1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/sha_fast.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,463 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#ifdef FREEBL_NO_DEPEND 1.9 +#include "stubs.h" 1.10 +#endif 1.11 + 1.12 +#include <memory.h> 1.13 +#include "blapi.h" 1.14 +#include "sha_fast.h" 1.15 +#include "prerror.h" 1.16 + 1.17 +#ifdef TRACING_SSL 1.18 +#include "ssl.h" 1.19 +#include "ssltrace.h" 1.20 +#endif 1.21 + 1.22 +static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); 1.23 + 1.24 +#define W u.w 1.25 +#define B u.b 1.26 + 1.27 + 1.28 +#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) 1.29 +#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) 1.30 +#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) 1.31 +#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) 1.32 + 1.33 +#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) 1.34 + 1.35 +/* 1.36 + * SHA: initialize context 1.37 + */ 1.38 +void 1.39 +SHA1_Begin(SHA1Context *ctx) 1.40 +{ 1.41 + ctx->size = 0; 1.42 + /* 1.43 + * Initialize H with constants from FIPS180-1. 1.44 + */ 1.45 + ctx->H[0] = 0x67452301L; 1.46 + ctx->H[1] = 0xefcdab89L; 1.47 + ctx->H[2] = 0x98badcfeL; 1.48 + ctx->H[3] = 0x10325476L; 1.49 + ctx->H[4] = 0xc3d2e1f0L; 1.50 +} 1.51 + 1.52 +/* Explanation of H array and index values: 1.53 + * The context's H array is actually the concatenation of two arrays 1.54 + * defined by SHA1, the H array of state variables (5 elements), 1.55 + * and the W array of intermediate values, of which there are 16 elements. 1.56 + * The W array starts at H[5], that is W[0] is H[5]. 1.57 + * Although these values are defined as 32-bit values, we use 64-bit 1.58 + * variables to hold them because the AMD64 stores 64 bit values in 1.59 + * memory MUCH faster than it stores any smaller values. 1.60 + * 1.61 + * Rather than passing the context structure to shaCompress, we pass 1.62 + * this combined array of H and W values. We do not pass the address 1.63 + * of the first element of this array, but rather pass the address of an 1.64 + * element in the middle of the array, element X. Presently X[0] is H[11]. 1.65 + * So we pass the address of H[11] as the address of array X to shaCompress. 1.66 + * Then shaCompress accesses the members of the array using positive AND 1.67 + * negative indexes. 1.68 + * 1.69 + * Pictorially: (each element is 8 bytes) 1.70 + * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | 1.71 + * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | 1.72 + * 1.73 + * The byte offset from X[0] to any member of H and W is always 1.74 + * representable in a signed 8-bit value, which will be encoded 1.75 + * as a single byte offset in the X86-64 instruction set. 1.76 + * If we didn't pass the address of H[11], and instead passed the 1.77 + * address of H[0], the offsets to elements H[16] and above would be 1.78 + * greater than 127, not representable in a signed 8-bit value, and the 1.79 + * x86-64 instruction set would encode every such offset as a 32-bit 1.80 + * signed number in each instruction that accessed element H[16] or 1.81 + * higher. This results in much bigger and slower code. 1.82 + */ 1.83 +#if !defined(SHA_PUT_W_IN_STACK) 1.84 +#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ 1.85 +#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ 1.86 +#else 1.87 +#define H2X 0 1.88 +#endif 1.89 + 1.90 +/* 1.91 + * SHA: Add data to context. 1.92 + */ 1.93 +void 1.94 +SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) 1.95 +{ 1.96 + register unsigned int lenB; 1.97 + register unsigned int togo; 1.98 + 1.99 + if (!len) 1.100 + return; 1.101 + 1.102 + /* accumulate the byte count. */ 1.103 + lenB = (unsigned int)(ctx->size) & 63U; 1.104 + 1.105 + ctx->size += len; 1.106 + 1.107 + /* 1.108 + * Read the data into W and process blocks as they get full 1.109 + */ 1.110 + if (lenB > 0) { 1.111 + togo = 64U - lenB; 1.112 + if (len < togo) 1.113 + togo = len; 1.114 + memcpy(ctx->B + lenB, dataIn, togo); 1.115 + len -= togo; 1.116 + dataIn += togo; 1.117 + lenB = (lenB + togo) & 63U; 1.118 + if (!lenB) { 1.119 + shaCompress(&ctx->H[H2X], ctx->W); 1.120 + } 1.121 + } 1.122 +#if !defined(SHA_ALLOW_UNALIGNED_ACCESS) 1.123 + if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { 1.124 + while (len >= 64U) { 1.125 + memcpy(ctx->B, dataIn, 64); 1.126 + len -= 64U; 1.127 + shaCompress(&ctx->H[H2X], ctx->W); 1.128 + dataIn += 64U; 1.129 + } 1.130 + } else 1.131 +#endif 1.132 + { 1.133 + while (len >= 64U) { 1.134 + len -= 64U; 1.135 + shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); 1.136 + dataIn += 64U; 1.137 + } 1.138 + } 1.139 + if (len) { 1.140 + memcpy(ctx->B, dataIn, len); 1.141 + } 1.142 +} 1.143 + 1.144 + 1.145 +/* 1.146 + * SHA: Generate hash value from context 1.147 + */ 1.148 +void 1.149 +SHA1_End(SHA1Context *ctx, unsigned char *hashout, 1.150 + unsigned int *pDigestLen, unsigned int maxDigestLen) 1.151 +{ 1.152 + register PRUint64 size; 1.153 + register PRUint32 lenB; 1.154 + PRUint32 tmpbuf[5]; 1.155 + 1.156 + static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, 1.157 + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1.158 + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; 1.159 +#define tmp lenB 1.160 + 1.161 + PORT_Assert (maxDigestLen >= SHA1_LENGTH); 1.162 + 1.163 + /* 1.164 + * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits 1.165 + */ 1.166 + size = ctx->size; 1.167 + 1.168 + lenB = (PRUint32)size & 63; 1.169 + SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); 1.170 + PORT_Assert(((PRUint32)ctx->size & 63) == 56); 1.171 + /* Convert size from bytes to bits. */ 1.172 + size <<= 3; 1.173 + ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); 1.174 + ctx->W[15] = SHA_HTONL((PRUint32)size); 1.175 + shaCompress(&ctx->H[H2X], ctx->W); 1.176 + 1.177 + /* 1.178 + * Output hash 1.179 + */ 1.180 + SHA_STORE_RESULT; 1.181 + if (pDigestLen) { 1.182 + *pDigestLen = SHA1_LENGTH; 1.183 + } 1.184 +#undef tmp 1.185 +} 1.186 + 1.187 +void 1.188 +SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, 1.189 + unsigned int *pDigestLen, unsigned int maxDigestLen) 1.190 +{ 1.191 +#if defined(SHA_NEED_TMP_VARIABLE) 1.192 + register PRUint32 tmp; 1.193 +#endif 1.194 + PRUint32 tmpbuf[5]; 1.195 + PORT_Assert (maxDigestLen >= SHA1_LENGTH); 1.196 + 1.197 + SHA_STORE_RESULT; 1.198 + if (pDigestLen) 1.199 + *pDigestLen = SHA1_LENGTH; 1.200 +} 1.201 + 1.202 +#undef B 1.203 +/* 1.204 + * SHA: Compression function, unrolled. 1.205 + * 1.206 + * Some operations in shaCompress are done as 5 groups of 16 operations. 1.207 + * Others are done as 4 groups of 20 operations. 1.208 + * The code below shows that structure. 1.209 + * 1.210 + * The functions that compute the new values of the 5 state variables 1.211 + * A-E are done in 4 groups of 20 operations (or you may also think 1.212 + * of them as being done in 16 groups of 5 operations). They are 1.213 + * done by the SHA_RNDx macros below, in the right column. 1.214 + * 1.215 + * The functions that set the 16 values of the W array are done in 1.216 + * 5 groups of 16 operations. The first group is done by the 1.217 + * LOAD macros below, the latter 4 groups are done by SHA_MIX below, 1.218 + * in the left column. 1.219 + * 1.220 + * gcc's optimizer observes that each member of the W array is assigned 1.221 + * a value 5 times in this code. It reduces the number of store 1.222 + * operations done to the W array in the context (that is, in the X array) 1.223 + * by creating a W array on the stack, and storing the W values there for 1.224 + * the first 4 groups of operations on W, and storing the values in the 1.225 + * context's W array only in the fifth group. This is undesirable. 1.226 + * It is MUCH bigger code than simply using the context's W array, because 1.227 + * all the offsets to the W array in the stack are 32-bit signed offsets, 1.228 + * and it is no faster than storing the values in the context's W array. 1.229 + * 1.230 + * The original code for sha_fast.c prevented this creation of a separate 1.231 + * W array in the stack by creating a W array of 80 members, each of 1.232 + * whose elements is assigned only once. It also separated the computations 1.233 + * of the W array values and the computations of the values for the 5 1.234 + * state variables into two separate passes, W's, then A-E's so that the 1.235 + * second pass could be done all in registers (except for accessing the W 1.236 + * array) on machines with fewer registers. The method is suboptimal 1.237 + * for machines with enough registers to do it all in one pass, and it 1.238 + * necessitates using many instructions with 32-bit offsets. 1.239 + * 1.240 + * This code eliminates the separate W array on the stack by a completely 1.241 + * different means: by declaring the X array volatile. This prevents 1.242 + * the optimizer from trying to reduce the use of the X array by the 1.243 + * creation of a MORE expensive W array on the stack. The result is 1.244 + * that all instructions use signed 8-bit offsets and not 32-bit offsets. 1.245 + * 1.246 + * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 1.247 + * results in code that is 3 times faster than the previous NSS sha_fast 1.248 + * code on AMD64. 1.249 + */ 1.250 +static void 1.251 +shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) 1.252 +{ 1.253 + register SHA_HW_t A, B, C, D, E; 1.254 + 1.255 +#if defined(SHA_NEED_TMP_VARIABLE) 1.256 + register PRUint32 tmp; 1.257 +#endif 1.258 + 1.259 +#if !defined(SHA_PUT_W_IN_STACK) 1.260 +#define XH(n) X[n-H2X] 1.261 +#define XW(n) X[n-W2X] 1.262 +#else 1.263 + SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, 1.264 + w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 1.265 +#define XW(n) w_ ## n 1.266 +#define XH(n) X[n] 1.267 +#endif 1.268 + 1.269 +#define K0 0x5a827999L 1.270 +#define K1 0x6ed9eba1L 1.271 +#define K2 0x8f1bbcdcL 1.272 +#define K3 0xca62c1d6L 1.273 + 1.274 +#define SHA_RND1(a,b,c,d,e,n) \ 1.275 + a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) 1.276 +#define SHA_RND2(a,b,c,d,e,n) \ 1.277 + a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) 1.278 +#define SHA_RND3(a,b,c,d,e,n) \ 1.279 + a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) 1.280 +#define SHA_RND4(a,b,c,d,e,n) \ 1.281 + a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) 1.282 + 1.283 +#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) 1.284 + 1.285 + A = XH(0); 1.286 + B = XH(1); 1.287 + C = XH(2); 1.288 + D = XH(3); 1.289 + E = XH(4); 1.290 + 1.291 + LOAD(0); SHA_RND1(E,A,B,C,D, 0); 1.292 + LOAD(1); SHA_RND1(D,E,A,B,C, 1); 1.293 + LOAD(2); SHA_RND1(C,D,E,A,B, 2); 1.294 + LOAD(3); SHA_RND1(B,C,D,E,A, 3); 1.295 + LOAD(4); SHA_RND1(A,B,C,D,E, 4); 1.296 + LOAD(5); SHA_RND1(E,A,B,C,D, 5); 1.297 + LOAD(6); SHA_RND1(D,E,A,B,C, 6); 1.298 + LOAD(7); SHA_RND1(C,D,E,A,B, 7); 1.299 + LOAD(8); SHA_RND1(B,C,D,E,A, 8); 1.300 + LOAD(9); SHA_RND1(A,B,C,D,E, 9); 1.301 + LOAD(10); SHA_RND1(E,A,B,C,D,10); 1.302 + LOAD(11); SHA_RND1(D,E,A,B,C,11); 1.303 + LOAD(12); SHA_RND1(C,D,E,A,B,12); 1.304 + LOAD(13); SHA_RND1(B,C,D,E,A,13); 1.305 + LOAD(14); SHA_RND1(A,B,C,D,E,14); 1.306 + LOAD(15); SHA_RND1(E,A,B,C,D,15); 1.307 + 1.308 + SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); 1.309 + SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); 1.310 + SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); 1.311 + SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); 1.312 + 1.313 + SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); 1.314 + SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); 1.315 + SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); 1.316 + SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); 1.317 + SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); 1.318 + SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); 1.319 + SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); 1.320 + SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); 1.321 + SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); 1.322 + SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); 1.323 + SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); 1.324 + SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); 1.325 + 1.326 + SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); 1.327 + SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); 1.328 + SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); 1.329 + SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); 1.330 + SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); 1.331 + SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); 1.332 + SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); 1.333 + SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); 1.334 + 1.335 + SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); 1.336 + SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); 1.337 + SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); 1.338 + SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); 1.339 + SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); 1.340 + SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); 1.341 + SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); 1.342 + SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); 1.343 + 1.344 + SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); 1.345 + SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); 1.346 + SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); 1.347 + SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); 1.348 + SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); 1.349 + SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); 1.350 + SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); 1.351 + SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); 1.352 + SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); 1.353 + SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); 1.354 + SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); 1.355 + SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); 1.356 + 1.357 + SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); 1.358 + SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); 1.359 + SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); 1.360 + SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); 1.361 + 1.362 + SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); 1.363 + SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); 1.364 + SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); 1.365 + SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); 1.366 + SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); 1.367 + SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); 1.368 + SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); 1.369 + SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); 1.370 + SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); 1.371 + SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); 1.372 + SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); 1.373 + SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); 1.374 + SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); 1.375 + SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); 1.376 + SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); 1.377 + SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); 1.378 + 1.379 + XH(0) += A; 1.380 + XH(1) += B; 1.381 + XH(2) += C; 1.382 + XH(3) += D; 1.383 + XH(4) += E; 1.384 +} 1.385 + 1.386 +/************************************************************************* 1.387 +** Code below this line added to make SHA code support BLAPI interface 1.388 +*/ 1.389 + 1.390 +SHA1Context * 1.391 +SHA1_NewContext(void) 1.392 +{ 1.393 + SHA1Context *cx; 1.394 + 1.395 + /* no need to ZNew, SHA1_Begin will init the context */ 1.396 + cx = PORT_New(SHA1Context); 1.397 + return cx; 1.398 +} 1.399 + 1.400 +/* Zero and free the context */ 1.401 +void 1.402 +SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) 1.403 +{ 1.404 + memset(cx, 0, sizeof *cx); 1.405 + if (freeit) { 1.406 + PORT_Free(cx); 1.407 + } 1.408 +} 1.409 + 1.410 +SECStatus 1.411 +SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) 1.412 +{ 1.413 + SHA1Context ctx; 1.414 + unsigned int outLen; 1.415 + 1.416 + SHA1_Begin(&ctx); 1.417 + SHA1_Update(&ctx, src, src_length); 1.418 + SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); 1.419 + memset(&ctx, 0, sizeof ctx); 1.420 + return SECSuccess; 1.421 +} 1.422 + 1.423 +/* Hash a null-terminated character string. */ 1.424 +SECStatus 1.425 +SHA1_Hash(unsigned char *dest, const char *src) 1.426 +{ 1.427 + return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); 1.428 +} 1.429 + 1.430 +/* 1.431 + * need to support save/restore state in pkcs11. Stores all the info necessary 1.432 + * for a structure into just a stream of bytes. 1.433 + */ 1.434 +unsigned int 1.435 +SHA1_FlattenSize(SHA1Context *cx) 1.436 +{ 1.437 + return sizeof(SHA1Context); 1.438 +} 1.439 + 1.440 +SECStatus 1.441 +SHA1_Flatten(SHA1Context *cx,unsigned char *space) 1.442 +{ 1.443 + PORT_Memcpy(space,cx, sizeof(SHA1Context)); 1.444 + return SECSuccess; 1.445 +} 1.446 + 1.447 +SHA1Context * 1.448 +SHA1_Resurrect(unsigned char *space,void *arg) 1.449 +{ 1.450 + SHA1Context *cx = SHA1_NewContext(); 1.451 + if (cx == NULL) return NULL; 1.452 + 1.453 + PORT_Memcpy(cx,space, sizeof(SHA1Context)); 1.454 + return cx; 1.455 +} 1.456 + 1.457 +void SHA1_Clone(SHA1Context *dest, SHA1Context *src) 1.458 +{ 1.459 + memcpy(dest, src, sizeof *dest); 1.460 +} 1.461 + 1.462 +void 1.463 +SHA1_TraceState(SHA1Context *ctx) 1.464 +{ 1.465 + PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); 1.466 +}