security/sandbox/chromium/base/memory/scoped_ptr.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/sandbox/chromium/base/memory/scoped_ptr.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,709 @@
     1.4 +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
     1.5 +// Use of this source code is governed by a BSD-style license that can be
     1.6 +// found in the LICENSE file.
     1.7 +
     1.8 +// Scopers help you manage ownership of a pointer, helping you easily manage the
     1.9 +// a pointer within a scope, and automatically destroying the pointer at the
    1.10 +// end of a scope.  There are two main classes you will use, which correspond
    1.11 +// to the operators new/delete and new[]/delete[].
    1.12 +//
    1.13 +// Example usage (scoped_ptr<T>):
    1.14 +//   {
    1.15 +//     scoped_ptr<Foo> foo(new Foo("wee"));
    1.16 +//   }  // foo goes out of scope, releasing the pointer with it.
    1.17 +//
    1.18 +//   {
    1.19 +//     scoped_ptr<Foo> foo;          // No pointer managed.
    1.20 +//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
    1.21 +//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
    1.22 +//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
    1.23 +//     foo->Method();                // Foo::Method() called.
    1.24 +//     foo.get()->Method();          // Foo::Method() called.
    1.25 +//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
    1.26 +//                                   // manages a pointer.
    1.27 +//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
    1.28 +//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
    1.29 +//                                   // manages a pointer.
    1.30 +//   }  // foo wasn't managing a pointer, so nothing was destroyed.
    1.31 +//
    1.32 +// Example usage (scoped_ptr<T[]>):
    1.33 +//   {
    1.34 +//     scoped_ptr<Foo[]> foo(new Foo[100]);
    1.35 +//     foo.get()->Method();  // Foo::Method on the 0th element.
    1.36 +//     foo[10].Method();     // Foo::Method on the 10th element.
    1.37 +//   }
    1.38 +//
    1.39 +// These scopers also implement part of the functionality of C++11 unique_ptr
    1.40 +// in that they are "movable but not copyable."  You can use the scopers in
    1.41 +// the parameter and return types of functions to signify ownership transfer
    1.42 +// in to and out of a function.  When calling a function that has a scoper
    1.43 +// as the argument type, it must be called with the result of an analogous
    1.44 +// scoper's Pass() function or another function that generates a temporary;
    1.45 +// passing by copy will NOT work.  Here is an example using scoped_ptr:
    1.46 +//
    1.47 +//   void TakesOwnership(scoped_ptr<Foo> arg) {
    1.48 +//     // Do something with arg
    1.49 +//   }
    1.50 +//   scoped_ptr<Foo> CreateFoo() {
    1.51 +//     // No need for calling Pass() because we are constructing a temporary
    1.52 +//     // for the return value.
    1.53 +//     return scoped_ptr<Foo>(new Foo("new"));
    1.54 +//   }
    1.55 +//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
    1.56 +//     return arg.Pass();
    1.57 +//   }
    1.58 +//
    1.59 +//   {
    1.60 +//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
    1.61 +//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
    1.62 +//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
    1.63 +//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
    1.64 +//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
    1.65 +//   }
    1.66 +//
    1.67 +// Notice that if you do not call Pass() when returning from PassThru(), or
    1.68 +// when invoking TakesOwnership(), the code will not compile because scopers
    1.69 +// are not copyable; they only implement move semantics which require calling
    1.70 +// the Pass() function to signify a destructive transfer of state. CreateFoo()
    1.71 +// is different though because we are constructing a temporary on the return
    1.72 +// line and thus can avoid needing to call Pass().
    1.73 +//
    1.74 +// Pass() properly handles upcast in assignment, i.e. you can assign
    1.75 +// scoped_ptr<Child> to scoped_ptr<Parent>:
    1.76 +//
    1.77 +//   scoped_ptr<Foo> foo(new Foo());
    1.78 +//   scoped_ptr<FooParent> parent = foo.Pass();
    1.79 +//
    1.80 +// PassAs<>() should be used to upcast return value in return statement:
    1.81 +//
    1.82 +//   scoped_ptr<Foo> CreateFoo() {
    1.83 +//     scoped_ptr<FooChild> result(new FooChild());
    1.84 +//     return result.PassAs<Foo>();
    1.85 +//   }
    1.86 +//
    1.87 +// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
    1.88 +// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
    1.89 +
    1.90 +#ifndef BASE_MEMORY_SCOPED_PTR_H_
    1.91 +#define BASE_MEMORY_SCOPED_PTR_H_
    1.92 +
    1.93 +// This is an implementation designed to match the anticipated future TR2
    1.94 +// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
    1.95 +
    1.96 +#include <assert.h>
    1.97 +#include <stddef.h>
    1.98 +#include <stdlib.h>
    1.99 +
   1.100 +#include <algorithm>  // For std::swap().
   1.101 +
   1.102 +#include "base/basictypes.h"
   1.103 +#include "base/compiler_specific.h"
   1.104 +#include "base/move.h"
   1.105 +#include "base/template_util.h"
   1.106 +
   1.107 +namespace base {
   1.108 +
   1.109 +namespace subtle {
   1.110 +class RefCountedBase;
   1.111 +class RefCountedThreadSafeBase;
   1.112 +}  // namespace subtle
   1.113 +
   1.114 +// Function object which deletes its parameter, which must be a pointer.
   1.115 +// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
   1.116 +// invokes 'delete'. The default deleter for scoped_ptr<T>.
   1.117 +template <class T>
   1.118 +struct DefaultDeleter {
   1.119 +  DefaultDeleter() {}
   1.120 +  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
   1.121 +    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
   1.122 +    // if U* is implicitly convertible to T* and U is not an array type.
   1.123 +    //
   1.124 +    // Correct implementation should use SFINAE to disable this
   1.125 +    // constructor. However, since there are no other 1-argument constructors,
   1.126 +    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
   1.127 +    // complete types is simpler and will cause compile failures for equivalent
   1.128 +    // misuses.
   1.129 +    //
   1.130 +    // Note, the is_convertible<U*, T*> check also ensures that U is not an
   1.131 +    // array. T is guaranteed to be a non-array, so any U* where U is an array
   1.132 +    // cannot convert to T*.
   1.133 +    enum { T_must_be_complete = sizeof(T) };
   1.134 +    enum { U_must_be_complete = sizeof(U) };
   1.135 +    COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
   1.136 +                   U_ptr_must_implicitly_convert_to_T_ptr);
   1.137 +  }
   1.138 +  inline void operator()(T* ptr) const {
   1.139 +    enum { type_must_be_complete = sizeof(T) };
   1.140 +    delete ptr;
   1.141 +  }
   1.142 +};
   1.143 +
   1.144 +// Specialization of DefaultDeleter for array types.
   1.145 +template <class T>
   1.146 +struct DefaultDeleter<T[]> {
   1.147 +  inline void operator()(T* ptr) const {
   1.148 +    enum { type_must_be_complete = sizeof(T) };
   1.149 +    delete[] ptr;
   1.150 +  }
   1.151 +
   1.152 + private:
   1.153 +  // Disable this operator for any U != T because it is undefined to execute
   1.154 +  // an array delete when the static type of the array mismatches the dynamic
   1.155 +  // type.
   1.156 +  //
   1.157 +  // References:
   1.158 +  //   C++98 [expr.delete]p3
   1.159 +  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
   1.160 +  template <typename U> void operator()(U* array) const;
   1.161 +};
   1.162 +
   1.163 +template <class T, int n>
   1.164 +struct DefaultDeleter<T[n]> {
   1.165 +  // Never allow someone to declare something like scoped_ptr<int[10]>.
   1.166 +  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
   1.167 +};
   1.168 +
   1.169 +// Function object which invokes 'free' on its parameter, which must be
   1.170 +// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
   1.171 +//
   1.172 +// scoped_ptr<int, base::FreeDeleter> foo_ptr(
   1.173 +//     static_cast<int*>(malloc(sizeof(int))));
   1.174 +struct FreeDeleter {
   1.175 +  inline void operator()(void* ptr) const {
   1.176 +    free(ptr);
   1.177 +  }
   1.178 +};
   1.179 +
   1.180 +namespace internal {
   1.181 +
   1.182 +template <typename T> struct IsNotRefCounted {
   1.183 +  enum {
   1.184 +    value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
   1.185 +        !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
   1.186 +            value
   1.187 +  };
   1.188 +};
   1.189 +
   1.190 +// Minimal implementation of the core logic of scoped_ptr, suitable for
   1.191 +// reuse in both scoped_ptr and its specializations.
   1.192 +template <class T, class D>
   1.193 +class scoped_ptr_impl {
   1.194 + public:
   1.195 +  explicit scoped_ptr_impl(T* p) : data_(p) { }
   1.196 +
   1.197 +  // Initializer for deleters that have data parameters.
   1.198 +  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
   1.199 +
   1.200 +  // Templated constructor that destructively takes the value from another
   1.201 +  // scoped_ptr_impl.
   1.202 +  template <typename U, typename V>
   1.203 +  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
   1.204 +      : data_(other->release(), other->get_deleter()) {
   1.205 +    // We do not support move-only deleters.  We could modify our move
   1.206 +    // emulation to have base::subtle::move() and base::subtle::forward()
   1.207 +    // functions that are imperfect emulations of their C++11 equivalents,
   1.208 +    // but until there's a requirement, just assume deleters are copyable.
   1.209 +  }
   1.210 +
   1.211 +  template <typename U, typename V>
   1.212 +  void TakeState(scoped_ptr_impl<U, V>* other) {
   1.213 +    // See comment in templated constructor above regarding lack of support
   1.214 +    // for move-only deleters.
   1.215 +    reset(other->release());
   1.216 +    get_deleter() = other->get_deleter();
   1.217 +  }
   1.218 +
   1.219 +  ~scoped_ptr_impl() {
   1.220 +    if (data_.ptr != NULL) {
   1.221 +      // Not using get_deleter() saves one function call in non-optimized
   1.222 +      // builds.
   1.223 +      static_cast<D&>(data_)(data_.ptr);
   1.224 +    }
   1.225 +  }
   1.226 +
   1.227 +  void reset(T* p) {
   1.228 +    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
   1.229 +    if (p != NULL && p == data_.ptr)
   1.230 +      abort();
   1.231 +
   1.232 +    // Note that running data_.ptr = p can lead to undefined behavior if
   1.233 +    // get_deleter()(get()) deletes this. In order to pevent this, reset()
   1.234 +    // should update the stored pointer before deleting its old value.
   1.235 +    //
   1.236 +    // However, changing reset() to use that behavior may cause current code to
   1.237 +    // break in unexpected ways. If the destruction of the owned object
   1.238 +    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
   1.239 +    // then it will incorrectly dispatch calls to |p| rather than the original
   1.240 +    // value of |data_.ptr|.
   1.241 +    //
   1.242 +    // During the transition period, set the stored pointer to NULL while
   1.243 +    // deleting the object. Eventually, this safety check will be removed to
   1.244 +    // prevent the scenario initially described from occuring and
   1.245 +    // http://crbug.com/176091 can be closed.
   1.246 +    T* old = data_.ptr;
   1.247 +    data_.ptr = NULL;
   1.248 +    if (old != NULL)
   1.249 +      static_cast<D&>(data_)(old);
   1.250 +    data_.ptr = p;
   1.251 +  }
   1.252 +
   1.253 +  T* get() const { return data_.ptr; }
   1.254 +
   1.255 +  D& get_deleter() { return data_; }
   1.256 +  const D& get_deleter() const { return data_; }
   1.257 +
   1.258 +  void swap(scoped_ptr_impl& p2) {
   1.259 +    // Standard swap idiom: 'using std::swap' ensures that std::swap is
   1.260 +    // present in the overload set, but we call swap unqualified so that
   1.261 +    // any more-specific overloads can be used, if available.
   1.262 +    using std::swap;
   1.263 +    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
   1.264 +    swap(data_.ptr, p2.data_.ptr);
   1.265 +  }
   1.266 +
   1.267 +  T* release() {
   1.268 +    T* old_ptr = data_.ptr;
   1.269 +    data_.ptr = NULL;
   1.270 +    return old_ptr;
   1.271 +  }
   1.272 +
   1.273 + private:
   1.274 +  // Needed to allow type-converting constructor.
   1.275 +  template <typename U, typename V> friend class scoped_ptr_impl;
   1.276 +
   1.277 +  // Use the empty base class optimization to allow us to have a D
   1.278 +  // member, while avoiding any space overhead for it when D is an
   1.279 +  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
   1.280 +  // discussion of this technique.
   1.281 +  struct Data : public D {
   1.282 +    explicit Data(T* ptr_in) : ptr(ptr_in) {}
   1.283 +    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
   1.284 +    T* ptr;
   1.285 +  };
   1.286 +
   1.287 +  Data data_;
   1.288 +
   1.289 +  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
   1.290 +};
   1.291 +
   1.292 +}  // namespace internal
   1.293 +
   1.294 +}  // namespace base
   1.295 +
   1.296 +// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
   1.297 +// automatically deletes the pointer it holds (if any).
   1.298 +// That is, scoped_ptr<T> owns the T object that it points to.
   1.299 +// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
   1.300 +// Also like T*, scoped_ptr<T> is thread-compatible, and once you
   1.301 +// dereference it, you get the thread safety guarantees of T.
   1.302 +//
   1.303 +// The size of scoped_ptr is small. On most compilers, when using the
   1.304 +// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
   1.305 +// increase the size proportional to whatever state they need to have. See
   1.306 +// comments inside scoped_ptr_impl<> for details.
   1.307 +//
   1.308 +// Current implementation targets having a strict subset of  C++11's
   1.309 +// unique_ptr<> features. Known deficiencies include not supporting move-only
   1.310 +// deleteres, function pointers as deleters, and deleters with reference
   1.311 +// types.
   1.312 +template <class T, class D = base::DefaultDeleter<T> >
   1.313 +class scoped_ptr {
   1.314 +  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
   1.315 +
   1.316 +  COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
   1.317 +                 T_is_refcounted_type_and_needs_scoped_refptr);
   1.318 +
   1.319 + public:
   1.320 +  // The element and deleter types.
   1.321 +  typedef T element_type;
   1.322 +  typedef D deleter_type;
   1.323 +
   1.324 +  // Constructor.  Defaults to initializing with NULL.
   1.325 +  scoped_ptr() : impl_(NULL) { }
   1.326 +
   1.327 +  // Constructor.  Takes ownership of p.
   1.328 +  explicit scoped_ptr(element_type* p) : impl_(p) { }
   1.329 +
   1.330 +  // Constructor.  Allows initialization of a stateful deleter.
   1.331 +  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
   1.332 +
   1.333 +  // Constructor.  Allows construction from a scoped_ptr rvalue for a
   1.334 +  // convertible type and deleter.
   1.335 +  //
   1.336 +  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
   1.337 +  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
   1.338 +  // has different post-conditions if D is a reference type. Since this
   1.339 +  // implementation does not support deleters with reference type,
   1.340 +  // we do not need a separate move constructor allowing us to avoid one
   1.341 +  // use of SFINAE. You only need to care about this if you modify the
   1.342 +  // implementation of scoped_ptr.
   1.343 +  template <typename U, typename V>
   1.344 +  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
   1.345 +    COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
   1.346 +  }
   1.347 +
   1.348 +  // Constructor.  Move constructor for C++03 move emulation of this type.
   1.349 +  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
   1.350 +
   1.351 +  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
   1.352 +  // type and deleter.
   1.353 +  //
   1.354 +  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
   1.355 +  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
   1.356 +  // form has different requirements on for move-only Deleters. Since this
   1.357 +  // implementation does not support move-only Deleters, we do not need a
   1.358 +  // separate move assignment operator allowing us to avoid one use of SFINAE.
   1.359 +  // You only need to care about this if you modify the implementation of
   1.360 +  // scoped_ptr.
   1.361 +  template <typename U, typename V>
   1.362 +  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
   1.363 +    COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
   1.364 +    impl_.TakeState(&rhs.impl_);
   1.365 +    return *this;
   1.366 +  }
   1.367 +
   1.368 +  // Reset.  Deletes the currently owned object, if any.
   1.369 +  // Then takes ownership of a new object, if given.
   1.370 +  void reset(element_type* p = NULL) { impl_.reset(p); }
   1.371 +
   1.372 +  // Accessors to get the owned object.
   1.373 +  // operator* and operator-> will assert() if there is no current object.
   1.374 +  element_type& operator*() const {
   1.375 +    assert(impl_.get() != NULL);
   1.376 +    return *impl_.get();
   1.377 +  }
   1.378 +  element_type* operator->() const  {
   1.379 +    assert(impl_.get() != NULL);
   1.380 +    return impl_.get();
   1.381 +  }
   1.382 +  element_type* get() const { return impl_.get(); }
   1.383 +
   1.384 +  // Access to the deleter.
   1.385 +  deleter_type& get_deleter() { return impl_.get_deleter(); }
   1.386 +  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
   1.387 +
   1.388 +  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
   1.389 +  // implicitly convertible to a real bool (which is dangerous).
   1.390 +  //
   1.391 +  // Note that this trick is only safe when the == and != operators
   1.392 +  // are declared explicitly, as otherwise "scoped_ptr1 ==
   1.393 +  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
   1.394 +  // to Testable and then do the comparison).
   1.395 + private:
   1.396 +  typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
   1.397 +      scoped_ptr::*Testable;
   1.398 +
   1.399 + public:
   1.400 +  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
   1.401 +
   1.402 +  // Comparison operators.
   1.403 +  // These return whether two scoped_ptr refer to the same object, not just to
   1.404 +  // two different but equal objects.
   1.405 +  bool operator==(const element_type* p) const { return impl_.get() == p; }
   1.406 +  bool operator!=(const element_type* p) const { return impl_.get() != p; }
   1.407 +
   1.408 +  // Swap two scoped pointers.
   1.409 +  void swap(scoped_ptr& p2) {
   1.410 +    impl_.swap(p2.impl_);
   1.411 +  }
   1.412 +
   1.413 +  // Release a pointer.
   1.414 +  // The return value is the current pointer held by this object.
   1.415 +  // If this object holds a NULL pointer, the return value is NULL.
   1.416 +  // After this operation, this object will hold a NULL pointer,
   1.417 +  // and will not own the object any more.
   1.418 +  element_type* release() WARN_UNUSED_RESULT {
   1.419 +    return impl_.release();
   1.420 +  }
   1.421 +
   1.422 +  // C++98 doesn't support functions templates with default parameters which
   1.423 +  // makes it hard to write a PassAs() that understands converting the deleter
   1.424 +  // while preserving simple calling semantics.
   1.425 +  //
   1.426 +  // Until there is a use case for PassAs() with custom deleters, just ignore
   1.427 +  // the custom deleter.
   1.428 +  template <typename PassAsType>
   1.429 +  scoped_ptr<PassAsType> PassAs() {
   1.430 +    return scoped_ptr<PassAsType>(Pass());
   1.431 +  }
   1.432 +
   1.433 + private:
   1.434 +  // Needed to reach into |impl_| in the constructor.
   1.435 +  template <typename U, typename V> friend class scoped_ptr;
   1.436 +  base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
   1.437 +
   1.438 +  // Forbidden for API compatibility with std::unique_ptr.
   1.439 +  explicit scoped_ptr(int disallow_construction_from_null);
   1.440 +
   1.441 +  // Forbid comparison of scoped_ptr types.  If U != T, it totally
   1.442 +  // doesn't make sense, and if U == T, it still doesn't make sense
   1.443 +  // because you should never have the same object owned by two different
   1.444 +  // scoped_ptrs.
   1.445 +  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
   1.446 +  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
   1.447 +};
   1.448 +
   1.449 +template <class T, class D>
   1.450 +class scoped_ptr<T[], D> {
   1.451 +  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
   1.452 +
   1.453 + public:
   1.454 +  // The element and deleter types.
   1.455 +  typedef T element_type;
   1.456 +  typedef D deleter_type;
   1.457 +
   1.458 +  // Constructor.  Defaults to initializing with NULL.
   1.459 +  scoped_ptr() : impl_(NULL) { }
   1.460 +
   1.461 +  // Constructor. Stores the given array. Note that the argument's type
   1.462 +  // must exactly match T*. In particular:
   1.463 +  // - it cannot be a pointer to a type derived from T, because it is
   1.464 +  //   inherently unsafe in the general case to access an array through a
   1.465 +  //   pointer whose dynamic type does not match its static type (eg., if
   1.466 +  //   T and the derived types had different sizes access would be
   1.467 +  //   incorrectly calculated). Deletion is also always undefined
   1.468 +  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
   1.469 +  // - it cannot be NULL, because NULL is an integral expression, not a
   1.470 +  //   pointer to T. Use the no-argument version instead of explicitly
   1.471 +  //   passing NULL.
   1.472 +  // - it cannot be const-qualified differently from T per unique_ptr spec
   1.473 +  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
   1.474 +  //   to work around this may use implicit_cast<const T*>().
   1.475 +  //   However, because of the first bullet in this comment, users MUST
   1.476 +  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
   1.477 +  explicit scoped_ptr(element_type* array) : impl_(array) { }
   1.478 +
   1.479 +  // Constructor.  Move constructor for C++03 move emulation of this type.
   1.480 +  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
   1.481 +
   1.482 +  // operator=.  Move operator= for C++03 move emulation of this type.
   1.483 +  scoped_ptr& operator=(RValue rhs) {
   1.484 +    impl_.TakeState(&rhs.object->impl_);
   1.485 +    return *this;
   1.486 +  }
   1.487 +
   1.488 +  // Reset.  Deletes the currently owned array, if any.
   1.489 +  // Then takes ownership of a new object, if given.
   1.490 +  void reset(element_type* array = NULL) { impl_.reset(array); }
   1.491 +
   1.492 +  // Accessors to get the owned array.
   1.493 +  element_type& operator[](size_t i) const {
   1.494 +    assert(impl_.get() != NULL);
   1.495 +    return impl_.get()[i];
   1.496 +  }
   1.497 +  element_type* get() const { return impl_.get(); }
   1.498 +
   1.499 +  // Access to the deleter.
   1.500 +  deleter_type& get_deleter() { return impl_.get_deleter(); }
   1.501 +  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
   1.502 +
   1.503 +  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
   1.504 +  // implicitly convertible to a real bool (which is dangerous).
   1.505 + private:
   1.506 +  typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
   1.507 +      scoped_ptr::*Testable;
   1.508 +
   1.509 + public:
   1.510 +  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
   1.511 +
   1.512 +  // Comparison operators.
   1.513 +  // These return whether two scoped_ptr refer to the same object, not just to
   1.514 +  // two different but equal objects.
   1.515 +  bool operator==(element_type* array) const { return impl_.get() == array; }
   1.516 +  bool operator!=(element_type* array) const { return impl_.get() != array; }
   1.517 +
   1.518 +  // Swap two scoped pointers.
   1.519 +  void swap(scoped_ptr& p2) {
   1.520 +    impl_.swap(p2.impl_);
   1.521 +  }
   1.522 +
   1.523 +  // Release a pointer.
   1.524 +  // The return value is the current pointer held by this object.
   1.525 +  // If this object holds a NULL pointer, the return value is NULL.
   1.526 +  // After this operation, this object will hold a NULL pointer,
   1.527 +  // and will not own the object any more.
   1.528 +  element_type* release() WARN_UNUSED_RESULT {
   1.529 +    return impl_.release();
   1.530 +  }
   1.531 +
   1.532 + private:
   1.533 +  // Force element_type to be a complete type.
   1.534 +  enum { type_must_be_complete = sizeof(element_type) };
   1.535 +
   1.536 +  // Actually hold the data.
   1.537 +  base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
   1.538 +
   1.539 +  // Disable initialization from any type other than element_type*, by
   1.540 +  // providing a constructor that matches such an initialization, but is
   1.541 +  // private and has no definition. This is disabled because it is not safe to
   1.542 +  // call delete[] on an array whose static type does not match its dynamic
   1.543 +  // type.
   1.544 +  template <typename U> explicit scoped_ptr(U* array);
   1.545 +  explicit scoped_ptr(int disallow_construction_from_null);
   1.546 +
   1.547 +  // Disable reset() from any type other than element_type*, for the same
   1.548 +  // reasons as the constructor above.
   1.549 +  template <typename U> void reset(U* array);
   1.550 +  void reset(int disallow_reset_from_null);
   1.551 +
   1.552 +  // Forbid comparison of scoped_ptr types.  If U != T, it totally
   1.553 +  // doesn't make sense, and if U == T, it still doesn't make sense
   1.554 +  // because you should never have the same object owned by two different
   1.555 +  // scoped_ptrs.
   1.556 +  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
   1.557 +  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
   1.558 +};
   1.559 +
   1.560 +// Free functions
   1.561 +template <class T, class D>
   1.562 +void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
   1.563 +  p1.swap(p2);
   1.564 +}
   1.565 +
   1.566 +template <class T, class D>
   1.567 +bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
   1.568 +  return p1 == p2.get();
   1.569 +}
   1.570 +
   1.571 +template <class T, class D>
   1.572 +bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
   1.573 +  return p1 != p2.get();
   1.574 +}
   1.575 +
   1.576 +// DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
   1.577 +//
   1.578 +// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
   1.579 +// second template argument, the functor used to free the object.
   1.580 +
   1.581 +template<class C, class FreeProc = base::FreeDeleter>
   1.582 +class scoped_ptr_malloc {
   1.583 +  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue)
   1.584 +
   1.585 + public:
   1.586 +
   1.587 +  // The element type
   1.588 +  typedef C element_type;
   1.589 +
   1.590 +  // Constructor.  Defaults to initializing with NULL.
   1.591 +  // There is no way to create an uninitialized scoped_ptr.
   1.592 +  // The input parameter must be allocated with an allocator that matches the
   1.593 +  // Free functor.  For the default Free functor, this is malloc, calloc, or
   1.594 +  // realloc.
   1.595 +  explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
   1.596 +
   1.597 +  // Constructor.  Move constructor for C++03 move emulation of this type.
   1.598 +  scoped_ptr_malloc(RValue rvalue)
   1.599 +      : ptr_(rvalue.object->release()) {
   1.600 +  }
   1.601 +
   1.602 +  // Destructor.  If there is a C object, call the Free functor.
   1.603 +  ~scoped_ptr_malloc() {
   1.604 +    reset();
   1.605 +  }
   1.606 +
   1.607 +  // operator=.  Move operator= for C++03 move emulation of this type.
   1.608 +  scoped_ptr_malloc& operator=(RValue rhs) {
   1.609 +    reset(rhs.object->release());
   1.610 +    return *this;
   1.611 +  }
   1.612 +
   1.613 +  // Reset.  Calls the Free functor on the current owned object, if any.
   1.614 +  // Then takes ownership of a new object, if given.
   1.615 +  // this->reset(this->get()) works.
   1.616 +  void reset(C* p = NULL) {
   1.617 +    if (ptr_ != p) {
   1.618 +      if (ptr_ != NULL) {
   1.619 +        FreeProc free_proc;
   1.620 +        free_proc(ptr_);
   1.621 +      }
   1.622 +      ptr_ = p;
   1.623 +    }
   1.624 +  }
   1.625 +
   1.626 +  // Get the current object.
   1.627 +  // operator* and operator-> will cause an assert() failure if there is
   1.628 +  // no current object.
   1.629 +  C& operator*() const {
   1.630 +    assert(ptr_ != NULL);
   1.631 +    return *ptr_;
   1.632 +  }
   1.633 +
   1.634 +  C* operator->() const {
   1.635 +    assert(ptr_ != NULL);
   1.636 +    return ptr_;
   1.637 +  }
   1.638 +
   1.639 +  C* get() const {
   1.640 +    return ptr_;
   1.641 +  }
   1.642 +
   1.643 +  // Allow scoped_ptr_malloc<C> to be used in boolean expressions, but not
   1.644 +  // implicitly convertible to a real bool (which is dangerous).
   1.645 +  typedef C* scoped_ptr_malloc::*Testable;
   1.646 +  operator Testable() const { return ptr_ ? &scoped_ptr_malloc::ptr_ : NULL; }
   1.647 +
   1.648 +  // Comparison operators.
   1.649 +  // These return whether a scoped_ptr_malloc and a plain pointer refer
   1.650 +  // to the same object, not just to two different but equal objects.
   1.651 +  // For compatibility with the boost-derived implementation, these
   1.652 +  // take non-const arguments.
   1.653 +  bool operator==(C* p) const {
   1.654 +    return ptr_ == p;
   1.655 +  }
   1.656 +
   1.657 +  bool operator!=(C* p) const {
   1.658 +    return ptr_ != p;
   1.659 +  }
   1.660 +
   1.661 +  // Swap two scoped pointers.
   1.662 +  void swap(scoped_ptr_malloc & b) {
   1.663 +    C* tmp = b.ptr_;
   1.664 +    b.ptr_ = ptr_;
   1.665 +    ptr_ = tmp;
   1.666 +  }
   1.667 +
   1.668 +  // Release a pointer.
   1.669 +  // The return value is the current pointer held by this object.
   1.670 +  // If this object holds a NULL pointer, the return value is NULL.
   1.671 +  // After this operation, this object will hold a NULL pointer,
   1.672 +  // and will not own the object any more.
   1.673 +  C* release() WARN_UNUSED_RESULT {
   1.674 +    C* tmp = ptr_;
   1.675 +    ptr_ = NULL;
   1.676 +    return tmp;
   1.677 +  }
   1.678 +
   1.679 + private:
   1.680 +  C* ptr_;
   1.681 +
   1.682 +  // no reason to use these: each scoped_ptr_malloc should have its own object
   1.683 +  template <class C2, class GP>
   1.684 +  bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
   1.685 +  template <class C2, class GP>
   1.686 +  bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
   1.687 +};
   1.688 +
   1.689 +template<class C, class FP> inline
   1.690 +void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
   1.691 +  a.swap(b);
   1.692 +}
   1.693 +
   1.694 +template<class C, class FP> inline
   1.695 +bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
   1.696 +  return p == b.get();
   1.697 +}
   1.698 +
   1.699 +template<class C, class FP> inline
   1.700 +bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
   1.701 +  return p != b.get();
   1.702 +}
   1.703 +
   1.704 +// A function to convert T* into scoped_ptr<T>
   1.705 +// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
   1.706 +// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
   1.707 +template <typename T>
   1.708 +scoped_ptr<T> make_scoped_ptr(T* ptr) {
   1.709 +  return scoped_ptr<T>(ptr);
   1.710 +}
   1.711 +
   1.712 +#endif  // BASE_MEMORY_SCOPED_PTR_H_

mercurial