security/nss/lib/ssl/derive.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/ssl/derive.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,896 @@
     1.4 +/*
     1.5 + * Key Derivation that doesn't use PKCS11
     1.6 + *
     1.7 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.8 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.9 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    1.10 +
    1.11 +#include "ssl.h" 	/* prereq to sslimpl.h */
    1.12 +#include "certt.h"	/* prereq to sslimpl.h */
    1.13 +#include "keythi.h"	/* prereq to sslimpl.h */
    1.14 +#include "sslimpl.h"
    1.15 +#ifndef NO_PKCS11_BYPASS
    1.16 +#include "blapi.h"
    1.17 +#endif
    1.18 +
    1.19 +#include "keyhi.h"
    1.20 +#include "pk11func.h"
    1.21 +#include "secasn1.h"
    1.22 +#include "cert.h"
    1.23 +#include "secmodt.h"
    1.24 +
    1.25 +#include "sslproto.h"
    1.26 +#include "sslerr.h"
    1.27 +
    1.28 +#ifndef NO_PKCS11_BYPASS
    1.29 +/* make this a macro! */
    1.30 +#ifdef NOT_A_MACRO
    1.31 +static void
    1.32 +buildSSLKey(unsigned char * keyBlock, unsigned int keyLen, SECItem * result,
    1.33 +            const char * label)
    1.34 +{
    1.35 +    result->type = siBuffer;
    1.36 +    result->data = keyBlock;
    1.37 +    result->len  = keyLen;
    1.38 +    PRINT_BUF(100, (NULL, label, keyBlock, keyLen));
    1.39 +}
    1.40 +#else
    1.41 +#define buildSSLKey(keyBlock, keyLen, result, label) \
    1.42 +{ \
    1.43 +    (result)->type = siBuffer; \
    1.44 +    (result)->data = keyBlock; \
    1.45 +    (result)->len  = keyLen; \
    1.46 +    PRINT_BUF(100, (NULL, label, keyBlock, keyLen)); \
    1.47 +}
    1.48 +#endif
    1.49 +
    1.50 +/*
    1.51 + * SSL Key generation given pre master secret
    1.52 + */
    1.53 +#ifndef NUM_MIXERS
    1.54 +#define NUM_MIXERS 9
    1.55 +#endif
    1.56 +static const char * const mixers[NUM_MIXERS] = { 
    1.57 +    "A", 
    1.58 +    "BB", 
    1.59 +    "CCC", 
    1.60 +    "DDDD", 
    1.61 +    "EEEEE", 
    1.62 +    "FFFFFF", 
    1.63 +    "GGGGGGG",
    1.64 +    "HHHHHHHH",
    1.65 +    "IIIIIIIII" 
    1.66 +};
    1.67 +
    1.68 +
    1.69 +SECStatus
    1.70 +ssl3_KeyAndMacDeriveBypass(
    1.71 +    ssl3CipherSpec *      pwSpec,
    1.72 +    const unsigned char * cr,
    1.73 +    const unsigned char * sr,
    1.74 +    PRBool                isTLS,
    1.75 +    PRBool                isExport)
    1.76 +{
    1.77 +    const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
    1.78 +    unsigned char * key_block    = pwSpec->key_block;
    1.79 +    unsigned char * key_block2   = NULL;
    1.80 +    unsigned int    block_bytes  = 0;
    1.81 +    unsigned int    block_needed = 0;
    1.82 +    unsigned int    i;
    1.83 +    unsigned int    keySize;            /* actual    size of cipher keys */
    1.84 +    unsigned int    effKeySize;		/* effective size of cipher keys */
    1.85 +    unsigned int    macSize;		/* size of MAC secret */
    1.86 +    unsigned int    IVSize;		/* size of IV */
    1.87 +    PRBool          explicitIV = PR_FALSE;
    1.88 +    SECStatus       rv    = SECFailure;
    1.89 +    SECStatus       status = SECSuccess;
    1.90 +    PRBool          isFIPS = PR_FALSE;
    1.91 +    PRBool          isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
    1.92 +
    1.93 +    SECItem         srcr;
    1.94 +    SECItem         crsr;
    1.95 +
    1.96 +    unsigned char     srcrdata[SSL3_RANDOM_LENGTH * 2];
    1.97 +    unsigned char     crsrdata[SSL3_RANDOM_LENGTH * 2];
    1.98 +    PRUint64          md5buf[22];
    1.99 +    PRUint64          shabuf[40];
   1.100 +
   1.101 +#define md5Ctx ((MD5Context *)md5buf)
   1.102 +#define shaCtx ((SHA1Context *)shabuf)
   1.103 +
   1.104 +    static const SECItem zed  = { siBuffer, NULL, 0 };
   1.105 +
   1.106 +    if (pwSpec->msItem.data == NULL ||
   1.107 +        pwSpec->msItem.len  != SSL3_MASTER_SECRET_LENGTH) {
   1.108 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.109 +	return rv;
   1.110 +    }
   1.111 +
   1.112 +    PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data, 
   1.113 +                                           pwSpec->msItem.len));
   1.114 +
   1.115 +    /* figure out how much is needed */
   1.116 +    macSize    = pwSpec->mac_size;
   1.117 +    keySize    = cipher_def->key_size;
   1.118 +    effKeySize = cipher_def->secret_key_size;
   1.119 +    IVSize     = cipher_def->iv_size;
   1.120 +    if (keySize == 0) {
   1.121 +	effKeySize = IVSize = 0; /* only MACing */
   1.122 +    }
   1.123 +    if (cipher_def->type == type_block &&
   1.124 +	pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
   1.125 +	/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
   1.126 +	explicitIV = PR_TRUE;
   1.127 +    }
   1.128 +    block_needed =
   1.129 +	2 * (macSize + effKeySize + ((!isExport && !explicitIV) * IVSize));
   1.130 +
   1.131 +    /*
   1.132 +     * clear out our returned keys so we can recover on failure
   1.133 +     */
   1.134 +    pwSpec->client.write_key_item     = zed;
   1.135 +    pwSpec->client.write_mac_key_item = zed;
   1.136 +    pwSpec->server.write_key_item     = zed;
   1.137 +    pwSpec->server.write_mac_key_item = zed;
   1.138 +
   1.139 +    /* initialize the server random, client random block */
   1.140 +    srcr.type   = siBuffer;
   1.141 +    srcr.data   = srcrdata;
   1.142 +    srcr.len    = sizeof srcrdata;
   1.143 +    PORT_Memcpy(srcrdata, sr, SSL3_RANDOM_LENGTH);
   1.144 +    PORT_Memcpy(srcrdata + SSL3_RANDOM_LENGTH, cr, SSL3_RANDOM_LENGTH);
   1.145 +
   1.146 +    /* initialize the client random, server random block */
   1.147 +    crsr.type   = siBuffer;
   1.148 +    crsr.data   = crsrdata;
   1.149 +    crsr.len    = sizeof crsrdata;
   1.150 +    PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
   1.151 +    PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
   1.152 +    PRINT_BUF(100, (NULL, "Key & MAC CRSR", crsr.data, crsr.len));
   1.153 +
   1.154 +    /*
   1.155 +     * generate the key material:
   1.156 +     */
   1.157 +    if (isTLS) {
   1.158 +	SECItem       keyblk;
   1.159 +
   1.160 +	keyblk.type = siBuffer;
   1.161 +	keyblk.data = key_block;
   1.162 +	keyblk.len  = block_needed;
   1.163 +
   1.164 +	if (isTLS12) {
   1.165 +	    status = TLS_P_hash(HASH_AlgSHA256, &pwSpec->msItem,
   1.166 +				"key expansion", &srcr, &keyblk, isFIPS);
   1.167 +	} else {
   1.168 +	    status = TLS_PRF(&pwSpec->msItem, "key expansion", &srcr, &keyblk,
   1.169 +			     isFIPS);
   1.170 +	}
   1.171 +	if (status != SECSuccess) {
   1.172 +	    goto key_and_mac_derive_fail;
   1.173 +	}
   1.174 +	block_bytes = keyblk.len;
   1.175 +    } else {
   1.176 +	/* key_block = 
   1.177 +	 *     MD5(master_secret + SHA('A' + master_secret + 
   1.178 +	 *                      ServerHello.random + ClientHello.random)) +
   1.179 +	 *     MD5(master_secret + SHA('BB' + master_secret + 
   1.180 +	 *                      ServerHello.random + ClientHello.random)) +
   1.181 +	 *     MD5(master_secret + SHA('CCC' + master_secret + 
   1.182 +	 *                      ServerHello.random + ClientHello.random)) +
   1.183 +	 *     [...];
   1.184 +	 */
   1.185 +	unsigned int made = 0;
   1.186 +	for (i = 0; made < block_needed && i < NUM_MIXERS; ++i) {
   1.187 +	    unsigned int    outLen;
   1.188 +	    unsigned char   sha_out[SHA1_LENGTH];
   1.189 +
   1.190 +	    SHA1_Begin(shaCtx);
   1.191 +	    SHA1_Update(shaCtx, (unsigned char*)(mixers[i]), i+1);
   1.192 +	    SHA1_Update(shaCtx, pwSpec->msItem.data, pwSpec->msItem.len);
   1.193 +	    SHA1_Update(shaCtx, srcr.data, srcr.len);
   1.194 +	    SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
   1.195 +	    PORT_Assert(outLen == SHA1_LENGTH);
   1.196 +
   1.197 +	    MD5_Begin(md5Ctx);
   1.198 +	    MD5_Update(md5Ctx, pwSpec->msItem.data, pwSpec->msItem.len);
   1.199 +	    MD5_Update(md5Ctx, sha_out, outLen);
   1.200 +	    MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
   1.201 +	    PORT_Assert(outLen == MD5_LENGTH);
   1.202 +	    made += MD5_LENGTH;
   1.203 +	}
   1.204 +	block_bytes = made;
   1.205 +    }
   1.206 +    PORT_Assert(block_bytes >= block_needed);
   1.207 +    PORT_Assert(block_bytes <= sizeof pwSpec->key_block);
   1.208 +    PRINT_BUF(100, (NULL, "key block", key_block, block_bytes));
   1.209 +
   1.210 +    /*
   1.211 +     * Put the key material where it goes.
   1.212 +     */
   1.213 +    key_block2 = key_block + block_bytes;
   1.214 +    i = 0;			/* now shows how much consumed */
   1.215 +
   1.216 +    /* 
   1.217 +     * The key_block is partitioned as follows:
   1.218 +     * client_write_MAC_secret[CipherSpec.hash_size]
   1.219 +     */
   1.220 +    buildSSLKey(&key_block[i],macSize, &pwSpec->client.write_mac_key_item, \
   1.221 +                "Client Write MAC Secret");
   1.222 +    i += macSize;
   1.223 +
   1.224 +    /* 
   1.225 +     * server_write_MAC_secret[CipherSpec.hash_size]
   1.226 +     */
   1.227 +    buildSSLKey(&key_block[i],macSize, &pwSpec->server.write_mac_key_item, \
   1.228 +                "Server Write MAC Secret");
   1.229 +    i += macSize;
   1.230 +
   1.231 +    if (!keySize) {
   1.232 +	/* only MACing */
   1.233 +	buildSSLKey(NULL, 0, &pwSpec->client.write_key_item, \
   1.234 +	            "Client Write Key (MAC only)");
   1.235 +	buildSSLKey(NULL, 0, &pwSpec->server.write_key_item, \
   1.236 +	            "Server Write Key (MAC only)");
   1.237 +	buildSSLKey(NULL, 0, &pwSpec->client.write_iv_item, \
   1.238 +	            "Client Write IV (MAC only)");
   1.239 +	buildSSLKey(NULL, 0, &pwSpec->server.write_iv_item, \
   1.240 +	            "Server Write IV (MAC only)");
   1.241 +    } else if (!isExport) {
   1.242 +	/* 
   1.243 +	** Generate Domestic write keys and IVs.
   1.244 +	** client_write_key[CipherSpec.key_material]
   1.245 +	*/
   1.246 +	buildSSLKey(&key_block[i], keySize, &pwSpec->client.write_key_item, \
   1.247 +	            "Domestic Client Write Key");
   1.248 +	i += keySize;
   1.249 +
   1.250 +	/* 
   1.251 +	** server_write_key[CipherSpec.key_material]
   1.252 +	*/
   1.253 +	buildSSLKey(&key_block[i], keySize, &pwSpec->server.write_key_item, \
   1.254 +	            "Domestic Server Write Key");
   1.255 +	i += keySize;
   1.256 +
   1.257 +	if (IVSize > 0) {
   1.258 +	    if (explicitIV) {
   1.259 +		static unsigned char zero_block[32];
   1.260 +		PORT_Assert(IVSize <= sizeof zero_block);
   1.261 +		buildSSLKey(&zero_block[0], IVSize, \
   1.262 +			    &pwSpec->client.write_iv_item, \
   1.263 +			    "Domestic Client Write IV");
   1.264 +		buildSSLKey(&zero_block[0], IVSize, \
   1.265 +			    &pwSpec->server.write_iv_item, \
   1.266 +			    "Domestic Server Write IV");
   1.267 +	    } else {
   1.268 +		/* 
   1.269 +		** client_write_IV[CipherSpec.IV_size]
   1.270 +		*/
   1.271 +		buildSSLKey(&key_block[i], IVSize, \
   1.272 +			    &pwSpec->client.write_iv_item, \
   1.273 +			    "Domestic Client Write IV");
   1.274 +		i += IVSize;
   1.275 +
   1.276 +		/* 
   1.277 +		** server_write_IV[CipherSpec.IV_size]
   1.278 +		*/
   1.279 +		buildSSLKey(&key_block[i], IVSize, \
   1.280 +			    &pwSpec->server.write_iv_item, \
   1.281 +			    "Domestic Server Write IV");
   1.282 +		i += IVSize;
   1.283 +	    }
   1.284 +	}
   1.285 +	PORT_Assert(i <= block_bytes);
   1.286 +    } else if (!isTLS) { 
   1.287 +	/*
   1.288 +	** Generate SSL3 Export write keys and IVs.
   1.289 +	*/
   1.290 +	unsigned int    outLen;
   1.291 +
   1.292 +	/*
   1.293 +	** client_write_key[CipherSpec.key_material]
   1.294 +	** final_client_write_key = MD5(client_write_key +
   1.295 +	**                   ClientHello.random + ServerHello.random);
   1.296 +	*/
   1.297 +	MD5_Begin(md5Ctx);
   1.298 +	MD5_Update(md5Ctx, &key_block[i], effKeySize);
   1.299 +	MD5_Update(md5Ctx, crsr.data, crsr.len);
   1.300 +	MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
   1.301 +	i += effKeySize;
   1.302 +	buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
   1.303 +	            "SSL3 Export Client Write Key");
   1.304 +	key_block2 += keySize;
   1.305 +
   1.306 +	/*
   1.307 +	** server_write_key[CipherSpec.key_material]
   1.308 +	** final_server_write_key = MD5(server_write_key +
   1.309 +	**                    ServerHello.random + ClientHello.random);
   1.310 +	*/
   1.311 +	MD5_Begin(md5Ctx);
   1.312 +	MD5_Update(md5Ctx, &key_block[i], effKeySize);
   1.313 +	MD5_Update(md5Ctx, srcr.data, srcr.len);
   1.314 +	MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
   1.315 +	i += effKeySize;
   1.316 +	buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
   1.317 +	            "SSL3 Export Server Write Key");
   1.318 +	key_block2 += keySize;
   1.319 +	PORT_Assert(i <= block_bytes);
   1.320 +
   1.321 +	if (IVSize) {
   1.322 +	    /*
   1.323 +	    ** client_write_IV = 
   1.324 +	    **	MD5(ClientHello.random + ServerHello.random);
   1.325 +	    */
   1.326 +	    MD5_Begin(md5Ctx);
   1.327 +	    MD5_Update(md5Ctx, crsr.data, crsr.len);
   1.328 +	    MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
   1.329 +	    buildSSLKey(key_block2, IVSize, &pwSpec->client.write_iv_item, \
   1.330 +	                "SSL3 Export Client Write IV");
   1.331 +	    key_block2 += IVSize;
   1.332 +
   1.333 +	    /*
   1.334 +	    ** server_write_IV = 
   1.335 +	    **	MD5(ServerHello.random + ClientHello.random);
   1.336 +	    */
   1.337 +	    MD5_Begin(md5Ctx);
   1.338 +	    MD5_Update(md5Ctx, srcr.data, srcr.len);
   1.339 +	    MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
   1.340 +	    buildSSLKey(key_block2, IVSize, &pwSpec->server.write_iv_item, \
   1.341 +	                "SSL3 Export Server Write IV");
   1.342 +	    key_block2 += IVSize;
   1.343 +	}
   1.344 +
   1.345 +	PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
   1.346 +    } else {
   1.347 +	/*
   1.348 +	** Generate TLS Export write keys and IVs.
   1.349 +	*/
   1.350 +	SECItem       secret ;
   1.351 +	SECItem       keyblk ;
   1.352 +
   1.353 +	secret.type = siBuffer;
   1.354 +	keyblk.type = siBuffer;
   1.355 +	/*
   1.356 +	** client_write_key[CipherSpec.key_material]
   1.357 +	** final_client_write_key = PRF(client_write_key, 
   1.358 +	**                              "client write key",
   1.359 +	**                              client_random + server_random);
   1.360 +	*/
   1.361 +	secret.data = &key_block[i];
   1.362 +	secret.len  = effKeySize;
   1.363 +	i          += effKeySize;
   1.364 +	keyblk.data = key_block2;
   1.365 +	keyblk.len  = keySize;
   1.366 +	status = TLS_PRF(&secret, "client write key", &crsr, &keyblk, isFIPS);
   1.367 +	if (status != SECSuccess) {
   1.368 +	    goto key_and_mac_derive_fail;
   1.369 +	}
   1.370 +	buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
   1.371 +	            "TLS Export Client Write Key");
   1.372 +	key_block2 += keySize;
   1.373 +
   1.374 +	/*
   1.375 +	** server_write_key[CipherSpec.key_material]
   1.376 +	** final_server_write_key = PRF(server_write_key,
   1.377 +	**                              "server write key",
   1.378 +	**                              client_random + server_random);
   1.379 +	*/
   1.380 +	secret.data = &key_block[i];
   1.381 +	secret.len  = effKeySize;
   1.382 +	i          += effKeySize;
   1.383 +	keyblk.data = key_block2;
   1.384 +	keyblk.len  = keySize;
   1.385 +	status = TLS_PRF(&secret, "server write key", &crsr, &keyblk, isFIPS);
   1.386 +	if (status != SECSuccess) {
   1.387 +	    goto key_and_mac_derive_fail;
   1.388 +	}
   1.389 +	buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
   1.390 +	            "TLS Export Server Write Key");
   1.391 +	key_block2 += keySize;
   1.392 +
   1.393 +	/*
   1.394 +	** iv_block = PRF("", "IV block", client_random + server_random);
   1.395 +	** client_write_IV[SecurityParameters.IV_size]
   1.396 +	** server_write_IV[SecurityParameters.IV_size]
   1.397 +	*/
   1.398 +	if (IVSize) {
   1.399 +	    secret.data = NULL;
   1.400 +	    secret.len  = 0;
   1.401 +	    keyblk.data = key_block2;
   1.402 +	    keyblk.len  = 2 * IVSize;
   1.403 +	    status = TLS_PRF(&secret, "IV block", &crsr, &keyblk, isFIPS);
   1.404 +	    if (status != SECSuccess) {
   1.405 +		goto key_and_mac_derive_fail;
   1.406 +	    }
   1.407 +	    buildSSLKey(key_block2,          IVSize, \
   1.408 +	                &pwSpec->client.write_iv_item, \
   1.409 +			"TLS Export Client Write IV");
   1.410 +	    buildSSLKey(key_block2 + IVSize, IVSize, \
   1.411 +	                &pwSpec->server.write_iv_item, \
   1.412 +			"TLS Export Server Write IV");
   1.413 +	    key_block2 += 2 * IVSize;
   1.414 +	}
   1.415 +	PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
   1.416 +    }
   1.417 +    rv = SECSuccess;
   1.418 +
   1.419 +key_and_mac_derive_fail:
   1.420 +
   1.421 +    MD5_DestroyContext(md5Ctx, PR_FALSE);
   1.422 +    SHA1_DestroyContext(shaCtx, PR_FALSE);
   1.423 +
   1.424 +    if (rv != SECSuccess) {
   1.425 +	PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
   1.426 +    }
   1.427 +
   1.428 +    return rv;
   1.429 +}
   1.430 +
   1.431 +
   1.432 +/* derive the Master Secret from the PMS */
   1.433 +/* Presently, this is only done wtih RSA PMS, and only on the server side,
   1.434 + * so isRSA is always true. 
   1.435 + */
   1.436 +SECStatus
   1.437 +ssl3_MasterKeyDeriveBypass( 
   1.438 +    ssl3CipherSpec *      pwSpec,
   1.439 +    const unsigned char * cr,
   1.440 +    const unsigned char * sr,
   1.441 +    const SECItem *       pms,
   1.442 +    PRBool                isTLS,
   1.443 +    PRBool                isRSA)
   1.444 +{
   1.445 +    unsigned char * key_block    = pwSpec->key_block;
   1.446 +    SECStatus       rv    = SECSuccess;
   1.447 +    PRBool          isFIPS = PR_FALSE;
   1.448 +    PRBool          isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
   1.449 +
   1.450 +    SECItem         crsr;
   1.451 +
   1.452 +    unsigned char     crsrdata[SSL3_RANDOM_LENGTH * 2];
   1.453 +    PRUint64          md5buf[22];
   1.454 +    PRUint64          shabuf[40];
   1.455 +
   1.456 +#define md5Ctx ((MD5Context *)md5buf)
   1.457 +#define shaCtx ((SHA1Context *)shabuf)
   1.458 +
   1.459 +    /* first do the consistancy checks */
   1.460 +    if (isRSA) { 
   1.461 +	PORT_Assert(pms->len == SSL3_RSA_PMS_LENGTH);
   1.462 +	if (pms->len != SSL3_RSA_PMS_LENGTH) {
   1.463 +	    PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.464 +	    return SECFailure;
   1.465 +	}
   1.466 +	/* caller must test PMS version for rollback */
   1.467 +    }
   1.468 +
   1.469 +    /* initialize the client random, server random block */
   1.470 +    crsr.type   = siBuffer;
   1.471 +    crsr.data   = crsrdata;
   1.472 +    crsr.len    = sizeof crsrdata;
   1.473 +    PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
   1.474 +    PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
   1.475 +    PRINT_BUF(100, (NULL, "Master Secret CRSR", crsr.data, crsr.len));
   1.476 +
   1.477 +    /* finally do the key gen */
   1.478 +    if (isTLS) {
   1.479 +	SECItem master = { siBuffer, NULL, 0 };
   1.480 +
   1.481 +	master.data = key_block;
   1.482 +	master.len = SSL3_MASTER_SECRET_LENGTH;
   1.483 +
   1.484 +	if (isTLS12) {
   1.485 +	    rv = TLS_P_hash(HASH_AlgSHA256, pms, "master secret", &crsr,
   1.486 +			    &master, isFIPS);
   1.487 +	} else {
   1.488 +	    rv = TLS_PRF(pms, "master secret", &crsr, &master, isFIPS);
   1.489 +	}
   1.490 +	if (rv != SECSuccess) {
   1.491 +	    PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
   1.492 +	}
   1.493 +    } else {
   1.494 +	int i;
   1.495 +	unsigned int made = 0;
   1.496 +	for (i = 0; i < 3; i++) {
   1.497 +	    unsigned int    outLen;
   1.498 +	    unsigned char   sha_out[SHA1_LENGTH];
   1.499 +
   1.500 +	    SHA1_Begin(shaCtx);
   1.501 +	    SHA1_Update(shaCtx, (unsigned char*) mixers[i], i+1);
   1.502 +	    SHA1_Update(shaCtx, pms->data, pms->len);
   1.503 +	    SHA1_Update(shaCtx, crsr.data, crsr.len);
   1.504 +	    SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
   1.505 +	    PORT_Assert(outLen == SHA1_LENGTH);
   1.506 +
   1.507 +	    MD5_Begin(md5Ctx);
   1.508 +	    MD5_Update(md5Ctx, pms->data, pms->len);
   1.509 +	    MD5_Update(md5Ctx, sha_out, outLen);
   1.510 +	    MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
   1.511 +	    PORT_Assert(outLen == MD5_LENGTH);
   1.512 +	    made += outLen;
   1.513 +	}
   1.514 +    }
   1.515 +
   1.516 +    /* store the results */
   1.517 +    PORT_Memcpy(pwSpec->raw_master_secret, key_block, 
   1.518 +		SSL3_MASTER_SECRET_LENGTH);
   1.519 +    pwSpec->msItem.data = pwSpec->raw_master_secret;
   1.520 +    pwSpec->msItem.len  = SSL3_MASTER_SECRET_LENGTH;
   1.521 +    PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data, 
   1.522 +                                           pwSpec->msItem.len));
   1.523 +
   1.524 +    return rv;
   1.525 +}
   1.526 +
   1.527 +static SECStatus
   1.528 +ssl_canExtractMS(PK11SymKey *pms, PRBool isTLS, PRBool isDH, PRBool *pcbp)
   1.529 +{   SECStatus	      rv;
   1.530 +    PK11SymKey *    ms = NULL;
   1.531 +    SECItem         params = {siBuffer, NULL, 0};
   1.532 +    CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params;
   1.533 +    unsigned char   rand[SSL3_RANDOM_LENGTH];
   1.534 +    CK_VERSION      pms_version;
   1.535 +    CK_MECHANISM_TYPE master_derive;
   1.536 +    CK_MECHANISM_TYPE key_derive;
   1.537 +    CK_FLAGS          keyFlags;
   1.538 +    
   1.539 +    if (pms == NULL)
   1.540 +	return(SECFailure);
   1.541 +
   1.542 +    PORT_Memset(rand, 0, SSL3_RANDOM_LENGTH);
   1.543 +
   1.544 +    if (isTLS) {
   1.545 +	if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
   1.546 +	else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
   1.547 +	key_derive    = CKM_TLS_KEY_AND_MAC_DERIVE;
   1.548 +	keyFlags      = CKF_SIGN | CKF_VERIFY;
   1.549 +    } else {
   1.550 +	if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
   1.551 +	else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
   1.552 +	key_derive    = CKM_SSL3_KEY_AND_MAC_DERIVE;
   1.553 +	keyFlags      = 0;
   1.554 +    }
   1.555 +
   1.556 +    master_params.pVersion                     = &pms_version;
   1.557 +    master_params.RandomInfo.pClientRandom     = rand;
   1.558 +    master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
   1.559 +    master_params.RandomInfo.pServerRandom     = rand;
   1.560 +    master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
   1.561 +
   1.562 +    params.data = (unsigned char *) &master_params;
   1.563 +    params.len  = sizeof master_params;
   1.564 +
   1.565 +    ms = PK11_DeriveWithFlags(pms, master_derive, &params, key_derive,
   1.566 +			      CKA_DERIVE, 0, keyFlags);
   1.567 +    if (ms == NULL)
   1.568 +	return(SECFailure);
   1.569 +
   1.570 +    rv = PK11_ExtractKeyValue(ms);
   1.571 +    *pcbp = (rv == SECSuccess);
   1.572 +    PK11_FreeSymKey(ms);
   1.573 +    
   1.574 +    return(rv);
   1.575 +
   1.576 +}
   1.577 +#endif  /* !NO_PKCS11_BYPASS */
   1.578 +
   1.579 +/* Check the key exchange algorithm for each cipher in the list to see if
   1.580 + * a master secret key can be extracted. If the KEA will use keys from the 
   1.581 + * specified cert make sure the extract operation is attempted from the slot
   1.582 + * where the private key resides.
   1.583 + * If MS can be extracted for all ciphers, (*pcanbypass) is set to TRUE and
   1.584 + * SECSuccess is returned. In all other cases but one (*pcanbypass) is
   1.585 + * set to FALSE and SECFailure is returned.
   1.586 + * In that last case Derive() has been called successfully but the MS is null, 
   1.587 + * CanBypass sets (*pcanbypass) to FALSE and returns SECSuccess indicating the
   1.588 + * arguments were all valid but the slot cannot be bypassed.
   1.589 + */
   1.590 +
   1.591 +/* XXX Add SSL_CBP_TLS1_1 and test it in protocolmask when setting isTLS. */
   1.592 +
   1.593 +SECStatus 
   1.594 +SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
   1.595 +	      PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
   1.596 +              PRBool *pcanbypass, void *pwArg)
   1.597 +{
   1.598 +#ifdef NO_PKCS11_BYPASS
   1.599 +    if (!pcanbypass) {
   1.600 +        PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.601 +        return SECFailure;
   1.602 +    }
   1.603 +    *pcanbypass = PR_FALSE;
   1.604 +    return SECSuccess;
   1.605 +#else
   1.606 +    SECStatus	      rv;
   1.607 +    int		      i;
   1.608 +    PRUint16	      suite;
   1.609 +    PK11SymKey *      pms = NULL;
   1.610 +    SECKEYPublicKey * srvPubkey = NULL;
   1.611 +    KeyType	      privKeytype;
   1.612 +    PK11SlotInfo *    slot = NULL;
   1.613 +    SECItem           param;
   1.614 +    CK_VERSION 	      version;
   1.615 +    CK_MECHANISM_TYPE mechanism_array[2];
   1.616 +    SECItem           enc_pms = {siBuffer, NULL, 0};
   1.617 +    PRBool	      isTLS = PR_FALSE;
   1.618 +    SSLCipherSuiteInfo csdef;
   1.619 +    PRBool	      testrsa = PR_FALSE;
   1.620 +    PRBool	      testrsa_export = PR_FALSE;
   1.621 +    PRBool	      testecdh = PR_FALSE;
   1.622 +    PRBool	      testecdhe = PR_FALSE;
   1.623 +#ifndef NSS_DISABLE_ECC
   1.624 +    SECKEYECParams ecParams = { siBuffer, NULL, 0 };
   1.625 +#endif
   1.626 +
   1.627 +    if (!cert || !srvPrivkey || !ciphersuites || !pcanbypass) {
   1.628 +	PORT_SetError(SEC_ERROR_INVALID_ARGS);
   1.629 +        return SECFailure;
   1.630 +    }
   1.631 +    
   1.632 +    srvPubkey = CERT_ExtractPublicKey(cert);
   1.633 +    if (!srvPubkey)
   1.634 +        return SECFailure;
   1.635 +	
   1.636 +    *pcanbypass = PR_TRUE;
   1.637 +    rv = SECFailure;
   1.638 +    
   1.639 +    /* determine which KEAs to test */
   1.640 +    /* 0 (TLS_NULL_WITH_NULL_NULL) is used as a list terminator because
   1.641 +     * SSL3 and TLS specs forbid negotiating that cipher suite number.
   1.642 +     */
   1.643 +    for (i=0; i < nsuites && (suite = *ciphersuites++) != 0; i++) {
   1.644 +	/* skip SSL2 cipher suites and ones NSS doesn't support */
   1.645 +	if (SSL_GetCipherSuiteInfo(suite, &csdef, sizeof(csdef)) != SECSuccess
   1.646 +	    || SSL_IS_SSL2_CIPHER(suite) )
   1.647 +	    continue;
   1.648 +	switch (csdef.keaType) {
   1.649 +	case ssl_kea_rsa:
   1.650 +	    switch (csdef.cipherSuite) {
   1.651 +	    case TLS_RSA_EXPORT1024_WITH_RC4_56_SHA:
   1.652 +	    case TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA:
   1.653 +	    case TLS_RSA_EXPORT_WITH_RC4_40_MD5:
   1.654 +	    case TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
   1.655 +		testrsa_export = PR_TRUE;
   1.656 +	    }
   1.657 +	    if (!testrsa_export)
   1.658 +		testrsa = PR_TRUE;
   1.659 +	    break;
   1.660 +	case ssl_kea_ecdh:
   1.661 +	    if (strcmp(csdef.keaTypeName, "ECDHE") == 0) /* ephemeral? */
   1.662 +		testecdhe = PR_TRUE;
   1.663 +	    else
   1.664 +		testecdh = PR_TRUE;
   1.665 +	    break;
   1.666 +	case ssl_kea_dh:
   1.667 +	    /* this is actually DHE */
   1.668 +	default:
   1.669 +	    continue;
   1.670 +	}
   1.671 +    }
   1.672 +    
   1.673 +    /* For each protocol try to derive and extract an MS.
   1.674 +     * Failure of function any function except MS extract means
   1.675 +     * continue with the next cipher test. Stop testing when the list is
   1.676 +     * exhausted or when the first MS extract--not derive--fails.
   1.677 +     */
   1.678 +    privKeytype = SECKEY_GetPrivateKeyType(srvPrivkey);
   1.679 +    protocolmask &= SSL_CBP_SSL3|SSL_CBP_TLS1_0;
   1.680 +    while (protocolmask) {
   1.681 +	if (protocolmask & SSL_CBP_SSL3) {
   1.682 +	    isTLS = PR_FALSE;
   1.683 +	    protocolmask ^= SSL_CBP_SSL3;
   1.684 +	} else {
   1.685 +	    isTLS = PR_TRUE;
   1.686 +	    protocolmask ^= SSL_CBP_TLS1_0;
   1.687 +	}
   1.688 +
   1.689 +	if (privKeytype == rsaKey && testrsa_export) {
   1.690 +	    if (PK11_GetPrivateModulusLen(srvPrivkey) > EXPORT_RSA_KEY_LENGTH) {
   1.691 +		*pcanbypass = PR_FALSE;
   1.692 +		rv = SECSuccess;
   1.693 +		break;
   1.694 +	    } else
   1.695 +		testrsa = PR_TRUE;
   1.696 +	}
   1.697 +	for (; privKeytype == rsaKey && testrsa; ) {
   1.698 +	    /* TLS_RSA */
   1.699 +	    unsigned char     rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
   1.700 +	    unsigned int      outLen = 0;
   1.701 +	    CK_MECHANISM_TYPE target;
   1.702 +	    SECStatus	      irv;
   1.703 +	    
   1.704 +	    mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
   1.705 +	    mechanism_array[1] = CKM_RSA_PKCS;
   1.706 +
   1.707 +	    slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
   1.708 +	    if (slot == NULL) {
   1.709 +		PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
   1.710 +		break;
   1.711 +	    }
   1.712 +
   1.713 +	    /* Generate the pre-master secret ...  (client side) */
   1.714 +	    version.major = 3 /*MSB(clientHelloVersion)*/;
   1.715 +	    version.minor = 0 /*LSB(clientHelloVersion)*/;
   1.716 +	    param.data = (unsigned char *)&version;
   1.717 +	    param.len  = sizeof version;
   1.718 +	    pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, &param, 0, pwArg);
   1.719 +	    PK11_FreeSlot(slot);
   1.720 +	    if (!pms)
   1.721 +		break;
   1.722 +	    /* now wrap it */
   1.723 +	    enc_pms.len  = SECKEY_PublicKeyStrength(srvPubkey);
   1.724 +	    enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
   1.725 +	    if (enc_pms.data == NULL) {
   1.726 +	        PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
   1.727 +	        break;
   1.728 +	    }
   1.729 +	    irv = PK11_PubWrapSymKey(CKM_RSA_PKCS, srvPubkey, pms, &enc_pms);
   1.730 +	    if (irv != SECSuccess) 
   1.731 +		break;
   1.732 +	    PK11_FreeSymKey(pms);
   1.733 +	    pms = NULL;
   1.734 +	    /* now do the server side--check the triple bypass first */
   1.735 +	    rv = PK11_PrivDecryptPKCS1(srvPrivkey, rsaPmsBuf, &outLen,
   1.736 +				       sizeof rsaPmsBuf,
   1.737 +				       (unsigned char *)enc_pms.data,
   1.738 +				       enc_pms.len);
   1.739 +	    /* if decrypt worked we're done with the RSA test */
   1.740 +	    if (rv == SECSuccess) {
   1.741 +		*pcanbypass = PR_TRUE;
   1.742 +		break;
   1.743 +	    }
   1.744 +	    /* check for fallback to double bypass */
   1.745 +	    target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE
   1.746 +			: CKM_SSL3_MASTER_KEY_DERIVE;
   1.747 +	    pms = PK11_PubUnwrapSymKey(srvPrivkey, &enc_pms,
   1.748 +				       target, CKA_DERIVE, 0);
   1.749 +	    rv = ssl_canExtractMS(pms, isTLS, PR_FALSE, pcanbypass);
   1.750 +	    if (rv == SECSuccess && *pcanbypass == PR_FALSE)
   1.751 +		goto done;
   1.752 +	    break;
   1.753 +	}
   1.754 +
   1.755 +	/* Check for NULL to avoid double free. 
   1.756 +	 * SECItem_FreeItem sets data NULL in secitem.c#265 
   1.757 +	 */
   1.758 +	if (enc_pms.data != NULL) {
   1.759 +	    SECITEM_FreeItem(&enc_pms, PR_FALSE);
   1.760 +        }
   1.761 +#ifndef NSS_DISABLE_ECC
   1.762 +	for (; (privKeytype == ecKey && ( testecdh || testecdhe)) ||
   1.763 +	       (privKeytype == rsaKey && testecdhe); ) {
   1.764 +	    CK_MECHANISM_TYPE target;
   1.765 +	    SECKEYPublicKey  *keapub = NULL;
   1.766 +	    SECKEYPrivateKey *keapriv;
   1.767 +	    SECKEYPublicKey  *cpub = NULL; /* client's ephemeral ECDH keys */
   1.768 +	    SECKEYPrivateKey *cpriv = NULL;
   1.769 +	    SECKEYECParams   *pecParams = NULL;
   1.770 +
   1.771 +	    if (privKeytype == ecKey && testecdhe) {
   1.772 +		/* TLS_ECDHE_ECDSA */
   1.773 +		pecParams = &srvPubkey->u.ec.DEREncodedParams;
   1.774 +	    } else if (privKeytype == rsaKey && testecdhe) {
   1.775 +		/* TLS_ECDHE_RSA */
   1.776 +		ECName       ec_curve;
   1.777 +		int		 serverKeyStrengthInBits;
   1.778 +		int		 signatureKeyStrength;
   1.779 +		int		 requiredECCbits;
   1.780 +
   1.781 +		/* find a curve of equivalent strength to the RSA key's */
   1.782 +		requiredECCbits = PK11_GetPrivateModulusLen(srvPrivkey);
   1.783 +		if (requiredECCbits < 0)
   1.784 +		    break;
   1.785 +		requiredECCbits *= BPB;
   1.786 +		serverKeyStrengthInBits = srvPubkey->u.rsa.modulus.len;
   1.787 +		if (srvPubkey->u.rsa.modulus.data[0] == 0) {
   1.788 +		    serverKeyStrengthInBits--;
   1.789 +		}
   1.790 +		/* convert to strength in bits */
   1.791 +		serverKeyStrengthInBits *= BPB;
   1.792 +
   1.793 +		signatureKeyStrength =
   1.794 +		    SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits);
   1.795 +
   1.796 +		if ( requiredECCbits > signatureKeyStrength ) 
   1.797 +		     requiredECCbits = signatureKeyStrength;
   1.798 +
   1.799 +		ec_curve =
   1.800 +		    ssl3_GetCurveWithECKeyStrength(
   1.801 +					ssl3_GetSupportedECCurveMask(NULL),
   1.802 +				  	requiredECCbits);
   1.803 +		rv = ssl3_ECName2Params(NULL, ec_curve, &ecParams);
   1.804 +		if (rv == SECFailure) {
   1.805 +		    break;
   1.806 +		}
   1.807 +		pecParams = &ecParams;
   1.808 +	    }
   1.809 +
   1.810 +	    if (testecdhe) {
   1.811 +		/* generate server's ephemeral keys */
   1.812 +		keapriv = SECKEY_CreateECPrivateKey(pecParams, &keapub, NULL); 
   1.813 +		if (!keapriv || !keapub) {
   1.814 +		    if (keapriv)
   1.815 +			SECKEY_DestroyPrivateKey(keapriv);
   1.816 +		    if (keapub)
   1.817 +			SECKEY_DestroyPublicKey(keapub);
   1.818 +		    PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
   1.819 +		    rv = SECFailure;
   1.820 +		    break;
   1.821 +		}
   1.822 +	    } else {
   1.823 +		/* TLS_ECDH_ECDSA */
   1.824 +		keapub = srvPubkey;
   1.825 +		keapriv = srvPrivkey;
   1.826 +		pecParams = &srvPubkey->u.ec.DEREncodedParams;
   1.827 +	    }
   1.828 +
   1.829 +	    /* perform client side ops */
   1.830 +	    /* generate a pair of ephemeral keys using server's parms */
   1.831 +	    cpriv = SECKEY_CreateECPrivateKey(pecParams, &cpub, NULL);
   1.832 +	    if (!cpriv || !cpub) {
   1.833 +		if (testecdhe) {
   1.834 +		    SECKEY_DestroyPrivateKey(keapriv);
   1.835 +		    SECKEY_DestroyPublicKey(keapub);
   1.836 +		}
   1.837 +		PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
   1.838 +		rv = SECFailure;
   1.839 +		break;
   1.840 +	    }
   1.841 +	    /* now do the server side */
   1.842 +	    /* determine the PMS using client's public value */
   1.843 +	    target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE_DH
   1.844 +			   : CKM_SSL3_MASTER_KEY_DERIVE_DH;
   1.845 +	    pms = PK11_PubDeriveWithKDF(keapriv, cpub, PR_FALSE, NULL, NULL,
   1.846 +				    CKM_ECDH1_DERIVE,
   1.847 +				    target,
   1.848 +				    CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
   1.849 +	    rv = ssl_canExtractMS(pms, isTLS, PR_TRUE, pcanbypass);
   1.850 +	    SECKEY_DestroyPrivateKey(cpriv);
   1.851 +	    SECKEY_DestroyPublicKey(cpub);
   1.852 +	    if (testecdhe) {
   1.853 +		SECKEY_DestroyPrivateKey(keapriv);
   1.854 +		SECKEY_DestroyPublicKey(keapub);
   1.855 +	    }
   1.856 +	    if (rv == SECSuccess && *pcanbypass == PR_FALSE)
   1.857 +		goto done;
   1.858 +	    break;
   1.859 +	}
   1.860 +	/* Check for NULL to avoid double free. */
   1.861 +	if (ecParams.data != NULL) {
   1.862 +	    PORT_Free(ecParams.data);
   1.863 +	    ecParams.data = NULL;
   1.864 +	}
   1.865 +#endif /* NSS_DISABLE_ECC */
   1.866 +	if (pms)
   1.867 +	    PK11_FreeSymKey(pms);
   1.868 +    }
   1.869 +
   1.870 +    /* *pcanbypass has been set */
   1.871 +    rv = SECSuccess;
   1.872 +    
   1.873 +  done:
   1.874 +    if (pms)
   1.875 +	PK11_FreeSymKey(pms);
   1.876 +
   1.877 +    /* Check for NULL to avoid double free. 
   1.878 +     * SECItem_FreeItem sets data NULL in secitem.c#265 
   1.879 +     */
   1.880 +    if (enc_pms.data != NULL) {
   1.881 +    	SECITEM_FreeItem(&enc_pms, PR_FALSE);
   1.882 +    }
   1.883 +#ifndef NSS_DISABLE_ECC
   1.884 +    if (ecParams.data != NULL) {
   1.885 +        PORT_Free(ecParams.data);
   1.886 +        ecParams.data = NULL;
   1.887 +    }
   1.888 +#endif /* NSS_DISABLE_ECC */
   1.889 +
   1.890 +    if (srvPubkey) {
   1.891 +    	SECKEY_DestroyPublicKey(srvPubkey);
   1.892 +	srvPubkey = NULL;
   1.893 +    }
   1.894 +
   1.895 +
   1.896 +    return rv;
   1.897 +#endif /* NO_PKCS11_BYPASS */
   1.898 +}
   1.899 +

mercurial