security/nss/lib/freebl/rsapkcs.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/rsapkcs.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,1380 @@
     1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.7 +
     1.8 +/*
     1.9 + * RSA PKCS#1 v2.1 (RFC 3447) operations
    1.10 + */
    1.11 +
    1.12 +#ifdef FREEBL_NO_DEPEND
    1.13 +#include "stubs.h"
    1.14 +#endif
    1.15 +
    1.16 +#include "secerr.h"
    1.17 +
    1.18 +#include "blapi.h"
    1.19 +#include "secitem.h"
    1.20 +#include "blapii.h"
    1.21 +
    1.22 +#define RSA_BLOCK_MIN_PAD_LEN            8
    1.23 +#define RSA_BLOCK_FIRST_OCTET            0x00
    1.24 +#define RSA_BLOCK_PRIVATE_PAD_OCTET      0xff
    1.25 +#define RSA_BLOCK_AFTER_PAD_OCTET        0x00
    1.26 +
    1.27 +/*
    1.28 + * RSA block types
    1.29 + *
    1.30 + * The values of RSA_BlockPrivate and RSA_BlockPublic are fixed.
    1.31 + * The value of RSA_BlockRaw isn't fixed by definition, but we are keeping
    1.32 + * the value that NSS has been using in the past.
    1.33 + */
    1.34 +typedef enum {
    1.35 +    RSA_BlockPrivate = 1,   /* pad for a private-key operation */
    1.36 +    RSA_BlockPublic = 2,    /* pad for a public-key operation */
    1.37 +    RSA_BlockRaw = 4        /* simply justify the block appropriately */
    1.38 +} RSA_BlockType;
    1.39 +
    1.40 +/* Needed for RSA-PSS functions */
    1.41 +static const unsigned char eightZeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    1.42 +
    1.43 +/* Constant time comparison of a single byte.
    1.44 + * Returns 1 iff a == b, otherwise returns 0.
    1.45 + * Note: For ranges of bytes, use constantTimeCompare.
    1.46 + */
    1.47 +static unsigned char constantTimeEQ8(unsigned char a, unsigned char b) {
    1.48 +    unsigned char c = ~((a - b) | (b - a));
    1.49 +    c >>= 7;
    1.50 +    return c;
    1.51 +}
    1.52 +
    1.53 +/* Constant time comparison of a range of bytes.
    1.54 + * Returns 1 iff len bytes of a are identical to len bytes of b, otherwise
    1.55 + * returns 0.
    1.56 + */
    1.57 +static unsigned char constantTimeCompare(const unsigned char *a,
    1.58 +                                         const unsigned char *b,
    1.59 +                                         unsigned int len) {
    1.60 +    unsigned char tmp = 0;
    1.61 +    unsigned int i;
    1.62 +    for (i = 0; i < len; ++i, ++a, ++b)
    1.63 +        tmp |= *a ^ *b;
    1.64 +    return constantTimeEQ8(0x00, tmp);
    1.65 +}
    1.66 +
    1.67 +/* Constant time conditional.
    1.68 + * Returns a if c is 1, or b if c is 0. The result is undefined if c is
    1.69 + * not 0 or 1.
    1.70 + */
    1.71 +static unsigned int constantTimeCondition(unsigned int c,
    1.72 +                                          unsigned int a,
    1.73 +                                          unsigned int b)
    1.74 +{
    1.75 +    return (~(c - 1) & a) | ((c - 1) & b);
    1.76 +}
    1.77 +
    1.78 +static unsigned int
    1.79 +rsa_modulusLen(SECItem * modulus)
    1.80 +{
    1.81 +    unsigned char byteZero = modulus->data[0];
    1.82 +    unsigned int modLen = modulus->len - !byteZero;
    1.83 +    return modLen;
    1.84 +}
    1.85 +
    1.86 +/*
    1.87 + * Format one block of data for public/private key encryption using
    1.88 + * the rules defined in PKCS #1.
    1.89 + */
    1.90 +static unsigned char *
    1.91 +rsa_FormatOneBlock(unsigned modulusLen,
    1.92 +                   RSA_BlockType blockType,
    1.93 +                   SECItem * data)
    1.94 +{
    1.95 +    unsigned char *block;
    1.96 +    unsigned char *bp;
    1.97 +    int padLen;
    1.98 +    int i, j;
    1.99 +    SECStatus rv;
   1.100 +
   1.101 +    block = (unsigned char *) PORT_Alloc(modulusLen);
   1.102 +    if (block == NULL)
   1.103 +        return NULL;
   1.104 +
   1.105 +    bp = block;
   1.106 +
   1.107 +    /*
   1.108 +     * All RSA blocks start with two octets:
   1.109 +     *	0x00 || BlockType
   1.110 +     */
   1.111 +    *bp++ = RSA_BLOCK_FIRST_OCTET;
   1.112 +    *bp++ = (unsigned char) blockType;
   1.113 +
   1.114 +    switch (blockType) {
   1.115 +
   1.116 +      /*
   1.117 +       * Blocks intended for private-key operation.
   1.118 +       */
   1.119 +      case RSA_BlockPrivate:	 /* preferred method */
   1.120 +        /*
   1.121 +         * 0x00 || BT || Pad || 0x00 || ActualData
   1.122 +         *   1      1   padLen    1      data->len
   1.123 +         * Pad is either all 0x00 or all 0xff bytes, depending on blockType.
   1.124 +         */
   1.125 +        padLen = modulusLen - data->len - 3;
   1.126 +        PORT_Assert(padLen >= RSA_BLOCK_MIN_PAD_LEN);
   1.127 +        if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
   1.128 +            PORT_Free(block);
   1.129 +            return NULL;
   1.130 +        }
   1.131 +        PORT_Memset(bp, RSA_BLOCK_PRIVATE_PAD_OCTET, padLen);
   1.132 +        bp += padLen;
   1.133 +        *bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
   1.134 +        PORT_Memcpy(bp, data->data, data->len);
   1.135 +        break;
   1.136 +
   1.137 +      /*
   1.138 +       * Blocks intended for public-key operation.
   1.139 +       */
   1.140 +      case RSA_BlockPublic:
   1.141 +        /*
   1.142 +         * 0x00 || BT || Pad || 0x00 || ActualData
   1.143 +         *   1      1   padLen    1      data->len
   1.144 +         * Pad is all non-zero random bytes.
   1.145 +         *
   1.146 +         * Build the block left to right.
   1.147 +         * Fill the entire block from Pad to the end with random bytes.
   1.148 +         * Use the bytes after Pad as a supply of extra random bytes from
   1.149 +         * which to find replacements for the zero bytes in Pad.
   1.150 +         * If we need more than that, refill the bytes after Pad with
   1.151 +         * new random bytes as necessary.
   1.152 +         */
   1.153 +        padLen = modulusLen - (data->len + 3);
   1.154 +        PORT_Assert(padLen >= RSA_BLOCK_MIN_PAD_LEN);
   1.155 +        if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
   1.156 +            PORT_Free(block);
   1.157 +            return NULL;
   1.158 +        }
   1.159 +        j = modulusLen - 2;
   1.160 +        rv = RNG_GenerateGlobalRandomBytes(bp, j);
   1.161 +        if (rv == SECSuccess) {
   1.162 +            for (i = 0; i < padLen; ) {
   1.163 +                unsigned char repl;
   1.164 +                /* Pad with non-zero random data. */
   1.165 +                if (bp[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
   1.166 +                    ++i;
   1.167 +                    continue;
   1.168 +                }
   1.169 +                if (j <= padLen) {
   1.170 +                    rv = RNG_GenerateGlobalRandomBytes(bp + padLen,
   1.171 +                                          modulusLen - (2 + padLen));
   1.172 +                    if (rv != SECSuccess)
   1.173 +                        break;
   1.174 +                    j = modulusLen - 2;
   1.175 +                }
   1.176 +                do {
   1.177 +                    repl = bp[--j];
   1.178 +                } while (repl == RSA_BLOCK_AFTER_PAD_OCTET && j > padLen);
   1.179 +                if (repl != RSA_BLOCK_AFTER_PAD_OCTET) {
   1.180 +                    bp[i++] = repl;
   1.181 +                }
   1.182 +            }
   1.183 +        }
   1.184 +        if (rv != SECSuccess) {
   1.185 +            PORT_Free(block);
   1.186 +            PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
   1.187 +            return NULL;
   1.188 +        }
   1.189 +        bp += padLen;
   1.190 +        *bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
   1.191 +        PORT_Memcpy(bp, data->data, data->len);
   1.192 +        break;
   1.193 +
   1.194 +      default:
   1.195 +        PORT_Assert(0);
   1.196 +        PORT_Free(block);
   1.197 +        return NULL;
   1.198 +    }
   1.199 +
   1.200 +    return block;
   1.201 +}
   1.202 +
   1.203 +static SECStatus
   1.204 +rsa_FormatBlock(SECItem * result,
   1.205 +                unsigned modulusLen,
   1.206 +                RSA_BlockType blockType,
   1.207 +                SECItem * data)
   1.208 +{
   1.209 +    switch (blockType) {
   1.210 +      case RSA_BlockPrivate:
   1.211 +      case RSA_BlockPublic:
   1.212 +        /*
   1.213 +         * 0x00 || BT || Pad || 0x00 || ActualData
   1.214 +         *
   1.215 +         * The "3" below is the first octet + the second octet + the 0x00
   1.216 +         * octet that always comes just before the ActualData.
   1.217 +         */
   1.218 +        PORT_Assert(data->len <= (modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)));
   1.219 +
   1.220 +        result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
   1.221 +        if (result->data == NULL) {
   1.222 +            result->len = 0;
   1.223 +            return SECFailure;
   1.224 +        }
   1.225 +        result->len = modulusLen;
   1.226 +
   1.227 +        break;
   1.228 +
   1.229 +      case RSA_BlockRaw:
   1.230 +        /*
   1.231 +         * Pad || ActualData
   1.232 +         * Pad is zeros. The application is responsible for recovering
   1.233 +         * the actual data.
   1.234 +         */
   1.235 +        if (data->len > modulusLen ) {
   1.236 +            return SECFailure;
   1.237 +        }
   1.238 +        result->data = (unsigned char*)PORT_ZAlloc(modulusLen);
   1.239 +        result->len = modulusLen;
   1.240 +        PORT_Memcpy(result->data + (modulusLen - data->len),
   1.241 +                    data->data, data->len);
   1.242 +        break;
   1.243 +
   1.244 +      default:
   1.245 +        PORT_Assert(0);
   1.246 +        result->data = NULL;
   1.247 +        result->len = 0;
   1.248 +        return SECFailure;
   1.249 +    }
   1.250 +
   1.251 +    return SECSuccess;
   1.252 +}
   1.253 +
   1.254 +/*
   1.255 + * Mask generation function MGF1 as defined in PKCS #1 v2.1 / RFC 3447.
   1.256 + */
   1.257 +static SECStatus
   1.258 +MGF1(HASH_HashType hashAlg,
   1.259 +     unsigned char * mask,
   1.260 +     unsigned int maskLen,
   1.261 +     const unsigned char * mgfSeed,
   1.262 +     unsigned int mgfSeedLen)
   1.263 +{
   1.264 +    unsigned int digestLen;
   1.265 +    PRUint32 counter;
   1.266 +    PRUint32 rounds;
   1.267 +    unsigned char * tempHash;
   1.268 +    unsigned char * temp;
   1.269 +    const SECHashObject * hash;
   1.270 +    void * hashContext;
   1.271 +    unsigned char C[4];
   1.272 +
   1.273 +    hash = HASH_GetRawHashObject(hashAlg);
   1.274 +    if (hash == NULL)
   1.275 +        return SECFailure;
   1.276 +
   1.277 +    hashContext = (*hash->create)();
   1.278 +    rounds = (maskLen + hash->length - 1) / hash->length;
   1.279 +    for (counter = 0; counter < rounds; counter++) {
   1.280 +        C[0] = (unsigned char)((counter >> 24) & 0xff);
   1.281 +        C[1] = (unsigned char)((counter >> 16) & 0xff);
   1.282 +        C[2] = (unsigned char)((counter >> 8) & 0xff);
   1.283 +        C[3] = (unsigned char)(counter & 0xff);
   1.284 +
   1.285 +        /* This could be optimized when the clone functions in
   1.286 +         * rawhash.c are implemented. */
   1.287 +        (*hash->begin)(hashContext);
   1.288 +        (*hash->update)(hashContext, mgfSeed, mgfSeedLen);
   1.289 +        (*hash->update)(hashContext, C, sizeof C);
   1.290 +
   1.291 +        tempHash = mask + counter * hash->length;
   1.292 +        if (counter != (rounds - 1)) {
   1.293 +            (*hash->end)(hashContext, tempHash, &digestLen, hash->length);
   1.294 +        } else { /* we're in the last round and need to cut the hash */
   1.295 +            temp = (unsigned char *)PORT_Alloc(hash->length);
   1.296 +            (*hash->end)(hashContext, temp, &digestLen, hash->length);
   1.297 +            PORT_Memcpy(tempHash, temp, maskLen - counter * hash->length);
   1.298 +            PORT_Free(temp);
   1.299 +        }
   1.300 +    }
   1.301 +    (*hash->destroy)(hashContext, PR_TRUE);
   1.302 +
   1.303 +    return SECSuccess;
   1.304 +}
   1.305 +
   1.306 +/* XXX Doesn't set error code */
   1.307 +SECStatus
   1.308 +RSA_SignRaw(RSAPrivateKey * key,
   1.309 +            unsigned char * output,
   1.310 +            unsigned int * outputLen,
   1.311 +            unsigned int maxOutputLen,
   1.312 +            const unsigned char * data,
   1.313 +            unsigned int dataLen)
   1.314 +{
   1.315 +    SECStatus rv = SECSuccess;
   1.316 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.317 +    SECItem formatted;
   1.318 +    SECItem unformatted;
   1.319 +
   1.320 +    if (maxOutputLen < modulusLen)
   1.321 +        return SECFailure;
   1.322 +
   1.323 +    unformatted.len  = dataLen;
   1.324 +    unformatted.data = (unsigned char*)data;
   1.325 +    formatted.data   = NULL;
   1.326 +    rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockRaw, &unformatted);
   1.327 +    if (rv != SECSuccess)
   1.328 +        goto done;
   1.329 +
   1.330 +    rv = RSA_PrivateKeyOpDoubleChecked(key, output, formatted.data);
   1.331 +    *outputLen = modulusLen;
   1.332 +
   1.333 +done:
   1.334 +    if (formatted.data != NULL)
   1.335 +        PORT_ZFree(formatted.data, modulusLen);
   1.336 +    return rv;
   1.337 +}
   1.338 +
   1.339 +/* XXX Doesn't set error code */
   1.340 +SECStatus
   1.341 +RSA_CheckSignRaw(RSAPublicKey * key,
   1.342 +                 const unsigned char * sig,
   1.343 +                 unsigned int sigLen,
   1.344 +                 const unsigned char * hash,
   1.345 +                 unsigned int hashLen)
   1.346 +{
   1.347 +    SECStatus rv;
   1.348 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.349 +    unsigned char * buffer;
   1.350 +
   1.351 +    if (sigLen != modulusLen)
   1.352 +        goto failure;
   1.353 +    if (hashLen > modulusLen)
   1.354 +        goto failure;
   1.355 +
   1.356 +    buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
   1.357 +    if (!buffer)
   1.358 +        goto failure;
   1.359 +
   1.360 +    rv = RSA_PublicKeyOp(key, buffer, sig);
   1.361 +    if (rv != SECSuccess)
   1.362 +        goto loser;
   1.363 +
   1.364 +    /*
   1.365 +     * make sure we get the same results
   1.366 +     */
   1.367 +    /* XXX(rsleevi): Constant time */
   1.368 +    /* NOTE: should we verify the leading zeros? */
   1.369 +    if (PORT_Memcmp(buffer + (modulusLen - hashLen), hash, hashLen) != 0)
   1.370 +        goto loser;
   1.371 +
   1.372 +    PORT_Free(buffer);
   1.373 +    return SECSuccess;
   1.374 +
   1.375 +loser:
   1.376 +    PORT_Free(buffer);
   1.377 +failure:
   1.378 +    return SECFailure;
   1.379 +}
   1.380 +
   1.381 +/* XXX Doesn't set error code */
   1.382 +SECStatus
   1.383 +RSA_CheckSignRecoverRaw(RSAPublicKey * key,
   1.384 +                        unsigned char * data,
   1.385 +                        unsigned int * dataLen,
   1.386 +                        unsigned int maxDataLen,
   1.387 +                        const unsigned char * sig,
   1.388 +                        unsigned int sigLen)
   1.389 +{
   1.390 +    SECStatus rv;
   1.391 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.392 +
   1.393 +    if (sigLen != modulusLen)
   1.394 +        goto failure;
   1.395 +    if (maxDataLen < modulusLen)
   1.396 +        goto failure;
   1.397 +
   1.398 +    rv = RSA_PublicKeyOp(key, data, sig);
   1.399 +    if (rv != SECSuccess)
   1.400 +        goto failure;
   1.401 +
   1.402 +    *dataLen = modulusLen;
   1.403 +    return SECSuccess;
   1.404 +
   1.405 +failure:
   1.406 +    return SECFailure;
   1.407 +}
   1.408 +
   1.409 +/* XXX Doesn't set error code */
   1.410 +SECStatus
   1.411 +RSA_EncryptRaw(RSAPublicKey * key,
   1.412 +               unsigned char * output,
   1.413 +               unsigned int * outputLen,
   1.414 +               unsigned int maxOutputLen,
   1.415 +               const unsigned char * input,
   1.416 +               unsigned int inputLen)
   1.417 +{
   1.418 +    SECStatus rv;
   1.419 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.420 +    SECItem formatted;
   1.421 +    SECItem unformatted;
   1.422 +
   1.423 +    formatted.data = NULL;
   1.424 +    if (maxOutputLen < modulusLen)
   1.425 +        goto failure;
   1.426 +
   1.427 +    unformatted.len  = inputLen;
   1.428 +    unformatted.data = (unsigned char*)input;
   1.429 +    formatted.data   = NULL;
   1.430 +    rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockRaw, &unformatted);
   1.431 +    if (rv != SECSuccess)
   1.432 +        goto failure;
   1.433 +
   1.434 +    rv = RSA_PublicKeyOp(key, output, formatted.data);
   1.435 +    if (rv != SECSuccess)
   1.436 +        goto failure;
   1.437 +
   1.438 +    PORT_ZFree(formatted.data, modulusLen);
   1.439 +    *outputLen = modulusLen;
   1.440 +    return SECSuccess;
   1.441 +
   1.442 +failure:
   1.443 +    if (formatted.data != NULL)
   1.444 +        PORT_ZFree(formatted.data, modulusLen);
   1.445 +    return SECFailure;
   1.446 +}
   1.447 +
   1.448 +/* XXX Doesn't set error code */
   1.449 +SECStatus
   1.450 +RSA_DecryptRaw(RSAPrivateKey * key,
   1.451 +               unsigned char * output,
   1.452 +               unsigned int * outputLen,
   1.453 +               unsigned int maxOutputLen,
   1.454 +               const unsigned char * input,
   1.455 +               unsigned int inputLen)
   1.456 +{
   1.457 +    SECStatus rv;
   1.458 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.459 +
   1.460 +    if (modulusLen > maxOutputLen)
   1.461 +        goto failure;
   1.462 +    if (inputLen != modulusLen)
   1.463 +        goto failure;
   1.464 +
   1.465 +    rv = RSA_PrivateKeyOp(key, output, input);
   1.466 +    if (rv != SECSuccess)
   1.467 +        goto failure;
   1.468 +
   1.469 +    *outputLen = modulusLen;
   1.470 +    return SECSuccess;
   1.471 +
   1.472 +failure:
   1.473 +    return SECFailure;
   1.474 +}
   1.475 +
   1.476 +/*
   1.477 + * Decodes an EME-OAEP encoded block, validating the encoding in constant
   1.478 + * time.
   1.479 + * Described in RFC 3447, section 7.1.2.
   1.480 + * input contains the encoded block, after decryption.
   1.481 + * label is the optional value L that was associated with the message.
   1.482 + * On success, the original message and message length will be stored in
   1.483 + * output and outputLen.
   1.484 + */
   1.485 +static SECStatus
   1.486 +eme_oaep_decode(unsigned char * output,
   1.487 +                unsigned int * outputLen,
   1.488 +                unsigned int maxOutputLen,
   1.489 +                const unsigned char * input,
   1.490 +                unsigned int inputLen,
   1.491 +                HASH_HashType hashAlg,
   1.492 +                HASH_HashType maskHashAlg,
   1.493 +                const unsigned char * label,
   1.494 +                unsigned int labelLen)
   1.495 +{
   1.496 +    const SECHashObject * hash;
   1.497 +    void * hashContext;
   1.498 +    SECStatus rv = SECFailure;
   1.499 +    unsigned char labelHash[HASH_LENGTH_MAX];
   1.500 +    unsigned int i;
   1.501 +    unsigned int maskLen;
   1.502 +    unsigned int paddingOffset;
   1.503 +    unsigned char * mask = NULL;
   1.504 +    unsigned char * tmpOutput = NULL;
   1.505 +    unsigned char isGood;
   1.506 +    unsigned char foundPaddingEnd;
   1.507 +
   1.508 +    hash = HASH_GetRawHashObject(hashAlg);
   1.509 +
   1.510 +    /* 1.c */
   1.511 +    if (inputLen < (hash->length * 2) + 2) {
   1.512 +        PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.513 +        return SECFailure;
   1.514 +    }
   1.515 +
   1.516 +    /* Step 3.a - Generate lHash */
   1.517 +    hashContext = (*hash->create)();
   1.518 +    if (hashContext == NULL) {
   1.519 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.520 +        return SECFailure;
   1.521 +    }
   1.522 +    (*hash->begin)(hashContext);
   1.523 +    if (labelLen > 0)
   1.524 +        (*hash->update)(hashContext, label, labelLen);
   1.525 +    (*hash->end)(hashContext, labelHash, &i, sizeof(labelHash));
   1.526 +    (*hash->destroy)(hashContext, PR_TRUE);
   1.527 +
   1.528 +    tmpOutput = (unsigned char*)PORT_Alloc(inputLen);
   1.529 +    if (tmpOutput == NULL) {
   1.530 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.531 +        goto done;
   1.532 +    }
   1.533 +
   1.534 +    maskLen = inputLen - hash->length - 1;
   1.535 +    mask = (unsigned char*)PORT_Alloc(maskLen);
   1.536 +    if (mask == NULL) {
   1.537 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.538 +        goto done;
   1.539 +    }
   1.540 +
   1.541 +    PORT_Memcpy(tmpOutput, input, inputLen);
   1.542 +
   1.543 +    /* 3.c - Generate seedMask */
   1.544 +    MGF1(maskHashAlg, mask, hash->length, &tmpOutput[1 + hash->length],
   1.545 +         inputLen - hash->length - 1);
   1.546 +    /* 3.d - Unmask seed */
   1.547 +    for (i = 0; i < hash->length; ++i)
   1.548 +        tmpOutput[1 + i] ^= mask[i];
   1.549 +
   1.550 +    /* 3.e - Generate dbMask */
   1.551 +    MGF1(maskHashAlg, mask, maskLen, &tmpOutput[1], hash->length);
   1.552 +    /* 3.f - Unmask DB */
   1.553 +    for (i = 0; i < maskLen; ++i)
   1.554 +        tmpOutput[1 + hash->length + i] ^= mask[i];
   1.555 +
   1.556 +    /* 3.g - Compare Y, lHash, and PS in constant time
   1.557 +     * Warning: This code is timing dependent and must not disclose which of
   1.558 +     * these were invalid.
   1.559 +     */
   1.560 +    paddingOffset = 0;
   1.561 +    isGood = 1;
   1.562 +    foundPaddingEnd = 0;
   1.563 +
   1.564 +    /* Compare Y */
   1.565 +    isGood &= constantTimeEQ8(0x00, tmpOutput[0]);
   1.566 +
   1.567 +    /* Compare lHash and lHash' */
   1.568 +    isGood &= constantTimeCompare(&labelHash[0],
   1.569 +                                  &tmpOutput[1 + hash->length],
   1.570 +                                  hash->length);
   1.571 +
   1.572 +    /* Compare that the padding is zero or more zero octets, followed by a
   1.573 +     * 0x01 octet */
   1.574 +    for (i = 1 + (hash->length * 2); i < inputLen; ++i) {
   1.575 +        unsigned char isZero = constantTimeEQ8(0x00, tmpOutput[i]);
   1.576 +        unsigned char isOne = constantTimeEQ8(0x01, tmpOutput[i]);
   1.577 +        /* non-constant time equivalent:
   1.578 +         * if (tmpOutput[i] == 0x01 && !foundPaddingEnd)
   1.579 +         *     paddingOffset = i;
   1.580 +         */
   1.581 +        paddingOffset = constantTimeCondition(isOne & ~foundPaddingEnd, i,
   1.582 +                                              paddingOffset);
   1.583 +        /* non-constant time equivalent:
   1.584 +         * if (tmpOutput[i] == 0x01)
   1.585 +         *    foundPaddingEnd = true;
   1.586 +         *
   1.587 +         * Note: This may yield false positives, as it will be set whenever
   1.588 +         * a 0x01 byte is encountered. If there was bad padding (eg:
   1.589 +         * 0x03 0x02 0x01), foundPaddingEnd will still be set to true, and
   1.590 +         * paddingOffset will still be set to 2.
   1.591 +         */
   1.592 +        foundPaddingEnd = constantTimeCondition(isOne, 1, foundPaddingEnd);
   1.593 +        /* non-constant time equivalent:
   1.594 +         * if (tmpOutput[i] != 0x00 && tmpOutput[i] != 0x01 &&
   1.595 +         *     !foundPaddingEnd) {
   1.596 +         *    isGood = false;
   1.597 +         * }
   1.598 +         *
   1.599 +         * Note: This may yield false positives, as a message (and padding)
   1.600 +         * that is entirely zeros will result in isGood still being true. Thus
   1.601 +         * it's necessary to check foundPaddingEnd is positive below.
   1.602 +         */
   1.603 +        isGood = constantTimeCondition(~foundPaddingEnd & ~isZero, 0, isGood);
   1.604 +    }
   1.605 +
   1.606 +    /* While both isGood and foundPaddingEnd may have false positives, they
   1.607 +     * cannot BOTH have false positives. If both are not true, then an invalid
   1.608 +     * message was received. Note, this comparison must still be done in constant
   1.609 +     * time so as not to leak either condition.
   1.610 +     */
   1.611 +    if (!(isGood & foundPaddingEnd)) {
   1.612 +        PORT_SetError(SEC_ERROR_BAD_DATA);
   1.613 +        goto done;
   1.614 +    }
   1.615 +
   1.616 +    /* End timing dependent code */
   1.617 +
   1.618 +    ++paddingOffset; /* Skip the 0x01 following the end of PS */
   1.619 +
   1.620 +    *outputLen = inputLen - paddingOffset;
   1.621 +    if (*outputLen > maxOutputLen) {
   1.622 +        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.623 +        goto done;
   1.624 +    }
   1.625 +
   1.626 +    if (*outputLen)
   1.627 +        PORT_Memcpy(output, &tmpOutput[paddingOffset], *outputLen);
   1.628 +    rv = SECSuccess;
   1.629 +
   1.630 +done:
   1.631 +    if (mask)
   1.632 +        PORT_ZFree(mask, maskLen);
   1.633 +    if (tmpOutput)
   1.634 +        PORT_ZFree(tmpOutput, inputLen);
   1.635 +    return rv;
   1.636 +}
   1.637 +
   1.638 +/*
   1.639 + * Generate an EME-OAEP encoded block for encryption
   1.640 + * Described in RFC 3447, section 7.1.1
   1.641 + * We use input instead of M for the message to be encrypted
   1.642 + * label is the optional value L to be associated with the message.
   1.643 + */
   1.644 +static SECStatus
   1.645 +eme_oaep_encode(unsigned char * em,
   1.646 +                unsigned int emLen,
   1.647 +                const unsigned char * input,
   1.648 +                unsigned int inputLen,
   1.649 +                HASH_HashType hashAlg,
   1.650 +                HASH_HashType maskHashAlg,
   1.651 +                const unsigned char * label,
   1.652 +                unsigned int labelLen,
   1.653 +                const unsigned char * seed,
   1.654 +                unsigned int seedLen)
   1.655 +{
   1.656 +    const SECHashObject * hash;
   1.657 +    void * hashContext;
   1.658 +    SECStatus rv;
   1.659 +    unsigned char * mask;
   1.660 +    unsigned int reservedLen;
   1.661 +    unsigned int dbMaskLen;
   1.662 +    unsigned int i;
   1.663 +
   1.664 +    hash = HASH_GetRawHashObject(hashAlg);
   1.665 +    PORT_Assert(seed == NULL || seedLen == hash->length);
   1.666 +
   1.667 +    /* Step 1.b */
   1.668 +    reservedLen = (2 * hash->length) + 2;
   1.669 +    if (emLen < reservedLen || inputLen > (emLen - reservedLen)) {
   1.670 +        PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.671 +        return SECFailure;
   1.672 +    }
   1.673 +
   1.674 +    /*
   1.675 +     * From RFC 3447, Section 7.1
   1.676 +     *                      +----------+---------+-------+
   1.677 +     *                 DB = |  lHash   |    PS   |   M   |
   1.678 +     *                      +----------+---------+-------+
   1.679 +     *                                     |
   1.680 +     *           +----------+              V
   1.681 +     *           |   seed   |--> MGF ---> xor
   1.682 +     *           +----------+              |
   1.683 +     *                 |                   |
   1.684 +     *        +--+     V                   |
   1.685 +     *        |00|    xor <----- MGF <-----|
   1.686 +     *        +--+     |                   |
   1.687 +     *          |      |                   |
   1.688 +     *          V      V                   V
   1.689 +     *        +--+----------+----------------------------+
   1.690 +     *  EM =  |00|maskedSeed|          maskedDB          |
   1.691 +     *        +--+----------+----------------------------+
   1.692 +     *
   1.693 +     * We use mask to hold the result of the MGF functions, and all other
   1.694 +     * values are generated in their final resting place.
   1.695 +     */
   1.696 +    *em = 0x00;
   1.697 +
   1.698 +    /* Step 2.a - Generate lHash */
   1.699 +    hashContext = (*hash->create)();
   1.700 +    if (hashContext == NULL) {
   1.701 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.702 +        return SECFailure;
   1.703 +    }
   1.704 +    (*hash->begin)(hashContext);
   1.705 +    if (labelLen > 0)
   1.706 +        (*hash->update)(hashContext, label, labelLen);
   1.707 +    (*hash->end)(hashContext, &em[1 + hash->length], &i, hash->length);
   1.708 +    (*hash->destroy)(hashContext, PR_TRUE);
   1.709 +
   1.710 +    /* Step 2.b - Generate PS */
   1.711 +    if (emLen - reservedLen - inputLen > 0) {
   1.712 +        PORT_Memset(em + 1 + (hash->length * 2), 0x00,
   1.713 +                    emLen - reservedLen - inputLen);
   1.714 +    }
   1.715 +
   1.716 +    /* Step 2.c. - Generate DB
   1.717 +     * DB = lHash || PS || 0x01 || M
   1.718 +     * Note that PS and lHash have already been placed into em at their
   1.719 +     * appropriate offsets. This just copies M into place
   1.720 +     */
   1.721 +    em[emLen - inputLen - 1] = 0x01;
   1.722 +    if (inputLen)
   1.723 +        PORT_Memcpy(em + emLen - inputLen, input, inputLen);
   1.724 +
   1.725 +    if (seed == NULL) {
   1.726 +        /* Step 2.d - Generate seed */
   1.727 +        rv = RNG_GenerateGlobalRandomBytes(em + 1, hash->length);
   1.728 +        if (rv != SECSuccess) {
   1.729 +            return rv;
   1.730 +        }
   1.731 +    } else {
   1.732 +        /* For Known Answer Tests, copy the supplied seed. */
   1.733 +        PORT_Memcpy(em + 1, seed, seedLen);
   1.734 +    }
   1.735 +
   1.736 +    /* Step 2.e - Generate dbMask*/
   1.737 +    dbMaskLen = emLen - hash->length - 1;
   1.738 +    mask = (unsigned char*)PORT_Alloc(dbMaskLen);
   1.739 +    if (mask == NULL) {
   1.740 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.741 +        return SECFailure;
   1.742 +    }
   1.743 +    MGF1(maskHashAlg, mask, dbMaskLen, em + 1, hash->length);
   1.744 +    /* Step 2.f - Compute maskedDB*/
   1.745 +    for (i = 0; i < dbMaskLen; ++i)
   1.746 +        em[1 + hash->length + i] ^= mask[i];
   1.747 +
   1.748 +    /* Step 2.g - Generate seedMask */
   1.749 +    MGF1(maskHashAlg, mask, hash->length, &em[1 + hash->length], dbMaskLen);
   1.750 +    /* Step 2.h - Compute maskedSeed */
   1.751 +    for (i = 0; i < hash->length; ++i)
   1.752 +        em[1 + i] ^= mask[i];
   1.753 +
   1.754 +    PORT_ZFree(mask, dbMaskLen);
   1.755 +    return SECSuccess;
   1.756 +}
   1.757 +
   1.758 +SECStatus
   1.759 +RSA_EncryptOAEP(RSAPublicKey * key,
   1.760 +                HASH_HashType hashAlg,
   1.761 +                HASH_HashType maskHashAlg,
   1.762 +                const unsigned char * label,
   1.763 +                unsigned int labelLen,
   1.764 +                const unsigned char * seed,
   1.765 +                unsigned int seedLen,
   1.766 +                unsigned char * output,
   1.767 +                unsigned int * outputLen,
   1.768 +                unsigned int maxOutputLen,
   1.769 +                const unsigned char * input,
   1.770 +                unsigned int inputLen)
   1.771 +{
   1.772 +    SECStatus rv = SECFailure;
   1.773 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.774 +    unsigned char * oaepEncoded = NULL;
   1.775 +
   1.776 +    if (maxOutputLen < modulusLen) {
   1.777 +        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.778 +        return SECFailure;
   1.779 +    }
   1.780 +
   1.781 +    if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
   1.782 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
   1.783 +        return SECFailure;
   1.784 +    }
   1.785 +
   1.786 +    if ((labelLen == 0 && label != NULL) ||
   1.787 +        (labelLen > 0 && label == NULL)) {
   1.788 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
   1.789 +        return SECFailure;
   1.790 +    }
   1.791 +
   1.792 +    oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
   1.793 +    if (oaepEncoded == NULL) {
   1.794 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.795 +        return SECFailure;
   1.796 +    }
   1.797 +    rv = eme_oaep_encode(oaepEncoded, modulusLen, input, inputLen,
   1.798 +                         hashAlg, maskHashAlg, label, labelLen, seed, seedLen);
   1.799 +    if (rv != SECSuccess)
   1.800 +        goto done;
   1.801 +
   1.802 +    rv = RSA_PublicKeyOp(key, output, oaepEncoded);
   1.803 +    if (rv != SECSuccess)
   1.804 +        goto done;
   1.805 +    *outputLen = modulusLen;
   1.806 +
   1.807 +done:
   1.808 +    PORT_Free(oaepEncoded);
   1.809 +    return rv;
   1.810 +}
   1.811 +
   1.812 +SECStatus
   1.813 +RSA_DecryptOAEP(RSAPrivateKey * key,
   1.814 +                HASH_HashType hashAlg,
   1.815 +                HASH_HashType maskHashAlg,
   1.816 +                const unsigned char * label,
   1.817 +                unsigned int labelLen,
   1.818 +                unsigned char * output,
   1.819 +                unsigned int * outputLen,
   1.820 +                unsigned int maxOutputLen,
   1.821 +                const unsigned char * input,
   1.822 +                unsigned int inputLen)
   1.823 +{
   1.824 +    SECStatus rv = SECFailure;
   1.825 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.826 +    unsigned char * oaepEncoded = NULL;
   1.827 +
   1.828 +    if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
   1.829 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
   1.830 +        return SECFailure;
   1.831 +    }
   1.832 +
   1.833 +    if (inputLen != modulusLen) {
   1.834 +        PORT_SetError(SEC_ERROR_INPUT_LEN);
   1.835 +        return SECFailure;
   1.836 +    }
   1.837 +
   1.838 +    if ((labelLen == 0 && label != NULL) ||
   1.839 +        (labelLen > 0 && label == NULL)) {
   1.840 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
   1.841 +        return SECFailure;
   1.842 +    }
   1.843 +
   1.844 +    oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
   1.845 +    if (oaepEncoded == NULL) {
   1.846 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
   1.847 +        return SECFailure;
   1.848 +    }
   1.849 +
   1.850 +    rv = RSA_PrivateKeyOpDoubleChecked(key, oaepEncoded, input);
   1.851 +    if (rv != SECSuccess) {
   1.852 +        goto done;
   1.853 +    }
   1.854 +    rv = eme_oaep_decode(output, outputLen, maxOutputLen, oaepEncoded,
   1.855 +                         modulusLen, hashAlg, maskHashAlg, label,
   1.856 +                         labelLen);
   1.857 +
   1.858 +done:
   1.859 +    if (oaepEncoded)
   1.860 +        PORT_ZFree(oaepEncoded, modulusLen);
   1.861 +    return rv;
   1.862 +}
   1.863 +
   1.864 +/* XXX Doesn't set error code */
   1.865 +SECStatus
   1.866 +RSA_EncryptBlock(RSAPublicKey * key,
   1.867 +                 unsigned char * output,
   1.868 +                 unsigned int * outputLen,
   1.869 +                 unsigned int maxOutputLen,
   1.870 +                 const unsigned char * input,
   1.871 +                 unsigned int inputLen)
   1.872 +{
   1.873 +    SECStatus rv;
   1.874 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.875 +    SECItem formatted;
   1.876 +    SECItem unformatted;
   1.877 +
   1.878 +    formatted.data = NULL;
   1.879 +    if (maxOutputLen < modulusLen)
   1.880 +        goto failure;
   1.881 +
   1.882 +    unformatted.len  = inputLen;
   1.883 +    unformatted.data = (unsigned char*)input;
   1.884 +    formatted.data   = NULL;
   1.885 +    rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockPublic,
   1.886 +                         &unformatted);
   1.887 +    if (rv != SECSuccess)
   1.888 +        goto failure;
   1.889 +
   1.890 +    rv = RSA_PublicKeyOp(key, output, formatted.data);
   1.891 +    if (rv != SECSuccess)
   1.892 +        goto failure;
   1.893 +
   1.894 +    PORT_ZFree(formatted.data, modulusLen);
   1.895 +    *outputLen = modulusLen;
   1.896 +    return SECSuccess;
   1.897 +
   1.898 +failure:
   1.899 +    if (formatted.data != NULL)
   1.900 +        PORT_ZFree(formatted.data, modulusLen);
   1.901 +    return SECFailure;
   1.902 +}
   1.903 +
   1.904 +/* XXX Doesn't set error code */
   1.905 +SECStatus
   1.906 +RSA_DecryptBlock(RSAPrivateKey * key,
   1.907 +                 unsigned char * output,
   1.908 +                 unsigned int * outputLen,
   1.909 +                 unsigned int maxOutputLen,
   1.910 +                 const unsigned char * input,
   1.911 +                 unsigned int inputLen)
   1.912 +{
   1.913 +    SECStatus rv;
   1.914 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
   1.915 +    unsigned int i;
   1.916 +    unsigned char * buffer;
   1.917 +
   1.918 +    if (inputLen != modulusLen)
   1.919 +        goto failure;
   1.920 +
   1.921 +    buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
   1.922 +    if (!buffer)
   1.923 +        goto failure;
   1.924 +
   1.925 +    rv = RSA_PrivateKeyOp(key, buffer, input);
   1.926 +    if (rv != SECSuccess)
   1.927 +        goto loser;
   1.928 +
   1.929 +    /* XXX(rsleevi): Constant time */
   1.930 +    if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
   1.931 +        buffer[1] != (unsigned char)RSA_BlockPublic) {
   1.932 +        goto loser;
   1.933 +    }
   1.934 +    *outputLen = 0;
   1.935 +    for (i = 2; i < modulusLen; i++) {
   1.936 +        if (buffer[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
   1.937 +            *outputLen = modulusLen - i - 1;
   1.938 +            break;
   1.939 +        }
   1.940 +    }
   1.941 +    if (*outputLen == 0)
   1.942 +        goto loser;
   1.943 +    if (*outputLen > maxOutputLen)
   1.944 +        goto loser;
   1.945 +
   1.946 +    PORT_Memcpy(output, buffer + modulusLen - *outputLen, *outputLen);
   1.947 +
   1.948 +    PORT_Free(buffer);
   1.949 +    return SECSuccess;
   1.950 +
   1.951 +loser:
   1.952 +    PORT_Free(buffer);
   1.953 +failure:
   1.954 +    return SECFailure;
   1.955 +}
   1.956 +
   1.957 +/*
   1.958 + * Encode a RSA-PSS signature.
   1.959 + * Described in RFC 3447, section 9.1.1.
   1.960 + * We use mHash instead of M as input.
   1.961 + * emBits from the RFC is just modBits - 1, see section 8.1.1.
   1.962 + * We only support MGF1 as the MGF.
   1.963 + *
   1.964 + * NOTE: this code assumes modBits is a multiple of 8.
   1.965 + */
   1.966 +static SECStatus
   1.967 +emsa_pss_encode(unsigned char * em,
   1.968 +                unsigned int emLen,
   1.969 +                const unsigned char * mHash,
   1.970 +                HASH_HashType hashAlg,
   1.971 +                HASH_HashType maskHashAlg,
   1.972 +                const unsigned char * salt,
   1.973 +                unsigned int saltLen)
   1.974 +{
   1.975 +    const SECHashObject * hash;
   1.976 +    void * hash_context;
   1.977 +    unsigned char * dbMask;
   1.978 +    unsigned int dbMaskLen;
   1.979 +    unsigned int i;
   1.980 +    SECStatus rv;
   1.981 +
   1.982 +    hash = HASH_GetRawHashObject(hashAlg);
   1.983 +    dbMaskLen = emLen - hash->length - 1;
   1.984 +
   1.985 +    /* Step 3 */
   1.986 +    if (emLen < hash->length + saltLen + 2) {
   1.987 +        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
   1.988 +        return SECFailure;
   1.989 +    }
   1.990 +
   1.991 +    /* Step 4 */
   1.992 +    if (salt == NULL) {
   1.993 +        rv = RNG_GenerateGlobalRandomBytes(&em[dbMaskLen - saltLen], saltLen);
   1.994 +        if (rv != SECSuccess) {
   1.995 +            return rv;
   1.996 +        }
   1.997 +    } else {
   1.998 +        PORT_Memcpy(&em[dbMaskLen - saltLen], salt, saltLen);
   1.999 +    }
  1.1000 +
  1.1001 +    /* Step 5 + 6 */
  1.1002 +    /* Compute H and store it at its final location &em[dbMaskLen]. */
  1.1003 +    hash_context = (*hash->create)();
  1.1004 +    if (hash_context == NULL) {
  1.1005 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1006 +        return SECFailure;
  1.1007 +    }
  1.1008 +    (*hash->begin)(hash_context);
  1.1009 +    (*hash->update)(hash_context, eightZeros, 8);
  1.1010 +    (*hash->update)(hash_context, mHash, hash->length);
  1.1011 +    (*hash->update)(hash_context, &em[dbMaskLen - saltLen], saltLen);
  1.1012 +    (*hash->end)(hash_context, &em[dbMaskLen], &i, hash->length);
  1.1013 +    (*hash->destroy)(hash_context, PR_TRUE);
  1.1014 +
  1.1015 +    /* Step 7 + 8 */
  1.1016 +    PORT_Memset(em, 0, dbMaskLen - saltLen - 1);
  1.1017 +    em[dbMaskLen - saltLen - 1] = 0x01;
  1.1018 +
  1.1019 +    /* Step 9 */
  1.1020 +    dbMask = (unsigned char *)PORT_Alloc(dbMaskLen);
  1.1021 +    if (dbMask == NULL) {
  1.1022 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1023 +        return SECFailure;
  1.1024 +    }
  1.1025 +    MGF1(maskHashAlg, dbMask, dbMaskLen, &em[dbMaskLen], hash->length);
  1.1026 +
  1.1027 +    /* Step 10 */
  1.1028 +    for (i = 0; i < dbMaskLen; i++)
  1.1029 +        em[i] ^= dbMask[i];
  1.1030 +    PORT_Free(dbMask);
  1.1031 +
  1.1032 +    /* Step 11 */
  1.1033 +    em[0] &= 0x7f;
  1.1034 +
  1.1035 +    /* Step 12 */
  1.1036 +    em[emLen - 1] = 0xbc;
  1.1037 +
  1.1038 +    return SECSuccess;
  1.1039 +}
  1.1040 +
  1.1041 +/*
  1.1042 + * Verify a RSA-PSS signature.
  1.1043 + * Described in RFC 3447, section 9.1.2.
  1.1044 + * We use mHash instead of M as input.
  1.1045 + * emBits from the RFC is just modBits - 1, see section 8.1.2.
  1.1046 + * We only support MGF1 as the MGF.
  1.1047 + *
  1.1048 + * NOTE: this code assumes modBits is a multiple of 8.
  1.1049 + */
  1.1050 +static SECStatus
  1.1051 +emsa_pss_verify(const unsigned char * mHash,
  1.1052 +                const unsigned char * em,
  1.1053 +                unsigned int emLen,
  1.1054 +                HASH_HashType hashAlg,
  1.1055 +                HASH_HashType maskHashAlg,
  1.1056 +                unsigned int saltLen)
  1.1057 +{
  1.1058 +    const SECHashObject * hash;
  1.1059 +    void * hash_context;
  1.1060 +    unsigned char * db;
  1.1061 +    unsigned char * H_;  /* H' from the RFC */
  1.1062 +    unsigned int i;
  1.1063 +    unsigned int dbMaskLen;
  1.1064 +    SECStatus rv;
  1.1065 +
  1.1066 +    hash = HASH_GetRawHashObject(hashAlg);
  1.1067 +    dbMaskLen = emLen - hash->length - 1;
  1.1068 +
  1.1069 +    /* Step 3 + 4 + 6 */
  1.1070 +    if ((emLen < (hash->length + saltLen + 2)) ||
  1.1071 +        (em[emLen - 1] != 0xbc) ||
  1.1072 +        ((em[0] & 0x80) != 0)) {
  1.1073 +        PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1074 +        return SECFailure;
  1.1075 +    }
  1.1076 +
  1.1077 +    /* Step 7 */
  1.1078 +    db = (unsigned char *)PORT_Alloc(dbMaskLen);
  1.1079 +    if (db == NULL) {
  1.1080 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1081 +        return SECFailure;
  1.1082 +    }
  1.1083 +    /* &em[dbMaskLen] points to H, used as mgfSeed */
  1.1084 +    MGF1(maskHashAlg, db, dbMaskLen, &em[dbMaskLen], hash->length);
  1.1085 +
  1.1086 +    /* Step 8 */
  1.1087 +    for (i = 0; i < dbMaskLen; i++) {
  1.1088 +        db[i] ^= em[i];
  1.1089 +    }
  1.1090 +
  1.1091 +    /* Step 9 */
  1.1092 +    db[0] &= 0x7f;
  1.1093 +
  1.1094 +    /* Step 10 */
  1.1095 +    for (i = 0; i < (dbMaskLen - saltLen - 1); i++) {
  1.1096 +        if (db[i] != 0) {
  1.1097 +            PORT_Free(db);
  1.1098 +            PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1099 +            return SECFailure;
  1.1100 +        }
  1.1101 +    }
  1.1102 +    if (db[dbMaskLen - saltLen - 1] != 0x01) {
  1.1103 +        PORT_Free(db);
  1.1104 +        PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1105 +        return SECFailure;
  1.1106 +    }
  1.1107 +
  1.1108 +    /* Step 12 + 13 */
  1.1109 +    H_ = (unsigned char *)PORT_Alloc(hash->length);
  1.1110 +    if (H_ == NULL) {
  1.1111 +        PORT_Free(db);
  1.1112 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1113 +        return SECFailure;
  1.1114 +    }
  1.1115 +    hash_context = (*hash->create)();
  1.1116 +    if (hash_context == NULL) {
  1.1117 +        PORT_Free(db);
  1.1118 +        PORT_Free(H_);
  1.1119 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1120 +        return SECFailure;
  1.1121 +    }
  1.1122 +    (*hash->begin)(hash_context);
  1.1123 +    (*hash->update)(hash_context, eightZeros, 8);
  1.1124 +    (*hash->update)(hash_context, mHash, hash->length);
  1.1125 +    (*hash->update)(hash_context, &db[dbMaskLen - saltLen], saltLen);
  1.1126 +    (*hash->end)(hash_context, H_, &i, hash->length);
  1.1127 +    (*hash->destroy)(hash_context, PR_TRUE);
  1.1128 +
  1.1129 +    PORT_Free(db);
  1.1130 +
  1.1131 +    /* Step 14 */
  1.1132 +    if (PORT_Memcmp(H_, &em[dbMaskLen], hash->length) != 0) {
  1.1133 +        PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1134 +        rv = SECFailure;
  1.1135 +    } else {
  1.1136 +        rv = SECSuccess;
  1.1137 +    }
  1.1138 +
  1.1139 +    PORT_Free(H_);
  1.1140 +    return rv;
  1.1141 +}
  1.1142 +
  1.1143 +SECStatus
  1.1144 +RSA_SignPSS(RSAPrivateKey * key,
  1.1145 +            HASH_HashType hashAlg,
  1.1146 +            HASH_HashType maskHashAlg,
  1.1147 +            const unsigned char * salt,
  1.1148 +            unsigned int saltLength,
  1.1149 +            unsigned char * output,
  1.1150 +            unsigned int * outputLen,
  1.1151 +            unsigned int maxOutputLen,
  1.1152 +            const unsigned char * input,
  1.1153 +            unsigned int inputLen)
  1.1154 +{
  1.1155 +    SECStatus rv = SECSuccess;
  1.1156 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
  1.1157 +    unsigned char *pssEncoded = NULL;
  1.1158 +
  1.1159 +    if (maxOutputLen < modulusLen) {
  1.1160 +        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
  1.1161 +        return SECFailure;
  1.1162 +    }
  1.1163 +
  1.1164 +    if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
  1.1165 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
  1.1166 +        return SECFailure;
  1.1167 +    }
  1.1168 +
  1.1169 +    pssEncoded = (unsigned char *)PORT_Alloc(modulusLen);
  1.1170 +    if (pssEncoded == NULL) {
  1.1171 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1172 +        return SECFailure;
  1.1173 +    }
  1.1174 +    rv = emsa_pss_encode(pssEncoded, modulusLen, input, hashAlg,
  1.1175 +                         maskHashAlg, salt, saltLength);
  1.1176 +    if (rv != SECSuccess)
  1.1177 +        goto done;
  1.1178 +
  1.1179 +    rv = RSA_PrivateKeyOpDoubleChecked(key, output, pssEncoded);
  1.1180 +    *outputLen = modulusLen;
  1.1181 +
  1.1182 +done:
  1.1183 +    PORT_Free(pssEncoded);
  1.1184 +    return rv;
  1.1185 +}
  1.1186 +
  1.1187 +SECStatus
  1.1188 +RSA_CheckSignPSS(RSAPublicKey * key,
  1.1189 +                 HASH_HashType hashAlg,
  1.1190 +                 HASH_HashType maskHashAlg,
  1.1191 +                 unsigned int saltLength,
  1.1192 +                 const unsigned char * sig,
  1.1193 +                 unsigned int sigLen,
  1.1194 +                 const unsigned char * hash,
  1.1195 +                 unsigned int hashLen)
  1.1196 +{
  1.1197 +    SECStatus rv;
  1.1198 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
  1.1199 +    unsigned char * buffer;
  1.1200 +
  1.1201 +    if (sigLen != modulusLen) {
  1.1202 +        PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1203 +        return SECFailure;
  1.1204 +    }
  1.1205 +
  1.1206 +    if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
  1.1207 +        PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
  1.1208 +        return SECFailure;
  1.1209 +    }
  1.1210 +
  1.1211 +    buffer = (unsigned char *)PORT_Alloc(modulusLen);
  1.1212 +    if (!buffer) {
  1.1213 +        PORT_SetError(SEC_ERROR_NO_MEMORY);
  1.1214 +        return SECFailure;
  1.1215 +    }
  1.1216 +
  1.1217 +    rv = RSA_PublicKeyOp(key, buffer, sig);
  1.1218 +    if (rv != SECSuccess) {
  1.1219 +        PORT_Free(buffer);
  1.1220 +        PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
  1.1221 +        return SECFailure;
  1.1222 +    }
  1.1223 +
  1.1224 +    rv = emsa_pss_verify(hash, buffer, modulusLen, hashAlg,
  1.1225 +                         maskHashAlg, saltLength);
  1.1226 +    PORT_Free(buffer);
  1.1227 +
  1.1228 +    return rv;
  1.1229 +}
  1.1230 +
  1.1231 +/* XXX Doesn't set error code */
  1.1232 +SECStatus
  1.1233 +RSA_Sign(RSAPrivateKey * key,
  1.1234 +         unsigned char * output,
  1.1235 +         unsigned int * outputLen,
  1.1236 +         unsigned int maxOutputLen,
  1.1237 +         const unsigned char * input,
  1.1238 +         unsigned int inputLen)
  1.1239 +{
  1.1240 +    SECStatus rv = SECSuccess;
  1.1241 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
  1.1242 +    SECItem formatted;
  1.1243 +    SECItem unformatted;
  1.1244 +
  1.1245 +    if (maxOutputLen < modulusLen)
  1.1246 +        return SECFailure;
  1.1247 +
  1.1248 +    unformatted.len  = inputLen;
  1.1249 +    unformatted.data = (unsigned char*)input;
  1.1250 +    formatted.data   = NULL;
  1.1251 +    rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockPrivate,
  1.1252 +                         &unformatted);
  1.1253 +    if (rv != SECSuccess)
  1.1254 +        goto done;
  1.1255 +
  1.1256 +    rv = RSA_PrivateKeyOpDoubleChecked(key, output, formatted.data);
  1.1257 +    *outputLen = modulusLen;
  1.1258 +
  1.1259 +    goto done;
  1.1260 +
  1.1261 +done:
  1.1262 +    if (formatted.data != NULL)
  1.1263 +        PORT_ZFree(formatted.data, modulusLen);
  1.1264 +    return rv;
  1.1265 +}
  1.1266 +
  1.1267 +/* XXX Doesn't set error code */
  1.1268 +SECStatus
  1.1269 +RSA_CheckSign(RSAPublicKey * key,
  1.1270 +              const unsigned char * sig,
  1.1271 +              unsigned int sigLen,
  1.1272 +              const unsigned char * data,
  1.1273 +              unsigned int dataLen)
  1.1274 +{
  1.1275 +    SECStatus rv;
  1.1276 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
  1.1277 +    unsigned int i;
  1.1278 +    unsigned char * buffer;
  1.1279 +
  1.1280 +    if (sigLen != modulusLen)
  1.1281 +        goto failure;
  1.1282 +    /*
  1.1283 +     * 0x00 || BT || Pad || 0x00 || ActualData
  1.1284 +     *
  1.1285 +     * The "3" below is the first octet + the second octet + the 0x00
  1.1286 +     * octet that always comes just before the ActualData.
  1.1287 +     */
  1.1288 +    if (dataLen > modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN))
  1.1289 +        goto failure;
  1.1290 +
  1.1291 +    buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
  1.1292 +    if (!buffer)
  1.1293 +        goto failure;
  1.1294 +
  1.1295 +    rv = RSA_PublicKeyOp(key, buffer, sig);
  1.1296 +    if (rv != SECSuccess)
  1.1297 +        goto loser;
  1.1298 +
  1.1299 +    /*
  1.1300 +     * check the padding that was used
  1.1301 +     */
  1.1302 +    if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
  1.1303 +        buffer[1] != (unsigned char)RSA_BlockPrivate) {
  1.1304 +        goto loser;
  1.1305 +    }
  1.1306 +    for (i = 2; i < modulusLen - dataLen - 1; i++) {
  1.1307 +        if (buffer[i] != RSA_BLOCK_PRIVATE_PAD_OCTET)
  1.1308 +            goto loser;
  1.1309 +    }
  1.1310 +    if (buffer[i] != RSA_BLOCK_AFTER_PAD_OCTET)
  1.1311 +        goto loser;
  1.1312 +
  1.1313 +    /*
  1.1314 +     * make sure we get the same results
  1.1315 +     */
  1.1316 +    if (PORT_Memcmp(buffer + modulusLen - dataLen, data, dataLen) != 0)
  1.1317 +        goto loser;
  1.1318 +
  1.1319 +    PORT_Free(buffer);
  1.1320 +    return SECSuccess;
  1.1321 +
  1.1322 +loser:
  1.1323 +    PORT_Free(buffer);
  1.1324 +failure:
  1.1325 +    return SECFailure;
  1.1326 +}
  1.1327 +
  1.1328 +/* XXX Doesn't set error code */
  1.1329 +SECStatus
  1.1330 +RSA_CheckSignRecover(RSAPublicKey * key,
  1.1331 +                     unsigned char * output,
  1.1332 +                     unsigned int * outputLen,
  1.1333 +                     unsigned int maxOutputLen,
  1.1334 +                     const unsigned char * sig,
  1.1335 +                     unsigned int sigLen)
  1.1336 +{
  1.1337 +    SECStatus rv;
  1.1338 +    unsigned int modulusLen = rsa_modulusLen(&key->modulus);
  1.1339 +    unsigned int i;
  1.1340 +    unsigned char * buffer;
  1.1341 +
  1.1342 +    if (sigLen != modulusLen)
  1.1343 +        goto failure;
  1.1344 +
  1.1345 +    buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
  1.1346 +    if (!buffer)
  1.1347 +        goto failure;
  1.1348 +
  1.1349 +    rv = RSA_PublicKeyOp(key, buffer, sig);
  1.1350 +    if (rv != SECSuccess)
  1.1351 +        goto loser;
  1.1352 +    *outputLen = 0;
  1.1353 +
  1.1354 +    /*
  1.1355 +     * check the padding that was used
  1.1356 +     */
  1.1357 +    if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
  1.1358 +        buffer[1] != (unsigned char)RSA_BlockPrivate) {
  1.1359 +        goto loser;
  1.1360 +    }
  1.1361 +    for (i = 2; i < modulusLen; i++) {
  1.1362 +        if (buffer[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
  1.1363 +            *outputLen = modulusLen - i - 1;
  1.1364 +            break;
  1.1365 +        }
  1.1366 +        if (buffer[i] != RSA_BLOCK_PRIVATE_PAD_OCTET)
  1.1367 +            goto loser;
  1.1368 +    }
  1.1369 +    if (*outputLen == 0)
  1.1370 +        goto loser;
  1.1371 +    if (*outputLen > maxOutputLen)
  1.1372 +        goto loser;
  1.1373 +
  1.1374 +    PORT_Memcpy(output, buffer + modulusLen - *outputLen, *outputLen);
  1.1375 +
  1.1376 +    PORT_Free(buffer);
  1.1377 +    return SECSuccess;
  1.1378 +
  1.1379 +loser:
  1.1380 +    PORT_Free(buffer);
  1.1381 +failure:
  1.1382 +    return SECFailure;
  1.1383 +}

mercurial