security/nss/lib/freebl/mpi/utils/pi.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/mpi/utils/pi.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,164 @@
     1.4 +/*
     1.5 + * pi.c
     1.6 + *
     1.7 + * Compute pi to an arbitrary number of digits.  Uses Machin's formula,
     1.8 + * like everyone else on the planet:
     1.9 + * 
    1.10 + *    pi = 16 * arctan(1/5) - 4 * arctan(1/239)
    1.11 + *
    1.12 + * This is pretty effective for up to a few thousand digits, but it
    1.13 + * gets pretty slow after that.
    1.14 + *
    1.15 + * This Source Code Form is subject to the terms of the Mozilla Public
    1.16 + * License, v. 2.0. If a copy of the MPL was not distributed with this
    1.17 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    1.18 +
    1.19 +#include <stdio.h>
    1.20 +#include <stdlib.h>
    1.21 +#include <string.h>
    1.22 +#include <limits.h>
    1.23 +#include <time.h>
    1.24 +
    1.25 +#include "mpi.h"
    1.26 +
    1.27 +mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum);
    1.28 +
    1.29 +int main(int argc, char *argv[])
    1.30 +{
    1.31 +  mp_err       res;
    1.32 +  mp_digit     ndigits;
    1.33 +  mp_int       sum1, sum2;
    1.34 +  clock_t      start, stop;
    1.35 +  int          out = 0;
    1.36 +
    1.37 +  /* Make the user specify precision on the command line */
    1.38 +  if(argc < 2) {
    1.39 +    fprintf(stderr, "Usage: %s <num-digits>\n", argv[0]);
    1.40 +    return 1;
    1.41 +  }
    1.42 +
    1.43 +  if((ndigits = abs(atoi(argv[1]))) == 0) {
    1.44 +    fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);
    1.45 +    return 1;
    1.46 +  }
    1.47 +
    1.48 +  start = clock();
    1.49 +  mp_init(&sum1); mp_init(&sum2);
    1.50 +
    1.51 +  /* sum1 = 16 * arctan(1/5)  */
    1.52 +  if((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) {
    1.53 +    fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));
    1.54 +    out = 1; goto CLEANUP;
    1.55 +  }
    1.56 +
    1.57 +  /* sum2 = 4 * arctan(1/239) */
    1.58 +  if((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) {
    1.59 +    fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));
    1.60 +    out = 1; goto CLEANUP;
    1.61 +  }
    1.62 +
    1.63 +  /* pi = sum1 - sum2         */
    1.64 +  if((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) {
    1.65 +    fprintf(stderr, "%s: mp_sub: %s\n", argv[0], mp_strerror(res));
    1.66 +    out = 1; goto CLEANUP;
    1.67 +  }
    1.68 +  stop = clock();
    1.69 +
    1.70 +  /* Write the output in decimal */
    1.71 +  {
    1.72 +    char  *buf = malloc(mp_radix_size(&sum1, 10));
    1.73 +
    1.74 +    if(buf == NULL) {
    1.75 +      fprintf(stderr, "%s: out of memory\n", argv[0]);
    1.76 +      out = 1; goto CLEANUP;
    1.77 +    }
    1.78 +    mp_todecimal(&sum1, buf);
    1.79 +    printf("%s\n", buf);
    1.80 +    free(buf);
    1.81 +  }
    1.82 +
    1.83 +  fprintf(stderr, "Computation took %.2f sec.\n", 
    1.84 +	  (double)(stop - start) / CLOCKS_PER_SEC);
    1.85 +
    1.86 + CLEANUP:
    1.87 +  mp_clear(&sum1);
    1.88 +  mp_clear(&sum2);
    1.89 +
    1.90 +  return out;
    1.91 +
    1.92 +}
    1.93 +
    1.94 +/* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */
    1.95 +mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum)
    1.96 +{
    1.97 +  mp_int   t, v;
    1.98 +  mp_digit q = 1, rd;
    1.99 +  mp_err   res;
   1.100 +  int      sign = 1;
   1.101 +
   1.102 +  prec += 3;  /* push inaccuracies off the end */
   1.103 +
   1.104 +  mp_init(&t); mp_set(&t, 10);
   1.105 +  mp_init(&v); 
   1.106 +  if((res = mp_expt_d(&t, prec, &t)) != MP_OKAY ||  /* get 10^prec    */
   1.107 +     (res = mp_mul_d(&t, mul, &t)) != MP_OKAY ||    /* ... times mul  */
   1.108 +     (res = mp_mul_d(&t, x, &t)) != MP_OKAY)        /* ... times x    */
   1.109 +    goto CLEANUP;
   1.110 +
   1.111 +  /*
   1.112 +    The extra multiplication by x in the above takes care of what
   1.113 +    would otherwise have to be a special case for 1 / x^1 during the
   1.114 +    first loop iteration.  A little sneaky, but effective.
   1.115 +
   1.116 +    We compute arctan(1/x) by the formula:
   1.117 +
   1.118 +         1     1       1       1
   1.119 +	 - - ----- + ----- - ----- + ...
   1.120 +	 x   3 x^3   5 x^5   7 x^7
   1.121 +
   1.122 +    We multiply through by 'mul' beforehand, which gives us a couple
   1.123 +    more iterations and more precision
   1.124 +   */
   1.125 +
   1.126 +  x *= x; /* works as long as x < sqrt(RADIX), which it is here */
   1.127 +
   1.128 +  mp_zero(sum);
   1.129 +
   1.130 +  do {
   1.131 +    if((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY)
   1.132 +      goto CLEANUP;
   1.133 +
   1.134 +    if(sign < 0 && rd != 0)
   1.135 +      mp_add_d(&t, 1, &t);
   1.136 +
   1.137 +    if((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY)
   1.138 +      goto CLEANUP;
   1.139 +
   1.140 +    if(sign < 0 && rd != 0)
   1.141 +      mp_add_d(&v, 1, &v);
   1.142 +
   1.143 +    if(sign > 0)
   1.144 +      res = mp_add(sum, &v, sum);
   1.145 +    else
   1.146 +      res = mp_sub(sum, &v, sum);
   1.147 +
   1.148 +    if(res != MP_OKAY)
   1.149 +      goto CLEANUP;
   1.150 +
   1.151 +    sign *= -1;
   1.152 +    q += 2;
   1.153 +
   1.154 +  } while(mp_cmp_z(&t) != 0);
   1.155 +
   1.156 +  /* Chop off inaccurate low-order digits */
   1.157 +  mp_div_d(sum, 1000, sum, NULL);
   1.158 +
   1.159 + CLEANUP:
   1.160 +  mp_clear(&v);
   1.161 +  mp_clear(&t);
   1.162 +
   1.163 +  return res;
   1.164 +}
   1.165 +
   1.166 +/*------------------------------------------------------------------------*/
   1.167 +/* HERE THERE BE DRAGONS                                                  */

mercurial