1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/mpi/utils/makeprime.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,114 @@ 1.4 +/* 1.5 + * makeprime.c 1.6 + * 1.7 + * A simple prime generator function (and test driver). Prints out the 1.8 + * first prime it finds greater than or equal to the starting value. 1.9 + * 1.10 + * Usage: makeprime <start> 1.11 + * 1.12 + * This Source Code Form is subject to the terms of the Mozilla Public 1.13 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.14 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.15 + 1.16 +#include <stdio.h> 1.17 +#include <stdlib.h> 1.18 +#include <ctype.h> 1.19 + 1.20 +/* These two must be included for make_prime() to work */ 1.21 + 1.22 +#include "mpi.h" 1.23 +#include "mpprime.h" 1.24 + 1.25 +/* 1.26 + make_prime(p, nr) 1.27 + 1.28 + Find the smallest prime integer greater than or equal to p, where 1.29 + primality is verified by 'nr' iterations of the Rabin-Miller 1.30 + probabilistic primality test. The caller is responsible for 1.31 + generating the initial value of p. 1.32 + 1.33 + Returns MP_OKAY if a prime has been generated, otherwise the error 1.34 + code indicates some other problem. The value of p is clobbered; the 1.35 + caller should keep a copy if the value is needed. 1.36 + */ 1.37 +mp_err make_prime(mp_int *p, int nr); 1.38 + 1.39 +/* The main() is not required -- it's just a test driver */ 1.40 +int main(int argc, char *argv[]) 1.41 +{ 1.42 + mp_int start; 1.43 + mp_err res; 1.44 + 1.45 + if(argc < 2) { 1.46 + fprintf(stderr, "Usage: %s <start-value>\n", argv[0]); 1.47 + return 1; 1.48 + } 1.49 + 1.50 + mp_init(&start); 1.51 + if(argv[1][0] == '0' && tolower(argv[1][1]) == 'x') { 1.52 + mp_read_radix(&start, argv[1] + 2, 16); 1.53 + } else { 1.54 + mp_read_radix(&start, argv[1], 10); 1.55 + } 1.56 + mp_abs(&start, &start); 1.57 + 1.58 + if((res = make_prime(&start, 5)) != MP_OKAY) { 1.59 + fprintf(stderr, "%s: error: %s\n", argv[0], mp_strerror(res)); 1.60 + mp_clear(&start); 1.61 + 1.62 + return 1; 1.63 + 1.64 + } else { 1.65 + char *buf = malloc(mp_radix_size(&start, 10)); 1.66 + 1.67 + mp_todecimal(&start, buf); 1.68 + printf("%s\n", buf); 1.69 + free(buf); 1.70 + 1.71 + mp_clear(&start); 1.72 + 1.73 + return 0; 1.74 + } 1.75 + 1.76 +} /* end main() */ 1.77 + 1.78 +/*------------------------------------------------------------------------*/ 1.79 + 1.80 +mp_err make_prime(mp_int *p, int nr) 1.81 +{ 1.82 + mp_err res; 1.83 + 1.84 + if(mp_iseven(p)) { 1.85 + mp_add_d(p, 1, p); 1.86 + } 1.87 + 1.88 + do { 1.89 + mp_digit which = prime_tab_size; 1.90 + 1.91 + /* First test for divisibility by a few small primes */ 1.92 + if((res = mpp_divis_primes(p, &which)) == MP_YES) 1.93 + continue; 1.94 + else if(res != MP_NO) 1.95 + goto CLEANUP; 1.96 + 1.97 + /* If that passes, try one iteration of Fermat's test */ 1.98 + if((res = mpp_fermat(p, 2)) == MP_NO) 1.99 + continue; 1.100 + else if(res != MP_YES) 1.101 + goto CLEANUP; 1.102 + 1.103 + /* If that passes, run Rabin-Miller as often as requested */ 1.104 + if((res = mpp_pprime(p, nr)) == MP_YES) 1.105 + break; 1.106 + else if(res != MP_NO) 1.107 + goto CLEANUP; 1.108 + 1.109 + } while((res = mp_add_d(p, 2, p)) == MP_OKAY); 1.110 + 1.111 + CLEANUP: 1.112 + return res; 1.113 + 1.114 +} /* end make_prime() */ 1.115 + 1.116 +/*------------------------------------------------------------------------*/ 1.117 +/* HERE THERE BE DRAGONS */