; 1.622 + 1.623 + while(d != 0) { 1.624 + if(d & 1) { 1.625 + if((res = s_mp_mul(&s, &x)) != MP_OKAY) 1.626 + goto CLEANUP; 1.627 + } 1.628 + 1.629 + d /= 2; 1.630 + 1.631 + if((res = s_mp_sqr(&x)) != MP_OKAY) 1.632 + goto CLEANUP; 1.633 + } 1.634 + 1.635 + s_mp_exch(&s, c); 1.636 + 1.637 +CLEANUP: 1.638 + mp_clear(&x); 1.639 +X: 1.640 + mp_clear(&s); 1.641 + 1.642 + return res; 1.643 + 1.644 +} /* end mp_expt_d() */ 1.645 + 1.646 +/* }}} */ 1.647 + 1.648 +/* }}} */ 1.649 + 1.650 +/*------------------------------------------------------------------------*/ 1.651 +/* {{{ Full arithmetic */ 1.652 + 1.653 +/* {{{ mp_abs(a, b) */ 1.654 + 1.655 +/* 1.656 + mp_abs(a, b) 1.657 + 1.658 + Compute b = |a|. 'a' and 'b' may be identical. 1.659 + */ 1.660 + 1.661 +mp_err mp_abs(const mp_int *a, mp_int *b) 1.662 +{ 1.663 + mp_err res; 1.664 + 1.665 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.666 + 1.667 + if((res = mp_copy(a, b)) != MP_OKAY) 1.668 + return res; 1.669 + 1.670 + SIGN(b) = ZPOS; 1.671 + 1.672 + return MP_OKAY; 1.673 + 1.674 +} /* end mp_abs() */ 1.675 + 1.676 +/* }}} */ 1.677 + 1.678 +/* {{{ mp_neg(a, b) */ 1.679 + 1.680 +/* 1.681 + mp_neg(a, b) 1.682 + 1.683 + Compute b = -a. 'a' and 'b' may be identical. 1.684 + */ 1.685 + 1.686 +mp_err mp_neg(const mp_int *a, mp_int *b) 1.687 +{ 1.688 + mp_err res; 1.689 + 1.690 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.691 + 1.692 + if((res = mp_copy(a, b)) != MP_OKAY) 1.693 + return res; 1.694 + 1.695 + if(s_mp_cmp_d(b, 0) == MP_EQ) 1.696 + SIGN(b) = ZPOS; 1.697 + else 1.698 + SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; 1.699 + 1.700 + return MP_OKAY; 1.701 + 1.702 +} /* end mp_neg() */ 1.703 + 1.704 +/* }}} */ 1.705 + 1.706 +/* {{{ mp_add(a, b, c) */ 1.707 + 1.708 +/* 1.709 + mp_add(a, b, c) 1.710 + 1.711 + Compute c = a + b. All parameters may be identical. 1.712 + */ 1.713 + 1.714 +mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) 1.715 +{ 1.716 + mp_err res; 1.717 + 1.718 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.719 + 1.720 + if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ 1.721 + MP_CHECKOK( s_mp_add_3arg(a, b, c) ); 1.722 + } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ 1.723 + MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); 1.724 + } else { /* different sign: |a| < |b| */ 1.725 + MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); 1.726 + } 1.727 + 1.728 + if (s_mp_cmp_d(c, 0) == MP_EQ) 1.729 + SIGN(c) = ZPOS; 1.730 + 1.731 +CLEANUP: 1.732 + return res; 1.733 + 1.734 +} /* end mp_add() */ 1.735 + 1.736 +/* }}} */ 1.737 + 1.738 +/* {{{ mp_sub(a, b, c) */ 1.739 + 1.740 +/* 1.741 + mp_sub(a, b, c) 1.742 + 1.743 + Compute c = a - b. All parameters may be identical. 1.744 + */ 1.745 + 1.746 +mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) 1.747 +{ 1.748 + mp_err res; 1.749 + int magDiff; 1.750 + 1.751 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.752 + 1.753 + if (a == b) { 1.754 + mp_zero(c); 1.755 + return MP_OKAY; 1.756 + } 1.757 + 1.758 + if (MP_SIGN(a) != MP_SIGN(b)) { 1.759 + MP_CHECKOK( s_mp_add_3arg(a, b, c) ); 1.760 + } else if (!(magDiff = s_mp_cmp(a, b))) { 1.761 + mp_zero(c); 1.762 + res = MP_OKAY; 1.763 + } else if (magDiff > 0) { 1.764 + MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); 1.765 + } else { 1.766 + MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); 1.767 + MP_SIGN(c) = !MP_SIGN(a); 1.768 + } 1.769 + 1.770 + if (s_mp_cmp_d(c, 0) == MP_EQ) 1.771 + MP_SIGN(c) = MP_ZPOS; 1.772 + 1.773 +CLEANUP: 1.774 + return res; 1.775 + 1.776 +} /* end mp_sub() */ 1.777 + 1.778 +/* }}} */ 1.779 + 1.780 +/* {{{ mp_mul(a, b, c) */ 1.781 + 1.782 +/* 1.783 + mp_mul(a, b, c) 1.784 + 1.785 + Compute c = a * b. All parameters may be identical. 1.786 + */ 1.787 +mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) 1.788 +{ 1.789 + mp_digit *pb; 1.790 + mp_int tmp; 1.791 + mp_err res; 1.792 + mp_size ib; 1.793 + mp_size useda, usedb; 1.794 + 1.795 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.796 + 1.797 + if (a == c) { 1.798 + if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) 1.799 + return res; 1.800 + if (a == b) 1.801 + b = &tmp; 1.802 + a = &tmp; 1.803 + } else if (b == c) { 1.804 + if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) 1.805 + return res; 1.806 + b = &tmp; 1.807 + } else { 1.808 + MP_DIGITS(&tmp) = 0; 1.809 + } 1.810 + 1.811 + if (MP_USED(a) < MP_USED(b)) { 1.812 + const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ 1.813 + b = a; 1.814 + a = xch; 1.815 + } 1.816 + 1.817 + MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; 1.818 + if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) 1.819 + goto CLEANUP; 1.820 + 1.821 +#ifdef NSS_USE_COMBA 1.822 + if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { 1.823 + if (MP_USED(a) == 4) { 1.824 + s_mp_mul_comba_4(a, b, c); 1.825 + goto CLEANUP; 1.826 + } 1.827 + if (MP_USED(a) == 8) { 1.828 + s_mp_mul_comba_8(a, b, c); 1.829 + goto CLEANUP; 1.830 + } 1.831 + if (MP_USED(a) == 16) { 1.832 + s_mp_mul_comba_16(a, b, c); 1.833 + goto CLEANUP; 1.834 + } 1.835 + if (MP_USED(a) == 32) { 1.836 + s_mp_mul_comba_32(a, b, c); 1.837 + goto CLEANUP; 1.838 + } 1.839 + } 1.840 +#endif 1.841 + 1.842 + pb = MP_DIGITS(b); 1.843 + s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); 1.844 + 1.845 + /* Outer loop: Digits of b */ 1.846 + useda = MP_USED(a); 1.847 + usedb = MP_USED(b); 1.848 + for (ib = 1; ib < usedb; ib++) { 1.849 + mp_digit b_i = *pb++; 1.850 + 1.851 + /* Inner product: Digits of a */ 1.852 + if (b_i) 1.853 + s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); 1.854 + else 1.855 + MP_DIGIT(c, ib + useda) = b_i; 1.856 + } 1.857 + 1.858 + s_mp_clamp(c); 1.859 + 1.860 + if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) 1.861 + SIGN(c) = ZPOS; 1.862 + else 1.863 + SIGN(c) = NEG; 1.864 + 1.865 +CLEANUP: 1.866 + mp_clear(&tmp); 1.867 + return res; 1.868 +} /* end mp_mul() */ 1.869 + 1.870 +/* }}} */ 1.871 + 1.872 +/* {{{ mp_sqr(a, sqr) */ 1.873 + 1.874 +#if MP_SQUARE 1.875 +/* 1.876 + Computes the square of a. This can be done more 1.877 + efficiently than a general multiplication, because many of the 1.878 + computation steps are redundant when squaring. The inner product 1.879 + step is a bit more complicated, but we save a fair number of 1.880 + iterations of the multiplication loop. 1.881 + */ 1.882 + 1.883 +/* sqr = a^2; Caller provides both a and tmp; */ 1.884 +mp_err mp_sqr(const mp_int *a, mp_int *sqr) 1.885 +{ 1.886 + mp_digit *pa; 1.887 + mp_digit d; 1.888 + mp_err res; 1.889 + mp_size ix; 1.890 + mp_int tmp; 1.891 + int count; 1.892 + 1.893 + ARGCHK(a != NULL && sqr != NULL, MP_BADARG); 1.894 + 1.895 + if (a == sqr) { 1.896 + if((res = mp_init_copy(&tmp, a)) != MP_OKAY) 1.897 + return res; 1.898 + a = &tmp; 1.899 + } else { 1.900 + DIGITS(&tmp) = 0; 1.901 + res = MP_OKAY; 1.902 + } 1.903 + 1.904 + ix = 2 * MP_USED(a); 1.905 + if (ix > MP_ALLOC(sqr)) { 1.906 + MP_USED(sqr) = 1; 1.907 + MP_CHECKOK( s_mp_grow(sqr, ix) ); 1.908 + } 1.909 + MP_USED(sqr) = ix; 1.910 + MP_DIGIT(sqr, 0) = 0; 1.911 + 1.912 +#ifdef NSS_USE_COMBA 1.913 + if (IS_POWER_OF_2(MP_USED(a))) { 1.914 + if (MP_USED(a) == 4) { 1.915 + s_mp_sqr_comba_4(a, sqr); 1.916 + goto CLEANUP; 1.917 + } 1.918 + if (MP_USED(a) == 8) { 1.919 + s_mp_sqr_comba_8(a, sqr); 1.920 + goto CLEANUP; 1.921 + } 1.922 + if (MP_USED(a) == 16) { 1.923 + s_mp_sqr_comba_16(a, sqr); 1.924 + goto CLEANUP; 1.925 + } 1.926 + if (MP_USED(a) == 32) { 1.927 + s_mp_sqr_comba_32(a, sqr); 1.928 + goto CLEANUP; 1.929 + } 1.930 + } 1.931 +#endif 1.932 + 1.933 + pa = MP_DIGITS(a); 1.934 + count = MP_USED(a) - 1; 1.935 + if (count > 0) { 1.936 + d = *pa++; 1.937 + s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); 1.938 + for (ix = 3; --count > 0; ix += 2) { 1.939 + d = *pa++; 1.940 + s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); 1.941 + } /* for(ix ...) */ 1.942 + MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ 1.943 + 1.944 + /* now sqr *= 2 */ 1.945 + s_mp_mul_2(sqr); 1.946 + } else { 1.947 + MP_DIGIT(sqr, 1) = 0; 1.948 + } 1.949 + 1.950 + /* now add the squares of the digits of a to sqr. */ 1.951 + s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); 1.952 + 1.953 + SIGN(sqr) = ZPOS; 1.954 + s_mp_clamp(sqr); 1.955 + 1.956 +CLEANUP: 1.957 + mp_clear(&tmp); 1.958 + return res; 1.959 + 1.960 +} /* end mp_sqr() */ 1.961 +#endif 1.962 + 1.963 +/* }}} */ 1.964 + 1.965 +/* {{{ mp_div(a, b, q, r) */ 1.966 + 1.967 +/* 1.968 + mp_div(a, b, q, r) 1.969 + 1.970 + Compute q = a / b and r = a mod b. Input parameters may be re-used 1.971 + as output parameters. If q or r is NULL, that portion of the 1.972 + computation will be discarded (although it will still be computed) 1.973 + */ 1.974 +mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) 1.975 +{ 1.976 + mp_err res; 1.977 + mp_int *pQ, *pR; 1.978 + mp_int qtmp, rtmp, btmp; 1.979 + int cmp; 1.980 + mp_sign signA; 1.981 + mp_sign signB; 1.982 + 1.983 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.984 + 1.985 + signA = MP_SIGN(a); 1.986 + signB = MP_SIGN(b); 1.987 + 1.988 + if(mp_cmp_z(b) == MP_EQ) 1.989 + return MP_RANGE; 1.990 + 1.991 + DIGITS(&qtmp) = 0; 1.992 + DIGITS(&rtmp) = 0; 1.993 + DIGITS(&btmp) = 0; 1.994 + 1.995 + /* Set up some temporaries... */ 1.996 + if (!r || r == a || r == b) { 1.997 + MP_CHECKOK( mp_init_copy(&rtmp, a) ); 1.998 + pR = &rtmp; 1.999 + } else { 1.1000 + MP_CHECKOK( mp_copy(a, r) ); 1.1001 + pR = r; 1.1002 + } 1.1003 + 1.1004 + if (!q || q == a || q == b) { 1.1005 + MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a)) ); 1.1006 + pQ = &qtmp; 1.1007 + } else { 1.1008 + MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); 1.1009 + pQ = q; 1.1010 + mp_zero(pQ); 1.1011 + } 1.1012 + 1.1013 + /* 1.1014 + If |a| <= |b|, we can compute the solution without division; 1.1015 + otherwise, we actually do the work required. 1.1016 + */ 1.1017 + if ((cmp = s_mp_cmp(a, b)) <= 0) { 1.1018 + if (cmp) { 1.1019 + /* r was set to a above. */ 1.1020 + mp_zero(pQ); 1.1021 + } else { 1.1022 + mp_set(pQ, 1); 1.1023 + mp_zero(pR); 1.1024 + } 1.1025 + } else { 1.1026 + MP_CHECKOK( mp_init_copy(&btmp, b) ); 1.1027 + MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); 1.1028 + } 1.1029 + 1.1030 + /* Compute the signs for the output */ 1.1031 + MP_SIGN(pR) = signA; /* Sr = Sa */ 1.1032 + /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ 1.1033 + MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; 1.1034 + 1.1035 + if(s_mp_cmp_d(pQ, 0) == MP_EQ) 1.1036 + SIGN(pQ) = ZPOS; 1.1037 + if(s_mp_cmp_d(pR, 0) == MP_EQ) 1.1038 + SIGN(pR) = ZPOS; 1.1039 + 1.1040 + /* Copy output, if it is needed */ 1.1041 + if(q && q != pQ) 1.1042 + s_mp_exch(pQ, q); 1.1043 + 1.1044 + if(r && r != pR) 1.1045 + s_mp_exch(pR, r); 1.1046 + 1.1047 +CLEANUP: 1.1048 + mp_clear(&btmp); 1.1049 + mp_clear(&rtmp); 1.1050 + mp_clear(&qtmp); 1.1051 + 1.1052 + return res; 1.1053 + 1.1054 +} /* end mp_div() */ 1.1055 + 1.1056 +/* }}} */ 1.1057 + 1.1058 +/* {{{ mp_div_2d(a, d, q, r) */ 1.1059 + 1.1060 +mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) 1.1061 +{ 1.1062 + mp_err res; 1.1063 + 1.1064 + ARGCHK(a != NULL, MP_BADARG); 1.1065 + 1.1066 + if(q) { 1.1067 + if((res = mp_copy(a, q)) != MP_OKAY) 1.1068 + return res; 1.1069 + } 1.1070 + if(r) { 1.1071 + if((res = mp_copy(a, r)) != MP_OKAY) 1.1072 + return res; 1.1073 + } 1.1074 + if(q) { 1.1075 + s_mp_div_2d(q, d); 1.1076 + } 1.1077 + if(r) { 1.1078 + s_mp_mod_2d(r, d); 1.1079 + } 1.1080 + 1.1081 + return MP_OKAY; 1.1082 + 1.1083 +} /* end mp_div_2d() */ 1.1084 + 1.1085 +/* }}} */ 1.1086 + 1.1087 +/* {{{ mp_expt(a, b, c) */ 1.1088 + 1.1089 +/* 1.1090 + mp_expt(a, b, c) 1.1091 + 1.1092 + Compute c = a ** b, that is, raise a to the b power. Uses a 1.1093 + standard iterative square-and-multiply technique. 1.1094 + */ 1.1095 + 1.1096 +mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) 1.1097 +{ 1.1098 + mp_int s, x; 1.1099 + mp_err res; 1.1100 + mp_digit d; 1.1101 + int dig, bit; 1.1102 + 1.1103 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.1104 + 1.1105 + if(mp_cmp_z(b) < 0) 1.1106 + return MP_RANGE; 1.1107 + 1.1108 + if((res = mp_init(&s)) != MP_OKAY) 1.1109 + return res; 1.1110 + 1.1111 + mp_set(&s, 1); 1.1112 + 1.1113 + if((res = mp_init_copy(&x, a)) != MP_OKAY) 1.1114 + goto X; 1.1115 + 1.1116 + /* Loop over low-order digits in ascending order */ 1.1117 + for(dig = 0; dig < (USED(b) - 1); dig++) { 1.1118 + d = DIGIT(b, dig); 1.1119 + 1.1120 + /* Loop over bits of each non-maximal digit */ 1.1121 + for(bit = 0; bit < DIGIT_BIT; bit++) { 1.1122 + if(d & 1) { 1.1123 + if((res = s_mp_mul(&s, &x)) != MP_OKAY) 1.1124 + goto CLEANUP; 1.1125 + } 1.1126 + 1.1127 + d >>= 1; 1.1128 + 1.1129 + if((res = s_mp_sqr(&x)) != MP_OKAY) 1.1130 + goto CLEANUP; 1.1131 + } 1.1132 + } 1.1133 + 1.1134 + /* Consider now the last digit... */ 1.1135 + d = DIGIT(b, dig); 1.1136 + 1.1137 + while(d) { 1.1138 + if(d & 1) { 1.1139 + if((res = s_mp_mul(&s, &x)) != MP_OKAY) 1.1140 + goto CLEANUP; 1.1141 + } 1.1142 + 1.1143 + d >>= 1; 1.1144 + 1.1145 + if((res = s_mp_sqr(&x)) != MP_OKAY) 1.1146 + goto CLEANUP; 1.1147 + } 1.1148 + 1.1149 + if(mp_iseven(b)) 1.1150 + SIGN(&s) = SIGN(a); 1.1151 + 1.1152 + res = mp_copy(&s, c); 1.1153 + 1.1154 +CLEANUP: 1.1155 + mp_clear(&x); 1.1156 +X: 1.1157 + mp_clear(&s); 1.1158 + 1.1159 + return res; 1.1160 + 1.1161 +} /* end mp_expt() */ 1.1162 + 1.1163 +/* }}} */ 1.1164 + 1.1165 +/* {{{ mp_2expt(a, k) */ 1.1166 + 1.1167 +/* Compute a = 2^k */ 1.1168 + 1.1169 +mp_err mp_2expt(mp_int *a, mp_digit k) 1.1170 +{ 1.1171 + ARGCHK(a != NULL, MP_BADARG); 1.1172 + 1.1173 + return s_mp_2expt(a, k); 1.1174 + 1.1175 +} /* end mp_2expt() */ 1.1176 + 1.1177 +/* }}} */ 1.1178 + 1.1179 +/* {{{ mp_mod(a, m, c) */ 1.1180 + 1.1181 +/* 1.1182 + mp_mod(a, m, c) 1.1183 + 1.1184 + Compute c = a (mod m). Result will always be 0 <= c < m. 1.1185 + */ 1.1186 + 1.1187 +mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) 1.1188 +{ 1.1189 + mp_err res; 1.1190 + int mag; 1.1191 + 1.1192 + ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); 1.1193 + 1.1194 + if(SIGN(m) == NEG) 1.1195 + return MP_RANGE; 1.1196 + 1.1197 + /* 1.1198 + If |a| > m, we need to divide to get the remainder and take the 1.1199 + absolute value. 1.1200 + 1.1201 + If |a| < m, we don't need to do any division, just copy and adjust 1.1202 + the sign (if a is negative). 1.1203 + 1.1204 + If |a| == m, we can simply set the result to zero. 1.1205 + 1.1206 + This order is intended to minimize the average path length of the 1.1207 + comparison chain on common workloads -- the most frequent cases are 1.1208 + that |a| != m, so we do those first. 1.1209 + */ 1.1210 + if((mag = s_mp_cmp(a, m)) > 0) { 1.1211 + if((res = mp_div(a, m, NULL, c)) != MP_OKAY) 1.1212 + return res; 1.1213 + 1.1214 + if(SIGN(c) == NEG) { 1.1215 + if((res = mp_add(c, m, c)) != MP_OKAY) 1.1216 + return res; 1.1217 + } 1.1218 + 1.1219 + } else if(mag < 0) { 1.1220 + if((res = mp_copy(a, c)) != MP_OKAY) 1.1221 + return res; 1.1222 + 1.1223 + if(mp_cmp_z(a) < 0) { 1.1224 + if((res = mp_add(c, m, c)) != MP_OKAY) 1.1225 + return res; 1.1226 + 1.1227 + } 1.1228 + 1.1229 + } else { 1.1230 + mp_zero(c); 1.1231 + 1.1232 + } 1.1233 + 1.1234 + return MP_OKAY; 1.1235 + 1.1236 +} /* end mp_mod() */ 1.1237 + 1.1238 +/* }}} */ 1.1239 + 1.1240 +/* {{{ mp_mod_d(a, d, c) */ 1.1241 + 1.1242 +/* 1.1243 + mp_mod_d(a, d, c) 1.1244 + 1.1245 + Compute c = a (mod d). Result will always be 0 <= c < d 1.1246 + */ 1.1247 +mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) 1.1248 +{ 1.1249 + mp_err res; 1.1250 + mp_digit rem; 1.1251 + 1.1252 + ARGCHK(a != NULL && c != NULL, MP_BADARG); 1.1253 + 1.1254 + if(s_mp_cmp_d(a, d) > 0) { 1.1255 + if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) 1.1256 + return res; 1.1257 + 1.1258 + } else { 1.1259 + if(SIGN(a) == NEG) 1.1260 + rem = d - DIGIT(a, 0); 1.1261 + else 1.1262 + rem = DIGIT(a, 0); 1.1263 + } 1.1264 + 1.1265 + if(c) 1.1266 + *c = rem; 1.1267 + 1.1268 + return MP_OKAY; 1.1269 + 1.1270 +} /* end mp_mod_d() */ 1.1271 + 1.1272 +/* }}} */ 1.1273 + 1.1274 +/* {{{ mp_sqrt(a, b) */ 1.1275 + 1.1276 +/* 1.1277 + mp_sqrt(a, b) 1.1278 + 1.1279 + Compute the integer square root of a, and store the result in b. 1.1280 + Uses an integer-arithmetic version of Newton's iterative linear 1.1281 + approximation technique to determine this value; the result has the 1.1282 + following two properties: 1.1283 + 1.1284 + b^2 <= a 1.1285 + (b+1)^2 >= a 1.1286 + 1.1287 + It is a range error to pass a negative value. 1.1288 + */ 1.1289 +mp_err mp_sqrt(const mp_int *a, mp_int *b) 1.1290 +{ 1.1291 + mp_int x, t; 1.1292 + mp_err res; 1.1293 + mp_size used; 1.1294 + 1.1295 + ARGCHK(a != NULL && b != NULL, MP_BADARG); 1.1296 + 1.1297 + /* Cannot take square root of a negative value */ 1.1298 + if(SIGN(a) == NEG) 1.1299 + return MP_RANGE; 1.1300 + 1.1301 + /* Special cases for zero and one, trivial */ 1.1302 + if(mp_cmp_d(a, 1) <= 0) 1.1303 + return mp_copy(a, b); 1.1304 + 1.1305 + /* Initialize the temporaries we'll use below */ 1.1306 + if((res = mp_init_size(&t, USED(a))) != MP_OKAY) 1.1307 + return res; 1.1308 + 1.1309 + /* Compute an initial guess for the iteration as a itself */ 1.1310 + if((res = mp_init_copy(&x, a)) != MP_OKAY) 1.1311 + goto X; 1.1312 + 1.1313 + used = MP_USED(&x); 1.1314 + if (used > 1) { 1.1315 + s_mp_rshd(&x, used / 2); 1.1316 + } 1.1317 + 1.1318 + for(;;) { 1.1319 + /* t = (x * x) - a */ 1.1320 + mp_copy(&x, &t); /* can't fail, t is big enough for original x */ 1.1321 + if((res = mp_sqr(&t, &t)) != MP_OKAY || 1.1322 + (res = mp_sub(&t, a, &t)) != MP_OKAY) 1.1323 + goto CLEANUP; 1.1324 + 1.1325 + /* t = t / 2x */ 1.1326 + s_mp_mul_2(&x); 1.1327 + if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) 1.1328 + goto CLEANUP; 1.1329 + s_mp_div_2(&x); 1.1330 + 1.1331 + /* Terminate the loop, if the quotient is zero */ 1.1332 + if(mp_cmp_z(&t) == MP_EQ) 1.1333 + break; 1.1334 + 1.1335 + /* x = x - t */ 1.1336 + if((res = mp_sub(&x, &t, &x)) != MP_OKAY) 1.1337 + goto CLEANUP; 1.1338 + 1.1339 + } 1.1340 + 1.1341 + /* Copy result to output parameter */ 1.1342 + mp_sub_d(&x, 1, &x); 1.1343 + s_mp_exch(&x, b); 1.1344 + 1.1345 + CLEANUP: 1.1346 + mp_clear(&x); 1.1347 + X: 1.1348 + mp_clear(&t); 1.1349 + 1.1350 + return res; 1.1351 + 1.1352 +} /* end mp_sqrt() */ 1.1353 + 1.1354 +/* }}} */ 1.1355 + 1.1356 +/* }}} */ 1.1357 + 1.1358 +/*------------------------------------------------------------------------*/ 1.1359 +/* {{{ Modular arithmetic */ 1.1360 + 1.1361 +#if MP_MODARITH 1.1362 +/* {{{ mp_addmod(a, b, m, c) */ 1.1363 + 1.1364 +/* 1.1365 + mp_addmod(a, b, m, c) 1.1366 + 1.1367 + Compute c = (a + b) mod m 1.1368 + */ 1.1369 + 1.1370 +mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) 1.1371 +{ 1.1372 + mp_err res; 1.1373 + 1.1374 + ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); 1.1375 + 1.1376 + if((res = mp_add(a, b, c)) != MP_OKAY) 1.1377 + return res; 1.1378 + if((res = mp_mod(c, m, c)) != MP_OKAY) 1.1379 + return res; 1.1380 + 1.1381 + return MP_OKAY; 1.1382 + 1.1383 +} 1.1384 + 1.1385 +/* }}} */ 1.1386 + 1.1387 +/* {{{ mp_submod(a, b, m, c) */ 1.1388 + 1.1389 +/* 1.1390 + mp_submod(a, b, m, c) 1.1391 + 1.1392 + Compute c = (a - b) mod m 1.1393 + */ 1.1394 + 1.1395 +mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) 1.1396 +{ 1.1397 + mp_err res; 1.1398 + 1.1399 + ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); 1.1400 + 1.1401 + if((res = mp_sub(a, b, c)) != MP_OKAY) 1.1402 + return res; 1.1403 + if((res = mp_mod(c, m, c)) != MP_OKAY) 1.1404 + return res; 1.1405 + 1.1406 + return MP_OKAY; 1.1407 + 1.1408 +} 1.1409 + 1.1410 +/* }}} */ 1.1411 + 1.1412 +/* {{{ mp_mulmod(a, b, m, c) */ 1.1413 + 1.1414 +/* 1.1415 + mp_mulmod(a, b, m, c) 1.1416 + 1.1417 + Compute c = (a * b) mod m 1.1418 + */ 1.1419 + 1.1420 +mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) 1.1421 +{ 1.1422 + mp_err res; 1.1423 + 1.1424 + ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); 1.1425 + 1.1426 + if((res = mp_mul(a, b, c)) != MP_OKAY) 1.1427 + return res; 1.1428 + if((res = mp_mod(c, m, c)) != MP_OKAY) 1.1429 + return res; 1.1430 + 1.1431 + return MP_OKAY; 1.1432 + 1.1433 +} 1.1434 + 1.1435 +/* }}} */ 1.1436 + 1.1437 +/* {{{ mp_sqrmod(a, m, c) */ 1.1438 + 1.1439 +#if MP_SQUARE 1.1440 +mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) 1.1441 +{ 1.1442 + mp_err res; 1.1443 + 1.1444 + ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); 1.1445 + 1.1446 + if((res = mp_sqr(a, c)) != MP_OKAY) 1.1447 + return res; 1.1448 + if((res = mp_mod(c, m, c)) != MP_OKAY) 1.1449 + return res; 1.1450 + 1.1451 + return MP_OKAY; 1.1452 + 1.1453 +} /* end mp_sqrmod() */ 1.1454 +#endif 1.1455 + 1.1456 +/* }}} */ 1.1457 + 1.1458 +/* {{{ s_mp_exptmod(a, b, m, c) */ 1.1459 + 1.1460 +/* 1.1461 + s_mp_exptmod(a, b, m, c) 1.1462 + 1.1463 + Compute c = (a ** b) mod m. Uses a standard square-and-multiply 1.1464 + method with modular reductions at each step. (This is basically the 1.1465 + same code as mp_expt(), except for the addition of the reductions) 1.1466 + 1.1467 + The modular reductions are done using Barrett's algorithm (see 1.1468 + s_mp_reduce() below for details) 1.1469 + */ 1.1470 + 1.1471 +mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) 1.1472 +{ 1.1473 + mp_int s, x, mu; 1.1474 + mp_err res; 1.1475 + mp_digit d; 1.1476 + int dig, bit; 1.1477 + 1.1478 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.1479 + 1.1480 + if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) 1.1481 + return MP_RANGE; 1.1482 + 1.1483 + if((res = mp_init(&s)) != MP_OKAY) 1.1484 + return res; 1.1485 + if((res = mp_init_copy(&x, a)) != MP_OKAY || 1.1486 + (res = mp_mod(&x, m, &x)) != MP_OKAY) 1.1487 + goto X; 1.1488 + if((res = mp_init(&mu)) != MP_OKAY) 1.1489 + goto MU; 1.1490 + 1.1491 + mp_set(&s, 1); 1.1492 + 1.1493 + /* mu = b^2k / m */ 1.1494 + s_mp_add_d(&mu, 1); 1.1495 + s_mp_lshd(&mu, 2 * USED(m)); 1.1496 + if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) 1.1497 + goto CLEANUP; 1.1498 + 1.1499 + /* Loop over digits of b in ascending order, except highest order */ 1.1500 + for(dig = 0; dig < (USED(b) - 1); dig++) { 1.1501 + d = DIGIT(b, dig); 1.1502 + 1.1503 + /* Loop over the bits of the lower-order digits */ 1.1504 + for(bit = 0; bit < DIGIT_BIT; bit++) { 1.1505 + if(d & 1) { 1.1506 + if((res = s_mp_mul(&s, &x)) != MP_OKAY) 1.1507 + goto CLEANUP; 1.1508 + if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) 1.1509 + goto CLEANUP; 1.1510 + } 1.1511 + 1.1512 + d >>= 1; 1.1513 + 1.1514 + if((res = s_mp_sqr(&x)) != MP_OKAY) 1.1515 + goto CLEANUP; 1.1516 + if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) 1.1517 + goto CLEANUP; 1.1518 + } 1.1519 + } 1.1520 + 1.1521 + /* Now do the last digit... */ 1.1522 + d = DIGIT(b, dig); 1.1523 + 1.1524 + while(d) { 1.1525 + if(d & 1) { 1.1526 + if((res = s_mp_mul(&s, &x)) != MP_OKAY) 1.1527 + goto CLEANUP; 1.1528 + if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) 1.1529 + goto CLEANUP; 1.1530 + } 1.1531 + 1.1532 + d >>= 1; 1.1533 + 1.1534 + if((res = s_mp_sqr(&x)) != MP_OKAY) 1.1535 + goto CLEANUP; 1.1536 + if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) 1.1537 + goto CLEANUP; 1.1538 + } 1.1539 + 1.1540 + s_mp_exch(&s, c); 1.1541 + 1.1542 + CLEANUP: 1.1543 + mp_clear(&mu); 1.1544 + MU: 1.1545 + mp_clear(&x); 1.1546 + X: 1.1547 + mp_clear(&s); 1.1548 + 1.1549 + return res; 1.1550 + 1.1551 +} /* end s_mp_exptmod() */ 1.1552 + 1.1553 +/* }}} */ 1.1554 + 1.1555 +/* {{{ mp_exptmod_d(a, d, m, c) */ 1.1556 + 1.1557 +mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) 1.1558 +{ 1.1559 + mp_int s, x; 1.1560 + mp_err res; 1.1561 + 1.1562 + ARGCHK(a != NULL && c != NULL, MP_BADARG); 1.1563 + 1.1564 + if((res = mp_init(&s)) != MP_OKAY) 1.1565 + return res; 1.1566 + if((res = mp_init_copy(&x, a)) != MP_OKAY) 1.1567 + goto X; 1.1568 + 1.1569 + mp_set(&s, 1); 1.1570 + 1.1571 + while(d != 0) { 1.1572 + if(d & 1) { 1.1573 + if((res = s_mp_mul(&s, &x)) != MP_OKAY || 1.1574 + (res = mp_mod(&s, m, &s)) != MP_OKAY) 1.1575 + goto CLEANUP; 1.1576 + } 1.1577 + 1.1578 + d /= 2; 1.1579 + 1.1580 + if((res = s_mp_sqr(&x)) != MP_OKAY || 1.1581 + (res = mp_mod(&x, m, &x)) != MP_OKAY) 1.1582 + goto CLEANUP; 1.1583 + } 1.1584 + 1.1585 + s_mp_exch(&s, c); 1.1586 + 1.1587 +CLEANUP: 1.1588 + mp_clear(&x); 1.1589 +X: 1.1590 + mp_clear(&s); 1.1591 + 1.1592 + return res; 1.1593 + 1.1594 +} /* end mp_exptmod_d() */ 1.1595 + 1.1596 +/* }}} */ 1.1597 +#endif /* if MP_MODARITH */ 1.1598 + 1.1599 +/* }}} */ 1.1600 + 1.1601 +/*------------------------------------------------------------------------*/ 1.1602 +/* {{{ Comparison functions */ 1.1603 + 1.1604 +/* {{{ mp_cmp_z(a) */ 1.1605 + 1.1606 +/* 1.1607 + mp_cmp_z(a) 1.1608 + 1.1609 + Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. 1.1610 + */ 1.1611 + 1.1612 +int mp_cmp_z(const mp_int *a) 1.1613 +{ 1.1614 + if(SIGN(a) == NEG) 1.1615 + return MP_LT; 1.1616 + else if(USED(a) == 1 && DIGIT(a, 0) == 0) 1.1617 + return MP_EQ; 1.1618 + else 1.1619 + return MP_GT; 1.1620 + 1.1621 +} /* end mp_cmp_z() */ 1.1622 + 1.1623 +/* }}} */ 1.1624 + 1.1625 +/* {{{ mp_cmp_d(a, d) */ 1.1626 + 1.1627 +/* 1.1628 + mp_cmp_d(a, d) 1.1629 + 1.1630 + Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d 1.1631 + */ 1.1632 + 1.1633 +int mp_cmp_d(const mp_int *a, mp_digit d) 1.1634 +{ 1.1635 + ARGCHK(a != NULL, MP_EQ); 1.1636 + 1.1637 + if(SIGN(a) == NEG) 1.1638 + return MP_LT; 1.1639 + 1.1640 + return s_mp_cmp_d(a, d); 1.1641 + 1.1642 +} /* end mp_cmp_d() */ 1.1643 + 1.1644 +/* }}} */ 1.1645 + 1.1646 +/* {{{ mp_cmp(a, b) */ 1.1647 + 1.1648 +int mp_cmp(const mp_int *a, const mp_int *b) 1.1649 +{ 1.1650 + ARGCHK(a != NULL && b != NULL, MP_EQ); 1.1651 + 1.1652 + if(SIGN(a) == SIGN(b)) { 1.1653 + int mag; 1.1654 + 1.1655 + if((mag = s_mp_cmp(a, b)) == MP_EQ) 1.1656 + return MP_EQ; 1.1657 + 1.1658 + if(SIGN(a) == ZPOS) 1.1659 + return mag; 1.1660 + else 1.1661 + return -mag; 1.1662 + 1.1663 + } else if(SIGN(a) == ZPOS) { 1.1664 + return MP_GT; 1.1665 + } else { 1.1666 + return MP_LT; 1.1667 + } 1.1668 + 1.1669 +} /* end mp_cmp() */ 1.1670 + 1.1671 +/* }}} */ 1.1672 + 1.1673 +/* {{{ mp_cmp_mag(a, b) */ 1.1674 + 1.1675 +/* 1.1676 + mp_cmp_mag(a, b) 1.1677 + 1.1678 + Compares |a| <=> |b|, and returns an appropriate comparison result 1.1679 + */ 1.1680 + 1.1681 +int mp_cmp_mag(mp_int *a, mp_int *b) 1.1682 +{ 1.1683 + ARGCHK(a != NULL && b != NULL, MP_EQ); 1.1684 + 1.1685 + return s_mp_cmp(a, b); 1.1686 + 1.1687 +} /* end mp_cmp_mag() */ 1.1688 + 1.1689 +/* }}} */ 1.1690 + 1.1691 +/* {{{ mp_cmp_int(a, z) */ 1.1692 + 1.1693 +/* 1.1694 + This just converts z to an mp_int, and uses the existing comparison 1.1695 + routines. This is sort of inefficient, but it's not clear to me how 1.1696 + frequently this wil get used anyway. For small positive constants, 1.1697 + you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). 1.1698 + */ 1.1699 +int mp_cmp_int(const mp_int *a, long z) 1.1700 +{ 1.1701 + mp_int tmp; 1.1702 + int out; 1.1703 + 1.1704 + ARGCHK(a != NULL, MP_EQ); 1.1705 + 1.1706 + mp_init(&tmp); mp_set_int(&tmp, z); 1.1707 + out = mp_cmp(a, &tmp); 1.1708 + mp_clear(&tmp); 1.1709 + 1.1710 + return out; 1.1711 + 1.1712 +} /* end mp_cmp_int() */ 1.1713 + 1.1714 +/* }}} */ 1.1715 + 1.1716 +/* {{{ mp_isodd(a) */ 1.1717 + 1.1718 +/* 1.1719 + mp_isodd(a) 1.1720 + 1.1721 + Returns a true (non-zero) value if a is odd, false (zero) otherwise. 1.1722 + */ 1.1723 +int mp_isodd(const mp_int *a) 1.1724 +{ 1.1725 + ARGCHK(a != NULL, 0); 1.1726 + 1.1727 + return (int)(DIGIT(a, 0) & 1); 1.1728 + 1.1729 +} /* end mp_isodd() */ 1.1730 + 1.1731 +/* }}} */ 1.1732 + 1.1733 +/* {{{ mp_iseven(a) */ 1.1734 + 1.1735 +int mp_iseven(const mp_int *a) 1.1736 +{ 1.1737 + return !mp_isodd(a); 1.1738 + 1.1739 +} /* end mp_iseven() */ 1.1740 + 1.1741 +/* }}} */ 1.1742 + 1.1743 +/* }}} */ 1.1744 + 1.1745 +/*------------------------------------------------------------------------*/ 1.1746 +/* {{{ Number theoretic functions */ 1.1747 + 1.1748 +#if MP_NUMTH 1.1749 +/* {{{ mp_gcd(a, b, c) */ 1.1750 + 1.1751 +/* 1.1752 + Like the old mp_gcd() function, except computes the GCD using the 1.1753 + binary algorithm due to Josef Stein in 1961 (via Knuth). 1.1754 + */ 1.1755 +mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) 1.1756 +{ 1.1757 + mp_err res; 1.1758 + mp_int u, v, t; 1.1759 + mp_size k = 0; 1.1760 + 1.1761 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.1762 + 1.1763 + if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) 1.1764 + return MP_RANGE; 1.1765 + if(mp_cmp_z(a) == MP_EQ) { 1.1766 + return mp_copy(b, c); 1.1767 + } else if(mp_cmp_z(b) == MP_EQ) { 1.1768 + return mp_copy(a, c); 1.1769 + } 1.1770 + 1.1771 + if((res = mp_init(&t)) != MP_OKAY) 1.1772 + return res; 1.1773 + if((res = mp_init_copy(&u, a)) != MP_OKAY) 1.1774 + goto U; 1.1775 + if((res = mp_init_copy(&v, b)) != MP_OKAY) 1.1776 + goto V; 1.1777 + 1.1778 + SIGN(&u) = ZPOS; 1.1779 + SIGN(&v) = ZPOS; 1.1780 + 1.1781 + /* Divide out common factors of 2 until at least 1 of a, b is even */ 1.1782 + while(mp_iseven(&u) && mp_iseven(&v)) { 1.1783 + s_mp_div_2(&u); 1.1784 + s_mp_div_2(&v); 1.1785 + ++k; 1.1786 + } 1.1787 + 1.1788 + /* Initialize t */ 1.1789 + if(mp_isodd(&u)) { 1.1790 + if((res = mp_copy(&v, &t)) != MP_OKAY) 1.1791 + goto CLEANUP; 1.1792 + 1.1793 + /* t = -v */ 1.1794 + if(SIGN(&v) == ZPOS) 1.1795 + SIGN(&t) = NEG; 1.1796 + else 1.1797 + SIGN(&t) = ZPOS; 1.1798 + 1.1799 + } else { 1.1800 + if((res = mp_copy(&u, &t)) != MP_OKAY) 1.1801 + goto CLEANUP; 1.1802 + 1.1803 + } 1.1804 + 1.1805 + for(;;) { 1.1806 + while(mp_iseven(&t)) { 1.1807 + s_mp_div_2(&t); 1.1808 + } 1.1809 + 1.1810 + if(mp_cmp_z(&t) == MP_GT) { 1.1811 + if((res = mp_copy(&t, &u)) != MP_OKAY) 1.1812 + goto CLEANUP; 1.1813 + 1.1814 + } else { 1.1815 + if((res = mp_copy(&t, &v)) != MP_OKAY) 1.1816 + goto CLEANUP; 1.1817 + 1.1818 + /* v = -t */ 1.1819 + if(SIGN(&t) == ZPOS) 1.1820 + SIGN(&v) = NEG; 1.1821 + else 1.1822 + SIGN(&v) = ZPOS; 1.1823 + } 1.1824 + 1.1825 + if((res = mp_sub(&u, &v, &t)) != MP_OKAY) 1.1826 + goto CLEANUP; 1.1827 + 1.1828 + if(s_mp_cmp_d(&t, 0) == MP_EQ) 1.1829 + break; 1.1830 + } 1.1831 + 1.1832 + s_mp_2expt(&v, k); /* v = 2^k */ 1.1833 + res = mp_mul(&u, &v, c); /* c = u * v */ 1.1834 + 1.1835 + CLEANUP: 1.1836 + mp_clear(&v); 1.1837 + V: 1.1838 + mp_clear(&u); 1.1839 + U: 1.1840 + mp_clear(&t); 1.1841 + 1.1842 + return res; 1.1843 + 1.1844 +} /* end mp_gcd() */ 1.1845 + 1.1846 +/* }}} */ 1.1847 + 1.1848 +/* {{{ mp_lcm(a, b, c) */ 1.1849 + 1.1850 +/* We compute the least common multiple using the rule: 1.1851 + 1.1852 + ab = [a, b](a, b) 1.1853 + 1.1854 + ... by computing the product, and dividing out the gcd. 1.1855 + */ 1.1856 + 1.1857 +mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) 1.1858 +{ 1.1859 + mp_int gcd, prod; 1.1860 + mp_err res; 1.1861 + 1.1862 + ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 1.1863 + 1.1864 + /* Set up temporaries */ 1.1865 + if((res = mp_init(&gcd)) != MP_OKAY) 1.1866 + return res; 1.1867 + if((res = mp_init(&prod)) != MP_OKAY) 1.1868 + goto GCD; 1.1869 + 1.1870 + if((res = mp_mul(a, b, &prod)) != MP_OKAY) 1.1871 + goto CLEANUP; 1.1872 + if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) 1.1873 + goto CLEANUP; 1.1874 + 1.1875 + res = mp_div(&prod, &gcd, c, NULL); 1.1876 + 1.1877 + CLEANUP: 1.1878 + mp_clear(&prod); 1.1879 + GCD: 1.1880 + mp_clear(&gcd); 1.1881 + 1.1882 + return res; 1.1883 + 1.1884 +} /* end mp_lcm() */ 1.1885 + 1.1886 +/* }}} */ 1.1887 + 1.1888 +/* {{{ mp_xgcd(a, b, g, x, y) */ 1.1889 + 1.1890 +/* 1.1891 + mp_xgcd(a, b, g, x, y) 1.1892 + 1.1893 + Compute g = (a, b) and values x and y satisfying Bezout's identity 1.1894 + (that is, ax + by = g). This uses the binary extended GCD algorithm 1.1895 + based on the Stein algorithm used for mp_gcd() 1.1896 + See algorithm 14.61 in Handbook of Applied Cryptogrpahy. 1.1897 + */ 1.1898 + 1.1899 +mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) 1.1900 +{ 1.1901 + mp_int gx, xc, yc, u, v, A, B, C, D; 1.1902 + mp_int *clean[9]; 1.1903 + mp_err res; 1.1904 + int last = -1; 1.1905 + 1.1906 + if(mp_cmp_z(b) == 0) 1.1907 + return MP_RANGE; 1.1908 + 1.1909 + /* Initialize all these variables we need */ 1.1910 + MP_CHECKOK( mp_init(&u) ); 1.1911 + clean[++last] = &u; 1.1912 + MP_CHECKOK( mp_init(&v) ); 1.1913 + clean[++last] = &v; 1.1914 + MP_CHECKOK( mp_init(&gx) ); 1.1915 + clean[++last] = &gx; 1.1916 + MP_CHECKOK( mp_init(&A) ); 1.1917 + clean[++last] = &A; 1.1918 + MP_CHECKOK( mp_init(&B) ); 1.1919 + clean[++last] = &B; 1.1920 + MP_CHECKOK( mp_init(&C) ); 1.1921 + clean[++last] = &C; 1.1922 + MP_CHECKOK( mp_init(&D) ); 1.1923 + clean[++last] = &D; 1.1924 + MP_CHECKOK( mp_init_copy(&xc, a) ); 1.1925 + clean[++last] = &xc; 1.1926 + mp_abs(&xc, &xc); 1.1927 + MP_CHECKOK( mp_init_copy(&yc, b) ); 1.1928 + clean[++last] = &yc; 1.1929 + mp_abs(&yc, &yc); 1.1930 + 1.1931 + mp_set(&gx, 1); 1.1932 + 1.1933 + /* Divide by two until at least one of them is odd */ 1.1934 + while(mp_iseven(&xc) && mp_iseven(&yc)) { 1.1935 + mp_size nx = mp_trailing_zeros(&xc); 1.1936 + mp_size ny = mp_trailing_zeros(&yc); 1.1937 + mp_size n = MP_MIN(nx, ny); 1.1938 + s_mp_div_2d(&xc,n); 1.1939 + s_mp_div_2d(&yc,n); 1.1940 + MP_CHECKOK( s_mp_mul_2d(&gx,n) ); 1.1941 + } 1.1942 + 1.1943 + mp_copy(&xc, &u); 1.1944 + mp_copy(&yc, &v); 1.1945 + mp_set(&A, 1); mp_set(&D, 1); 1.1946 + 1.1947 + /* Loop through binary GCD algorithm */ 1.1948 + do { 1.1949 + while(mp_iseven(&u)) { 1.1950 + s_mp_div_2(&u); 1.1951 + 1.1952 + if(mp_iseven(&A) && mp_iseven(&B)) { 1.1953 + s_mp_div_2(&A); s_mp_div_2(&B); 1.1954 + } else { 1.1955 + MP_CHECKOK( mp_add(&A, &yc, &A) ); 1.1956 + s_mp_div_2(&A); 1.1957 + MP_CHECKOK( mp_sub(&B, &xc, &B) ); 1.1958 + s_mp_div_2(&B); 1.1959 + } 1.1960 + } 1.1961 + 1.1962 + while(mp_iseven(&v)) { 1.1963 + s_mp_div_2(&v); 1.1964 + 1.1965 + if(mp_iseven(&C) && mp_iseven(&D)) { 1.1966 + s_mp_div_2(&C); s_mp_div_2(&D); 1.1967 + } else { 1.1968 + MP_CHECKOK( mp_add(&C, &yc, &C) ); 1.1969 + s_mp_div_2(&C); 1.1970 + MP_CHECKOK( mp_sub(&D, &xc, &D) ); 1.1971 + s_mp_div_2(&D); 1.1972 + } 1.1973 + } 1.1974 + 1.1975 + if(mp_cmp(&u, &v) >= 0) { 1.1976 + MP_CHECKOK( mp_sub(&u, &v, &u) ); 1.1977 + MP_CHECKOK( mp_sub(&A, &C, &A) ); 1.1978 + MP_CHECKOK( mp_sub(&B, &D, &B) ); 1.1979 + } else { 1.1980 + MP_CHECKOK( mp_sub(&v, &u, &v) ); 1.1981 + MP_CHECKOK( mp_sub(&C, &A, &C) ); 1.1982 + MP_CHECKOK( mp_sub(&D, &B, &D) ); 1.1983 + } 1.1984 + } while (mp_cmp_z(&u) != 0); 1.1985 + 1.1986 + /* copy results to output */ 1.1987 + if(x) 1.1988 + MP_CHECKOK( mp_copy(&C, x) ); 1.1989 + 1.1990 + if(y) 1.1991 + MP_CHECKOK( mp_copy(&D, y) ); 1.1992 + 1.1993 + if(g) 1.1994 + MP_CHECKOK( mp_mul(&gx, &v, g) ); 1.1995 + 1.1996 + CLEANUP: 1.1997 + while(last >= 0) 1.1998 + mp_clear(clean[last--]); 1.1999 + 1.2000 + return res; 1.2001 + 1.2002 +} /* end mp_xgcd() */ 1.2003 + 1.2004 +/* }}} */ 1.2005 + 1.2006 +mp_size mp_trailing_zeros(const mp_int *mp) 1.2007 +{ 1.2008 + mp_digit d; 1.2009 + mp_size n = 0; 1.2010 + int ix; 1.2011 + 1.2012 + if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) 1.2013 + return n; 1.2014 + 1.2015 + for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) 1.2016 + n += MP_DIGIT_BIT; 1.2017 + if (!d) 1.2018 + return 0; /* shouldn't happen, but ... */ 1.2019 +#if !defined(MP_USE_UINT_DIGIT) 1.2020 + if (!(d & 0xffffffffU)) { 1.2021 + d >>= 32; 1.2022 + n += 32; 1.2023 + } 1.2024 +#endif 1.2025 + if (!(d & 0xffffU)) { 1.2026 + d >>= 16; 1.2027 + n += 16; 1.2028 + } 1.2029 + if (!(d & 0xffU)) { 1.2030 + d >>= 8; 1.2031 + n += 8; 1.2032 + } 1.2033 + if (!(d & 0xfU)) { 1.2034 + d >>= 4; 1.2035 + n += 4; 1.2036 + } 1.2037 + if (!(d & 0x3U)) { 1.2038 + d >>= 2; 1.2039 + n += 2; 1.2040 + } 1.2041 + if (!(d & 0x1U)) { 1.2042 + d >>= 1; 1.2043 + n += 1; 1.2044 + } 1.2045 +#if MP_ARGCHK == 2 1.2046 + assert(0 != (d & 1)); 1.2047 +#endif 1.2048 + return n; 1.2049 +} 1.2050 + 1.2051 +/* Given a and prime p, computes c and k such that a*c == 2**k (mod p). 1.2052 +** Returns k (positive) or error (negative). 1.2053 +** This technique from the paper "Fast Modular Reciprocals" (unpublished) 1.2054 +** by Richard Schroeppel (a.k.a. Captain Nemo). 1.2055 +*/ 1.2056 +mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) 1.2057 +{ 1.2058 + mp_err res; 1.2059 + mp_err k = 0; 1.2060 + mp_int d, f, g; 1.2061 + 1.2062 + ARGCHK(a && p && c, MP_BADARG); 1.2063 + 1.2064 + MP_DIGITS(&d) = 0; 1.2065 + MP_DIGITS(&f) = 0; 1.2066 + MP_DIGITS(&g) = 0; 1.2067 + MP_CHECKOK( mp_init(&d) ); 1.2068 + MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ 1.2069 + MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ 1.2070 + 1.2071 + mp_set(c, 1); 1.2072 + mp_zero(&d); 1.2073 + 1.2074 + if (mp_cmp_z(&f) == 0) { 1.2075 + res = MP_UNDEF; 1.2076 + } else 1.2077 + for (;;) { 1.2078 + int diff_sign; 1.2079 + while (mp_iseven(&f)) { 1.2080 + mp_size n = mp_trailing_zeros(&f); 1.2081 + if (!n) { 1.2082 + res = MP_UNDEF; 1.2083 + goto CLEANUP; 1.2084 + } 1.2085 + s_mp_div_2d(&f, n); 1.2086 + MP_CHECKOK( s_mp_mul_2d(&d, n) ); 1.2087 + k += n; 1.2088 + } 1.2089 + if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ 1.2090 + res = k; 1.2091 + break; 1.2092 + } 1.2093 + diff_sign = mp_cmp(&f, &g); 1.2094 + if (diff_sign < 0) { /* f < g */ 1.2095 + s_mp_exch(&f, &g); 1.2096 + s_mp_exch(c, &d); 1.2097 + } else if (diff_sign == 0) { /* f == g */ 1.2098 + res = MP_UNDEF; /* a and p are not relatively prime */ 1.2099 + break; 1.2100 + } 1.2101 + if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { 1.2102 + MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ 1.2103 + MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ 1.2104 + } else { 1.2105 + MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ 1.2106 + MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ 1.2107 + } 1.2108 + } 1.2109 + if (res >= 0) { 1.2110 + while (MP_SIGN(c) != MP_ZPOS) { 1.2111 + MP_CHECKOK( mp_add(c, p, c) ); 1.2112 + } 1.2113 + res = k; 1.2114 + } 1.2115 + 1.2116 +CLEANUP: 1.2117 + mp_clear(&d); 1.2118 + mp_clear(&f); 1.2119 + mp_clear(&g); 1.2120 + return res; 1.2121 +} 1.2122 + 1.2123 +/* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. 1.2124 +** This technique from the paper "Fast Modular Reciprocals" (unpublished) 1.2125 +** by Richard Schroeppel (a.k.a. Captain Nemo). 1.2126 +*/ 1.2127 +mp_digit s_mp_invmod_radix(mp_digit P) 1.2128 +{ 1.2129 + mp_digit T = P; 1.2130 + T *= 2 - (P * T); 1.2131 + T *= 2 - (P * T); 1.2132 + T *= 2 - (P * T); 1.2133 + T *= 2 - (P * T); 1.2134 +#if !defined(MP_USE_UINT_DIGIT) 1.2135 + T *= 2 - (P * T); 1.2136 + T *= 2 - (P * T); 1.2137 +#endif 1.2138 + return T; 1.2139 +} 1.2140 + 1.2141 +/* Given c, k, and prime p, where a*c == 2**k (mod p), 1.2142 +** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. 1.2143 +** This technique from the paper "Fast Modular Reciprocals" (unpublished) 1.2144 +** by Richard Schroeppel (a.k.a. Captain Nemo). 1.2145 +*/ 1.2146 +mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) 1.2147 +{ 1.2148 + int k_orig = k; 1.2149 + mp_digit r; 1.2150 + mp_size ix; 1.2151 + mp_err res; 1.2152 + 1.2153 + if (mp_cmp_z(c) < 0) { /* c < 0 */ 1.2154 + MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ 1.2155 + } else { 1.2156 + MP_CHECKOK( mp_copy(c, x) ); /* x = c */ 1.2157 + } 1.2158 + 1.2159 + /* make sure x is large enough */ 1.2160 + ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; 1.2161 + ix = MP_MAX(ix, MP_USED(x)); 1.2162 + MP_CHECKOK( s_mp_pad(x, ix) ); 1.2163 + 1.2164 + r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); 1.2165 + 1.2166 + for (ix = 0; k > 0; ix++) { 1.2167 + int j = MP_MIN(k, MP_DIGIT_BIT); 1.2168 + mp_digit v = r * MP_DIGIT(x, ix); 1.2169 + if (j < MP_DIGIT_BIT) { 1.2170 + v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ 1.2171 + } 1.2172 + s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ 1.2173 + k -= j; 1.2174 + } 1.2175 + s_mp_clamp(x); 1.2176 + s_mp_div_2d(x, k_orig); 1.2177 + res = MP_OKAY; 1.2178 + 1.2179 +CLEANUP: 1.2180 + return res; 1.2181 +} 1.2182 + 1.2183 +/* compute mod inverse using Schroeppel's method, only if m is odd */ 1.2184 +mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) 1.2185 +{ 1.2186 + int k; 1.2187 + mp_err res; 1.2188 + mp_int x; 1.2189 + 1.2190 + ARGCHK(a && m && c, MP_BADARG); 1.2191 + 1.2192 + if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) 1.2193 + return MP_RANGE; 1.2194 + if (mp_iseven(m)) 1.2195 + return MP_UNDEF; 1.2196 + 1.2197 + MP_DIGITS(&x) = 0; 1.2198 + 1.2199 + if (a == c) { 1.2200 + if ((res = mp_init_copy(&x, a)) != MP_OKAY) 1.2201 + return res; 1.2202 + if (a == m) 1.2203 + m = &x; 1.2204 + a = &x; 1.2205 + } else if (m == c) { 1.2206 + if ((res = mp_init_copy(&x, m)) != MP_OKAY) 1.2207 + return res; 1.2208 + m = &x; 1.2209 + } else { 1.2210 + MP_DIGITS(&x) = 0; 1.2211 + } 1.2212 + 1.2213 + MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); 1.2214 + k = res; 1.2215 + MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); 1.2216 +CLEANUP: 1.2217 + mp_clear(&x); 1.2218 + return res; 1.2219 +} 1.2220 + 1.2221 +/* Known good algorithm for computing modular inverse. But slow. */ 1.2222 +mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) 1.2223 +{ 1.2224 + mp_int g, x; 1.2225 + mp_err res; 1.2226 + 1.2227 + ARGCHK(a && m && c, MP_BADARG); 1.2228 + 1.2229 + if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) 1.2230 + return MP_RANGE; 1.2231 + 1.2232 + MP_DIGITS(&g) = 0; 1.2233 + MP_DIGITS(&x) = 0; 1.2234 + MP_CHECKOK( mp_init(&x) ); 1.2235 + MP_CHECKOK( mp_init(&g) ); 1.2236 + 1.2237 + MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); 1.2238 + 1.2239 + if (mp_cmp_d(&g, 1) != MP_EQ) { 1.2240 + res = MP_UNDEF; 1.2241 + goto CLEANUP; 1.2242 + } 1.2243 + 1.2244 + res = mp_mod(&x, m, c); 1.2245 + SIGN(c) = SIGN(a); 1.2246 + 1.2247 +CLEANUP: 1.2248 + mp_clear(&x); 1.2249 + mp_clear(&g); 1.2250 + 1.2251 + return res; 1.2252 +} 1.2253 + 1.2254 +/* modular inverse where modulus is 2**k. */ 1.2255 +/* c = a**-1 mod 2**k */ 1.2256 +mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) 1.2257 +{ 1.2258 + mp_err res; 1.2259 + mp_size ix = k + 4; 1.2260 + mp_int t0, t1, val, tmp, two2k; 1.2261 + 1.2262 + static const mp_digit d2 = 2; 1.2263 + static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 }; 1.2264 + 1.2265 + if (mp_iseven(a)) 1.2266 + return MP_UNDEF; 1.2267 + if (k <= MP_DIGIT_BIT) { 1.2268 + mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); 1.2269 + if (k < MP_DIGIT_BIT) 1.2270 + i &= ((mp_digit)1 << k) - (mp_digit)1; 1.2271 + mp_set(c, i); 1.2272 + return MP_OKAY; 1.2273 + } 1.2274 + MP_DIGITS(&t0) = 0; 1.2275 + MP_DIGITS(&t1) = 0; 1.2276 + MP_DIGITS(&val) = 0; 1.2277 + MP_DIGITS(&tmp) = 0; 1.2278 + MP_DIGITS(&two2k) = 0; 1.2279 + MP_CHECKOK( mp_init_copy(&val, a) ); 1.2280 + s_mp_mod_2d(&val, k); 1.2281 + MP_CHECKOK( mp_init_copy(&t0, &val) ); 1.2282 + MP_CHECKOK( mp_init_copy(&t1, &t0) ); 1.2283 + MP_CHECKOK( mp_init(&tmp) ); 1.2284 + MP_CHECKOK( mp_init(&two2k) ); 1.2285 + MP_CHECKOK( s_mp_2expt(&two2k, k) ); 1.2286 + do { 1.2287 + MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); 1.2288 + MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); 1.2289 + MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); 1.2290 + s_mp_mod_2d(&t1, k); 1.2291 + while (MP_SIGN(&t1) != MP_ZPOS) { 1.2292 + MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); 1.2293 + } 1.2294 + if (mp_cmp(&t1, &t0) == MP_EQ) 1.2295 + break; 1.2296 + MP_CHECKOK( mp_copy(&t1, &t0) ); 1.2297 + } while (--ix > 0); 1.2298 + if (!ix) { 1.2299 + res = MP_UNDEF; 1.2300 + } else { 1.2301 + mp_exch(c, &t1); 1.2302 + } 1.2303 + 1.2304 +CLEANUP: 1.2305 + mp_clear(&t0); 1.2306 + mp_clear(&t1); 1.2307 + mp_clear(&val); 1.2308 + mp_clear(&tmp); 1.2309 + mp_clear(&two2k); 1.2310 + return res; 1.2311 +} 1.2312 + 1.2313 +mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) 1.2314 +{ 1.2315 + mp_err res; 1.2316 + mp_size k; 1.2317 + mp_int oddFactor, evenFactor; /* factors of the modulus */ 1.2318 + mp_int oddPart, evenPart; /* parts to combine via CRT. */ 1.2319 + mp_int C2, tmp1, tmp2; 1.2320 + 1.2321 + /*static const mp_digit d1 = 1; */ 1.2322 + /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ 1.2323 + 1.2324 + if ((res = s_mp_ispow2(m)) >= 0) { 1.2325 + k = res; 1.2326 + return s_mp_invmod_2d(a, k, c); 1.2327 + } 1.2328 + MP_DIGITS(&oddFactor) = 0; 1.2329 + MP_DIGITS(&evenFactor) = 0; 1.2330 + MP_DIGITS(&oddPart) = 0; 1.2331 + MP_DIGITS(&evenPart) = 0; 1.2332 + MP_DIGITS(&C2) = 0; 1.2333 + MP_DIGITS(&tmp1) = 0; 1.2334 + MP_DIGITS(&tmp2) = 0; 1.2335 + 1.2336 + MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ 1.2337 + MP_CHECKOK( mp_init(&evenFactor) ); 1.2338 + MP_CHECKOK( mp_init(&oddPart) ); 1.2339 + MP_CHECKOK( mp_init(&evenPart) ); 1.2340 + MP_CHECKOK( mp_init(&C2) ); 1.2341 + MP_CHECKOK( mp_init(&tmp1) ); 1.2342 + MP_CHECKOK( mp_init(&tmp2) ); 1.2343 + 1.2344 + k = mp_trailing_zeros(m); 1.2345 + s_mp_div_2d(&oddFactor, k); 1.2346 + MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); 1.2347 + 1.2348 + /* compute a**-1 mod oddFactor. */ 1.2349 + MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); 1.2350 + /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ 1.2351 + MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); 1.2352 + 1.2353 + /* Use Chinese Remainer theorem to compute a**-1 mod m. */ 1.2354 + /* let m1 = oddFactor, v1 = oddPart, 1.2355 + * let m2 = evenFactor, v2 = evenPart. 1.2356 + */ 1.2357 + 1.2358 + /* Compute C2 = m1**-1 mod m2. */ 1.2359 + MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); 1.2360 + 1.2361 + /* compute u = (v2 - v1)*C2 mod m2 */ 1.2362 + MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); 1.2363 + MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); 1.2364 + s_mp_mod_2d(&tmp2, k); 1.2365 + while (MP_SIGN(&tmp2) != MP_ZPOS) { 1.2366 + MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); 1.2367 + } 1.2368 + 1.2369 + /* compute answer = v1 + u*m1 */ 1.2370 + MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); 1.2371 + MP_CHECKOK( mp_add(&oddPart, c, c) ); 1.2372 + /* not sure this is necessary, but it's low cost if not. */ 1.2373 + MP_CHECKOK( mp_mod(c, m, c) ); 1.2374 + 1.2375 +CLEANUP: 1.2376 + mp_clear(&oddFactor); 1.2377 + mp_clear(&evenFactor); 1.2378 + mp_clear(&oddPart); 1.2379 + mp_clear(&evenPart); 1.2380 + mp_clear(&C2); 1.2381 + mp_clear(&tmp1); 1.2382 + mp_clear(&tmp2); 1.2383 + return res; 1.2384 +} 1.2385 + 1.2386 + 1.2387 +/* {{{ mp_invmod(a, m, c) */ 1.2388 + 1.2389 +/* 1.2390 + mp_invmod(a, m, c) 1.2391 + 1.2392 + Compute c = a^-1 (mod m), if there is an inverse for a (mod m). 1.2393 + This is equivalent to the question of whether (a, m) = 1. If not, 1.2394 + MP_UNDEF is returned, and there is no inverse. 1.2395 + */ 1.2396 + 1.2397 +mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) 1.2398 +{ 1.2399 + 1.2400 + ARGCHK(a && m && c, MP_BADARG); 1.2401 + 1.2402 + if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) 1.2403 + return MP_RANGE; 1.2404 + 1.2405 + if (mp_isodd(m)) { 1.2406 + return s_mp_invmod_odd_m(a, m, c); 1.2407 + } 1.2408 + if (mp_iseven(a)) 1.2409 + return MP_UNDEF; /* not invertable */ 1.2410 + 1.2411 + return s_mp_invmod_even_m(a, m, c); 1.2412 + 1.2413 +} /* end mp_invmod() */ 1.2414 + 1.2415 +/* }}} */ 1.2416 +#endif /* if MP_NUMTH */ 1.2417 + 1.2418 +/* }}} */ 1.2419 + 1.2420 +/*------------------------------------------------------------------------*/ 1.2421 +/* {{{ mp_print(mp, ofp) */ 1.2422 + 1.2423 +#if MP_IOFUNC 1.2424 +/* 1.2425 + mp_print(mp, ofp) 1.2426 + 1.2427 + Print a textual representation of the given mp_int on the output 1.2428 + stream 'ofp'. Output is generated using the internal radix. 1.2429 + */ 1.2430 + 1.2431 +void mp_print(mp_int *mp, FILE *ofp) 1.2432 +{ 1.2433 + int ix; 1.2434 + 1.2435 + if(mp == NULL || ofp == NULL) 1.2436 + return; 1.2437 + 1.2438 + fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); 1.2439 + 1.2440 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.2441 + fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); 1.2442 + } 1.2443 + 1.2444 +} /* end mp_print() */ 1.2445 + 1.2446 +#endif /* if MP_IOFUNC */ 1.2447 + 1.2448 +/* }}} */ 1.2449 + 1.2450 +/*------------------------------------------------------------------------*/ 1.2451 +/* {{{ More I/O Functions */ 1.2452 + 1.2453 +/* {{{ mp_read_raw(mp, str, len) */ 1.2454 + 1.2455 +/* 1.2456 + mp_read_raw(mp, str, len) 1.2457 + 1.2458 + Read in a raw value (base 256) into the given mp_int 1.2459 + */ 1.2460 + 1.2461 +mp_err mp_read_raw(mp_int *mp, char *str, int len) 1.2462 +{ 1.2463 + int ix; 1.2464 + mp_err res; 1.2465 + unsigned char *ustr = (unsigned char *)str; 1.2466 + 1.2467 + ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); 1.2468 + 1.2469 + mp_zero(mp); 1.2470 + 1.2471 + /* Get sign from first byte */ 1.2472 + if(ustr[0]) 1.2473 + SIGN(mp) = NEG; 1.2474 + else 1.2475 + SIGN(mp) = ZPOS; 1.2476 + 1.2477 + /* Read the rest of the digits */ 1.2478 + for(ix = 1; ix < len; ix++) { 1.2479 + if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) 1.2480 + return res; 1.2481 + if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) 1.2482 + return res; 1.2483 + } 1.2484 + 1.2485 + return MP_OKAY; 1.2486 + 1.2487 +} /* end mp_read_raw() */ 1.2488 + 1.2489 +/* }}} */ 1.2490 + 1.2491 +/* {{{ mp_raw_size(mp) */ 1.2492 + 1.2493 +int mp_raw_size(mp_int *mp) 1.2494 +{ 1.2495 + ARGCHK(mp != NULL, 0); 1.2496 + 1.2497 + return (USED(mp) * sizeof(mp_digit)) + 1; 1.2498 + 1.2499 +} /* end mp_raw_size() */ 1.2500 + 1.2501 +/* }}} */ 1.2502 + 1.2503 +/* {{{ mp_toraw(mp, str) */ 1.2504 + 1.2505 +mp_err mp_toraw(mp_int *mp, char *str) 1.2506 +{ 1.2507 + int ix, jx, pos = 1; 1.2508 + 1.2509 + ARGCHK(mp != NULL && str != NULL, MP_BADARG); 1.2510 + 1.2511 + str[0] = (char)SIGN(mp); 1.2512 + 1.2513 + /* Iterate over each digit... */ 1.2514 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.2515 + mp_digit d = DIGIT(mp, ix); 1.2516 + 1.2517 + /* Unpack digit bytes, high order first */ 1.2518 + for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { 1.2519 + str[pos++] = (char)(d >> (jx * CHAR_BIT)); 1.2520 + } 1.2521 + } 1.2522 + 1.2523 + return MP_OKAY; 1.2524 + 1.2525 +} /* end mp_toraw() */ 1.2526 + 1.2527 +/* }}} */ 1.2528 + 1.2529 +/* {{{ mp_read_radix(mp, str, radix) */ 1.2530 + 1.2531 +/* 1.2532 + mp_read_radix(mp, str, radix) 1.2533 + 1.2534 + Read an integer from the given string, and set mp to the resulting 1.2535 + value. The input is presumed to be in base 10. Leading non-digit 1.2536 + characters are ignored, and the function reads until a non-digit 1.2537 + character or the end of the string. 1.2538 + */ 1.2539 + 1.2540 +mp_err mp_read_radix(mp_int *mp, const char *str, int radix) 1.2541 +{ 1.2542 + int ix = 0, val = 0; 1.2543 + mp_err res; 1.2544 + mp_sign sig = ZPOS; 1.2545 + 1.2546 + ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, 1.2547 + MP_BADARG); 1.2548 + 1.2549 + mp_zero(mp); 1.2550 + 1.2551 + /* Skip leading non-digit characters until a digit or '-' or '+' */ 1.2552 + while(str[ix] && 1.2553 + (s_mp_tovalue(str[ix], radix) < 0) && 1.2554 + str[ix] != '-' && 1.2555 + str[ix] != '+') { 1.2556 + ++ix; 1.2557 + } 1.2558 + 1.2559 + if(str[ix] == '-') { 1.2560 + sig = NEG; 1.2561 + ++ix; 1.2562 + } else if(str[ix] == '+') { 1.2563 + sig = ZPOS; /* this is the default anyway... */ 1.2564 + ++ix; 1.2565 + } 1.2566 + 1.2567 + while((val = s_mp_tovalue(str[ix], radix)) >= 0) { 1.2568 + if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) 1.2569 + return res; 1.2570 + if((res = s_mp_add_d(mp, val)) != MP_OKAY) 1.2571 + return res; 1.2572 + ++ix; 1.2573 + } 1.2574 + 1.2575 + if(s_mp_cmp_d(mp, 0) == MP_EQ) 1.2576 + SIGN(mp) = ZPOS; 1.2577 + else 1.2578 + SIGN(mp) = sig; 1.2579 + 1.2580 + return MP_OKAY; 1.2581 + 1.2582 +} /* end mp_read_radix() */ 1.2583 + 1.2584 +mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) 1.2585 +{ 1.2586 + int radix = default_radix; 1.2587 + int cx; 1.2588 + mp_sign sig = ZPOS; 1.2589 + mp_err res; 1.2590 + 1.2591 + /* Skip leading non-digit characters until a digit or '-' or '+' */ 1.2592 + while ((cx = *str) != 0 && 1.2593 + (s_mp_tovalue(cx, radix) < 0) && 1.2594 + cx != '-' && 1.2595 + cx != '+') { 1.2596 + ++str; 1.2597 + } 1.2598 + 1.2599 + if (cx == '-') { 1.2600 + sig = NEG; 1.2601 + ++str; 1.2602 + } else if (cx == '+') { 1.2603 + sig = ZPOS; /* this is the default anyway... */ 1.2604 + ++str; 1.2605 + } 1.2606 + 1.2607 + if (str[0] == '0') { 1.2608 + if ((str[1] | 0x20) == 'x') { 1.2609 + radix = 16; 1.2610 + str += 2; 1.2611 + } else { 1.2612 + radix = 8; 1.2613 + str++; 1.2614 + } 1.2615 + } 1.2616 + res = mp_read_radix(a, str, radix); 1.2617 + if (res == MP_OKAY) { 1.2618 + MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; 1.2619 + } 1.2620 + return res; 1.2621 +} 1.2622 + 1.2623 +/* }}} */ 1.2624 + 1.2625 +/* {{{ mp_radix_size(mp, radix) */ 1.2626 + 1.2627 +int mp_radix_size(mp_int *mp, int radix) 1.2628 +{ 1.2629 + int bits; 1.2630 + 1.2631 + if(!mp || radix < 2 || radix > MAX_RADIX) 1.2632 + return 0; 1.2633 + 1.2634 + bits = USED(mp) * DIGIT_BIT - 1; 1.2635 + 1.2636 + return s_mp_outlen(bits, radix); 1.2637 + 1.2638 +} /* end mp_radix_size() */ 1.2639 + 1.2640 +/* }}} */ 1.2641 + 1.2642 +/* {{{ mp_toradix(mp, str, radix) */ 1.2643 + 1.2644 +mp_err mp_toradix(mp_int *mp, char *str, int radix) 1.2645 +{ 1.2646 + int ix, pos = 0; 1.2647 + 1.2648 + ARGCHK(mp != NULL && str != NULL, MP_BADARG); 1.2649 + ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); 1.2650 + 1.2651 + if(mp_cmp_z(mp) == MP_EQ) { 1.2652 + str[0] = '0'; 1.2653 + str[1] = '\0'; 1.2654 + } else { 1.2655 + mp_err res; 1.2656 + mp_int tmp; 1.2657 + mp_sign sgn; 1.2658 + mp_digit rem, rdx = (mp_digit)radix; 1.2659 + char ch; 1.2660 + 1.2661 + if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) 1.2662 + return res; 1.2663 + 1.2664 + /* Save sign for later, and take absolute value */ 1.2665 + sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; 1.2666 + 1.2667 + /* Generate output digits in reverse order */ 1.2668 + while(mp_cmp_z(&tmp) != 0) { 1.2669 + if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { 1.2670 + mp_clear(&tmp); 1.2671 + return res; 1.2672 + } 1.2673 + 1.2674 + /* Generate digits, use capital letters */ 1.2675 + ch = s_mp_todigit(rem, radix, 0); 1.2676 + 1.2677 + str[pos++] = ch; 1.2678 + } 1.2679 + 1.2680 + /* Add - sign if original value was negative */ 1.2681 + if(sgn == NEG) 1.2682 + str[pos++] = '-'; 1.2683 + 1.2684 + /* Add trailing NUL to end the string */ 1.2685 + str[pos--] = '\0'; 1.2686 + 1.2687 + /* Reverse the digits and sign indicator */ 1.2688 + ix = 0; 1.2689 + while(ix < pos) { 1.2690 + char tmp = str[ix]; 1.2691 + 1.2692 + str[ix] = str[pos]; 1.2693 + str[pos] = tmp; 1.2694 + ++ix; 1.2695 + --pos; 1.2696 + } 1.2697 + 1.2698 + mp_clear(&tmp); 1.2699 + } 1.2700 + 1.2701 + return MP_OKAY; 1.2702 + 1.2703 +} /* end mp_toradix() */ 1.2704 + 1.2705 +/* }}} */ 1.2706 + 1.2707 +/* {{{ mp_tovalue(ch, r) */ 1.2708 + 1.2709 +int mp_tovalue(char ch, int r) 1.2710 +{ 1.2711 + return s_mp_tovalue(ch, r); 1.2712 + 1.2713 +} /* end mp_tovalue() */ 1.2714 + 1.2715 +/* }}} */ 1.2716 + 1.2717 +/* }}} */ 1.2718 + 1.2719 +/* {{{ mp_strerror(ec) */ 1.2720 + 1.2721 +/* 1.2722 + mp_strerror(ec) 1.2723 + 1.2724 + Return a string describing the meaning of error code 'ec'. The 1.2725 + string returned is allocated in static memory, so the caller should 1.2726 + not attempt to modify or free the memory associated with this 1.2727 + string. 1.2728 + */ 1.2729 +const char *mp_strerror(mp_err ec) 1.2730 +{ 1.2731 + int aec = (ec < 0) ? -ec : ec; 1.2732 + 1.2733 + /* Code values are negative, so the senses of these comparisons 1.2734 + are accurate */ 1.2735 + if(ec < MP_LAST_CODE || ec > MP_OKAY) { 1.2736 + return mp_err_string[0]; /* unknown error code */ 1.2737 + } else { 1.2738 + return mp_err_string[aec + 1]; 1.2739 + } 1.2740 + 1.2741 +} /* end mp_strerror() */ 1.2742 + 1.2743 +/* }}} */ 1.2744 + 1.2745 +/*========================================================================*/ 1.2746 +/*------------------------------------------------------------------------*/ 1.2747 +/* Static function definitions (internal use only) */ 1.2748 + 1.2749 +/* {{{ Memory management */ 1.2750 + 1.2751 +/* {{{ s_mp_grow(mp, min) */ 1.2752 + 1.2753 +/* Make sure there are at least 'min' digits allocated to mp */ 1.2754 +mp_err s_mp_grow(mp_int *mp, mp_size min) 1.2755 +{ 1.2756 + if(min > ALLOC(mp)) { 1.2757 + mp_digit *tmp; 1.2758 + 1.2759 + /* Set min to next nearest default precision block size */ 1.2760 + min = MP_ROUNDUP(min, s_mp_defprec); 1.2761 + 1.2762 + if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) 1.2763 + return MP_MEM; 1.2764 + 1.2765 + s_mp_copy(DIGITS(mp), tmp, USED(mp)); 1.2766 + 1.2767 +#if MP_CRYPTO 1.2768 + s_mp_setz(DIGITS(mp), ALLOC(mp)); 1.2769 +#endif 1.2770 + s_mp_free(DIGITS(mp)); 1.2771 + DIGITS(mp) = tmp; 1.2772 + ALLOC(mp) = min; 1.2773 + } 1.2774 + 1.2775 + return MP_OKAY; 1.2776 + 1.2777 +} /* end s_mp_grow() */ 1.2778 + 1.2779 +/* }}} */ 1.2780 + 1.2781 +/* {{{ s_mp_pad(mp, min) */ 1.2782 + 1.2783 +/* Make sure the used size of mp is at least 'min', growing if needed */ 1.2784 +mp_err s_mp_pad(mp_int *mp, mp_size min) 1.2785 +{ 1.2786 + if(min > USED(mp)) { 1.2787 + mp_err res; 1.2788 + 1.2789 + /* Make sure there is room to increase precision */ 1.2790 + if (min > ALLOC(mp)) { 1.2791 + if ((res = s_mp_grow(mp, min)) != MP_OKAY) 1.2792 + return res; 1.2793 + } else { 1.2794 + s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); 1.2795 + } 1.2796 + 1.2797 + /* Increase precision; should already be 0-filled */ 1.2798 + USED(mp) = min; 1.2799 + } 1.2800 + 1.2801 + return MP_OKAY; 1.2802 + 1.2803 +} /* end s_mp_pad() */ 1.2804 + 1.2805 +/* }}} */ 1.2806 + 1.2807 +/* {{{ s_mp_setz(dp, count) */ 1.2808 + 1.2809 +#if MP_MACRO == 0 1.2810 +/* Set 'count' digits pointed to by dp to be zeroes */ 1.2811 +void s_mp_setz(mp_digit *dp, mp_size count) 1.2812 +{ 1.2813 +#if MP_MEMSET == 0 1.2814 + int ix; 1.2815 + 1.2816 + for(ix = 0; ix < count; ix++) 1.2817 + dp[ix] = 0; 1.2818 +#else 1.2819 + memset(dp, 0, count * sizeof(mp_digit)); 1.2820 +#endif 1.2821 + 1.2822 +} /* end s_mp_setz() */ 1.2823 +#endif 1.2824 + 1.2825 +/* }}} */ 1.2826 + 1.2827 +/* {{{ s_mp_copy(sp, dp, count) */ 1.2828 + 1.2829 +#if MP_MACRO == 0 1.2830 +/* Copy 'count' digits from sp to dp */ 1.2831 +void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) 1.2832 +{ 1.2833 +#if MP_MEMCPY == 0 1.2834 + int ix; 1.2835 + 1.2836 + for(ix = 0; ix < count; ix++) 1.2837 + dp[ix] = sp[ix]; 1.2838 +#else 1.2839 + memcpy(dp, sp, count * sizeof(mp_digit)); 1.2840 +#endif 1.2841 + ++mp_copies; 1.2842 + 1.2843 +} /* end s_mp_copy() */ 1.2844 +#endif 1.2845 + 1.2846 +/* }}} */ 1.2847 + 1.2848 +/* {{{ s_mp_alloc(nb, ni) */ 1.2849 + 1.2850 +#if MP_MACRO == 0 1.2851 +/* Allocate ni records of nb bytes each, and return a pointer to that */ 1.2852 +void *s_mp_alloc(size_t nb, size_t ni) 1.2853 +{ 1.2854 + ++mp_allocs; 1.2855 + return calloc(nb, ni); 1.2856 + 1.2857 +} /* end s_mp_alloc() */ 1.2858 +#endif 1.2859 + 1.2860 +/* }}} */ 1.2861 + 1.2862 +/* {{{ s_mp_free(ptr) */ 1.2863 + 1.2864 +#if MP_MACRO == 0 1.2865 +/* Free the memory pointed to by ptr */ 1.2866 +void s_mp_free(void *ptr) 1.2867 +{ 1.2868 + if(ptr) { 1.2869 + ++mp_frees; 1.2870 + free(ptr); 1.2871 + } 1.2872 +} /* end s_mp_free() */ 1.2873 +#endif 1.2874 + 1.2875 +/* }}} */ 1.2876 + 1.2877 +/* {{{ s_mp_clamp(mp) */ 1.2878 + 1.2879 +#if MP_MACRO == 0 1.2880 +/* Remove leading zeroes from the given value */ 1.2881 +void s_mp_clamp(mp_int *mp) 1.2882 +{ 1.2883 + mp_size used = MP_USED(mp); 1.2884 + while (used > 1 && DIGIT(mp, used - 1) == 0) 1.2885 + --used; 1.2886 + MP_USED(mp) = used; 1.2887 +} /* end s_mp_clamp() */ 1.2888 +#endif 1.2889 + 1.2890 +/* }}} */ 1.2891 + 1.2892 +/* {{{ s_mp_exch(a, b) */ 1.2893 + 1.2894 +/* Exchange the data for a and b; (b, a) = (a, b) */ 1.2895 +void s_mp_exch(mp_int *a, mp_int *b) 1.2896 +{ 1.2897 + mp_int tmp; 1.2898 + 1.2899 + tmp = *a; 1.2900 + *a = *b; 1.2901 + *b = tmp; 1.2902 + 1.2903 +} /* end s_mp_exch() */ 1.2904 + 1.2905 +/* }}} */ 1.2906 + 1.2907 +/* }}} */ 1.2908 + 1.2909 +/* {{{ Arithmetic helpers */ 1.2910 + 1.2911 +/* {{{ s_mp_lshd(mp, p) */ 1.2912 + 1.2913 +/* 1.2914 + Shift mp leftward by p digits, growing if needed, and zero-filling 1.2915 + the in-shifted digits at the right end. This is a convenient 1.2916 + alternative to multiplication by powers of the radix 1.2917 + */ 1.2918 + 1.2919 +mp_err s_mp_lshd(mp_int *mp, mp_size p) 1.2920 +{ 1.2921 + mp_err res; 1.2922 + mp_size pos; 1.2923 + int ix; 1.2924 + 1.2925 + if(p == 0) 1.2926 + return MP_OKAY; 1.2927 + 1.2928 + if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) 1.2929 + return MP_OKAY; 1.2930 + 1.2931 + if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) 1.2932 + return res; 1.2933 + 1.2934 + pos = USED(mp) - 1; 1.2935 + 1.2936 + /* Shift all the significant figures over as needed */ 1.2937 + for(ix = pos - p; ix >= 0; ix--) 1.2938 + DIGIT(mp, ix + p) = DIGIT(mp, ix); 1.2939 + 1.2940 + /* Fill the bottom digits with zeroes */ 1.2941 + for(ix = 0; ix < p; ix++) 1.2942 + DIGIT(mp, ix) = 0; 1.2943 + 1.2944 + return MP_OKAY; 1.2945 + 1.2946 +} /* end s_mp_lshd() */ 1.2947 + 1.2948 +/* }}} */ 1.2949 + 1.2950 +/* {{{ s_mp_mul_2d(mp, d) */ 1.2951 + 1.2952 +/* 1.2953 + Multiply the integer by 2^d, where d is a number of bits. This 1.2954 + amounts to a bitwise shift of the value. 1.2955 + */ 1.2956 +mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) 1.2957 +{ 1.2958 + mp_err res; 1.2959 + mp_digit dshift, bshift; 1.2960 + mp_digit mask; 1.2961 + 1.2962 + ARGCHK(mp != NULL, MP_BADARG); 1.2963 + 1.2964 + dshift = d / MP_DIGIT_BIT; 1.2965 + bshift = d % MP_DIGIT_BIT; 1.2966 + /* bits to be shifted out of the top word */ 1.2967 + mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); 1.2968 + mask &= MP_DIGIT(mp, MP_USED(mp) - 1); 1.2969 + 1.2970 + if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) 1.2971 + return res; 1.2972 + 1.2973 + if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) 1.2974 + return res; 1.2975 + 1.2976 + if (bshift) { 1.2977 + mp_digit *pa = MP_DIGITS(mp); 1.2978 + mp_digit *alim = pa + MP_USED(mp); 1.2979 + mp_digit prev = 0; 1.2980 + 1.2981 + for (pa += dshift; pa < alim; ) { 1.2982 + mp_digit x = *pa; 1.2983 + *pa++ = (x << bshift) | prev; 1.2984 + prev = x >> (DIGIT_BIT - bshift); 1.2985 + } 1.2986 + } 1.2987 + 1.2988 + s_mp_clamp(mp); 1.2989 + return MP_OKAY; 1.2990 +} /* end s_mp_mul_2d() */ 1.2991 + 1.2992 +/* {{{ s_mp_rshd(mp, p) */ 1.2993 + 1.2994 +/* 1.2995 + Shift mp rightward by p digits. Maintains the invariant that 1.2996 + digits above the precision are all zero. Digits shifted off the 1.2997 + end are lost. Cannot fail. 1.2998 + */ 1.2999 + 1.3000 +void s_mp_rshd(mp_int *mp, mp_size p) 1.3001 +{ 1.3002 + mp_size ix; 1.3003 + mp_digit *src, *dst; 1.3004 + 1.3005 + if(p == 0) 1.3006 + return; 1.3007 + 1.3008 + /* Shortcut when all digits are to be shifted off */ 1.3009 + if(p >= USED(mp)) { 1.3010 + s_mp_setz(DIGITS(mp), ALLOC(mp)); 1.3011 + USED(mp) = 1; 1.3012 + SIGN(mp) = ZPOS; 1.3013 + return; 1.3014 + } 1.3015 + 1.3016 + /* Shift all the significant figures over as needed */ 1.3017 + dst = MP_DIGITS(mp); 1.3018 + src = dst + p; 1.3019 + for (ix = USED(mp) - p; ix > 0; ix--) 1.3020 + *dst++ = *src++; 1.3021 + 1.3022 + MP_USED(mp) -= p; 1.3023 + /* Fill the top digits with zeroes */ 1.3024 + while (p-- > 0) 1.3025 + *dst++ = 0; 1.3026 + 1.3027 +#if 0 1.3028 + /* Strip off any leading zeroes */ 1.3029 + s_mp_clamp(mp); 1.3030 +#endif 1.3031 + 1.3032 +} /* end s_mp_rshd() */ 1.3033 + 1.3034 +/* }}} */ 1.3035 + 1.3036 +/* {{{ s_mp_div_2(mp) */ 1.3037 + 1.3038 +/* Divide by two -- take advantage of radix properties to do it fast */ 1.3039 +void s_mp_div_2(mp_int *mp) 1.3040 +{ 1.3041 + s_mp_div_2d(mp, 1); 1.3042 + 1.3043 +} /* end s_mp_div_2() */ 1.3044 + 1.3045 +/* }}} */ 1.3046 + 1.3047 +/* {{{ s_mp_mul_2(mp) */ 1.3048 + 1.3049 +mp_err s_mp_mul_2(mp_int *mp) 1.3050 +{ 1.3051 + mp_digit *pd; 1.3052 + int ix, used; 1.3053 + mp_digit kin = 0; 1.3054 + 1.3055 + /* Shift digits leftward by 1 bit */ 1.3056 + used = MP_USED(mp); 1.3057 + pd = MP_DIGITS(mp); 1.3058 + for (ix = 0; ix < used; ix++) { 1.3059 + mp_digit d = *pd; 1.3060 + *pd++ = (d << 1) | kin; 1.3061 + kin = (d >> (DIGIT_BIT - 1)); 1.3062 + } 1.3063 + 1.3064 + /* Deal with rollover from last digit */ 1.3065 + if (kin) { 1.3066 + if (ix >= ALLOC(mp)) { 1.3067 + mp_err res; 1.3068 + if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) 1.3069 + return res; 1.3070 + } 1.3071 + 1.3072 + DIGIT(mp, ix) = kin; 1.3073 + USED(mp) += 1; 1.3074 + } 1.3075 + 1.3076 + return MP_OKAY; 1.3077 + 1.3078 +} /* end s_mp_mul_2() */ 1.3079 + 1.3080 +/* }}} */ 1.3081 + 1.3082 +/* {{{ s_mp_mod_2d(mp, d) */ 1.3083 + 1.3084 +/* 1.3085 + Remainder the integer by 2^d, where d is a number of bits. This 1.3086 + amounts to a bitwise AND of the value, and does not require the full 1.3087 + division code 1.3088 + */ 1.3089 +void s_mp_mod_2d(mp_int *mp, mp_digit d) 1.3090 +{ 1.3091 + mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); 1.3092 + mp_size ix; 1.3093 + mp_digit dmask; 1.3094 + 1.3095 + if(ndig >= USED(mp)) 1.3096 + return; 1.3097 + 1.3098 + /* Flush all the bits above 2^d in its digit */ 1.3099 + dmask = ((mp_digit)1 << nbit) - 1; 1.3100 + DIGIT(mp, ndig) &= dmask; 1.3101 + 1.3102 + /* Flush all digits above the one with 2^d in it */ 1.3103 + for(ix = ndig + 1; ix < USED(mp); ix++) 1.3104 + DIGIT(mp, ix) = 0; 1.3105 + 1.3106 + s_mp_clamp(mp); 1.3107 + 1.3108 +} /* end s_mp_mod_2d() */ 1.3109 + 1.3110 +/* }}} */ 1.3111 + 1.3112 +/* {{{ s_mp_div_2d(mp, d) */ 1.3113 + 1.3114 +/* 1.3115 + Divide the integer by 2^d, where d is a number of bits. This 1.3116 + amounts to a bitwise shift of the value, and does not require the 1.3117 + full division code (used in Barrett reduction, see below) 1.3118 + */ 1.3119 +void s_mp_div_2d(mp_int *mp, mp_digit d) 1.3120 +{ 1.3121 + int ix; 1.3122 + mp_digit save, next, mask; 1.3123 + 1.3124 + s_mp_rshd(mp, d / DIGIT_BIT); 1.3125 + d %= DIGIT_BIT; 1.3126 + if (d) { 1.3127 + mask = ((mp_digit)1 << d) - 1; 1.3128 + save = 0; 1.3129 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.3130 + next = DIGIT(mp, ix) & mask; 1.3131 + DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); 1.3132 + save = next; 1.3133 + } 1.3134 + } 1.3135 + s_mp_clamp(mp); 1.3136 + 1.3137 +} /* end s_mp_div_2d() */ 1.3138 + 1.3139 +/* }}} */ 1.3140 + 1.3141 +/* {{{ s_mp_norm(a, b, *d) */ 1.3142 + 1.3143 +/* 1.3144 + s_mp_norm(a, b, *d) 1.3145 + 1.3146 + Normalize a and b for division, where b is the divisor. In order 1.3147 + that we might make good guesses for quotient digits, we want the 1.3148 + leading digit of b to be at least half the radix, which we 1.3149 + accomplish by multiplying a and b by a power of 2. The exponent 1.3150 + (shift count) is placed in *pd, so that the remainder can be shifted 1.3151 + back at the end of the division process. 1.3152 + */ 1.3153 + 1.3154 +mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) 1.3155 +{ 1.3156 + mp_digit d; 1.3157 + mp_digit mask; 1.3158 + mp_digit b_msd; 1.3159 + mp_err res = MP_OKAY; 1.3160 + 1.3161 + d = 0; 1.3162 + mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ 1.3163 + b_msd = DIGIT(b, USED(b) - 1); 1.3164 + while (!(b_msd & mask)) { 1.3165 + b_msd <<= 1; 1.3166 + ++d; 1.3167 + } 1.3168 + 1.3169 + if (d) { 1.3170 + MP_CHECKOK( s_mp_mul_2d(a, d) ); 1.3171 + MP_CHECKOK( s_mp_mul_2d(b, d) ); 1.3172 + } 1.3173 + 1.3174 + *pd = d; 1.3175 +CLEANUP: 1.3176 + return res; 1.3177 + 1.3178 +} /* end s_mp_norm() */ 1.3179 + 1.3180 +/* }}} */ 1.3181 + 1.3182 +/* }}} */ 1.3183 + 1.3184 +/* {{{ Primitive digit arithmetic */ 1.3185 + 1.3186 +/* {{{ s_mp_add_d(mp, d) */ 1.3187 + 1.3188 +/* Add d to |mp| in place */ 1.3189 +mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ 1.3190 +{ 1.3191 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3192 + mp_word w, k = 0; 1.3193 + mp_size ix = 1; 1.3194 + 1.3195 + w = (mp_word)DIGIT(mp, 0) + d; 1.3196 + DIGIT(mp, 0) = ACCUM(w); 1.3197 + k = CARRYOUT(w); 1.3198 + 1.3199 + while(ix < USED(mp) && k) { 1.3200 + w = (mp_word)DIGIT(mp, ix) + k; 1.3201 + DIGIT(mp, ix) = ACCUM(w); 1.3202 + k = CARRYOUT(w); 1.3203 + ++ix; 1.3204 + } 1.3205 + 1.3206 + if(k != 0) { 1.3207 + mp_err res; 1.3208 + 1.3209 + if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) 1.3210 + return res; 1.3211 + 1.3212 + DIGIT(mp, ix) = (mp_digit)k; 1.3213 + } 1.3214 + 1.3215 + return MP_OKAY; 1.3216 +#else 1.3217 + mp_digit * pmp = MP_DIGITS(mp); 1.3218 + mp_digit sum, mp_i, carry = 0; 1.3219 + mp_err res = MP_OKAY; 1.3220 + int used = (int)MP_USED(mp); 1.3221 + 1.3222 + mp_i = *pmp; 1.3223 + *pmp++ = sum = d + mp_i; 1.3224 + carry = (sum < d); 1.3225 + while (carry && --used > 0) { 1.3226 + mp_i = *pmp; 1.3227 + *pmp++ = sum = carry + mp_i; 1.3228 + carry = !sum; 1.3229 + } 1.3230 + if (carry && !used) { 1.3231 + /* mp is growing */ 1.3232 + used = MP_USED(mp); 1.3233 + MP_CHECKOK( s_mp_pad(mp, used + 1) ); 1.3234 + MP_DIGIT(mp, used) = carry; 1.3235 + } 1.3236 +CLEANUP: 1.3237 + return res; 1.3238 +#endif 1.3239 +} /* end s_mp_add_d() */ 1.3240 + 1.3241 +/* }}} */ 1.3242 + 1.3243 +/* {{{ s_mp_sub_d(mp, d) */ 1.3244 + 1.3245 +/* Subtract d from |mp| in place, assumes |mp| > d */ 1.3246 +mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ 1.3247 +{ 1.3248 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3249 + mp_word w, b = 0; 1.3250 + mp_size ix = 1; 1.3251 + 1.3252 + /* Compute initial subtraction */ 1.3253 + w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; 1.3254 + b = CARRYOUT(w) ? 0 : 1; 1.3255 + DIGIT(mp, 0) = ACCUM(w); 1.3256 + 1.3257 + /* Propagate borrows leftward */ 1.3258 + while(b && ix < USED(mp)) { 1.3259 + w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; 1.3260 + b = CARRYOUT(w) ? 0 : 1; 1.3261 + DIGIT(mp, ix) = ACCUM(w); 1.3262 + ++ix; 1.3263 + } 1.3264 + 1.3265 + /* Remove leading zeroes */ 1.3266 + s_mp_clamp(mp); 1.3267 + 1.3268 + /* If we have a borrow out, it's a violation of the input invariant */ 1.3269 + if(b) 1.3270 + return MP_RANGE; 1.3271 + else 1.3272 + return MP_OKAY; 1.3273 +#else 1.3274 + mp_digit *pmp = MP_DIGITS(mp); 1.3275 + mp_digit mp_i, diff, borrow; 1.3276 + mp_size used = MP_USED(mp); 1.3277 + 1.3278 + mp_i = *pmp; 1.3279 + *pmp++ = diff = mp_i - d; 1.3280 + borrow = (diff > mp_i); 1.3281 + while (borrow && --used) { 1.3282 + mp_i = *pmp; 1.3283 + *pmp++ = diff = mp_i - borrow; 1.3284 + borrow = (diff > mp_i); 1.3285 + } 1.3286 + s_mp_clamp(mp); 1.3287 + return (borrow && !used) ? MP_RANGE : MP_OKAY; 1.3288 +#endif 1.3289 +} /* end s_mp_sub_d() */ 1.3290 + 1.3291 +/* }}} */ 1.3292 + 1.3293 +/* {{{ s_mp_mul_d(a, d) */ 1.3294 + 1.3295 +/* Compute a = a * d, single digit multiplication */ 1.3296 +mp_err s_mp_mul_d(mp_int *a, mp_digit d) 1.3297 +{ 1.3298 + mp_err res; 1.3299 + mp_size used; 1.3300 + int pow; 1.3301 + 1.3302 + if (!d) { 1.3303 + mp_zero(a); 1.3304 + return MP_OKAY; 1.3305 + } 1.3306 + if (d == 1) 1.3307 + return MP_OKAY; 1.3308 + if (0 <= (pow = s_mp_ispow2d(d))) { 1.3309 + return s_mp_mul_2d(a, (mp_digit)pow); 1.3310 + } 1.3311 + 1.3312 + used = MP_USED(a); 1.3313 + MP_CHECKOK( s_mp_pad(a, used + 1) ); 1.3314 + 1.3315 + s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); 1.3316 + 1.3317 + s_mp_clamp(a); 1.3318 + 1.3319 +CLEANUP: 1.3320 + return res; 1.3321 + 1.3322 +} /* end s_mp_mul_d() */ 1.3323 + 1.3324 +/* }}} */ 1.3325 + 1.3326 +/* {{{ s_mp_div_d(mp, d, r) */ 1.3327 + 1.3328 +/* 1.3329 + s_mp_div_d(mp, d, r) 1.3330 + 1.3331 + Compute the quotient mp = mp / d and remainder r = mp mod d, for a 1.3332 + single digit d. If r is null, the remainder will be discarded. 1.3333 + */ 1.3334 + 1.3335 +mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) 1.3336 +{ 1.3337 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) 1.3338 + mp_word w = 0, q; 1.3339 +#else 1.3340 + mp_digit w, q; 1.3341 +#endif 1.3342 + int ix; 1.3343 + mp_err res; 1.3344 + mp_int quot; 1.3345 + mp_int rem; 1.3346 + 1.3347 + if(d == 0) 1.3348 + return MP_RANGE; 1.3349 + if (d == 1) { 1.3350 + if (r) 1.3351 + *r = 0; 1.3352 + return MP_OKAY; 1.3353 + } 1.3354 + /* could check for power of 2 here, but mp_div_d does that. */ 1.3355 + if (MP_USED(mp) == 1) { 1.3356 + mp_digit n = MP_DIGIT(mp,0); 1.3357 + mp_digit rem; 1.3358 + 1.3359 + q = n / d; 1.3360 + rem = n % d; 1.3361 + MP_DIGIT(mp,0) = q; 1.3362 + if (r) 1.3363 + *r = rem; 1.3364 + return MP_OKAY; 1.3365 + } 1.3366 + 1.3367 + MP_DIGITS(&rem) = 0; 1.3368 + MP_DIGITS(") = 0; 1.3369 + /* Make room for the quotient */ 1.3370 + MP_CHECKOK( mp_init_size(", USED(mp)) ); 1.3371 + 1.3372 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) 1.3373 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.3374 + w = (w << DIGIT_BIT) | DIGIT(mp, ix); 1.3375 + 1.3376 + if(w >= d) { 1.3377 + q = w / d; 1.3378 + w = w % d; 1.3379 + } else { 1.3380 + q = 0; 1.3381 + } 1.3382 + 1.3383 + s_mp_lshd(", 1); 1.3384 + DIGIT(", 0) = (mp_digit)q; 1.3385 + } 1.3386 +#else 1.3387 + { 1.3388 + mp_digit p; 1.3389 +#if !defined(MP_ASSEMBLY_DIV_2DX1D) 1.3390 + mp_digit norm; 1.3391 +#endif 1.3392 + 1.3393 + MP_CHECKOK( mp_init_copy(&rem, mp) ); 1.3394 + 1.3395 +#if !defined(MP_ASSEMBLY_DIV_2DX1D) 1.3396 + MP_DIGIT(", 0) = d; 1.3397 + MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); 1.3398 + if (norm) 1.3399 + d <<= norm; 1.3400 + MP_DIGIT(", 0) = 0; 1.3401 +#endif 1.3402 + 1.3403 + p = 0; 1.3404 + for (ix = USED(&rem) - 1; ix >= 0; ix--) { 1.3405 + w = DIGIT(&rem, ix); 1.3406 + 1.3407 + if (p) { 1.3408 + MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); 1.3409 + } else if (w >= d) { 1.3410 + q = w / d; 1.3411 + w = w % d; 1.3412 + } else { 1.3413 + q = 0; 1.3414 + } 1.3415 + 1.3416 + MP_CHECKOK( s_mp_lshd(", 1) ); 1.3417 + DIGIT(", 0) = q; 1.3418 + p = w; 1.3419 + } 1.3420 +#if !defined(MP_ASSEMBLY_DIV_2DX1D) 1.3421 + if (norm) 1.3422 + w >>= norm; 1.3423 +#endif 1.3424 + } 1.3425 +#endif 1.3426 + 1.3427 + /* Deliver the remainder, if desired */ 1.3428 + if(r) 1.3429 + *r = (mp_digit)w; 1.3430 + 1.3431 + s_mp_clamp("); 1.3432 + mp_exch(", mp); 1.3433 +CLEANUP: 1.3434 + mp_clear("); 1.3435 + mp_clear(&rem); 1.3436 + 1.3437 + return res; 1.3438 +} /* end s_mp_div_d() */ 1.3439 + 1.3440 +/* }}} */ 1.3441 + 1.3442 + 1.3443 +/* }}} */ 1.3444 + 1.3445 +/* {{{ Primitive full arithmetic */ 1.3446 + 1.3447 +/* {{{ s_mp_add(a, b) */ 1.3448 + 1.3449 +/* Compute a = |a| + |b| */ 1.3450 +mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ 1.3451 +{ 1.3452 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3453 + mp_word w = 0; 1.3454 +#else 1.3455 + mp_digit d, sum, carry = 0; 1.3456 +#endif 1.3457 + mp_digit *pa, *pb; 1.3458 + mp_size ix; 1.3459 + mp_size used; 1.3460 + mp_err res; 1.3461 + 1.3462 + /* Make sure a has enough precision for the output value */ 1.3463 + if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) 1.3464 + return res; 1.3465 + 1.3466 + /* 1.3467 + Add up all digits up to the precision of b. If b had initially 1.3468 + the same precision as a, or greater, we took care of it by the 1.3469 + padding step above, so there is no problem. If b had initially 1.3470 + less precision, we'll have to make sure the carry out is duly 1.3471 + propagated upward among the higher-order digits of the sum. 1.3472 + */ 1.3473 + pa = MP_DIGITS(a); 1.3474 + pb = MP_DIGITS(b); 1.3475 + used = MP_USED(b); 1.3476 + for(ix = 0; ix < used; ix++) { 1.3477 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3478 + w = w + *pa + *pb++; 1.3479 + *pa++ = ACCUM(w); 1.3480 + w = CARRYOUT(w); 1.3481 +#else 1.3482 + d = *pa; 1.3483 + sum = d + *pb++; 1.3484 + d = (sum < d); /* detect overflow */ 1.3485 + *pa++ = sum += carry; 1.3486 + carry = d + (sum < carry); /* detect overflow */ 1.3487 +#endif 1.3488 + } 1.3489 + 1.3490 + /* If we run out of 'b' digits before we're actually done, make 1.3491 + sure the carries get propagated upward... 1.3492 + */ 1.3493 + used = MP_USED(a); 1.3494 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3495 + while (w && ix < used) { 1.3496 + w = w + *pa; 1.3497 + *pa++ = ACCUM(w); 1.3498 + w = CARRYOUT(w); 1.3499 + ++ix; 1.3500 + } 1.3501 +#else 1.3502 + while (carry && ix < used) { 1.3503 + sum = carry + *pa; 1.3504 + *pa++ = sum; 1.3505 + carry = !sum; 1.3506 + ++ix; 1.3507 + } 1.3508 +#endif 1.3509 + 1.3510 + /* If there's an overall carry out, increase precision and include 1.3511 + it. We could have done this initially, but why touch the memory 1.3512 + allocator unless we're sure we have to? 1.3513 + */ 1.3514 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3515 + if (w) { 1.3516 + if((res = s_mp_pad(a, used + 1)) != MP_OKAY) 1.3517 + return res; 1.3518 + 1.3519 + DIGIT(a, ix) = (mp_digit)w; 1.3520 + } 1.3521 +#else 1.3522 + if (carry) { 1.3523 + if((res = s_mp_pad(a, used + 1)) != MP_OKAY) 1.3524 + return res; 1.3525 + 1.3526 + DIGIT(a, used) = carry; 1.3527 + } 1.3528 +#endif 1.3529 + 1.3530 + return MP_OKAY; 1.3531 +} /* end s_mp_add() */ 1.3532 + 1.3533 +/* }}} */ 1.3534 + 1.3535 +/* Compute c = |a| + |b| */ /* magnitude addition */ 1.3536 +mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) 1.3537 +{ 1.3538 + mp_digit *pa, *pb, *pc; 1.3539 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3540 + mp_word w = 0; 1.3541 +#else 1.3542 + mp_digit sum, carry = 0, d; 1.3543 +#endif 1.3544 + mp_size ix; 1.3545 + mp_size used; 1.3546 + mp_err res; 1.3547 + 1.3548 + MP_SIGN(c) = MP_SIGN(a); 1.3549 + if (MP_USED(a) < MP_USED(b)) { 1.3550 + const mp_int *xch = a; 1.3551 + a = b; 1.3552 + b = xch; 1.3553 + } 1.3554 + 1.3555 + /* Make sure a has enough precision for the output value */ 1.3556 + if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) 1.3557 + return res; 1.3558 + 1.3559 + /* 1.3560 + Add up all digits up to the precision of b. If b had initially 1.3561 + the same precision as a, or greater, we took care of it by the 1.3562 + exchange step above, so there is no problem. If b had initially 1.3563 + less precision, we'll have to make sure the carry out is duly 1.3564 + propagated upward among the higher-order digits of the sum. 1.3565 + */ 1.3566 + pa = MP_DIGITS(a); 1.3567 + pb = MP_DIGITS(b); 1.3568 + pc = MP_DIGITS(c); 1.3569 + used = MP_USED(b); 1.3570 + for (ix = 0; ix < used; ix++) { 1.3571 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3572 + w = w + *pa++ + *pb++; 1.3573 + *pc++ = ACCUM(w); 1.3574 + w = CARRYOUT(w); 1.3575 +#else 1.3576 + d = *pa++; 1.3577 + sum = d + *pb++; 1.3578 + d = (sum < d); /* detect overflow */ 1.3579 + *pc++ = sum += carry; 1.3580 + carry = d + (sum < carry); /* detect overflow */ 1.3581 +#endif 1.3582 + } 1.3583 + 1.3584 + /* If we run out of 'b' digits before we're actually done, make 1.3585 + sure the carries get propagated upward... 1.3586 + */ 1.3587 + for (used = MP_USED(a); ix < used; ++ix) { 1.3588 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3589 + w = w + *pa++; 1.3590 + *pc++ = ACCUM(w); 1.3591 + w = CARRYOUT(w); 1.3592 +#else 1.3593 + *pc++ = sum = carry + *pa++; 1.3594 + carry = (sum < carry); 1.3595 +#endif 1.3596 + } 1.3597 + 1.3598 + /* If there's an overall carry out, increase precision and include 1.3599 + it. We could have done this initially, but why touch the memory 1.3600 + allocator unless we're sure we have to? 1.3601 + */ 1.3602 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3603 + if (w) { 1.3604 + if((res = s_mp_pad(c, used + 1)) != MP_OKAY) 1.3605 + return res; 1.3606 + 1.3607 + DIGIT(c, used) = (mp_digit)w; 1.3608 + ++used; 1.3609 + } 1.3610 +#else 1.3611 + if (carry) { 1.3612 + if((res = s_mp_pad(c, used + 1)) != MP_OKAY) 1.3613 + return res; 1.3614 + 1.3615 + DIGIT(c, used) = carry; 1.3616 + ++used; 1.3617 + } 1.3618 +#endif 1.3619 + MP_USED(c) = used; 1.3620 + return MP_OKAY; 1.3621 +} 1.3622 +/* {{{ s_mp_add_offset(a, b, offset) */ 1.3623 + 1.3624 +/* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ 1.3625 +mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) 1.3626 +{ 1.3627 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3628 + mp_word w, k = 0; 1.3629 +#else 1.3630 + mp_digit d, sum, carry = 0; 1.3631 +#endif 1.3632 + mp_size ib; 1.3633 + mp_size ia; 1.3634 + mp_size lim; 1.3635 + mp_err res; 1.3636 + 1.3637 + /* Make sure a has enough precision for the output value */ 1.3638 + lim = MP_USED(b) + offset; 1.3639 + if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) 1.3640 + return res; 1.3641 + 1.3642 + /* 1.3643 + Add up all digits up to the precision of b. If b had initially 1.3644 + the same precision as a, or greater, we took care of it by the 1.3645 + padding step above, so there is no problem. If b had initially 1.3646 + less precision, we'll have to make sure the carry out is duly 1.3647 + propagated upward among the higher-order digits of the sum. 1.3648 + */ 1.3649 + lim = USED(b); 1.3650 + for(ib = 0, ia = offset; ib < lim; ib++, ia++) { 1.3651 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3652 + w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; 1.3653 + DIGIT(a, ia) = ACCUM(w); 1.3654 + k = CARRYOUT(w); 1.3655 +#else 1.3656 + d = MP_DIGIT(a, ia); 1.3657 + sum = d + MP_DIGIT(b, ib); 1.3658 + d = (sum < d); 1.3659 + MP_DIGIT(a,ia) = sum += carry; 1.3660 + carry = d + (sum < carry); 1.3661 +#endif 1.3662 + } 1.3663 + 1.3664 + /* If we run out of 'b' digits before we're actually done, make 1.3665 + sure the carries get propagated upward... 1.3666 + */ 1.3667 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3668 + for (lim = MP_USED(a); k && (ia < lim); ++ia) { 1.3669 + w = (mp_word)DIGIT(a, ia) + k; 1.3670 + DIGIT(a, ia) = ACCUM(w); 1.3671 + k = CARRYOUT(w); 1.3672 + } 1.3673 +#else 1.3674 + for (lim = MP_USED(a); carry && (ia < lim); ++ia) { 1.3675 + d = MP_DIGIT(a, ia); 1.3676 + MP_DIGIT(a,ia) = sum = d + carry; 1.3677 + carry = (sum < d); 1.3678 + } 1.3679 +#endif 1.3680 + 1.3681 + /* If there's an overall carry out, increase precision and include 1.3682 + it. We could have done this initially, but why touch the memory 1.3683 + allocator unless we're sure we have to? 1.3684 + */ 1.3685 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) 1.3686 + if(k) { 1.3687 + if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) 1.3688 + return res; 1.3689 + 1.3690 + DIGIT(a, ia) = (mp_digit)k; 1.3691 + } 1.3692 +#else 1.3693 + if (carry) { 1.3694 + if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) 1.3695 + return res; 1.3696 + 1.3697 + DIGIT(a, lim) = carry; 1.3698 + } 1.3699 +#endif 1.3700 + s_mp_clamp(a); 1.3701 + 1.3702 + return MP_OKAY; 1.3703 + 1.3704 +} /* end s_mp_add_offset() */ 1.3705 + 1.3706 +/* }}} */ 1.3707 + 1.3708 +/* {{{ s_mp_sub(a, b) */ 1.3709 + 1.3710 +/* Compute a = |a| - |b|, assumes |a| >= |b| */ 1.3711 +mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ 1.3712 +{ 1.3713 + mp_digit *pa, *pb, *limit; 1.3714 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3715 + mp_sword w = 0; 1.3716 +#else 1.3717 + mp_digit d, diff, borrow = 0; 1.3718 +#endif 1.3719 + 1.3720 + /* 1.3721 + Subtract and propagate borrow. Up to the precision of b, this 1.3722 + accounts for the digits of b; after that, we just make sure the 1.3723 + carries get to the right place. This saves having to pad b out to 1.3724 + the precision of a just to make the loops work right... 1.3725 + */ 1.3726 + pa = MP_DIGITS(a); 1.3727 + pb = MP_DIGITS(b); 1.3728 + limit = pb + MP_USED(b); 1.3729 + while (pb < limit) { 1.3730 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3731 + w = w + *pa - *pb++; 1.3732 + *pa++ = ACCUM(w); 1.3733 + w >>= MP_DIGIT_BIT; 1.3734 +#else 1.3735 + d = *pa; 1.3736 + diff = d - *pb++; 1.3737 + d = (diff > d); /* detect borrow */ 1.3738 + if (borrow && --diff == MP_DIGIT_MAX) 1.3739 + ++d; 1.3740 + *pa++ = diff; 1.3741 + borrow = d; 1.3742 +#endif 1.3743 + } 1.3744 + limit = MP_DIGITS(a) + MP_USED(a); 1.3745 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3746 + while (w && pa < limit) { 1.3747 + w = w + *pa; 1.3748 + *pa++ = ACCUM(w); 1.3749 + w >>= MP_DIGIT_BIT; 1.3750 + } 1.3751 +#else 1.3752 + while (borrow && pa < limit) { 1.3753 + d = *pa; 1.3754 + *pa++ = diff = d - borrow; 1.3755 + borrow = (diff > d); 1.3756 + } 1.3757 +#endif 1.3758 + 1.3759 + /* Clobber any leading zeroes we created */ 1.3760 + s_mp_clamp(a); 1.3761 + 1.3762 + /* 1.3763 + If there was a borrow out, then |b| > |a| in violation 1.3764 + of our input invariant. We've already done the work, 1.3765 + but we'll at least complain about it... 1.3766 + */ 1.3767 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3768 + return w ? MP_RANGE : MP_OKAY; 1.3769 +#else 1.3770 + return borrow ? MP_RANGE : MP_OKAY; 1.3771 +#endif 1.3772 +} /* end s_mp_sub() */ 1.3773 + 1.3774 +/* }}} */ 1.3775 + 1.3776 +/* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ 1.3777 +mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) 1.3778 +{ 1.3779 + mp_digit *pa, *pb, *pc; 1.3780 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3781 + mp_sword w = 0; 1.3782 +#else 1.3783 + mp_digit d, diff, borrow = 0; 1.3784 +#endif 1.3785 + int ix, limit; 1.3786 + mp_err res; 1.3787 + 1.3788 + MP_SIGN(c) = MP_SIGN(a); 1.3789 + 1.3790 + /* Make sure a has enough precision for the output value */ 1.3791 + if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) 1.3792 + return res; 1.3793 + 1.3794 + /* 1.3795 + Subtract and propagate borrow. Up to the precision of b, this 1.3796 + accounts for the digits of b; after that, we just make sure the 1.3797 + carries get to the right place. This saves having to pad b out to 1.3798 + the precision of a just to make the loops work right... 1.3799 + */ 1.3800 + pa = MP_DIGITS(a); 1.3801 + pb = MP_DIGITS(b); 1.3802 + pc = MP_DIGITS(c); 1.3803 + limit = MP_USED(b); 1.3804 + for (ix = 0; ix < limit; ++ix) { 1.3805 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3806 + w = w + *pa++ - *pb++; 1.3807 + *pc++ = ACCUM(w); 1.3808 + w >>= MP_DIGIT_BIT; 1.3809 +#else 1.3810 + d = *pa++; 1.3811 + diff = d - *pb++; 1.3812 + d = (diff > d); 1.3813 + if (borrow && --diff == MP_DIGIT_MAX) 1.3814 + ++d; 1.3815 + *pc++ = diff; 1.3816 + borrow = d; 1.3817 +#endif 1.3818 + } 1.3819 + for (limit = MP_USED(a); ix < limit; ++ix) { 1.3820 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3821 + w = w + *pa++; 1.3822 + *pc++ = ACCUM(w); 1.3823 + w >>= MP_DIGIT_BIT; 1.3824 +#else 1.3825 + d = *pa++; 1.3826 + *pc++ = diff = d - borrow; 1.3827 + borrow = (diff > d); 1.3828 +#endif 1.3829 + } 1.3830 + 1.3831 + /* Clobber any leading zeroes we created */ 1.3832 + MP_USED(c) = ix; 1.3833 + s_mp_clamp(c); 1.3834 + 1.3835 + /* 1.3836 + If there was a borrow out, then |b| > |a| in violation 1.3837 + of our input invariant. We've already done the work, 1.3838 + but we'll at least complain about it... 1.3839 + */ 1.3840 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) 1.3841 + return w ? MP_RANGE : MP_OKAY; 1.3842 +#else 1.3843 + return borrow ? MP_RANGE : MP_OKAY; 1.3844 +#endif 1.3845 +} 1.3846 +/* {{{ s_mp_mul(a, b) */ 1.3847 + 1.3848 +/* Compute a = |a| * |b| */ 1.3849 +mp_err s_mp_mul(mp_int *a, const mp_int *b) 1.3850 +{ 1.3851 + return mp_mul(a, b, a); 1.3852 +} /* end s_mp_mul() */ 1.3853 + 1.3854 +/* }}} */ 1.3855 + 1.3856 +#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) 1.3857 +/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ 1.3858 +#define MP_MUL_DxD(a, b, Phi, Plo) \ 1.3859 + { unsigned long long product = (unsigned long long)a * b; \ 1.3860 + Plo = (mp_digit)product; \ 1.3861 + Phi = (mp_digit)(product >> MP_DIGIT_BIT); } 1.3862 +#elif defined(OSF1) 1.3863 +#define MP_MUL_DxD(a, b, Phi, Plo) \ 1.3864 + { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ 1.3865 + Phi = asm ("umulh %a0, %a1, %v0", a, b); } 1.3866 +#else 1.3867 +#define MP_MUL_DxD(a, b, Phi, Plo) \ 1.3868 + { mp_digit a0b1, a1b0; \ 1.3869 + Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ 1.3870 + Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ 1.3871 + a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ 1.3872 + a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ 1.3873 + a1b0 += a0b1; \ 1.3874 + Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ 1.3875 + if (a1b0 < a0b1) \ 1.3876 + Phi += MP_HALF_RADIX; \ 1.3877 + a1b0 <<= MP_HALF_DIGIT_BIT; \ 1.3878 + Plo += a1b0; \ 1.3879 + if (Plo < a1b0) \ 1.3880 + ++Phi; \ 1.3881 + } 1.3882 +#endif 1.3883 + 1.3884 +#if !defined(MP_ASSEMBLY_MULTIPLY) 1.3885 +/* c = a * b */ 1.3886 +void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) 1.3887 +{ 1.3888 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) 1.3889 + mp_digit d = 0; 1.3890 + 1.3891 + /* Inner product: Digits of a */ 1.3892 + while (a_len--) { 1.3893 + mp_word w = ((mp_word)b * *a++) + d; 1.3894 + *c++ = ACCUM(w); 1.3895 + d = CARRYOUT(w); 1.3896 + } 1.3897 + *c = d; 1.3898 +#else 1.3899 + mp_digit carry = 0; 1.3900 + while (a_len--) { 1.3901 + mp_digit a_i = *a++; 1.3902 + mp_digit a0b0, a1b1; 1.3903 + 1.3904 + MP_MUL_DxD(a_i, b, a1b1, a0b0); 1.3905 + 1.3906 + a0b0 += carry; 1.3907 + if (a0b0 < carry) 1.3908 + ++a1b1; 1.3909 + *c++ = a0b0; 1.3910 + carry = a1b1; 1.3911 + } 1.3912 + *c = carry; 1.3913 +#endif 1.3914 +} 1.3915 + 1.3916 +/* c += a * b */ 1.3917 +void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, 1.3918 + mp_digit *c) 1.3919 +{ 1.3920 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) 1.3921 + mp_digit d = 0; 1.3922 + 1.3923 + /* Inner product: Digits of a */ 1.3924 + while (a_len--) { 1.3925 + mp_word w = ((mp_word)b * *a++) + *c + d; 1.3926 + *c++ = ACCUM(w); 1.3927 + d = CARRYOUT(w); 1.3928 + } 1.3929 + *c = d; 1.3930 +#else 1.3931 + mp_digit carry = 0; 1.3932 + while (a_len--) { 1.3933 + mp_digit a_i = *a++; 1.3934 + mp_digit a0b0, a1b1; 1.3935 + 1.3936 + MP_MUL_DxD(a_i, b, a1b1, a0b0); 1.3937 + 1.3938 + a0b0 += carry; 1.3939 + if (a0b0 < carry) 1.3940 + ++a1b1; 1.3941 + a0b0 += a_i = *c; 1.3942 + if (a0b0 < a_i) 1.3943 + ++a1b1; 1.3944 + *c++ = a0b0; 1.3945 + carry = a1b1; 1.3946 + } 1.3947 + *c = carry; 1.3948 +#endif 1.3949 +} 1.3950 + 1.3951 +/* Presently, this is only used by the Montgomery arithmetic code. */ 1.3952 +/* c += a * b */ 1.3953 +void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) 1.3954 +{ 1.3955 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) 1.3956 + mp_digit d = 0; 1.3957 + 1.3958 + /* Inner product: Digits of a */ 1.3959 + while (a_len--) { 1.3960 + mp_word w = ((mp_word)b * *a++) + *c + d; 1.3961 + *c++ = ACCUM(w); 1.3962 + d = CARRYOUT(w); 1.3963 + } 1.3964 + 1.3965 + while (d) { 1.3966 + mp_word w = (mp_word)*c + d; 1.3967 + *c++ = ACCUM(w); 1.3968 + d = CARRYOUT(w); 1.3969 + } 1.3970 +#else 1.3971 + mp_digit carry = 0; 1.3972 + while (a_len--) { 1.3973 + mp_digit a_i = *a++; 1.3974 + mp_digit a0b0, a1b1; 1.3975 + 1.3976 + MP_MUL_DxD(a_i, b, a1b1, a0b0); 1.3977 + 1.3978 + a0b0 += carry; 1.3979 + if (a0b0 < carry) 1.3980 + ++a1b1; 1.3981 + 1.3982 + a0b0 += a_i = *c; 1.3983 + if (a0b0 < a_i) 1.3984 + ++a1b1; 1.3985 + 1.3986 + *c++ = a0b0; 1.3987 + carry = a1b1; 1.3988 + } 1.3989 + while (carry) { 1.3990 + mp_digit c_i = *c; 1.3991 + carry += c_i; 1.3992 + *c++ = carry; 1.3993 + carry = carry < c_i; 1.3994 + } 1.3995 +#endif 1.3996 +} 1.3997 +#endif 1.3998 + 1.3999 +#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) 1.4000 +/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ 1.4001 +#define MP_SQR_D(a, Phi, Plo) \ 1.4002 + { unsigned long long square = (unsigned long long)a * a; \ 1.4003 + Plo = (mp_digit)square; \ 1.4004 + Phi = (mp_digit)(square >> MP_DIGIT_BIT); } 1.4005 +#elif defined(OSF1) 1.4006 +#define MP_SQR_D(a, Phi, Plo) \ 1.4007 + { Plo = asm ("mulq %a0, %a0, %v0", a);\ 1.4008 + Phi = asm ("umulh %a0, %a0, %v0", a); } 1.4009 +#else 1.4010 +#define MP_SQR_D(a, Phi, Plo) \ 1.4011 + { mp_digit Pmid; \ 1.4012 + Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ 1.4013 + Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ 1.4014 + Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ 1.4015 + Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ 1.4016 + Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ 1.4017 + Plo += Pmid; \ 1.4018 + if (Plo < Pmid) \ 1.4019 + ++Phi; \ 1.4020 + } 1.4021 +#endif 1.4022 + 1.4023 +#if !defined(MP_ASSEMBLY_SQUARE) 1.4024 +/* Add the squares of the digits of a to the digits of b. */ 1.4025 +void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) 1.4026 +{ 1.4027 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) 1.4028 + mp_word w; 1.4029 + mp_digit d; 1.4030 + mp_size ix; 1.4031 + 1.4032 + w = 0; 1.4033 +#define ADD_SQUARE(n) \ 1.4034 + d = pa[n]; \ 1.4035 + w += (d * (mp_word)d) + ps[2*n]; \ 1.4036 + ps[2*n] = ACCUM(w); \ 1.4037 + w = (w >> DIGIT_BIT) + ps[2*n+1]; \ 1.4038 + ps[2*n+1] = ACCUM(w); \ 1.4039 + w = (w >> DIGIT_BIT) 1.4040 + 1.4041 + for (ix = a_len; ix >= 4; ix -= 4) { 1.4042 + ADD_SQUARE(0); 1.4043 + ADD_SQUARE(1); 1.4044 + ADD_SQUARE(2); 1.4045 + ADD_SQUARE(3); 1.4046 + pa += 4; 1.4047 + ps += 8; 1.4048 + } 1.4049 + if (ix) { 1.4050 + ps += 2*ix; 1.4051 + pa += ix; 1.4052 + switch (ix) { 1.4053 + case 3: ADD_SQUARE(-3); /* FALLTHRU */ 1.4054 + case 2: ADD_SQUARE(-2); /* FALLTHRU */ 1.4055 + case 1: ADD_SQUARE(-1); /* FALLTHRU */ 1.4056 + case 0: break; 1.4057 + } 1.4058 + } 1.4059 + while (w) { 1.4060 + w += *ps; 1.4061 + *ps++ = ACCUM(w); 1.4062 + w = (w >> DIGIT_BIT); 1.4063 + } 1.4064 +#else 1.4065 + mp_digit carry = 0; 1.4066 + while (a_len--) { 1.4067 + mp_digit a_i = *pa++; 1.4068 + mp_digit a0a0, a1a1; 1.4069 + 1.4070 + MP_SQR_D(a_i, a1a1, a0a0); 1.4071 + 1.4072 + /* here a1a1 and a0a0 constitute a_i ** 2 */ 1.4073 + a0a0 += carry; 1.4074 + if (a0a0 < carry) 1.4075 + ++a1a1; 1.4076 + 1.4077 + /* now add to ps */ 1.4078 + a0a0 += a_i = *ps; 1.4079 + if (a0a0 < a_i) 1.4080 + ++a1a1; 1.4081 + *ps++ = a0a0; 1.4082 + a1a1 += a_i = *ps; 1.4083 + carry = (a1a1 < a_i); 1.4084 + *ps++ = a1a1; 1.4085 + } 1.4086 + while (carry) { 1.4087 + mp_digit s_i = *ps; 1.4088 + carry += s_i; 1.4089 + *ps++ = carry; 1.4090 + carry = carry < s_i; 1.4091 + } 1.4092 +#endif 1.4093 +} 1.4094 +#endif 1.4095 + 1.4096 +#if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ 1.4097 +&& !defined(MP_ASSEMBLY_DIV_2DX1D) 1.4098 +/* 1.4099 +** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized 1.4100 +** so its high bit is 1. This code is from NSPR. 1.4101 +*/ 1.4102 +mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, 1.4103 + mp_digit *qp, mp_digit *rp) 1.4104 +{ 1.4105 + mp_digit d1, d0, q1, q0; 1.4106 + mp_digit r1, r0, m; 1.4107 + 1.4108 + d1 = divisor >> MP_HALF_DIGIT_BIT; 1.4109 + d0 = divisor & MP_HALF_DIGIT_MAX; 1.4110 + r1 = Nhi % d1; 1.4111 + q1 = Nhi / d1; 1.4112 + m = q1 * d0; 1.4113 + r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); 1.4114 + if (r1 < m) { 1.4115 + q1--, r1 += divisor; 1.4116 + if (r1 >= divisor && r1 < m) { 1.4117 + q1--, r1 += divisor; 1.4118 + } 1.4119 + } 1.4120 + r1 -= m; 1.4121 + r0 = r1 % d1; 1.4122 + q0 = r1 / d1; 1.4123 + m = q0 * d0; 1.4124 + r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); 1.4125 + if (r0 < m) { 1.4126 + q0--, r0 += divisor; 1.4127 + if (r0 >= divisor && r0 < m) { 1.4128 + q0--, r0 += divisor; 1.4129 + } 1.4130 + } 1.4131 + if (qp) 1.4132 + *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; 1.4133 + if (rp) 1.4134 + *rp = r0 - m; 1.4135 + return MP_OKAY; 1.4136 +} 1.4137 +#endif 1.4138 + 1.4139 +#if MP_SQUARE 1.4140 +/* {{{ s_mp_sqr(a) */ 1.4141 + 1.4142 +mp_err s_mp_sqr(mp_int *a) 1.4143 +{ 1.4144 + mp_err res; 1.4145 + mp_int tmp; 1.4146 + 1.4147 + if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY) 1.4148 + return res; 1.4149 + res = mp_sqr(a, &tmp); 1.4150 + if (res == MP_OKAY) { 1.4151 + s_mp_exch(&tmp, a); 1.4152 + } 1.4153 + mp_clear(&tmp); 1.4154 + return res; 1.4155 +} 1.4156 + 1.4157 +/* }}} */ 1.4158 +#endif 1.4159 + 1.4160 +/* {{{ s_mp_div(a, b) */ 1.4161 + 1.4162 +/* 1.4163 + s_mp_div(a, b) 1.4164 + 1.4165 + Compute a = a / b and b = a mod b. Assumes b > a. 1.4166 + */ 1.4167 + 1.4168 +mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ 1.4169 + mp_int *div, /* i: divisor */ 1.4170 + mp_int *quot) /* i: 0; o: quotient */ 1.4171 +{ 1.4172 + mp_int part, t; 1.4173 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) 1.4174 + mp_word q_msd; 1.4175 +#else 1.4176 + mp_digit q_msd; 1.4177 +#endif 1.4178 + mp_err res; 1.4179 + mp_digit d; 1.4180 + mp_digit div_msd; 1.4181 + int ix; 1.4182 + 1.4183 + if(mp_cmp_z(div) == 0) 1.4184 + return MP_RANGE; 1.4185 + 1.4186 + DIGITS(&t) = 0; 1.4187 + /* Shortcut if divisor is power of two */ 1.4188 + if((ix = s_mp_ispow2(div)) >= 0) { 1.4189 + MP_CHECKOK( mp_copy(rem, quot) ); 1.4190 + s_mp_div_2d(quot, (mp_digit)ix); 1.4191 + s_mp_mod_2d(rem, (mp_digit)ix); 1.4192 + 1.4193 + return MP_OKAY; 1.4194 + } 1.4195 + 1.4196 + MP_SIGN(rem) = ZPOS; 1.4197 + MP_SIGN(div) = ZPOS; 1.4198 + 1.4199 + /* A working temporary for division */ 1.4200 + MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem))); 1.4201 + 1.4202 + /* Normalize to optimize guessing */ 1.4203 + MP_CHECKOK( s_mp_norm(rem, div, &d) ); 1.4204 + 1.4205 + part = *rem; 1.4206 + 1.4207 + /* Perform the division itself...woo! */ 1.4208 + MP_USED(quot) = MP_ALLOC(quot); 1.4209 + 1.4210 + /* Find a partial substring of rem which is at least div */ 1.4211 + /* If we didn't find one, we're finished dividing */ 1.4212 + while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { 1.4213 + int i; 1.4214 + int unusedRem; 1.4215 + 1.4216 + unusedRem = MP_USED(rem) - MP_USED(div); 1.4217 + MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; 1.4218 + MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; 1.4219 + MP_USED(&part) = MP_USED(div); 1.4220 + if (s_mp_cmp(&part, div) < 0) { 1.4221 + -- unusedRem; 1.4222 +#if MP_ARGCHK == 2 1.4223 + assert(unusedRem >= 0); 1.4224 +#endif 1.4225 + -- MP_DIGITS(&part); 1.4226 + ++ MP_USED(&part); 1.4227 + ++ MP_ALLOC(&part); 1.4228 + } 1.4229 + 1.4230 + /* Compute a guess for the next quotient digit */ 1.4231 + q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); 1.4232 + div_msd = MP_DIGIT(div, MP_USED(div) - 1); 1.4233 + if (q_msd >= div_msd) { 1.4234 + q_msd = 1; 1.4235 + } else if (MP_USED(&part) > 1) { 1.4236 +#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) 1.4237 + q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); 1.4238 + q_msd /= div_msd; 1.4239 + if (q_msd == RADIX) 1.4240 + --q_msd; 1.4241 +#else 1.4242 + mp_digit r; 1.4243 + MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), 1.4244 + div_msd, &q_msd, &r) ); 1.4245 +#endif 1.4246 + } else { 1.4247 + q_msd = 0; 1.4248 + } 1.4249 +#if MP_ARGCHK == 2 1.4250 + assert(q_msd > 0); /* This case should never occur any more. */ 1.4251 +#endif 1.4252 + if (q_msd <= 0) 1.4253 + break; 1.4254 + 1.4255 + /* See what that multiplies out to */ 1.4256 + mp_copy(div, &t); 1.4257 + MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); 1.4258 + 1.4259 + /* 1.4260 + If it's too big, back it off. We should not have to do this 1.4261 + more than once, or, in rare cases, twice. Knuth describes a 1.4262 + method by which this could be reduced to a maximum of once, but 1.4263 + I didn't implement that here. 1.4264 + * When using s_mpv_div_2dx1d, we may have to do this 3 times. 1.4265 + */ 1.4266 + for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { 1.4267 + --q_msd; 1.4268 + s_mp_sub(&t, div); /* t -= div */ 1.4269 + } 1.4270 + if (i < 0) { 1.4271 + res = MP_RANGE; 1.4272 + goto CLEANUP; 1.4273 + } 1.4274 + 1.4275 + /* At this point, q_msd should be the right next digit */ 1.4276 + MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ 1.4277 + s_mp_clamp(rem); 1.4278 + 1.4279 + /* 1.4280 + Include the digit in the quotient. We allocated enough memory 1.4281 + for any quotient we could ever possibly get, so we should not 1.4282 + have to check for failures here 1.4283 + */ 1.4284 + MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; 1.4285 + } 1.4286 + 1.4287 + /* Denormalize remainder */ 1.4288 + if (d) { 1.4289 + s_mp_div_2d(rem, d); 1.4290 + } 1.4291 + 1.4292 + s_mp_clamp(quot); 1.4293 + 1.4294 +CLEANUP: 1.4295 + mp_clear(&t); 1.4296 + 1.4297 + return res; 1.4298 + 1.4299 +} /* end s_mp_div() */ 1.4300 + 1.4301 + 1.4302 +/* }}} */ 1.4303 + 1.4304 +/* {{{ s_mp_2expt(a, k) */ 1.4305 + 1.4306 +mp_err s_mp_2expt(mp_int *a, mp_digit k) 1.4307 +{ 1.4308 + mp_err res; 1.4309 + mp_size dig, bit; 1.4310 + 1.4311 + dig = k / DIGIT_BIT; 1.4312 + bit = k % DIGIT_BIT; 1.4313 + 1.4314 + mp_zero(a); 1.4315 + if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) 1.4316 + return res; 1.4317 + 1.4318 + DIGIT(a, dig) |= ((mp_digit)1 << bit); 1.4319 + 1.4320 + return MP_OKAY; 1.4321 + 1.4322 +} /* end s_mp_2expt() */ 1.4323 + 1.4324 +/* }}} */ 1.4325 + 1.4326 +/* {{{ s_mp_reduce(x, m, mu) */ 1.4327 + 1.4328 +/* 1.4329 + Compute Barrett reduction, x (mod m), given a precomputed value for 1.4330 + mu = b^2k / m, where b = RADIX and k = #digits(m). This should be 1.4331 + faster than straight division, when many reductions by the same 1.4332 + value of m are required (such as in modular exponentiation). This 1.4333 + can nearly halve the time required to do modular exponentiation, 1.4334 + as compared to using the full integer divide to reduce. 1.4335 + 1.4336 + This algorithm was derived from the _Handbook of Applied 1.4337 + Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, 1.4338 + pp. 603-604. 1.4339 + */ 1.4340 + 1.4341 +mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) 1.4342 +{ 1.4343 + mp_int q; 1.4344 + mp_err res; 1.4345 + 1.4346 + if((res = mp_init_copy(&q, x)) != MP_OKAY) 1.4347 + return res; 1.4348 + 1.4349 + s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ 1.4350 + s_mp_mul(&q, mu); /* q2 = q1 * mu */ 1.4351 + s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ 1.4352 + 1.4353 + /* x = x mod b^(k+1), quick (no division) */ 1.4354 + s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); 1.4355 + 1.4356 + /* q = q * m mod b^(k+1), quick (no division) */ 1.4357 + s_mp_mul(&q, m); 1.4358 + s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); 1.4359 + 1.4360 + /* x = x - q */ 1.4361 + if((res = mp_sub(x, &q, x)) != MP_OKAY) 1.4362 + goto CLEANUP; 1.4363 + 1.4364 + /* If x < 0, add b^(k+1) to it */ 1.4365 + if(mp_cmp_z(x) < 0) { 1.4366 + mp_set(&q, 1); 1.4367 + if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) 1.4368 + goto CLEANUP; 1.4369 + if((res = mp_add(x, &q, x)) != MP_OKAY) 1.4370 + goto CLEANUP; 1.4371 + } 1.4372 + 1.4373 + /* Back off if it's too big */ 1.4374 + while(mp_cmp(x, m) >= 0) { 1.4375 + if((res = s_mp_sub(x, m)) != MP_OKAY) 1.4376 + break; 1.4377 + } 1.4378 + 1.4379 + CLEANUP: 1.4380 + mp_clear(&q); 1.4381 + 1.4382 + return res; 1.4383 + 1.4384 +} /* end s_mp_reduce() */ 1.4385 + 1.4386 +/* }}} */ 1.4387 + 1.4388 +/* }}} */ 1.4389 + 1.4390 +/* {{{ Primitive comparisons */ 1.4391 + 1.4392 +/* {{{ s_mp_cmp(a, b) */ 1.4393 + 1.4394 +/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ 1.4395 +int s_mp_cmp(const mp_int *a, const mp_int *b) 1.4396 +{ 1.4397 + mp_size used_a = MP_USED(a); 1.4398 + { 1.4399 + mp_size used_b = MP_USED(b); 1.4400 + 1.4401 + if (used_a > used_b) 1.4402 + goto IS_GT; 1.4403 + if (used_a < used_b) 1.4404 + goto IS_LT; 1.4405 + } 1.4406 + { 1.4407 + mp_digit *pa, *pb; 1.4408 + mp_digit da = 0, db = 0; 1.4409 + 1.4410 +#define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done 1.4411 + 1.4412 + pa = MP_DIGITS(a) + used_a; 1.4413 + pb = MP_DIGITS(b) + used_a; 1.4414 + while (used_a >= 4) { 1.4415 + pa -= 4; 1.4416 + pb -= 4; 1.4417 + used_a -= 4; 1.4418 + CMP_AB(3); 1.4419 + CMP_AB(2); 1.4420 + CMP_AB(1); 1.4421 + CMP_AB(0); 1.4422 + } 1.4423 + while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) 1.4424 + /* do nothing */; 1.4425 +done: 1.4426 + if (da > db) 1.4427 + goto IS_GT; 1.4428 + if (da < db) 1.4429 + goto IS_LT; 1.4430 + } 1.4431 + return MP_EQ; 1.4432 +IS_LT: 1.4433 + return MP_LT; 1.4434 +IS_GT: 1.4435 + return MP_GT; 1.4436 +} /* end s_mp_cmp() */ 1.4437 + 1.4438 +/* }}} */ 1.4439 + 1.4440 +/* {{{ s_mp_cmp_d(a, d) */ 1.4441 + 1.4442 +/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ 1.4443 +int s_mp_cmp_d(const mp_int *a, mp_digit d) 1.4444 +{ 1.4445 + if(USED(a) > 1) 1.4446 + return MP_GT; 1.4447 + 1.4448 + if(DIGIT(a, 0) < d) 1.4449 + return MP_LT; 1.4450 + else if(DIGIT(a, 0) > d) 1.4451 + return MP_GT; 1.4452 + else 1.4453 + return MP_EQ; 1.4454 + 1.4455 +} /* end s_mp_cmp_d() */ 1.4456 + 1.4457 +/* }}} */ 1.4458 + 1.4459 +/* {{{ s_mp_ispow2(v) */ 1.4460 + 1.4461 +/* 1.4462 + Returns -1 if the value is not a power of two; otherwise, it returns 1.4463 + k such that v = 2^k, i.e. lg(v). 1.4464 + */ 1.4465 +int s_mp_ispow2(const mp_int *v) 1.4466 +{ 1.4467 + mp_digit d; 1.4468 + int extra = 0, ix; 1.4469 + 1.4470 + ix = MP_USED(v) - 1; 1.4471 + d = MP_DIGIT(v, ix); /* most significant digit of v */ 1.4472 + 1.4473 + extra = s_mp_ispow2d(d); 1.4474 + if (extra < 0 || ix == 0) 1.4475 + return extra; 1.4476 + 1.4477 + while (--ix >= 0) { 1.4478 + if (DIGIT(v, ix) != 0) 1.4479 + return -1; /* not a power of two */ 1.4480 + extra += MP_DIGIT_BIT; 1.4481 + } 1.4482 + 1.4483 + return extra; 1.4484 + 1.4485 +} /* end s_mp_ispow2() */ 1.4486 + 1.4487 +/* }}} */ 1.4488 + 1.4489 +/* {{{ s_mp_ispow2d(d) */ 1.4490 + 1.4491 +int s_mp_ispow2d(mp_digit d) 1.4492 +{ 1.4493 + if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ 1.4494 + int pow = 0; 1.4495 +#if defined (MP_USE_UINT_DIGIT) 1.4496 + if (d & 0xffff0000U) 1.4497 + pow += 16; 1.4498 + if (d & 0xff00ff00U) 1.4499 + pow += 8; 1.4500 + if (d & 0xf0f0f0f0U) 1.4501 + pow += 4; 1.4502 + if (d & 0xccccccccU) 1.4503 + pow += 2; 1.4504 + if (d & 0xaaaaaaaaU) 1.4505 + pow += 1; 1.4506 +#elif defined(MP_USE_LONG_LONG_DIGIT) 1.4507 + if (d & 0xffffffff00000000ULL) 1.4508 + pow += 32; 1.4509 + if (d & 0xffff0000ffff0000ULL) 1.4510 + pow += 16; 1.4511 + if (d & 0xff00ff00ff00ff00ULL) 1.4512 + pow += 8; 1.4513 + if (d & 0xf0f0f0f0f0f0f0f0ULL) 1.4514 + pow += 4; 1.4515 + if (d & 0xccccccccccccccccULL) 1.4516 + pow += 2; 1.4517 + if (d & 0xaaaaaaaaaaaaaaaaULL) 1.4518 + pow += 1; 1.4519 +#elif defined(MP_USE_LONG_DIGIT) 1.4520 + if (d & 0xffffffff00000000UL) 1.4521 + pow += 32; 1.4522 + if (d & 0xffff0000ffff0000UL) 1.4523 + pow += 16; 1.4524 + if (d & 0xff00ff00ff00ff00UL) 1.4525 + pow += 8; 1.4526 + if (d & 0xf0f0f0f0f0f0f0f0UL) 1.4527 + pow += 4; 1.4528 + if (d & 0xccccccccccccccccUL) 1.4529 + pow += 2; 1.4530 + if (d & 0xaaaaaaaaaaaaaaaaUL) 1.4531 + pow += 1; 1.4532 +#else 1.4533 +#error "unknown type for mp_digit" 1.4534 +#endif 1.4535 + return pow; 1.4536 + } 1.4537 + return -1; 1.4538 + 1.4539 +} /* end s_mp_ispow2d() */ 1.4540 + 1.4541 +/* }}} */ 1.4542 + 1.4543 +/* }}} */ 1.4544 + 1.4545 +/* {{{ Primitive I/O helpers */ 1.4546 + 1.4547 +/* {{{ s_mp_tovalue(ch, r) */ 1.4548 + 1.4549 +/* 1.4550 + Convert the given character to its digit value, in the given radix. 1.4551 + If the given character is not understood in the given radix, -1 is 1.4552 + returned. Otherwise the digit's numeric value is returned. 1.4553 + 1.4554 + The results will be odd if you use a radix < 2 or > 62, you are 1.4555 + expected to know what you're up to. 1.4556 + */ 1.4557 +int s_mp_tovalue(char ch, int r) 1.4558 +{ 1.4559 + int val, xch; 1.4560 + 1.4561 + if(r > 36) 1.4562 + xch = ch; 1.4563 + else 1.4564 + xch = toupper(ch); 1.4565 + 1.4566 + if(isdigit(xch)) 1.4567 + val = xch - '0'; 1.4568 + else if(isupper(xch)) 1.4569 + val = xch - 'A' + 10; 1.4570 + else if(islower(xch)) 1.4571 + val = xch - 'a' + 36; 1.4572 + else if(xch == '+') 1.4573 + val = 62; 1.4574 + else if(xch == '/') 1.4575 + val = 63; 1.4576 + else 1.4577 + return -1; 1.4578 + 1.4579 + if(val < 0 || val >= r) 1.4580 + return -1; 1.4581 + 1.4582 + return val; 1.4583 + 1.4584 +} /* end s_mp_tovalue() */ 1.4585 + 1.4586 +/* }}} */ 1.4587 + 1.4588 +/* {{{ s_mp_todigit(val, r, low) */ 1.4589 + 1.4590 +/* 1.4591 + Convert val to a radix-r digit, if possible. If val is out of range 1.4592 + for r, returns zero. Otherwise, returns an ASCII character denoting 1.4593 + the value in the given radix. 1.4594 + 1.4595 + The results may be odd if you use a radix < 2 or > 64, you are 1.4596 + expected to know what you're doing. 1.4597 + */ 1.4598 + 1.4599 +char s_mp_todigit(mp_digit val, int r, int low) 1.4600 +{ 1.4601 + char ch; 1.4602 + 1.4603 + if(val >= r) 1.4604 + return 0; 1.4605 + 1.4606 + ch = s_dmap_1[val]; 1.4607 + 1.4608 + if(r <= 36 && low) 1.4609 + ch = tolower(ch); 1.4610 + 1.4611 + return ch; 1.4612 + 1.4613 +} /* end s_mp_todigit() */ 1.4614 + 1.4615 +/* }}} */ 1.4616 + 1.4617 +/* {{{ s_mp_outlen(bits, radix) */ 1.4618 + 1.4619 +/* 1.4620 + Return an estimate for how long a string is needed to hold a radix 1.4621 + r representation of a number with 'bits' significant bits, plus an 1.4622 + extra for a zero terminator (assuming C style strings here) 1.4623 + */ 1.4624 +int s_mp_outlen(int bits, int r) 1.4625 +{ 1.4626 + return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; 1.4627 + 1.4628 +} /* end s_mp_outlen() */ 1.4629 + 1.4630 +/* }}} */ 1.4631 + 1.4632 +/* }}} */ 1.4633 + 1.4634 +/* {{{ mp_read_unsigned_octets(mp, str, len) */ 1.4635 +/* mp_read_unsigned_octets(mp, str, len) 1.4636 + Read in a raw value (base 256) into the given mp_int 1.4637 + No sign bit, number is positive. Leading zeros ignored. 1.4638 + */ 1.4639 + 1.4640 +mp_err 1.4641 +mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) 1.4642 +{ 1.4643 + int count; 1.4644 + mp_err res; 1.4645 + mp_digit d; 1.4646 + 1.4647 + ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); 1.4648 + 1.4649 + mp_zero(mp); 1.4650 + 1.4651 + count = len % sizeof(mp_digit); 1.4652 + if (count) { 1.4653 + for (d = 0; count-- > 0; --len) { 1.4654 + d = (d << 8) | *str++; 1.4655 + } 1.4656 + MP_DIGIT(mp, 0) = d; 1.4657 + } 1.4658 + 1.4659 + /* Read the rest of the digits */ 1.4660 + for(; len > 0; len -= sizeof(mp_digit)) { 1.4661 + for (d = 0, count = sizeof(mp_digit); count > 0; --count) { 1.4662 + d = (d << 8) | *str++; 1.4663 + } 1.4664 + if (MP_EQ == mp_cmp_z(mp)) { 1.4665 + if (!d) 1.4666 + continue; 1.4667 + } else { 1.4668 + if((res = s_mp_lshd(mp, 1)) != MP_OKAY) 1.4669 + return res; 1.4670 + } 1.4671 + MP_DIGIT(mp, 0) = d; 1.4672 + } 1.4673 + return MP_OKAY; 1.4674 +} /* end mp_read_unsigned_octets() */ 1.4675 +/* }}} */ 1.4676 + 1.4677 +/* {{{ mp_unsigned_octet_size(mp) */ 1.4678 +int 1.4679 +mp_unsigned_octet_size(const mp_int *mp) 1.4680 +{ 1.4681 + int bytes; 1.4682 + int ix; 1.4683 + mp_digit d = 0; 1.4684 + 1.4685 + ARGCHK(mp != NULL, MP_BADARG); 1.4686 + ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); 1.4687 + 1.4688 + bytes = (USED(mp) * sizeof(mp_digit)); 1.4689 + 1.4690 + /* subtract leading zeros. */ 1.4691 + /* Iterate over each digit... */ 1.4692 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.4693 + d = DIGIT(mp, ix); 1.4694 + if (d) 1.4695 + break; 1.4696 + bytes -= sizeof(d); 1.4697 + } 1.4698 + if (!bytes) 1.4699 + return 1; 1.4700 + 1.4701 + /* Have MSD, check digit bytes, high order first */ 1.4702 + for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { 1.4703 + unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); 1.4704 + if (x) 1.4705 + break; 1.4706 + --bytes; 1.4707 + } 1.4708 + return bytes; 1.4709 +} /* end mp_unsigned_octet_size() */ 1.4710 +/* }}} */ 1.4711 + 1.4712 +/* {{{ mp_to_unsigned_octets(mp, str) */ 1.4713 +/* output a buffer of big endian octets no longer than specified. */ 1.4714 +mp_err 1.4715 +mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) 1.4716 +{ 1.4717 + int ix, pos = 0; 1.4718 + int bytes; 1.4719 + 1.4720 + ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); 1.4721 + 1.4722 + bytes = mp_unsigned_octet_size(mp); 1.4723 + ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); 1.4724 + 1.4725 + /* Iterate over each digit... */ 1.4726 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.4727 + mp_digit d = DIGIT(mp, ix); 1.4728 + int jx; 1.4729 + 1.4730 + /* Unpack digit bytes, high order first */ 1.4731 + for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { 1.4732 + unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); 1.4733 + if (!pos && !x) /* suppress leading zeros */ 1.4734 + continue; 1.4735 + str[pos++] = x; 1.4736 + } 1.4737 + } 1.4738 + if (!pos) 1.4739 + str[pos++] = 0; 1.4740 + return pos; 1.4741 +} /* end mp_to_unsigned_octets() */ 1.4742 +/* }}} */ 1.4743 + 1.4744 +/* {{{ mp_to_signed_octets(mp, str) */ 1.4745 +/* output a buffer of big endian octets no longer than specified. */ 1.4746 +mp_err 1.4747 +mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) 1.4748 +{ 1.4749 + int ix, pos = 0; 1.4750 + int bytes; 1.4751 + 1.4752 + ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); 1.4753 + 1.4754 + bytes = mp_unsigned_octet_size(mp); 1.4755 + ARGCHK(bytes >= 0 && bytes <= maxlen, MP_BADARG); 1.4756 + 1.4757 + /* Iterate over each digit... */ 1.4758 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.4759 + mp_digit d = DIGIT(mp, ix); 1.4760 + int jx; 1.4761 + 1.4762 + /* Unpack digit bytes, high order first */ 1.4763 + for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { 1.4764 + unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); 1.4765 + if (!pos) { 1.4766 + if (!x) /* suppress leading zeros */ 1.4767 + continue; 1.4768 + if (x & 0x80) { /* add one leading zero to make output positive. */ 1.4769 + ARGCHK(bytes + 1 <= maxlen, MP_BADARG); 1.4770 + if (bytes + 1 > maxlen) 1.4771 + return MP_BADARG; 1.4772 + str[pos++] = 0; 1.4773 + } 1.4774 + } 1.4775 + str[pos++] = x; 1.4776 + } 1.4777 + } 1.4778 + if (!pos) 1.4779 + str[pos++] = 0; 1.4780 + return pos; 1.4781 +} /* end mp_to_signed_octets() */ 1.4782 +/* }}} */ 1.4783 + 1.4784 +/* {{{ mp_to_fixlen_octets(mp, str) */ 1.4785 +/* output a buffer of big endian octets exactly as long as requested. */ 1.4786 +mp_err 1.4787 +mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) 1.4788 +{ 1.4789 + int ix, pos = 0; 1.4790 + int bytes; 1.4791 + 1.4792 + ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); 1.4793 + 1.4794 + bytes = mp_unsigned_octet_size(mp); 1.4795 + ARGCHK(bytes >= 0 && bytes <= length, MP_BADARG); 1.4796 + 1.4797 + /* place any needed leading zeros */ 1.4798 + for (;length > bytes; --length) { 1.4799 + *str++ = 0; 1.4800 + } 1.4801 + 1.4802 + /* Iterate over each digit... */ 1.4803 + for(ix = USED(mp) - 1; ix >= 0; ix--) { 1.4804 + mp_digit d = DIGIT(mp, ix); 1.4805 + int jx; 1.4806 + 1.4807 + /* Unpack digit bytes, high order first */ 1.4808 + for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { 1.4809 + unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); 1.4810 + if (!pos && !x) /* suppress leading zeros */ 1.4811 + continue; 1.4812 + str[pos++] = x; 1.4813 + } 1.4814 + } 1.4815 + if (!pos) 1.4816 + str[pos++] = 0; 1.4817 + return MP_OKAY; 1.4818 +} /* end mp_to_fixlen_octets() */ 1.4819 +/* }}} */ 1.4820 + 1.4821 + 1.4822 +/*------------------------------------------------------------------------*/ 1.4823 +/* HERE THERE BE DRAGONS */